A DATABASE BASED ON DIFFERENT ASSAY TECHNIQUES OF DRUG SUBSTANCES

©2023. BRAC University All rights reserved.

By

Fahima Akther Tumpa 18346080

A thesis submitted to the School of Pharmacy in partial fulfillment of the requirements for the degree of Bachelor of Pharmacy (B. Pharm)

> School of Pharmacy BRAC University May 2023

Declaration

It is hereby declared that

- 1. The thesis submitted is my/our own original work while completing degree at BRAC University.
- 2. The thesis does not contain material previously published or written by a third party, except where this is appropriately cited through full and accurate referencing.
- 3. The thesis does not contain material which has been accepted, or submitted, for any other degree or diploma at a university or other institution.
- 4. I/We have acknowledged all main sources of help.

Student's Full Name & Signature:

Fahima Akther Tumpa Student ID-18346080

Approval

The project titled "A database based on different assay techniques of drug substances" submitted by Fahima Akther Tumpa (18346080), of Summer 2022 has been accepted as satisfactory in partial fulfillment of the requirement for the degree of Bachelor of Pharmacy.

Supervisor:

Eshaba Karim Lecturer, School of Pharmacy BRAC University

Approved By:

Program Coordinator:

Professor Dr. Hasina Yasmin Program Director and Assistant Dean School of Pharmacy BRAC University

Dean:

Professor Dr. Eva Rahman Kabir Dean, School of Pharmacy BRAC University

Ethics Statement

No humans or animals of any kinds were involved as samples for this study.

Abstract

This paper reviews various analytical methods for drugs that are included in the British pharmacopeia. A list was created based on the different kinds of assay performed for each drug substance. This project can serve as an educational tool. This database is valuable to analytical method developers and they can utilize it. The most common assay may be quickly understood by looking at a bar and pie chart. Titration was found to be the most common assay type.

Keywords: Titration, Spectroscopy, Chromatography

Acknowledgement

I would like to thank and express my sincere gratitude to the following people for their assistance and support, which was greatly helpful in the writing of this paper. The project was made possible by my supervisor, Eshaba Karim, Lecturer, School of Pharmacy, Brac University. She continually guided me in completing the thesis by sharing her knowledge and helping with data extraction, analysis, and statistical calculations. My heartfelt thanks to Dr. Eva Rahman Kabir, Dean and Professor, School of Pharmacy, BRAC for opening so many new doors of opportunity and scope to expand and deepen our knowledge, for pushing us to focus on learning leadership characteristics, career opportunities and ethics, breakthroughs in medicine and medical areas, and so much more through several seminars, contests, and workshops in addition to academic education, for reforming us and assisting us in preparing ourselves. A special thanks to the distinguished faculties of the School of Pharmacy, BRAC University who helped me develop the skills necessary to write this thesis.

Table of Contents

Declaration	ii
Approval	iii
Ethics Statement	iv
Abstract	V
Acknowledgement	vi
Table of Contents	vii
List of Figures	viii
List of Acronyms	ix
Chapter 1 Introduction	
Chapter 2 Method	5
Chapter 3 Result and discussion	
Chapter 4 Conclusion	
References	
Appendix A	

List of Figures

Figure 1: Flowchart of methodology	5
Figure 2: Different types of assay type used for analysis substance	6
Figure 3: Five different types of titration techniques	7
Figure 4: A bar chart of chromatography type	8
Figure 5: Ratio of UV spectroscopy and atomic absorption	9

List of Acronyms

UV	-	ultra violet
BP	-	British Pharmacopeia
HPLC	-	High Performance Liquid chromatography
GC	-	Gas Chromatography

Chapter 1 Introduction

Pharmacopeia

The national pharmacopeia of the United Kingdom is known as the British Pharmacopoeia (BP). Individuals and organizations engaged in pharmaceutical research, development, manufacture, and testing refer to it as a collection of quality standards for medicinal substances in the UK that is released annually. By establishing quality standards for UK pharmaceutical ingredients and medicinal goods, the BP significantly contributes to the work of the Medicines and Healthcare products Regulatory Agency (MHRA) in preserving public health.(Kumar et al., 2022)

Active Pharmaceutical Ingredients and Excipients

The chemical-based substances known as active pharmaceutical ingredients (APIs) are mostly produced in the United States, Europe, China, and India. APIs are mostly used in combination with other components to diagnose, treat, and cure disease. They contain pharmacological activity. However, in recent years, a lot of pharmaceutical companies have begun bringing these drugs back to their home nations from the nations that produce the active chemicals. People have employed contemporary medications to treat, diagnose, and cure illnesses. Every single medication is made up of two main parts: the active pharmaceutical ingredient (API), which is the main ingredient and is chemically and biologically active and must perform the action in your body, and the excipients, which are chemically inactive and provide things like volume, a sweet flavor, or color. These excipients aid in the transport of APIs throughout the body. An API is created through a multi-step reaction involving numerous chemical components and raw ingredients. All API, excipient, and reagent kinds as well as the various types of tests that are conducted on them are discussed in bp. The most valuable component of a pharmacological product is the API, which frequently has a higher negative impact on the environment than the excipients. The APIs in the unused medications can be recovered by recycling and later modified into new pharmacological formulations. .(Pratama et al., 2020)

Titration

Titration is a method of chemical quantitative analysis used to determine the concentration of a certain analyte in a mixture. Titration is a crucial analytical chemistry technique that is also

frequently referred to as volumetric analysis. Acid-base titration is used in the pharmaceutical industry for a variety of purposes, including analysis, quality control, product development, content analysis by redox titration, and purity analysis of the active ingredients. For example, acetylsalicylic acid in aspirin or vitamin C in multivitamin tablets are examples of active components that can be identified using purity analysis. It is also used to check the purity of drug additives that are added during the manufacturing of pharmaceutical formulations. In order to treat bronchial asthma, cough syrups containing ephedrine hydrochloride must pass a purity test. Depending on the type of substance to be assessed or the sort of analysis to be performed, titration can be divided into a number of categories. Titration that takes place in an aqueous solution is known as "aqueous titration" (solution of water). When determining the concentration of a solute in a sample, aqueous titration uses water instead of a solvent to dissolve the sample. Water-less solvent is referred to as "non-aqueous titration." When using water is not an option, this titration is helpful for testing very weak acids and bases. An acid or base titrant is used to titrate the solute during this procedure. The Bronsted-Lowry theory, which governs acid-base titration, shares the same fundamental principles as non-aqueous titration. Redox titration is a technique used in laboratories to measure the concentration of an analyte by causing a redox reaction between the analyte and the titrant. A redox indicator or potentiometer is frequently required for the redox titration. The oxidation-reduction reaction that takes place between the analyte and the titrant is the basis for the Redox titration. It is also one of the techniques used most frequently to determine the concentration of unidentified analytes. It is crucial to identify the shape of the corresponding titration curve in order to evaluate the redox titrations. It is far more practical to measure the concentration of the reaction potential in redox titration as opposed to the reacting species. In a volumetric analysis called a complexometric titration, the creation of a colored complex serves as a marker for the analysis of titration's endpoint. It is most helpful for figuring out how many distinct metal ions are present in a solution. Complexometric titrations are those volumetric analyses or titrations where the endpoint is indicated by a colored complex. Chelatometric is another name for it. In this sort of titration, an indicator is utilized that can produce a visible color shift in titration that signals the titration's endpoint. The amount of metal ions present in the solution is measured using complexometric titrations. It is a volumetric analysis since the volume of the analyte, titrant, and even the indicator is crucial to the titration process. The complexometric titration makes use of indicators like calcein and Eriochrome black T, among others. (Bell-Young, 2021).

Spectroscopy

The study and measurement of spectra formed by matter interacting with or producing electromagnetic radiation is known as spectroscopy. The study of the relationship between radiation and matter as a function of wavelength was the original definition of spectroscopy. Currently, any measurement of a quantity as a function of wavelength or frequency is referred to as spectroscopy. A sample containing molecules of interest is exposed to electromagnetic radiation of a certain wavelength range during a spectroscopy experiment, which causes absorption or emission. The sample takes in energy from the light source during absorption. The sample emits light at a wavelength that differs from the source's during emission. In UV spectroscopy, which is a form of absorption spectroscopy, a molecule absorbs light in the ultraviolet range (200–400 nm), which causes the electrons to be excited from their ground state to a higher energy state. It helps to clarify the structure of organic molecules by identifying heteroatoms and determining whether unsaturation is present or not.

Compounds that absorb UV radiation can be measured quantitatively using UV absorption spectroscopy. UV absorption spectroscopy can characterize the UV-absorbing chemicals that are used to determine the quality of compounds. By contrasting the absorption spectrum with the spectra of recognized substances, identification is accomplished.

Using this method, it is possible to determine if a chemical contains a functional group or not. The lack of a band at a specific wavelength is seen as proof that a certain group does not exist. UV spectroscopy can also be used to study the kinetics of reactions. The reaction cell is exposed to UV radiation, which causes changes in absorbance that may be seen. (Østergaard, 2018)

Chromatography

Chromatography is a method of physical separation. Due to the varied migration rates of the various components along the stationary phase's bed, chromatography is a technique for separating multicomponent mixtures into individual components. It enables the separation of compounds without the requirement for detailed knowledge about the type of substances to be separated, i.e., their number and their relative proportions in the mixture, as is required with other traditional separation procedures (such as crystallization, extraction, or distillation). Chromatography is a very effective analytical technique that is frequently utilized for scientific, industrial, and medicinal objectives due to its versatility and resolving power. It serves as a crucial component of many

scientific investigations' methodologies as well as a tool for monitoring the environment or the synthesis of pure substances in the chemical and pharmaceutical sectors. Pharmaceutical analysis accounts for 30% of chromatography's use, followed by biochemical and clinical chemistry (25%), environmental protection (15%), food and cosmetics (10%), and inorganic compounds (5%); 15% of chromatography's use is for analyses in other sectors. In turn, chromatography is utilized in approximately 75% of all analyses created by different pharmacopeias. (Pyka- pajak, et al.,2022) There are various chromatography techniques available. In this project, reverse phase HPLC and gas chromatography are discussed . Drugs are analyzed using high performance liquid chromatography (HPLC) in order to establish their identities and get quantitative data. (Nikolin et al., 2004)

Gas chromatography is a different well-liked chromatography technique. This is used, for instance, to assess the purity of numerous compounds in the food and pharmaceutical industries. This test can also be used to determine the drug's purity. The compounds must be gaseous in order to be tested here. The solvent is used to dissolve the test combination before it is added to the equipment. There is also a carrier gas introduced. Typically, helium or nitrogen, as they do not react with the combination. The chemicals go through a column that is kept at a specific temperature. The column is 200 m long and only a few millimeters thick. A detector that creates an external chromatogram is located at the end of the column. Components of the liquid mobile phase in column liquid chromatography interact to varied degrees with the solid stationary phase, sometimes referred to as the chromatography media or resin, as the liquid moves through the column. According to how they interact differently physiochemically with the stationary and mobile phases, molecules of interest in the mobile phase are divided.

Aim and objectives

The goal of this project is to create a database that will make it simple for researchers to identify the assay-type of drug substances. Additionally, students can benefit from this resource by using it. They can find out the assay type for an API, excipient, or reagent.

Chapter2

Methods

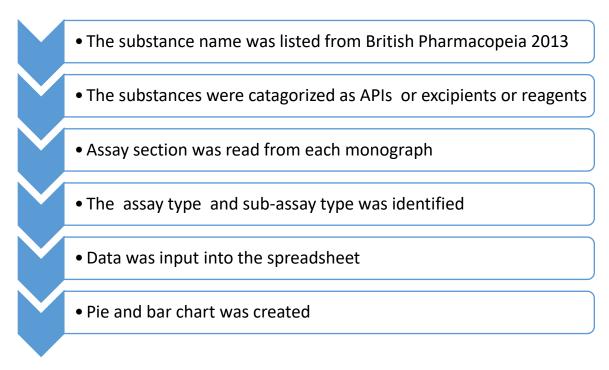
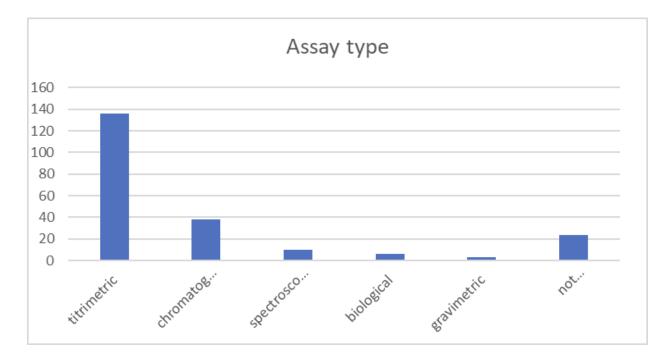


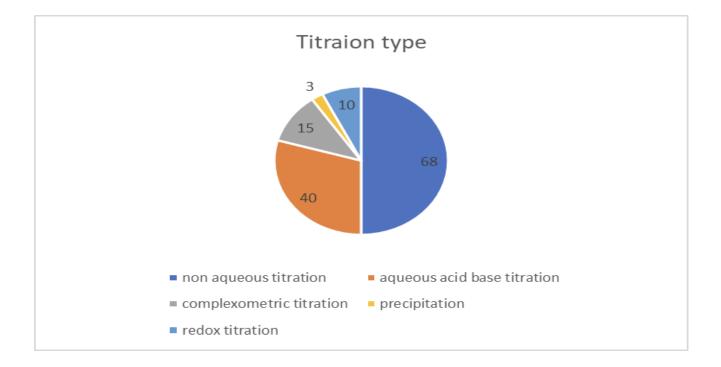
Figure 1: Flowchart of methodology

Chapter3

Result and discussion

Among 218 substances, titration is recommended for 136 of them, chromatography for 38, biological testing for 6, spectroscopy for 10, and gravimetry for 3 and Most often, titration is suggested here.




Figure 2: Different kinds of assay type recommended

Titration is primarily employed here since it offers various advantages.

Many medications have good solubility in organic solvents but are insoluble or only partially soluble in water. Solvents like alcohols, ethers, or chloroform can be used in non-aqueous titration because they can dissolve a greater variety of medicines and their derivatives. This guarantees complete medication dissolution, enabling precise and accurate titration. In an aquatic environment, certain medications may hydrolyze or engage in other chemical interactions that provide incorrect results. Non-aqueous titration offers a more stable and regulated environment, reducing the possibility of unintended reactions and ensuring the specificity of the titration

technique. Methods of non-aqueous titration frequently provide higher drug selectivity. The method's selectivity can be improved by adjusting the non-aqueous solvent and titrant selection to the medication under study. This is crucial when the medicine sample has a number of active ingredients or contaminants.

Titration also has the benefit of stability. Some medications can disintegrate in the presence of water or dissolved oxygen because they are susceptible to moisture or oxidation. Non-aqueous titration methods offer a dry setting that reduces the danger of drug degradation and ensures the stability of the substance during analysis.(FERNANDEZ-MAESTRE, 2020)

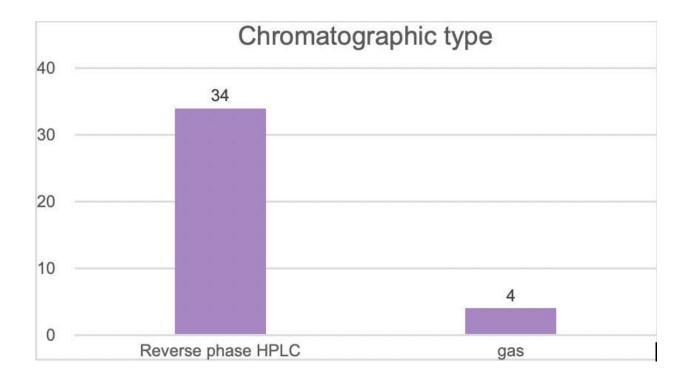


Figure 3: Five different types of titration techniques

Five different types of titration techniques are recommended in the collected database. These include non-aqueous, aqueous, complexometric precipitation, redox titration. Non-aqueous is recommended most. It is beneficial for titrating extremely weak acids or bases. It is possible to dissolve many organic acids that are notsoluble in water using non-aqueous solvents. As a result,

titration of these organic acids is simple. There are 40 compounds that may be assayed by aqueous acid base titration which is the second highest number.

Chromatography has advantages. It is feasible to separate and analyze complicated mixtures using chromatography because of its remarkable separation properties. Drugs are frequently combined with other compounds in biological samples, however chromatography allows for precise separation and differentiation of individual drug components. Because chromatographic methods are so sensitive, it is possible to identify and measure chemicals even at very low quantities. This is crucial for pharmaceutical analysis since precise measurements are required to evaluate the potency, purity, and safetyof medicines. (Coskun, 2016)

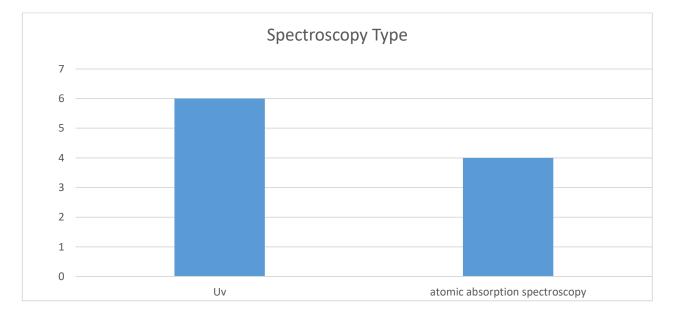


Figure 4: A bar chart of chromatography type

This graph shows that reverse phase HPLC is more commonly used than gas chromatography. In comparison to other chromatographic methods, it is a cost-effective approach. Water can be used with various solvents in the mobile phase of an RP-HPLC study. Reversed-phase Chromatography also has the benefit of accurately producing results from small amounts of sample.

On the other hand, the fundamental drawback of gas chromatography is that it can only separate volatile and thermally stable chemicals.

Spectroscopy is also used here. It is possible to quantify a qualitative property using a spectrophotometer. For instance, the concentration of a specific chemical in a solution can be determined by measuring the absorbance of light by that solution. This is helpful for determining the concentration of active components in liquid medications or the purity of pharmaceuticals.

Figure 5: Ratio of UV spectroscopy and atomic absorption

In this graph, it can be seen that UV spectroscopy and atomic absorption spectroscopy were recommended for the drugs included in the database at similar frequency. (M et al., 2021)

On the other hand, gravimetric is less used. It has some limitations. Like, Low amounts of medications cannot be measured accurately using this method. The method is less sensitive than other analytical methods, making it challenging to detect and evaluate small amounts of drugs

Chapter 4

Conclusion

In a nut shell, the objective of this effort was to build a database that would help students and researchers to determine the assay type for various drugs. Gravimetry, chromatography, titration, and spectroscopy were some of the techniques used in the study. Because of its benefits in terms of solubility, stability, and selectivity, titration was the assay type that was most frequently advised among these techniques. Overall, the database developed for this project offers useful data on assay types for a variety of drug substances, assisting pharmaceutical research, development, and quality control. It is possible to gain a thorough understanding of the characteristics of drugs through the use of several analytical techniques, which also makes it easier to determine the purity, concentration, and stability of drugs. Researchers and students will gain from having an easily accessible resource for determining the right assay type for APIs, excipients, or reagents in pharmaceutical formulations when this material has been consolidated. The project has limitations, despite the fact that it is useful for teaching purposes. This list includes 218 monographs out of 1450. As a result, this is not a complete set of database.

References

Kumar, V., Bansal, V., Madhavan, A., Kumar, M., Sindhu, R., Awasthi, M. K., Binod, P., & Saran, S. (2022). Active pharmaceutical ingredient (API) chemicals: a critical review of current biotechnological approaches. *Bioengineered*, *13*(2), 4309–4327. https://doi.org/10.1080/21655979.2022.2031412

Nikolin, B., Imamović, B., Medanhodžić-Vuk, S., & Sober, M. (2004). High performance liquid chromatography in pharmaceutical analyses. *Bosnian Journal of Basic Medical Sciences*, 4(2), 5–9. https://doi.org/10.17305/bjbms.2004.3405

Østergaard, J. (2018). UV imaging in pharmaceutical analysis. *Journal of Pharmaceutical and Biomedical Analysis*, 147, 140–148. https://doi.org/10.1016/j.jpba.2017.07.055

Pratama, D. E., Hsieh, W.-C., Elmaamoun, A., Lee, H. L., & Lee, T. (2020). Recovery of ActivePharmaceutical Ingredients from Unused Solid Dosage-Form Drugs. *ACS Omega*, *5*(45), 29147–29157. <u>https://doi.org/10.1021/acsomega.0c03878</u>

Coskun, O. (2016). Separation Tecniques: CHROMATOGRAPHY. Northern Clinics of Istanbul. https://doi.org/10.14744/nci.2016.32757

FERNANDEZ-MAESTRE, R. (2020). THE IMPORTANCE OF TEACHING TITRATION CURVES IN ANALYTICAL CHEMISTRY. *Periódico Tchê Química*, 17(34), 213– 219. https://doi.org/10.52571/PTQ.v17.n34.2020.230_P34_pgs_213_219.pdf

M, S., S, M., & S, S. (2021). Highlights of Spectroscopic Analysis – A Review. *International Journal of Life Science and Pharma Research*. https://doi.org/10.22376/ijpbs/lpr.2021.11.2.P136-145

M, S., S, M., & S, S. (2021). Highlights of Spectroscopic Analysis – A Review. *International Journal of Life Science and Pharma Research*. https://doi.org/10.22376/ijpbs/lpr.2021.11.2.P136-145

Appendix A.

Constructed Database of assay type and subtype

	Substance			
Substance	type	Assay type	Assay subtype	
Acacia	excipient			Not mentioned
Spray dried acacia	excipient			Not mentioned
Acamprosate			aqueous acid	
calcium	API	titrimetric	base titration	
			reverse phase	
Acarbose	API	chromatographic	HPLC	
Acebutolol			aqueous acid	
Hydrochloride	API	titrimetric	base titration	
			aqueous acid	
Aceclofenac	API	titrimetric	base titration	
			aqueous acid	
Acemetacin	API	titrimetric	base titration	
			aqueous acid	
Acenocoumarol	API	titrimetric	base titration	
Acesulfame			non aqueous	
Potassium	excipient	titrimetric	titration	
			aqueous acid	
Acetazolamide	API	titrimetric	base titration	
			aqueous acid	
Glacial Acetic Acid	excipient	titrimetric	base titration	
Acetic Acid (6 per			aqueous acid	
cent)	excipient	titrimetric	base titration	
Acetic Acid (33 per			aqueous acid	
cent)	excipient	titrimetric	base titration	

	Substance			
Substance	type	Assay type	Assay subtype	
Acetone	reagent			Not mentioned
Acetylcholine			aqueous acid	
Chloride	API	titrimetric	base titration	
Acetylcysteine	API	titrimetric	redox titration	
Acetyldigoxin	API	chromatographic	reverse phase HPLC	
			aqueous acid	
Acetyltryptophan	API	titrimetric	base titration	
			aqueous acid	
Acetyltyrosine	API	titrimetric	base titration	
			non aqueous	
Aciclovir	API	titrimetric	titration	
			reverse phase	
Acitretin	API	chromatographic	HPLC	
			reverse phase	
Adapalene	API	chromatographic	HPLC	
			non aqueous	
Adenine	excipient	titrimetric	titration	
			non aqueous	
Adenosine	API	titrimetric	titration	
			aqueous acid	
Adipic Acid	excipient	titrimetric	base titration	
Adrenaline /			non aqueous	
Epinephrine	API	titrimetric	titration	
Adrenaline Acid				
Tartrate /				
Epinephrine Acid			non aqueous	
Tartrate	API	titrimetric	titration	
Agar	excipient			Not mentioned

	Substance			
Substance	type	Assay type	Assay subtype	
Medical Air				Not mentioned
Synthetic Air				Not mentioned
Alanine	API	titrimetric	non aqueous titration	
Albendazole	API	titrimetric	non aqueous titration	
Alcuronium			non aqueous	
Chloride	API	titrimetric	titration	
			reverse phase	
Alfacalcidol	API	chromatographic	HPLC	
			reverse phase	
Alfadex	API	chromatographic	HPLC	
Alfentanil			aqueous acid	
Hydrochloride	API	titrimetric	base titration	
Alfuzosin			non aqueous	
Hydrochloride	API	titrimetric	titration	
			aqueous acid	
Alginic Acid	excipient	titrimetric	base titration	
Alimemazine			non aqueous	
Tartrate	API	titrimetric	titration	
			aqueous acid	
Allantoin	API	titrimetric	base titration	
Allergen Products				not mentioned
			reverse phase	
Allopurinol	API	chromatographic	HPLC	
Almagate	API	titrimetric	complexometric titration	Al

	Substance			
Substance	type	Assay type	Assay subtype	
			complexometric	
Almagate	API	titrimetric	titration	Mg
Almagate	API	chromatographic	gas	Carbonic acid
Aloxiprin	API	gravimetric		Al
Aloxiprin	API	spectroscopic	UV	salicylates
			non aqueous	
Alprazolam	API	titrimetric	titration	
Alprenolol			aqueous acid	
Hydrochloride	API	titrimetric	base titration	
			reverse phase	
Alprostadil	API	chromatographic	HPLC	
Alteplase for				
Injection	API			Not mentioned
			reverse phase	
Altizide	API	chromatographic	HPLC	
			complexometric	
Alum	API	titrimetric	titration	
Aluminium Chloride			complexometric	
Hexahydrate	API	titrimetric	titration	
Aluminium			complexometric	
Glycinate	API	titrimetric	titration	
Hydrated				
Aluminium				
Hydroxide for			complexometric	
Adsorption	excipient	titrimetric	titration	
Dried Aluminium			complexometric	
Hydroxide	API	titrimetric	titration	

	Substance			
Substance	type	Assay type	Assay subtype	
			atomic	
Aluminium			absorption	
Magnesium Silicate	excipient	spectroscopic	spectroscopy	Al
			atomic	
Aluminium			absorption	
Magnesium Silicate	excipient	spectroscopic	spectroscopy	Mg
Dried Aluminium			complexometric	
Phosphate	API	titrimetric	titration	
Aluminium			complexometric	
Phosphate Gel	API	titrimetric	titration	
Aluminium Powder	API	titrimetric	redox titration	
			atomic	
Aluminium Sodium			absorption	
Silicate	excipient	spectroscopic	spectroscopy	Al
			atomic	
Aluminium Sodium			absorption	
Silicate	excipient	spectroscopic	spectroscopy	Na
			complexometric	
Aluminium Stearate	excipient	titrimetric	titration	Al
Aluminium Stearate	excipient	chromatographic	26D	stearic acid
Aummun Stearate	excipient	cinomatographic	gas	
Aluminium Stearate	excipient	chromatographic	gas	palmitic acid
			complexometric	
Aluminium Sulfate	API	titrimetric	titration	
			non aqueous	
Alverine Citrate	API	titrimetric	titration	

	Substance			
Substance	type	Assay type	Assay subtype	
Amantadine			non aqueous	
Hydrochloride	API	titrimetric	titration	
Ambroxol			non aqueous	
Hydrochloride	API	titrimetric	titration	
			non aqueous	
Amfetamine Sulfate	API	titrimetric	titration	
Amidotrizoic Acid				
Dihydrate	API	titrimetric	precipitation	
			reverse phase	
Amikacin	API	chromatographic	HPLC	
			reverse phase	
Amikacin Sulfate	API	chromatographic	HPLC	
Amiloride			non aqueous	
Hydrochloride	API	titrimetric	titration	
			aqueous acid	
Aminobenzoic Acid	API	titrimetric	base titration	
			non aqueous	
Aminocaproic Acid	API	titrimetric	titration	
			non aqueous	
Aminoglutethimide	API	titrimetric	titration	
			aqueous acid	Ethylenediamine
Aminophylline	API	titrimetric	base titration	
			aqueous acid	
Aminophylline	API	titrimetric	base titration	Theophylline
Aminophylline			aqueous acid	Ethylenediamine
Hydrate	API	titrimetric	base titration	
Aminophylline			aqueous acid	
Hydrate	API	titrimetric	base titration	Theophylline

	Substance			
Substance	type	Assay type	Assay subtype	
Amiodarone			non aqueous	
Hydrochloride	API	titrimetric	titration	
			non aqueous	
Amisulpride	API	titrimetric	titration	
Amitriptyline			non aqueous	
Embonate	API	titrimetric	titration	
Amitriptyline			non aqueous	
Hydrochloride	API	titrimetric	titration	
			reverse phase	
Amlodipine Besilate	API	chromatographic	HPLC	
Strong Ammonia				
Solution				not mentioned
Ammonio				
Methacrylate				
Copolymer (Type				
A)				not mentioned
Ammonio				
Methacrylate				
Copolymer (Type B)				not mentioned
Ammonium				
Bicarbonate				Not mentioned
Ammonium				
Bromide	reagent	titrimetric	precipitation	
Ammonium			aqueous acid	
Chloride	API	titrimetric	base titration	
Ammonium			non aqueous	
Glycyrrhizinate	excipient	titrimetric	titration	

	Substance		
Substance	type	Assay type	Assay subtype
			non aqueous
Amobarbital	API	titrimetric	titration
			non aqueous
Amobarbital Sodium	API	titrimetric	titration
			reverse phase
Amoxicillin Sodium	API	chromatographic	HPLC
Amoxicillin			reverse phase
Trihydrate	API	chromatographic	HPLC
Amphotericin	API	biological	
			reverse phase
Ampicillin	API	chromatographic	HPLC
			reverse phase
Ampicillin Sodium	API	chromatographic	HPLC
Ampicillin			reverse phase
Trihydrate	API	chromatographic	HPLC
Amylmetacresol	API	chromatographic	gas
Antazoline			non aqueous
Hydrochloride	API	titrimetric	titration
Apomorphine			
Hydrochloride			non aqueous
Hemihydrate	API	titrimetric	titration
Aprotinin	API	biological	
Aprotinin			
Concentrated			
Solution	API	biological	
			aqueous acid
Arginine	excipient	titrimetric	base titration
Arginine Aspartate	excipient	titrimetric	non aqueous
- in Simile 7 Ispur une	energient		

	Substance				
Substance	type	Assay type	Assay subtype		
			titration		
Arginine			non aqueous		
Hydrochloride	excipient	titrimetric	titration		
Argon	excipient			not mentioned	
Articaine			non aqueous		
Hydrochloride	API	titrimetric	titration		
Ascorbic Acid	API	titrimetric	redox titration		
Ascorbyl Palmitate	excipient	titrimetric	redox titration		
Asparagine			non aqueous		
Monohydrate	excipient	titrimetric	titration		
			non aqueous		
Aspartame	excipient	titrimetric	titration		
			aqueous acid		
Aspartic Acid	excipient	titrimetric	base titration		
			aqueous acid		
Aspirin	API	titrimetric	base titration		
			non aqueous		
Atenolol	API	titrimetric	titration		
Atorvastatin			reverse phase		
Calcium Trihydrate	API	chromatographic	HPLC		
		-h	reverse phase		
Atracurium Besilate	API	chromatographic	HPLC		
Atuanica	A DI	tituino atri a	non aqueous		
Atropine	API	titrimetric	titration		
Atropine Sulfate	API	titrimetric	non aqueous titration		
Attropine Sulfate				not mentioned	
Attapulgite	excipient			not mentioned	

	Substance			
Substance	type	Assay type	Assay subtype	
Activated				
Attapulgite	API			not mentioned
			non aqueous	
Azapropazone	API	titrimetric	titration	
			non aqueous	
Azathioprine	API	titrimetric	titration	
Azelastine			non aqueous	
Hydrochloride	API	titrimetric	titration	
			reverse phase	
Azithromycin	API	chromatographic	HPLC	
Bacampicillin			reverse phase	
Hydrochloride	API	chromatographic	HPLC	
Bacitracin	API	biological		
Bacitracin zinc	API	biological		not mentioned
			non aqueous	
Baclofen	API	titrimetric	titration	
Bambuterol			non aqueous	
Hydrochloride	API	titrimetric	titration	
			non aqueous	
Barbital	API	titrimetric	titration	
Barium Sulfate	reagent			not mentioned
Barium Sulfate for				
Suspension	reagent	gravimetric		
Anhydrous				
Beclometasone			reverse phase	
Dipropionate	API	chromatographic	HPLC	
Beclometasone				
Dipropionate			reverse phase	
Monohydrate	API	chromatographic	HPLC	
White Beeswax	excipient			not mentioned

	Substance			
Substance	type	Assay type	Assay subtype	
Yellow Beeswax	excipient			not mentioned
Benazepril			reverse phase	
Hydrochloride	API	chromatographic	HPLC	
			non aqueous	
Bendroflumethiazide	API	titrimetric	titration	
Benorilate	API	gravimetric		
			non aqueous	
Benperidol	API	titrimetric	titration	
Benserazide			non aqueous	
Hydrochloride	API	titrimetric	titration	
Bentonite	API			not mentioned
			non aqueous	
Benzaldehyde	excipient	titrimetric	titration	
Benzalkonium				
Chloride	API	titrimetric	redox titration	
Benzalkonium				
Chloride Solution	API	titrimetric	redox titration	
Benzathine			reverse phase	
Benzylpenicillin	API	chromatographic	HPLC	
Benzatropine			non aqueous	
Mesilate	API	titrimetric	titration	
			aqueous acid	
Benzbromarone	API	titrimetric	base titration	
Benzethonium				
Chloride	API	titrimetric	redox titration	
Benzocaine	API	titrimetric	redox titration	
			aqueous acid	
Benzoic Acid	API	titrimetric	base titration	
Hydrous Benzoyl				
Peroxide	API	titrimetric	redox titration	

	Substance		
Substance	type	Assay type	Assay subtype
Benzydamine			non aqueous
Hydrochloride	API	titrimetric	titration
			aqueous acid
Benzyl Alcohol	API	titrimetric	base titration
			aqueous acid
Benzyl Benzoate	API	titrimetric	base titration
Benzyl			
Hydroxybenzoate	excipient	titrimetric	redox titration
Benzylpenicillin			reverse phase
Potassium	API	chromatographic	HPLC
Benzylpenicillin			reverse phase
Sodium	API	chromatographic	HPLC
Betacarotene	API	spectroscopic	UV
			reverse phase
Betadex	excipient	chromatographic	HPLC
Betahistine			aqueous acid
Dihydrochloride	API	titrimetric	base titration
			non aqueous
Betahistine Mesilate	API	titrimetric	titration
Betamethasone	API	spectroscopic	UV
Betamethasone			
Acetate	API	spectroscopic	UV
Betamethasone			reverse phase
Dipropionate	API	chromatographic	HPLC
Betamethasone			
Sodium Phosphate	API	spectroscopic	UV
Betamethasone			
Valerate	API	spectroscopic	UV
Betaxolol			aqueous acid
Hydrochloride	API	titrimetric	base titration

	Substance				
Substance	type	Assay type	Assay subtype		
			aqueous acid		
Bezafibrate	API	titrimetric	base titration		
			reverse phase		
Bicalutamide	API	chromatographic	HPLC		
			non aqueous		
Bifonazole	API	titrimetric	titration		
			non aqueous		
Biotin	API	titrimetric	titration		
Biperiden			non aqueous		
Hydrochloride	API	titrimetric	titration		
			non aqueous		
Bisacodyl	API	titrimetric	titration		
Bismuth			complexometric		
Subcarbonate	API	titrimetric	titration		
			complexometric		
Bismuth Subgallate	API	titrimetric	titration		
Heavy Bismuth			complexometric		
Subnitrate	API	titrimetric	titration		
Bismuth			complexometric		
Subsalicylate	API	titrimetric	titration		
			non aqueous		
Bisoprolol Fumarate	API	titrimetric	titration		
Bleomycin Sulfate	API	biological			
			aqueous acid		
Borax	API	titrimetric	base titration		
			aqueous acid		
Boric Acid	excipient	titrimetric	base titration		
Botulinum Toxin					
Type A for Injection	API			not mentioned	
Botulinum Toxin				not mentioned	

	Substance			
Substance	type	Assay type	Assay subtype	
Type B for Injection				
Bovine Serum				not mentioned
			non aqueous	
Bretylium Tosilate	API	titrimetric	titration	
			non aqueous	
Bromazepam	API	titrimetric	titration	
Bromhexine			aqueous acid	
Hydrochloride	API	titrimetric	base titration	
Bromocriptine			non aqueous	
Mesilate	API	titrimetric	titration	
			non aqueous	
Bromperidol	API	titrimetric	titration	
Bromperidol			non aqueous	
Decanoate	API	titrimetric	titration	
Brompheniramine			non aqueous	
Maleate	API	titrimetric	titration	
Bronopol	excipient	titrimetric	precipitation	
			non aqueous	
Brotizolam	API	titrimetric	titration	
Buclizine			non aqueous	
Hydrochloride	API	titrimetric	titration	
			reverse phase	
Budesonide	API	chromatographic	HPLC	
			non aqueous	
Bufexamac	API	titrimetric	titration	
Buflomedil			non aqueous	
Hydrochloride	API	titrimetric	titration	
			aqueous acid	
Bumetanide	API	titrimetric	base titration	
Bupivacaine	API	titrimetric	aqueous acid	

	Substance			
Substance	type	Assay type	Assay subtype	
Hydrochloride			base titration	
			non aqueous	
Buprenorphine	API	titrimetric	titration	
Buprenorphine			aqueous acid	
Hydrochloride	API	titrimetric	base titration	
			reverse phase	
Buserelin	API	chromatographic	HPLC	
Buspirone			non aqueous	
Hydrochloride	API	titrimetric	titration	
			aqueous acid	
Busulfan	API	titrimetric	base titration	
Butyl			reverse phase	
Hydroxybenzoate	excipient	chromatographic	HPLC	
Butylated				
Hydroxyanisole	excipient			not mentioned
Butylated				
Hydroxytoluene	excipient			not mentioned
			reverse phase	
Cabergoline	API	chromatographic	HPLC	
			non aqueous	
Caffeine	API	titrimetric	titration	
			non aqueous	
Caffeine Hydrate	API	titrimetric	titration	