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Abstract 

Abstract 

The novel pathogen SARS-CoV2 causing coronavirus disease 2019 (COVID-19) is a global 

public health concern. COVID-19 has infected over 220 million people worldwide so far. The 

study and development of novel bioactive chemicals with cost-effective and selective anti-

COVID 19 therapeutic power is the primary focus of contemporary medical research. As a 

result, utilizing the molecular docking technique has become critical in the discovery and 

development of novel medications. The purpose of this work is to investigate the binding 

affinity and type of interactions between 30 chemical molecules and M
pro

 using molecular 

docking. Using UCSFChimera, the PDB data of the target protein and prepared organic 

molecules (ligands) were docked using AutoDockVina, which provides a set of 

potential complexes based on the criteria of form complementarity of the natural 

molecules with their binding affinities. According to the results, hyperoside, aloin, and 

ginkgetin, were found to have a high affinity with M
pro

. Hence, these chemicals have the 

potential to be used as therapeutics against SARS-CoV2. 

Keywords: Molecular Docking; M
pro

 ; SARS-CoV-2; COVID-19 treatment   
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Chapter 1 

Introduction 

1.1 Background of Study 

On December 31, 2019, a new strain, severe acute respiratory syndrome coronavirus 2 

(SARS-Cov-2) was isolated by the International Committee on Taxonomy of Viruses (ICTV) 

from patients with pneumonia of unknown etiology in Wuhan city, China (Phelan et al., 

2020) On March 11, 2020, the World Health Organization (WHO) announced that COVID-

19 is a ‗public health emergency of international concern‘ (Li et al., 2020). The primary 

techniques for controlling an ongoing pandemic were based on regulations and human 

behavior such as surveillance and isolation, contact tracking, movement restrictions, social 

distancing, hand washing, and enhanced community awareness (Zhang et al., 2020). 

 

Clinicians are using SARS- CoV, and MERS- CoV antibodies, and a recently recommended 

combination therapy of hydroxychloroquine and azithromycin were explored and the results 

of an open-label non-randomized clinical trial were reported. (Huang et al., 2020; Gautret et 

al., 2020). Meanwhile, the Food and Drug Administration has stated that neither Chloroquine 

phosphate nor Hydroxychloroquine sulfate is approved for the treatment of COVID-19. 

Nonetheless, based on some in vitro and clinical findings, chloroquine phosphate and 

hydroxychloroquine sulfate were recommended as COVID-19 treatments, and enough 

randomized studies on these compounds were provided, allowing the use of the aforesaid 

medications for emergency situations (https://www.fda.gov/emergency-use-

authorization#covidtherapeutics). Hydroxychloroquine has the potential to suppress viral 

activities and metabolisms. They may also be implicated in additional methods such as 

suppression of the ACE2 cellular receptor, acidification of the cell membrane, which prevents 
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virus entrance, and control of immune response via cytokine release. (COVID-19 Drug 

Therapy-Elsevier, 09 March 2020). However, new research has indicated that 

hydroxychloroquine can cause drug poisoning and severe or moderate adverse effects in 

people who are already receiving diabetes or hypersensitivity medicines, the same patients 

who are found to be badly affected by COVID-19. Administration of hydroxychloroquine has 

been found to inhibit pro-inflammatory cytokines which finally leads to Acute Respiratory 

Distress Syndrome (ARDS) (Guastalegname & Vallone, 2020). It was discovered that after 

treatment with hydroxychloroquine, an adverse neuropsychiatric condition was observed, 

which is thought to indicate lysosomal dysfunction leading to mental symptoms, which then 

led to the patient's return to their normal state (Ali et al., 2018). When hydroxychloroquine 

was given to patients with acute renal impairment, the adverse impact of retinal toxicity was 

shown to be fatal. In a trial of diabetic patients treated with high doses of hydroxychloroquine 

and atorvastatin, the patients who experienced the greatest drop in blood glucose were those 

who received the highest dosages of hydroxychloroquine and atorvastatin (Wondafrash et al., 

2020). When an antimalarial drug, hydroxychloroquine was administered to patients with 

dermatomycosis, non-life-threatening cutaneous reactions were seen most in dermatomycosis 

patients than cutaneous lupus erythrematosus (Pelle & Callen, 2002) and many side effects 

have been reported. It is necessary to find an appropriate natural, non-synthetic 

pharmaceutical molecule with minimum side effects. Plant chemicals are ideal for identifying 

medicinal components of interest and are also the most cost-effective and are generated fast. 

Although several targets for the treatment of COVID-19 have been identified, the main 

protease (M
pro

) of SARS-CoV-2 was chosen for this study. The presence of the main protease 

(M
pro

) enzyme in SARS-CoV-2 was recently confirmed by Liu and his research group. The 

activity of M
pro

, also known as 3CLpro, which regulates polyprotein processing along with 

papain-like proteases, is required for protein synthesis. M
pro

 activity is thought to be a need 
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for viral replication, hence blocking M
pro

 activity would prevent viral reproduction (Zhang, 

2020). 

 

1.2 Objectives of Study  

The objectives of this present study are to employ various bioinformatics tools in order to 

 Select natural molecules as ligands 

 Perform molecular docking of M
pro

 with selected natural molecules 

 Study the interaction of the amino acid of docked molecules 

 Evaluate the pharmacokinetic properties of the selected natural molecules 

 

1.3 Literature Review 

1.3.1 COVID-19: An Introduction 

The CoVs belong to the family Coronaviridae with large RNA genomes and a unique 

replication method. Four coronavirus genera namely Alpha-, Beta-, Gamma- and 

Deltacoronavirus have been identified so far, with human coronaviruses (HCoVs) detected in 

the α coronavirus (HCoV-229E and NL63) and β coronavirus (MERS-CoV, SARS-CoV, 

HCoV-OC43 and HCoV-HKU1) genera (Perlman, 2009). The new SARS-CoV -2 was 

identified as a beta-coronavirus (Schoeman and Fielding, 2019). The phylogenetic tree of 

SARS-like coronaviruses complete genome sequences is clearly portrayed in Fig. 1 A. 

SARS-CoV-2 is an enveloped, single (+) stranded RNA, with symmetric helical nucleocapsid 

(Khan et al., 2020). The virus encodes twenty proteins, including four structural proteins (S: 

spike; E: envelope; M: membrane; N: nucleocapsid), as well as many nonstructural proteins 

like RNA-dependent RNA polymerase (RdRp), coronavirus main protease (3CLpro), and 
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papain-like protease (PLpro) (Chen et al., 2020). The angiotensin-converting-enzyme II 

(ACE2) was found to be a key functional receptor for the SARS-CoV-2 allowing its 

attachment to human and bat cells and therefore its replication (Walls et al., 2020; Zhou et al., 

2020). The receptor-binding motif of the spike protein—receptor-binding domain (RBD) 

interacts with the ACE2 receptor, allowing SARS-CoV-2 to connect to the host cells. The 

C-terminal S2 subunit of the spike protein (responsible for virus-cell membrane fusion) 

undergoes conformational changes due to this interaction. The host cell-type 2II 

transmembrane serine protease TMPRSS2 subsequently proteolytically processes the 

complex S protein ACE2, resulting in ACE2 cleavage and so viral entrance into the host 

cell. (Jiang et al.,2020; Rabi et al., 2020). Following entrance and uncoating, genomic 

RNA is translated into two polyproteins (pp1a and pp1ab), which are then cleaved by 

proteases to produce 15–16 nonstructural proteins. The nonstructural proteins cause the 

cellular membrane to reorganize, resulting in the formation of a double-membrane 

vesicle. The genomic RNA, on the other hand, is translated into subgenomic RNA, which 

leads to the production of structural (spike, envelope, membrane, and nucleocapsid) and 

accessory proteins. Finally, virions are put together in the ERGolgi intermediate complex 

before being released through the secretory pathway (Fung and Liu, 2020). SARS-CoV-2 

proteins have been proven to interfere with host immune responses, and Mpro-specific T 

cells have been seen in SARS-CoV-2 infected individuals (Guo, 2019). Furthermore, 

earlier research has shown that the papain-like proteases generated by SARS-CoV and 

MERS-CoV can stymie the immune response and that SARS-CoV can counteract the 

antiviral response mediated by interferons (Nezhad, 2020). 
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Fig. 1. The phylogenetic tree of SARS-like coronaviruses complete genome sequences and genome of SARS-CoV, MERS-

CoV and SARSCoV- 2. (A) This phylogeny shows evolution of SARS-like b-coronaviruses including samples from human 

(n ¼ 20), bat (n ¼ 22), civet (n ¼ 3) and pangolin (n ¼ 6). The phylogenetic tree of complete genome sequences of 

coronaviruses was obtained and analyzed with Nextstrain (https://github.com/blab/sars-like-cov). (B) Coronaviruses form 

enveloped and spherical particles of 100e160 nm in diameter. They contain a positive sense single stranded RNA (ssRNA) 

genome of 26-32 kb in size. In SARS-CoV, MERS-CoV and SARS-CoV-2, the 50-terminal two-thirds of the genome 

ORF1a/b encodes polyproteins, which form the viral replicase transcriptase complex. The other ORFs on the one-third of the 

genome encode four main structural proteins: spike (S), envelope (E), nucleocapsid (N) and membrane (M) proteins, as well 

as several accessory proteins. 
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1.3.2 Transmission 

COVID-19 appears to have a similar method of transmission to SARS-CoV. SARS-CoV 

emerged in 2002 as a result of cross-species transmission from animal to human, then spread 

via human-to-human transmission. COVID-19 is presently following the same pattern as 

COVID-19, with super spreading events (SSEs) leading to a pandemic (Riou & Althaus 

2020). As the outbreak has progressed, it has become clear that droplets of respiratory mucus 

discharge and direct contact are the most common mechanisms of human-to-human 

transmission. The virus is released from a person's respiratory secretions when they talk, 

sneeze, or cough, resulting in droplet transmission. Droplets that come into direct contact 

with the mucosal membrane of an infected patient are more likely to transmit the virus. 

Droplets have a six-foot range and do not linger in the air. Contacting a virus-infected surface 

or object and then touching their lips, nose, or eyes are two more possible ways for a person 

to become infected (Rothe et al., 2020) In one study, SARS-CoV-2 was discovered in feces 

and blood swabs, indicating the possibility of additional transmission pathways (Zhang et 

al.,2020) . In the absence of a viable vaccine, the only way to control and halt this outbreak is 

to use isolation, frequent hand washing, and social distancing as effective preventive 

measures. By 14 days after the onset of symptoms, infected people may have developed 

antibodies to the virus (To et al., 2020). According to preliminary studies, some of these 

antibodies appear to be protective, albeit this has yet to be proven. It is unknown, however, 

whether all infected patients will develop a protective immune response or how long this 

effect would last. 
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1.3.3 Pathogenesis and Replication 

 

 

Fig. 2  Possible mechanism of action of SARS-COV-2. Depiction of the binding of SARS-COV-2 to its receptor 

ACE-2. The S1 and S2 subunits are subsequently cleaved followed by the shedding of ACE-2 by ADAM 17. 

This resulting in an increased amount of Angiotensin II leading to respiratory distress. Upon binding, the virus 

fuses with the membrane and enters the cell, followed by translation, and replication of the proteins. ORF3a, 

ORF8b,E proteins and the NF-KB pathway activates the inflammasome pathway through various means, 

leading to the activation of cytokine. This results in a cytokine storm, further resulting in respiratory distress. 

 

 

The life cycle of coronaviruses begins when the virion's spike protein S1 subunit binds to the 

host cell receptor. (Figure 2, step 1). The virus's host species range and tissue tropism are 

determined by the S-protein-receptor interaction. Many alpha-coronaviruses, for example, 

employ aminopeptidase N as a receptor, while SARS-CoV and HCoV-NL63 use angiotensin-

converting enzyme 2 (ACE2) as the host receptor. To enter human cells, MHV uses 

CEACAM1 while MERS-CoV binds dipeptidyl-peptidase 4 (DPP4). The distribution of the 

receptor within tissues in the human body has a big impact on the disease profile that results. 

(Hamming et al., 2004; Fehr and Perlman, 2015; Li M-Y et al., 2020). After receptor binding, 
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the virus gains access to the cytosol by acid-dependent proteolytic cleavage of the S protein 

into S1 and S2 subunits by a furin, cathepsin, TMPRSS2, or another protease, followed by 

S2-assisted fusion of the viral and cellular membranes. After release of the viral genome 

(Figure 2, step 2), the replicase is translated from the genomic RNA (Figure 2, step 3). Viral 

RNA synthesis then follows (Figure 2, step 4a), with the assembly of viral replication-

transcription complexes (Figure 1.2, step 4b). Viral structural proteins (S, E, and M) are 

translated from the RNA (Figure 2, step 5), inserted into the endoplasmic reticulum (Figure.2, 

step 6), and move to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). 

Multiple copies of the nucleocapsid (N protein) package genomic RNA into helical structures 

(ribonucleoprotein complexes) in the cytoplasm, where they interact with hydrophobic M 

proteins (envelope proteins) in the ERGIC to direct virion assembly. (Figure 2, step 7). 

Virions budded from the ERGIC membranes (Figure 2, step 8) are subsequently transported 

out of the cell via the constitutive exocytic pathway (Figure 2, step 9) (deHann and Rottier, 

2005; Fehr and Perlman, 2015). 

 

1.3.4 Current Therapeutic Drugs 

For SARS-CoV-2 infection, there is currently no particular antiviral medication that has been 

clinically validated. The most critical care strategy continues to be supportive treatment, 

which includes oxygen therapy, fluid conservation, and the use of broad-spectrum antibiotics 

to treat subsequent bacterial infections (Huang et al., 2020). There are various possible 

treatment targets to repurpose existing antiviral medications or build effective interventions 

against this novel coronavirus, according to research on molecular mechanisms of 

coronavirus infection (Groneberg et al., 2005)  and the genomic organization of SARS-CoV-

2 (Roujian et al., 2020) Remdesivir, an adenosine analogue that can target the RNAdependent 
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RNA polymerase and block viral RNA synthesis in cultured cells ( Lo et al.,  2017) , mice 

(Sheahan et al., 2020), and non-human primate models (de Wit, et al., 2020), has shown 

promise against a wide range of RNA viruses (including SARS/MERS-CoV) infections. The 

Washington Department of Health first administered remdesivir intravenously and discovered 

that it could protect against SARS-CoV-2 infection (Ren, 2020). Then, in vitro, remdesivir 

and chloroquine were shown to effectively inhibit SARS-CoV-2 (Wang et al., 2020).  As a 

result, other nucleoside analogues, such as favipiravir, ribavirin, and galidesivir (Zumla et al., 

2016; De Clercq, 2019), could be used to treat SARS-CoV-2. Non-structural proteins such as 

chymotrypsin-like (3C-like protease, 3CLpro) and papain-like protease (PLP) are required for 

coronaviral replication and can decrease host innate immune responses (Chen et al., 2020). 

As a result, 3CLpro inhibitors like flavonoids (Jo et al., 2020), as well as PLP inhibitors such 

diarylheptanoids (Park et al.,2012), are appealing options for fighting SARS-CoV-2. As a 

functioning coronavirus receptor, ACE2 mediates SARS-CoV-2 entrance into the cell. As a 

result, using ACE2 to limit S protein binding is a viable method for preventing SARS-CoV-2 

infection (Kuhn, 2004) 

1.3.5 Alternative Approach 

Traditional medicines are sometimes overlooked in modern drug research and development 

because their translational potential is often underestimated. Despite their ambiguity, these 

drugs have a wide range of applications in non-Western medical technologies (Yuan et al., 

2016). Many phytochemical elements can be found in a single herb, and they can work alone 

or in conjunction with other substances to create the desired pharmacological effect. 

(Parasuraman et al., 2014). Many plant compounds have been researched and modified into 

medications for various diseases as a result of their use in traditional medicine. The majority 

of antiviral therapy techniques are non-specific for viruses (Jiang et al., 2015).  In medical 

research, the development of antiviral drugs is a major priority. The antiviral activities of 
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medicinal plants have been shown to have a significant impact at various phases of viral 

development (Akram et al., 2018). Medicinal plants provide basic raw materials for 

significant antiviral medications instead of synthetic antiviral treatments. In several viral 

infections, synthetic medications have been replaced with medicinal plants as life-saving 

drugs in the past. Many medicinal plants have antiviral, anti-inflammatory, and antioxidant 

qualities, thus they might be worth considering for COVID-19 treatment.  The majority of the 

active natural chemicals such as polyphenols and flavonoids, along with some alkaloids, 

anthraquinones, saponins, terpenes, coumarins, and diarylheptanoids has shown promise 

against the prior SARS-CoV. Considering the structures of SARS-CoV and SARS-CoV-2 are 

homologous, they might act as potential candidates to combat COVID-19. However, more 

standard clinical trials should clearly be conducted to scientifically show the efficacy of such 

traditional products. 

 

1.3.6 Protein Target 

One of the fundamental targets for developing antiviral vaccines or medications has been 

considered as the primary protease (M-pro) enzyme (Jin et al., 2020). M-pro is found in the 

polyprotein ORF1ab of the SARS-CoV-2 virus and is required for virus replication. This 

protease is involved in polyprotein degeneration (Zhang et al., 2020). The M-pro enzyme has 

a strong relationship with the SARS-CoV virus, except for one residue (Ala285Thr) (Gimeno 

et al., 2020). SARS-CoV-2 has an almost 89 percent resemblance to SARS-CoV-1, according 

to a full-length genome phylogenetic analysis (Jiang et al., 2020). This laid the groundwork 

for the development of SARS-CoV-2, indicating that the SARS-CoV-2 receptor may be 

similar to the SARS-CoV (ACE2) receptor (Veljkovic et al., 2020). SARS-CoV-2 is reported 

to use angiotensin-converting enzyme 2 (ACE2) receptors to penetrate the target cells (Wang 

et al., 2020). As a result, any drug that increases ACE2 synthesis is likely to boost COVID-19 
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susceptibility by promoting viral cellular invasion. However, Angiotensin II is biochemically 

transformed to angiotensin (1–7), which protects the lungs by decreasing the ACE2 receptor 

and vasodilation (Kreutz et al., 2020). There is often conflicting evidence about the 

continuation or discontinuation of medications inhibiting the renin-angiotensin-aldosterone 

system (RAAS), including inhibitors of angiotensin-converting enzyme (ACEIs) and 

angiotensin receptor blockers ARBs, in patients with COVID-19 and co-morbidities such as 

hypertension, cardiovascular disease, and diabetes (Vaduganathan et al., 2020). 6LU7 has 

been previously denoted as main protease (M
pro

) of SARS-CoV-2, M
pro

 is a key enzyme of 

coronaviruses and has a pivotal role in mediating viral replication and transcription, making it 

an attractive drug target for SARS-CoV-2. Taking all these considerations into account, M
pro

 

has been selected to comply with the binding interactions with the ligands.  

 

 

 

 

 

 

 

 



12 
  

Chapter 2 

Materials and Methods 

2.1 Retrieval of the Protein Sequence 

The X-ray crystallographic structure of main protease (M
pro

, PDB ID 6LU7) of SARS-CoV-2 

has been downloaded from the Protein Data Bank (PDB) (http://www.pdb.org.) 

database.  The protein was prepared for docking simulation using the Scripps Research 

Institute's graphical user interface program "Auto Dock Tools (ADT) 1.5.6" (Molecular 

Graphics Laboratory tool or MGL tool) (R. Huey, 2008). For the production of receptor 

protein input file for docking study, Chain A of the protein (6LU7) was chosen. Receptor 

protein preparation for docking study was initiated by removing water molecules, hetero 

atoms and co-crystallised ligands from PDB crystal structure of protein 6LU7.  Polar 

hydrogen atoms along with Kollman united atom charges were added subsequently to the 

receptor protein and finally the receptor protein input file was saved (Meng et al., 2011; Khan 

et al., 2018; Ferreira et al., 2015). Partial atomic charges were then assigned using the 

Gasteiger-Marsili approach for accurate ionization and tautomeric states of residues. 

 

2.2 Retrieving Molecular Structures from Databases  

The three-dimensional (3D) structures of 30 organic compounds were retrieved in .sdf format 

from PubChem (https://pubchem.ncbi.nlm.nih.gov/). PubChem is a repository for chemical 

substances and biological activity that consists of three databases: substance, compound, and 

bioassay (Salehi et al., 2019) then viewed on UCFS Chimera and saved in .pdb format. Table 

1 lists out these 30 substances alongside their sources and prior uses. 

 

http://pdb:6LU7/
http://www.pdb.org/
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Table 1 List of organic molecules and their uses 

 Organic 

compound(ligands) 

 
Uses References  

1 
Andrographis 

Paniculata 

 

analgesic, antipyretic, antiretroviral, antiproliferative, 

antimalarial, antithrombotic, antihyperglycemic, 
antiurolethial, antilesihmaniasis,  Poolsup et al., 2004 

2 

Dehydroandrographoli

de 

hepatoprotective, immune-modulatory, protective against 

alcohol induced toxicity and cardioproetcive activity and 
anticancer activity Poolsup et al., 2004 

3 
Propylene glycol 

Wound, dermetitis Brinkhaus et al., 2000 

4 
Asiatic acid 

antimicrobial, antioxidant, anti-inflammatory, etc Lv et al., 2018 

5 
lupeol 

Anticancer and anti-inflammatory  activity Saleem, 2009 

6 
kaempferol 

anti-hypoxic and anti-inflammatory effects Devi  et al., 2015 

7 
quercetin 

anti-hypoxic and anti-inflammatory effects Heinz et al., 2010 

8 
6-Gingerol 

Inhibits viral attachment and penetration Chang et al., 2013 

9 
6-shogaol 

Inhibits viral attachment and penetration Yocum et al., 2020 

10 
Aegle marmelos 

Alkaloid C 

antioxidant, antidiabetic, antimicrobial, hepatoprotective, 
cardioprotective and anticancer activity Manandhar et al., 2018 

11 

Catechin 

Reacts with viral membrane, inhibits viral replication and 
viral mRNA synthesis Shin et al., 2010 

12 

Hyperoside 

Reacts with viral membrane, inhibits viral replication and 
viral mRNA synthesis Shin et al., 2010 

13 

Allicin, 

Interfere with the glycans on the spike protein during virus 

entry and virus release, Inhibits viral adsorption or 
penetration Sánchez-Gloria et al., 2021 

14 Epigallocatechin 

gallate 
antibacterial, antifungal and antiviral effects  Steinmann et al., 2013 

15 
aloin 

Inhibits viral attachment to host cell Sun et al., 2018 

16 

Azadirachtin 

antimicrobial, larvicidal, antimalarial, antibacterial, 
antiviral Gupta et al., 2017 

17 

Homonojirimycin 

Prevents infammatory responses and strengthen host 

resistance against viral infection by activating secretion of 

IFN- and IL-10 Zhang et al., 2013 

18 
Curcumin 

Inhibit viral replication Obata et al., 2013 

19 
Embelin 

Inhibits viral replication Hossan et al., 2018 

20 
Ginkgetin 

Inhibition of viral sialidase activity Miki et al., 2007 

21 
Glycyrrhizin 

Inhibits viral adsorption, penetration and replication Cinatl et al., 2003 

22 

hydroxycitric acid 

Inhibited viral replication and viral antigens and genes 
expression Baatartsogt et al., 2016 

23 
Momordicine 

Inhibit various stages of viral life cycle Sur et al., 2021 

24 
Myricetin 

Inhibits helicase protein Yu et al., 2012 

25 
linolenic acid 

 block the entry of SARS-CoV-2 Goc et al., 2021 

26 Thymoquinone, 

thymol 
Inhibit viral replication Shaterzadeh et al., 2018 
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27 
Eugenol,  

Inhibit protease enzyme Fujisawa & Murakami, 2016 

28 
Oleuropein 

Direct inactivation, interacts with viral envelope Micol et al., 2005 

29 
ursolic acid 

Inhibits viral replication Hussain et al., 2017 

30 

Ellagic acid, 

Interfere with viral envelop or mask viral structures which 

are necessary for adsorption or entry into host cells BenSaad et al., 2017 

 

2.3 Molecular Docking 

Docking studies were attempted to explore the binding mode of the 30 organic compounds 

onto the 3D model of M
pro

 of COVID-19 using AUTODOCK tools 1.5.6 (Goodsell & Olson 

1990) in UCFS Chimera (Pettersen et al., 2004). UCSF Chimera supports AutoDock Vina as 

a plugin, for performing molecular docking and views the docking results (Douangamath et 

al., 2020). Before docking, polar-H atoms were added to the COVID-19 model followed by 

Gasteiger charges calculation using AUTODOCK tools available from Scripps Research 

Institute (http://www.scripps.edu/mb/olson/doc/Autodock). The macromolecule file was then 

saved in pdb format, ready for docking. The AutoGrid program was used to build ligand-

centered maps with a grid size of X: 30× Y: 30 × Z: 30 points, grid centre set at X: -10.75, Y: 

12.33, and Z: 68.84 dimensions. Polar Gasteiger-type H charges were allocated, while non-

polar-H atoms were merged with the carbons, along with internal degrees of freedom and 

torsions. By using AutoDock Vina scoring algorithm Gibbs Free Energy (−ΔG kcal/mol) was 

measured for (Trott & Olson 2010) between these ligands with 6LU7. 

2.4 Interaction with M
pro

 

The two-dimensional and three-dimensional structures of the selected ligands were analyzed 

using Discovery Studio Visualizer v3.0 software (Inc. 2012; Yang et al., 2012). The protein–

compound interactions such as bonded and other non-bonded energies among the ligands 

with binding energy equal to or greater than the standard, Remdesivir were depicted against 
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M
pro

 of novel coronavirus. This software visualizes molecular interactions such as hydrogen 

bonds, hydrophobic interactions, and van der Waals interactions. 

2.5 ADME Prediction  

To develop orally active drugs, it is important to compute their pharmacokinetic and 

physicochemical features. This was carried out by using the QikProp (ADMET predictor) of 

Schrodinger.  This will provide data regarding absorption, distribution, metabolism, and 

excretion of the proposed natural compounds as drugs. Parameters such as Lipinski's rule of 

five (RO5) were evaluated to predict the drug-likeness of the chemical compounds. 
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Chapter 3 

Results and Discussion 

3.1 Molecular Docking  

Docking results of all the 30 organic compounds with M
pro

, 6LU7 are listed below in Table 2 

with their respective binding affinity. Remdesivir is considered as a standard and showed a 

binding affinity of -8.1 kcal/mol with M
pro

 (6LU7). The binding affinities of less than -8.1 

kcal/mol are marked red as they are below the standard and hence are discarded for further 

analysis. The remaining active molecules (based on their binding energy) are considered for 

the next steps and have a binding affinity score ranging from -8.1 to -9.6kcal/mol. The 

docking score of M
pro

 (6LU7) with the organic compounds namely hyperoside, aloin, 

ginkgetin, and glycyrrhizin was found to be -8.5 kcal/mol, -8.1 kcal/mol, -9.6 kcal/mol, and -

8.4 kcal/mol respectively. Figure 3 shows the docked structures of the organic compounds 

with 6LU7 with binding energy greater than -8.1 kcal/mol.  

Table 2 The molecular docking analysis results for several organic compounds against 6LU7, 

Including binding energy/Gibbs Energy 

Plant  

 

Organic 

compound(ligands) 

Binding 

energy 

(kcal/mol) 

Plant  

 

Organic 

compound(ligands) 

Binding 

energy 

(kcal/mol) 
Andrographis 

paniculata Andrographis paniculata -6.9 

Azadirachta 

indica Azadirachtin -6.8 

Andrographis 
paniculata Dehydroandrographolide -7.2 

Commelina 
communis Homonojirimycin -5.2 

Centella asiatica Propylene glycol -3.7 Curcuma longa Curcumin -7.3 

Centella asiatica Asiatic acid -8 Embelia ribes  Embelin -5.3 

Barleria Prionitis 
(lupeol)pentacyclic 
triterpenoid  -7.3 Gingko biloba Ginkgetin -9.6 

Adhatoda vasica kaempferol -7.8 

Glycyrrhiza 

glabra Glycyrrhizin -8.4 

Adhatoda vasica quercetin -7.4 
Hibiscus 
sabdariffa hydroxycitric acid -5.3 

Zingiber 

officinale 6-Gingerol  -5.7 

Momordica 

charantia Momordicine -7.2 

Zingiber 
officinale 6-shogaol -6.1 Myrica rubra Myricetin -7.3 

Aegle marmelos  

Aegle marmelos 

Alkaloid C -6.5 Moringa oleifera Linolenic acid -5.0 

Agrimonia pilosa Catechin -7.5 Nigella sativa Thymoquinone -4.9 

Agrimonia pilosa Hyperoside  -8.5 

Ocimum 

sanctum Eugenol -4.9 

Allium sativum Allicin -3.7 Olea europaea Oleuropein -7.7 

Camellia sinensis Epigallocatechin gallate -7.8 Punica granatum ursolic acid  -7.6 

Aloe vera aloin -8.1 
Syzygium 
cumini Ellagic acid -7.4 
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(a)Hyperoside (b) aloin  

  

(c) Glycyrrhizin (d) Ginkgetin 

Figure 3 The docked structures of  (a)hyperoside (b)aloin (c)glycyrrhizin and (d)ginkegetin with 

6LU7 

 

3.2 Interaction with M
pro

 

The interacting amino acids of molecular interaction of Remdisivir, Hyperoside, Aloin, 

Ginkgetin, and Glycyrrhizin in the key residues of M
pro

 are shown in Table 3. The docking 

simulation of M
pro

 to Hyperoside has shown that hyperoside forms five hydrogen bonds and 

three hydrophobic bonds which are displayed in Figure 4. Aloin forms six hydrogen bonds 

and three hydrophobic bonds. Ginkgetin forms six hydrogen bonds and five hydrophobic 

bonds and glycyrrhizin forms nine hydrogen bonds and two hydrophobic bonds. Table 4 

tabulates the interacting amino acids for Remdesivir and the common interacting amino acids 
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of the other four ligands. Hyperoside has three common interacting amino acids namely, 

MET 49, HIS 163, and LEU 141 with Remdesivir. Then Aloin gives the best results showing 

interactions with all the amino acids, MET 49, MET 165, HIS 163, GLU 166, and LEU 141 

the same way as Remdesivir with only one mismatch. Besides Ginkgetin also have three 

common interacting amino acids, MET 165, HIS 163, and GLU 166. Nonetheless, 

Glycyrrhizin has only one common interacting amino acid, LEU 141 as the standard, 

Remdesivir, and hence is excluded for further investigation.  

 

Table 3 Common amino acids involved in the binding with 6LU7 (M
pro

) of the reference and 

selected candidates 

ligands  Interacting amino acids 

Remdesivir THR 26, MET49, MET165, HIS163, GLU166, LEU 141 

Hyperoside CYS 145, MET 49, MET 165, SER 144, LEU 141, HIS 163 

Aloin GLY 143,GLU 166, MET 165, MET 49, HIS 41, HIS 163, CYS 

145, LEU 141 

Ginkgetin 

HIS 41, HIS 163, HIS 172, GLY 143, CYS 145, GLU 166, PHE 

140, ASN 142, MET 165 

Glycyrrhizin HIS 41, CYS 145, GLN 189, LEU 141, ASN 142 

 

Table 4 Common interacting amino acids as Remdesivir of the organic ligands with 

6LU7 (M
pro

) 

Ligands Amino acids 

Remdesivir  

 

THR 26 MET 49 MET 165 HIS 163 GLU 166 LEU 141 

Hyperoside  √  √  √ 

Aloin   √ √ √ √ √ 

Ginkgetin   √ √ √  

Glycyrrhizin      √ 
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(a) Aloin (b) Ginkgetin 

 

 

(c) Glycyrrhizin (d) Hyperoside  

 

 

(e) Remdesivir 

Figure 4 2D Diagram generated on Biovia Discovery Studio of (a)aloin (b)ginketin (c) 

glycyrrhizin and (d) hyperoside (e) Remdesivir with M
pro 
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3.3 ADME Prediction  

 

The physical properties and drug-related characteristics of these compounds were calculated 

using the QikProp tool. All of the properties were identified based on Lipinski‘s rule of 5 

(Lipinski et al., 2001) and other criteria (Kier, 2012; Krämer, 1999). The ADME properties 

of the lead organic compounds are shown in Table 5.  The properties include percentage 

HOA which determines the human oral absorption ranging from 0 to 100% : >80% (high), 

25–80% (medium) e < 25% (low). QPPCaco2 is another property what predicts apparent 

Caco-2 cell permeability in intestinal cells in nm/sec, >500 nm/s (good) e < 25 nm/s (low); 

QPPMDCK predicts MDCK cell permeability in kidney cells in nm/sec >500 nm/s (good) 

e < 25 nm/s (low); QPlogKhsa predicts binding to human serum albumin:−1.5 (low) a 1.5 

(high); CNS Predicted central nervous system activity on a –2 (inactive) to + 2 active scale: 

−2 (low permeability) e > −2 (high permeability); QPlogBB Predicted brain/blood partition 

coefficient : <−1 (low) e > −1 (easy permeation); PSA Van der Waals surface area of polar 

nitrogen and oxygen atoms; area):>60 (does not cross the blood/brain barrier) ; < 60 (to cross 

the blood/brain barrier). All probable candidates show moderate human oral absorption levels 

including Remdesivir. Also considering the other parameters all the organic compounds show 

unsatisfactory results which are not within the range to be a good orally consumed drug. The 

binding energies of aloin, hyperoside, and ginkgetin were above the control drug and also had 

satisfactory interaction. Therefore it is necessary to look for other likely methods of drug 

delivery.  The use of engineered nanocarriers to deliver these therapeutic candidates safely 

and effectively can be explored. Nanoparticulate drug delivery techniques include 

nanospheres, micelles, solid lipid nanoparticles, nanoliposomes, dendrimers, magnetic 

nanoparticles, and nanocapsules, among other dosage forms (Witika et al., 2020).  
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Table 5 Predicted pharmacokinetic properties of the reference and selected candidates  

SI 

no 
Molecules 

Absorption Distribution CNS permeability 

%HOA QPPCaco2 QPPMDCK QPlogKhsa CNS  QPlogBB PSA 

 

Remdesivir 

(Reference 

inhibitor) 34.504 28.486 10.568 -0.59 -2 -3.278 198.913 

 

Aloin 32.443 14.983 5.277 -0.665 -2 -2.67 170.548 

 

Ginkgetin 63.865 23.199 8.465 1.031 -2 -2.88 165.943 

 

Hyperoside 0 2.537 0.774 -0.895 -2 -3.823 217.584 
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Conclusion 

The current medical treatment for COVID-19 infection is mostly supportive, with no specific 

therapy available. Several drugs, including antimalarials such as chloroquine and 

hydroxychloroquine the anti-retroviral combination lopinavir/ritonavir, an investigational 

nucleotide analog with broad-spectrum antiviral activity initially intended to treat hepatitis C 

and Ebola, viz., remdesivir , and the macrolide antibiotic azithromycin, have been tested in 

clinical trials as a potential treatment for the virus. However, none of these treatments provide 

a permanent cure or are appropriate for prevention. The disadvantages of these treatments 

include exposing patients to medications with well-documented systemic side effects or 

innovative therapies with unknown consequences without confirmation of clinical benefit. 

The molecular docking method was used to attain the intended goal. This technique 

comprises looking into the binding affinity and type of interactions between 30 chemicals 

derived from medicinal plants (ligands) and M
pro

, the target protein involved in SARS-CoV-2 

infection. To assign each compound an ID and retrieve its chemical structure, the PubChem 

database was used. The ligands and protein were prepared for docking using UCSF Chimera. 

Default parameters were used to prepare the ligands and proteins for docking. Then, utilizing 

the PDB files of the target proteins and generated compounds, AutoDock Vina was used to 

predict the structure of the protein-ligand complexes and analyze the binding energy. The 

results of molecular docking were analysed using Discovery Studio 2020 to view the 

interactions. Hyperoside, aloin and ginkgetin were selected as they showed the best results in 

the investigation with greater binding affinities than the standard, Remdesivir, and the 

interactions proved that the protein-ligand complex formed would be stable. Unfortunately, 

none of these organic compounds possess the quality to be administered orally, and hence it 

is crucial to find other delivery pathways. Nonetheless, these three organic compounds:  

hyperoside, aloin and ginkgetin can be of great importance in the treatment of COVID-19 
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with minimal side effects. Thus, additional laboratory experiments are required to put the 

prospective organic molecules to use.  
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