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Abstract

Just as the digital transformation of everything in this ‘Information Age’ has acted
substantially to mitigate conventional crimes to a degree, the rate of cyber crime
has parallelly elevated alarmingly. As malware has been the primary envoy in such
criminal incidents, its metamorphosis is highly prevalent. This paper presents a
systematic grouping of malware samples into distinct families extracted from two
prominent datasets, MalImg and MaleVis through extensive research. Subsequently,
six state-of-the-art advanced CNN architectures have been utilized including Incep-
tion ResNet V2, DenseNet, VGG16, ResNet50, EfficientNetB0 and XceptionNet.
Then a comprehensive analysis of malware classification was conducted as the re-
search aimed to discern the performance variances among these models concerning
the classification of diverse malware families. Moreover, eXplainable Artificial Intel-
ligence (XAI) techniques, particularly Local Interpretable Model-agnostic Explana-
tions (LIME) has been introduced, to deduce the rationale behind the classification
decisions made by each model. This involved analyzing and visualizing the salient
features within the malware files that led to their identification as malicious entities.
Lastly, the findings of this study not only provide a comparative evaluation of var-
ious deep learning architectures for malware classification but also offer insightful
explanations through XAI methodologies, shedding light on the interpretability of
model decisions in the realm of cybersecurity. The results furnish valuable insights
for enhancing the understanding of malware behaviour and model interpretability,
thereby contributing to the advancement of robust and explainable malware detec-
tion systems.

Keywords: MaleVis, MalImg, comparative analysis, Convolutional Neural Net-
work (CNN), Inception ResNet V2, DenseNet, VGG16, ResNet50, EfficientNetB0,
XceptionNet, XAI.
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Chapter 1

Introduction

The existence of malware can be dated back to the inception of computers or the
idea of ‘computing’. Any type of malicious software that is engineered to cause
damage to devices, exports personal data or passwords, mostly always infiltrates a
device without the owner’s knowledge is termed as a malware. Despite the level of
destructiveness, all malwares follow some basic pattern of invasion. Most common
are unknowingly downloading a malicious software, clicking on infected links or to
say visiting an infested website or through email attachments and so on. In case
of different malwares, the reason why they get triggered varies but not vastly. For
example: actions such as clicking on a compromised link within an email or vis-
iting a deceptive website could trigger the malware. Other widely used ways are
to distribute malware through peer-to-peer file-sharing platforms, bundled within
free software downloads or in case of spreading malware among a large number of
users, inserting malicious code into a widely used torrent or download is an efficient
method for attackers [1].

Malware comes in many faces and differs themselves through their type of attack,
infiltration, installation and casualties. Trojan, adware, spyware, trojan download-
ers, dialer, ransomware, scareware, fileless malware etc are some of the many faces of
malwares. Now-a-days, Advanced Persistent Threats (APT) which is an advanced
malware software has caused a stir in the cyber world as it has become a common
tool for attackers. This software uses many vectors and often serves multipurpose
commercial and military uses. Users of this software can commit a wide range
of cyber crimes including organized crime and state sponsored attacks against e-
government sites. [2]

The analysis of malware code is not an easy task to begin with as comprehension of
how a malware works, its attack system, code etc. can be very complicated. Thus,
implementing deep learning on a wider scale can generate even more optimistic re-
sults due to its automatic feature extraction, adaptability etc. Though plenty of
research has been carried out in this regard, it falls inadequate to the growing num-
ber of attacks and mutations of malware families growing every day.

In the domain of malware classification, CNNs play a pivotal role in analyzing bi-
nary files or visual representations of malware, such as disassembled code or byte
sequences transformed into images. By training CNN models on these image-based
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datasets, the networks learn to identify subtle patterns and distinctive features in-
dicative of malware behaviour and the architecture can discern nuanced differences
in these images, enabling the detection of previously unseen malware variants.

Furthermore, the significance of CNNs in malware classification lies in their ability
to automatically extract relevant features from images representing malware charac-
teristics. This feature extraction capability empowers the models to generalize well
to new and unseen instances thus enhancing the accuracy and efficiency of malware
detection and classification systems. Moreover, CNNs can aid in understanding the
underlying structure and patterns within malware and subsequently contributing to
the development of more robust cybersecurity measures.

1.1 Research Problem

MaleVis and MalImg are two well-known datasets that have been applied in the
research. Most of the time, users of these datasets are not aware of which malware
belongs to which family. This study attempted to address that issue by categorizing
malwares into families according to their pattern of infestation. this has been done
through extensive research of the malwares and subsequent families. 45 malwares
from both datasets were selected based on the availability of technical informations
and grouped into 8 classes of malware families from. Moreover, MaleVis is recog-
nized to be a balanced dataset while MalImg is known to be an imbalanced dataset.
However, the purpose of this study is to create a balanced dataset, therefore, data
augmentation and shut.li have been used to achieve this goal. Here, if there are less
than 350 malware samples in a folder, some samples are randomly selected copied
to reach the 350 mark. Again, in folders containing samples more than 350, samples
were randomly selected and omitted.

The dataset was fed into six state-of-the-art CNN models. It is known that balanced
and imbalanced datasets have differing levels of accuracy. The main goal of this re-
search is to identify the rationale and causes underlying the accuracy of the existing
models. Then, by using the power of XAI, in this case LIME, it was possible to
comprehend and provide an explanation for the reason for an image’s detection as
malicious. A part of the image is highlighted whenever LIME is run, aiding in the
identification of the image as malicious. Additionally, if a picture is not highlighted,
the model is unable to identify it as malicious. So. It can be said that the necessity
for malware classification stems from a number of factors.

1.2 Research Objectives

By using the CNN models, the research seeks to improve malware detection accu-
racy. The primary goals of this study are -

• Identifying and classifying malware families using the MaleVis and MalImg
datasets with proper logics and arguments for malware family classification.
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• Addressing the imbalanceness MalImg dataset and opting for a balanced dataset
by applying shut.li approache and data augmentation.

• Implementing the balanced dataset to run six Convolutional Neural Network
(CNN) models and evaluating the models’ performance.

• Employing the CNN models with LIME and using eXplainable Artificial In-
telligence (XAI) to decipher and elucidate decisions made by models.

• Creating a method to determine whether an image contains malware by utiliz-
ing trained models and examining instances where the model fails to recognize
an image as malicious.

• Improving CNN models’ interpretability to detect malware and providing in-
sightful explanations of the variables affecting current models’ accuracy in the
context of malware detection using images.

https://www.overleaf.com/project/659ab8876312e0d5f389c081

1.3 Thesis Structure

• The research problems, objectives, and thesis structure is discussed in the first
chapter.

• Then the literature review and background of model architectures and behav-
iors are presented in the second chapter.

• The third chapter describes the dataset and the preprocessing steps for clas-
sifying malware families.

• Chapter four presents the proposed models and the conducted experiments.

• Lastly, the results, such as model-wise comparisons and XAI analysis is dis-
cussed in the fifth chapter.

• Chapter six concludes the research and outlines future work.

13



Chapter 2

Literature Review

2.1 Related Works

The investigation outlined in reference [5] centered on employing a CNN-based deep
learning framework for detecting Android malware. The primary focus involved
identifying various malware families using an image-based strategy. Their proposed
method harnessed the Vgg-16 architecture as a transfer-learned model for the identi-
fication and detection of malware families within the Android OS. Thus rather than
relying on feature representations, their approach involved collecting RGB images
from unprocessed malware binaries. and these images served to encapsulate intri-
cate high-level attributes, effectively discerning between diverse malware families.
To gather additional data from the source code RGB images were directly extracted
from the raw APK files. Due to the large size of directly created images from APKs
the convolutional layers were unable to handle the feature extraction part. As a
result, the researchers trained the Vgg-16 model. The proposed CNN-based deep
learning architecture for detecting and identifying malware families in the Android
operating system achieved an impressive accuracy rate of 97.81%. This performance
surpasses earlier studies conducted on the same topic.

Additionally, the study[6] approached multiclass malware classification using trans-
fer learning based on image visualization. The proposed work was carried out on
the MalImg Dataset, and the visualization process starts by converting the mal-
ware binaries into unsigned integers, later converting them into pixel values. The
classification was conducted employing a hybrid model based on transfer learning
principles. In this approach, an IVMCT framework incorporated three pre-trained
models: ResNet, AlexNet, and DenseNet and the selection of these models was
strategic, utilizing feature-based transfer learning to combine their features and
generate fully connected layers. Ultimately, the terminal output incorporated the
softmax activation function and the accuracy achieved by the IVMCT framework
surpassed numerous other methods, achieving an accuracy rate of 99.12 percent.
Additionally, it demonstrated benefits including real-time detection, reduced time
consumption, and outperforming several previously utilized techniques.

This study [7] focused on classifying malware images, proposing a unique and
lightweight deep Convolutional Neural Network (CNN) for this purpose. Their ap-
proach involved using a CNN model with the Adam optimizer to extract distinctive
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properties from malware samples and categorize them into specific malware fami-
lies. As the aim was to provide valuable information for non-expert human analysts
and enhance malware security in IoT applications, the model underwent multiple
trials, demonstrating an impressive accuracy rate of 96.64%. Thus, notably, the
developed CNN model was lightweight, making it suitable for resource-constrained
applications.

For the purpose of categorizing malware binaries as images, the research [8] proposed
employing six distinct Convolutional Neural Network (CNN) models. These models,
namely CNN-SVM, GRU-SVM, MLP-SVM, Inception V3, ResNet 50, and VGG16,
are utilized to process Portable Executable (PE) files containing malware. The study
uses the MalImg daatset and compares the effectiveness of several established CNN-
based deep learning models from ILSVRC competitions alongside additional CNN
and mixed CNN models in classifying malware images and employ a static analysis
technique to automatically extract features. As per the findings, the Inception
V3 model displays superior performance compared to the M-CNN model, which is
currently the state-of-the-art system, achieving a test accuracy of 99.24% in contrast
to 98.52
Moreover, the study [9] suggest the creation of the first file-independent DL that
uses executable file visual characteristics to categorize malware into families which is
accomplished by educating a network of convolutional neural networks to represent
the binary content of malware as grayscale images. Moreover, grayscale graphics
are used to represent malware executables because they can be used to detect vari-
ations in samples since they can capture subtle changes while preserving the overall
structure. The suggested neural network design encompasses an input layer and
three sets of feature extractors, each comprised of four stages and these stages are
responsible for learning hierarchical features by employing convolution, activation,
pooling, and normalization layers. Additionally, to comprehensively assess the ap-
proach, the study utilized two openly accessible datasets: MalImg and the Microsoft
Malware Classification Challenge datasets. Lastly,The evaluation process involved
using common metrics like accuracy, precision, recall, and F1-score. It also com-
pared image-based machine learning methods for categorizing malware. The study
found that the proposed model performed better than previous methods, achieving
accuracy rates of 98.48% and 97.49% for the respective datasets.

The study [10] illustrates the efficacy of data augmentation in mitigating the chal-
lenge posed by limited dataset sizes and focuses on leveraging the MalImg dataset
for malware classification, encompassing 9,339 samples distributed across 25 diverse
families, albeit with an imbalanced distribution. To address this imbalance, the
Study has utilized data imbalance techniques as inputs to a CNN model and the
model proposed in the study, showcases superior performance when compared to
established CNN models like VGG16 (96.96%), ResNet50 (97.11%), InceptionV3
(97.22%), and Xception (97.56 %), achieving an accuracy of 98.03%. Notably, the
suggested CNN model also demonstrates notably faster execution in contrast to
other CNN models and on top of that the study incorporates a support vector ma-
chine into the proposed CNN model.

A novel model is introduced in the study [11] that aimed at identifying malware,
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which integrates similarity mining and a specialized deep learning structure for im-
age examination. This hybrid deep learning model employs efficient image-based
machine learning methods to effectively detect and categorize malware and to eval-
uate its performance on extensive collections of new malware families, the authors
conducted tests using various public and private datasets. Additionally, supervised
and unsupervised learning techniques was combined for image-based malware iden-
tification, resulting in the creation of the hybrid model. This model encompassed
one unsupervised learning approach and two supervised learning models, enabling
it to identify known malware, variations of known malware, and unfamiliar malware
using a self-learning system and initially, the process converted malware binaries
into grayscale images through an image-based deep learning technique. Deep learn-
ing frameworks, particularly a fusion of convolutional neural network (CNN) and
long short-term memory (LSTM) models, were utilized to grasp both spatial and
sequential information for capturing intricate attributes. Furthermore, the proposed
deep learning architecture leveraged CNN and a bidirectional pipeline to efficiently
categorize malware.

This experiment [12] was to employ a bespoke Convolutional Neural Network (CNN)
and a deep neural network to classify malware photos into their respective families
that demonstrated impressive performance by utilising CNNs’ power in computer
vision, achieving a 98.07% classification accuracy during testing and a 99.64% classi-
fication accuracy during training. Furthermore, transfer learning using the VGG-16
model demonstrated excellent accuracy, scoring 88.40% in testing and 87.37% in
training, thus the relevance of CNNs in effectively handling the difficult work of
malware classification was clear, even though ResNet-18 and Inception-16 attained
validation accuracies of 90.21% and 92.48%, respectively.

This work [13] explores the field of machine learning (ML)-based Android malware
detection, which has received a lot of attention from researchers studying mobile
security. Although numerous studies assert elevated detection accuracy, this study
highlights the dangers of impractical experimental designs that result in excessively
optimistic results. Unlike previous research, Explainable AI (XAI) techniques are
used in this study to find out what ML models learn as they are being trained. The
results show that the training dataset’s temporal sample irregularity leads to inflated
classification performance, emphasizing a dependence on temporal variations rather
than real harmful behaviours. Crucially, the research emphasizes the value of XAI in
understanding the inner workings of malware classifiers based on machine learning,
calling for a change in emphasis from accuracy to a more thorough comprehension
of model behaviour.

The goal [14] of this research is to identify dangerous programmes by combining in-
formation from images with deep learning capabilities. Using the ’Malimg’ dataset,
the study uses visual representations to depict well-known malware families. The
suggested methodology extracts features from malware sample byteplot grayscale
pictures using a pre-trained model VGG16. These characteristics are then employed
to accurately classify malware into distinct families by training a variety of classifiers,
such as SVM, XGBoost, DNN, and Random Forest and their usefulness in obtaining
high accuracy in identifying and categorizing malware families is demonstrated by
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the experimental evaluations. Thus, the study demonstrates the promise of image-
based characteristics and deep learning methods for accurate malware identification.

The research [15] presents a novel use of the Xception model which is less prone
to overfitting problems and more durable than popular models like VGG16. The
Xception model performs exceptionally well in reaching the highest training accu-
racy and validation accuracy among other approaches, despite its limited usage in
the literature currently in publication and lack of prior study in malware classifi-
cation thus this demonstrates how effective Xception is at handling the challenging
task of classifying malware images. The study emphasizes the special advantages
of the Xception model, establishing it as a potent instrument in the field of deep
learning for malware analysis.

The research [16] suggests a novel visualization-based method to get around these
problems. Malware binaries are categorized using a deep learning network, namely
DenseNet, and displayed as two-dimensional pictures. To solve class imbalance, the
system uses a reweighted class-balanced loss function, which leads to notable per-
formance gains. The system’s excellent accuracy in detecting new malware samples
is demonstrated by experimental findings on four benchmark datasets (98.23% for
Malimg, 98.46% for BIG 2015, 98.21% for MaleVis, and 89.48% for the unseen Mali-
cia dataset.

Lastly, the study[17] uses EfficientNet-based models that convert application files
into images for deep learning analysis and in order to reduce dimensionality, the re-
search uses kernel principal component analysis (KPCA) to extract unique features
from the EfficientNet models. The meta-classifier that is created by fusing these re-
duced features performs better than DenseNet, ResNet, and InceptionResNet. The
EfficientNet-based solution outperforms the state-of-the-art techniques and demon-
strates robustness and generalizability on two different testing datasets. [17]

2.2 Background

2.2.1 CNN Architectures

Inception ResNet V2

Inception ResNet V2 is introduced as a combined version of two major architec-
tures namely Inception and ResNet. The architecture includes advanced inception
modules and rhese modules are notable for their capacity to record information at
numerous sizes, allowing the network to distinguish details at different levels of ab-
straction. Inception ResNet V2 also incorporates residual connections which are
intended to address the vanishing gradient problem, which is a typical challenge
in deep neural network training. They make gradients flow more smoothly during
the training process. The model is characterized by its depth and complexity, indi-
cating that it has a significant number of layers and intricate designs. The depth
and complexity are highlighted for their roles in facilitating multi-scale feature ex-
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traction. This means that the model can efficiently recognize patterns and details
within the data at various levels of granularity. Within the dataset, the architecture
is claimed to collect both local and global contextual information. This means that
the model can recognize not just fine-grained details (local information), but also
broader patterns and relationships (global information) in the dataset.

DenseNet

DenseNet’s architecture is defined by a dense connectivity pattern. This design
has complex relationships between layers as the architecture is said to be linked
with feature reuse which refers to the sharing and reuse of information learned
in one layer of the network by succeeding levels. The densely connected layers
promote a direct flow of information between all layers which in contrast to typical
systems, information is passed sequentially from one layer to the next as it supports
direct connections. This improves information flow and communication between
layers and improves the robust propagation of features. This means that features
or patterns detected in one region of the network can instantly spread throughout
the network, improving the model’s ability to capture complicated patterns. This
architecture is well-known for addressing gradient flow difficulties. As Gradients in
typical deep networks may drop as they propagate backward during training, the
design of DenseNet assists in reducing this issue by ensuring that gradients travel
more effectively through the network during backpropagation.

VGG16

VGG16 is well-known for its layer architectural simplicity and consistency. This
indicates that its design is simple and sticks to a consistent pattern across levels.
VGG16’s architecture is distinguished by recurrent 3x3 convolutional layers. This
specific design choice contributes to the previously noted simplicity and consistency.
The basic design of VGG16 is well-known for its ability to extract hierarchical fea-
tures. Here the term ”hierarchical” refers to a systematic arrangement of charac-
teristics at several levels of abstraction which shows the effectiveness of capturing
features at different scales thus contributing to a rich data representation. The study
of this architecture is driven by its demonstrated success in feature extraction and
the goal is to see how well this architecture reveals hierarchical patterns within a
heterogeneous image dataset.

ResNet50

The introduction of residual connections is a fundamental aspect of ResNet50. These
links are added to solve the difficulties that come with training deeper networks.
This addition of residual connections facilitates gradient flow during backpropaga-
tion and is critical for avoiding the vanishing gradient problem which is common
when training deep neural networks. This issue happens when gradients get too
narrow during backpropagation thus preventing deep network training. Now, these
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connections allow for more efficient gradient flow over the network and one advan-
tage of including residual connections is that they allow for the training of much
deeper networks which is a significant step forward as training deep networks with-
out such connections can be difficult due to gradient-related difficulties. This thesis
research tries to capture detailed elements inside the image domain by using the
architecture ResNet50. And the emphasis is put on utilizing ResNet50’s capacity to
learn complex hierarchical representations particularly when dealing with detailed
patterns in the dataset.

EfficientNetB0

Compound scaling is a crucial feature of EfficientNetB0 as this is a way of scaling
many model dimensions at the same time, such as depth, width, and resolution.
This method seeks to identify a model configuration that is both balanced and opti-
mal. It is intended to be a compromise between model size and performance which
means that it strives for high performance while keeping computational resources
in mind with the goal to maximize the efficiency of the model. Another important
aspect is the architecture’s adaptation to varied scales that makes it an appealing
alternative for the task at hand especially in cases where computational resources
are required. And evidently, this model’s versatility and ability to balance model
size and performance surely make it different from other models.

XceptionNet

One of the crucial aspects of XceptionNet is the usage of depth wise separable
convolutions . This method divides the spatial and depth dimensions of convolutions
resulting in more efficient feature extraction. And moreover, the use of depth wise
separable convolutions in the architecture is designed to improve the its capacity to
extract features effectively which encourages the development of improved feature
hierarchies and thus capturing more subtle information from the data. With that
in mind, this research aims to analyze XceptionNet in order to assess its capability
for detecting nuanced patterns in a diverse malware image dataset.

2.2.2 eXplainable Artificial Intelligence (XAI)

The goal of Explainable Artificial Intelligence (XAI) is to provide a visible and
comprehensible framework for artificial intelligence (AI) systems’ decision-making
processes. LIME or Local Interpretable Model-Agnostic Explanations, has been cho-
sen in this work to gain a deeper understanding of the image features that influenced
the predictions generated by our neural network models. It makes the examination
of complicated models easier by providing insights into the decision-making process.
LIME is a powerful technique in XAI that aims to shed light on the decision-making
processes of complex machine learning models. In the context of the study with
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neural network models, the evaluation of various image attributes’ impact on the
predictions generated by these models has been emphasized. For instance, an opti-
mal model should showcase adaptability to diverse data types, flexibility to handle
variations, and the capability to discern intricate patterns. Furthermore, resilience
in addressing challenging scenarios where the presented data diverges from the train-
ing set is paramount. However, while assessing a model’s quality, it extends beyond
mere accuracy metrics thus the focus lies in its ability to generalize novel scenarios,
facilitate comprehension of underlying processes, and contribute to resolving prac-
tical real-world issues. Therefore, to harvest the benefits of such a dynamic model
eXplainable Artificial Intelligence (XAI) has been implemented in this research.
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Chapter 3

Dataset Description and
Preprocessing

3.1 Dataset Description

3.1.1 MalImg Dataset

The MalImg dataset contains 9339 malware byteplot images from 25 families. In this
dataset the malware binary is interpreted as a sequence of 8-bit unsigned integers
and then structured into a two-dimensional array. This array can be represented as
a grayscale image where values range from 0 to 255 (0 represents black, while 255
represents white). The image’s width remains constant, while its height may change
based on the file’s size (see Figure 3.1). Table 1 provides suggested image widths
for various file sizes, derived from practical observations.

Figure 3.1: Visualizing Malware as an Image

The given figure depicts the image visualisation of a known Trojan called Dono-
tova.A. Here, the executable code is stored within the .text section and examining
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Figure 3.2: Visualizing Malware as an Image

the figure, it’s evident that the initial segment of the .text section comprises finely
detailed code texture. The remaining portion is filled with zeros (depicted as black),
signifying empty space or zero padding at the section’s conclusion.Then, the .data
section encompasses both uninitialized code (depicted as a black patch) and ini-
tialized data, represented by a fine-grained texture.Lastly the .rsrc houses all the
resources within the module, which might include icons utilized by an application.
[18]

3.1.2 MaleVis Dataset

MaleVis dataset aims to offer an RGB based ground truth dataset so the analy-
sis can be done based on the vision-based-multiclass malware recognition research.
For this purpose, a collection of 26(25+1) class byte pictures are proposed. In the
present scenario, one class represents “legitimate” samples whereas the remaining 25
classes represent various malware families. To be able to create the collection, firstly
Sultanik’s bin2png software was used to extract the binary images in three chan-
nel RGB color space from malware files. After the images were vertically lengthy,
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they were adjusted into two distinct square resolutions. (224*224 and 300*300 pix-
els). Moreover, the maleVis dataset comprises 5162 RGB images for validation
and 9100 images for training. 350 picture samples are used in each of the training
classes whereas the validation set includes a range of image counts. Since separating
legitimate samples from malicious ones is the basis for malware classification and
detection a somewhat larger amount of legitimate samples in the validation example
(350vs1482) was included. [19]

3.1.3 Combined Dataset

After combining these two Datasets above mentioned we get a dataset of 45 malware
families which is highly imbalanced.

Figure 3.3: Combined Imbalance Dataset

Here, Skintrim.n has the lowest number of malware images at count 55 and with
2824 images Allaple.A is the largest one.
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Figure 3.4: Malware Image Samples

3.2 Malware and Family Classification

In this section all the malwares and their designated families have been discussed
extensively aith infestation process, dropped registry keys/processes and their casu-
alties.

3.2.1 Adware/PUPs

A type of malware or unwanted software created to deliver targeted advertisements
on infected computers. Adware can also collect information about the users and
suggest them with relatable and customized ads. Trojans are one of the adware
variants. Moreover, by taking advantage of the flaws that are downloaded or run
by the system, a system can be infected by the malware operators with the help of
adware. Side by side with that, the user might receive advertisements from adware
once it is installed on the computer. The adware can also generate income as the
adware operator is paid by the advertiser each time the ad is viewed. [20]

Amonetize.G is a type of adware that targets windows computers and tends to
combine programs that are thought to be helpful with softwares that shows adver-
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tisements or needs to be paid for each installation. These software packages can also
be called bundlers.

This Adware arrives on a system as a file dropped by other malware or as a file
downloaded unknowingly by users when visiting malicious sites. [21]

Installation
This Adware adds the following processes:

This Adware adds the following registry keys:
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And it deletes the following registry keys:

Browsefox.NHUSFDG is a type of adware family that uses various ways of
browser hijacking and monetization. This appears on a computer either as a file
deposited by previously installed malware or as a file obtained without the users’
knowledge during visits to malicious websites.

This Adware deletes the following files:

%System%bigApp.exe [22]

Elex.J is a type of adware that is retrieved from the internet and commonly func-
tions as a tool to detect and eliminate adware. Additionally, it possesses the capabil-
ity to deploy elex. It infiltrates a system either as a file placed by existing malware
or as a file acquired inadvertently by users while visiting malicious websites. [23]
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This Adware adds the following processes upon activation:

It creates the following folders:

This Adware drops the following files:

Neoreklami is a type of adware having various methods of showing advertisements
on affected windows computers.
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3.2.2 Worms

The name, worms, depicts a type of malware whose function is to copy itself and
spread to other computers while continuing to function on systems that are com-
promised. A computer worm basically replicates in order to infect other computers.
A worm normally goes unnoticed or undetected until its uncontrolled development
uses system resources and leads other programs to lag. The worm is likely to take
advantage of the holes that are present in the protection software of the computer
to acquire confidential data, create vulnerabilities that help to have access to the
system, corrupt files and perform more malicious activities. For which, servers, net-
works and individual systems tend to malfunction. However, a worm is distinct
from a virus, as it can function independently of a host computer, whereas a virus
is unable to operate without one. [24]

Androm is a kind of malware that accesses a system in a file that is dropped by
other types of malware or by the way people accidentally download whilst browsing
malicious softwares. This malware retrieves data from its binary picture as well as
extracts data from the memory of the computer. On the computer, everything that
is being typed, clicked or run passes via the memory. So these types of data could
be read by a malicious software due to this vulnerability. Malware like this also
tends to hide network activity. [25]

Installation

This malware adds the following processes
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It creates the following folders:

• %Windowslibex [26]

Other System Modifications

This malware modifies the following file(s):

It adds the following registry keys:
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Dropping Routine

This malware drops the following files:
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Fakerean.gen!A is a type of malware family of deceptive security apps that pre-
tends to be malware detection tools and often finds various sorts of viruses on the
computer. And even before cleaning the computer completely, it will suggest the
users to pay for it. That being said, the program actually is not a malware scanner
or anti virus tool and has no indication of finding any malware at all. Rather all it
takes is a cursory glance to pay the programmers. Moreover, the program won’t do
anything even if it is paid to “unlock” it because the given computer is not really
affected with the malware that it found. [27]

Installation-

During installation, the malware creates the following file:

• %windirieocx.dll [28]

Where %windir% represents the Windows Directory.The following modules are then
loaded into other processes:
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Registry Modifications - Sets these values:
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Neshta.A is a malware that tends to spread by adding the malicious codes to other
executable files. [29]

When its executed, the virus tends to create the following files:

The following Registry entry is set:

This causes the malware to be executed along with any program.
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The worm infiltrates files by adding its code at the start of the original program.
The inserted code size measures 41472 B. Additionally, it spreads to files located on
network and removable drives.
It steers clear of infecting files that contain certain specific strings within their paths.:
%temp%
%windir%
\PROGRA~1\

When selecting a file to infect, various other conditions are considered. Upon ex-
ecution of an infected file, the initial program is copied into a temporary file and
then executed.

The original file is stored in the following location:
%\temp%\3582-490\%\filename%

Snarasite is a type of malware that does actions without the user’s knowledge.
Some examples of these actions are downloading and uploading files, gathering sys-
tem data, introducing other malware into the machine that was compromised, exe-
cuting Dos attacks and many others.

How this malware can infect the PC -
Spam emails, malicious office macros, infected removal drives, hacked or compro-
mised web pages.

Stantiko malware family is known for targeting Windows operating systems. Stan-
tiko can be used to execute certain actions like filling out forms, searches etc. This
malware is being used on hacked web servers and users’ PCs worldwide. Moreover,
the bots operate as a proxy agent for the virus which is activated through them. [31]

Upon activation, the malicious software will authenticate the configuration file present
at /etc/pd.d/proxy.conf.

Upon execution, the malware validates the configuration file present at /etc/pd.d/
proxy.conf. After confirming the existence of the configuration file, a function
responsible for parsing the file, LoadConfigFromFile(), is invoked. This particular
function, ParseConfigElement(), reveals a portion of the configuration file’s struc-
ture, which should contain keys like proxy ip, port, redirect url, localhost, ip header,
and request header log files.

Following the configuration’s loading into the system’s memory, the daemon com-
mences its operations, as depicted in Figure 6 through the start demon() function.
This involves the creation of a socket and a listener for accepting new client con-
nections. Upon receipt of a new client, the listen socket() function is triggered.
Subsequently, the client generates a new thread, executing the code within the
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on client connect function. Initially, this function checks the request method (GET,
POST, or NOTIFY). In the case of a GET request, the program generates a 301
redirect HTTP response that incorporates the redirect url parameter from the con-
figuration file. This behavior implies that querying a C&C IP address via a web
browser could result in the request being redirected to an arbitrary website, without
any traces or malicious artifacts.

If the request method happens to be a POST or NOTIFY, the malicious software
will generate a POST request to transmit to the C&C server. This request will be
constructed based on the client’s HTTP request header and content, utilizing the
create post data() function.

Afterward, the malicious software proceeds to execute the mysql server do request()

function, which is tasked with transmitting the POST request to the C&C server. .

The POST request is sent to one of the following paths on the C&C server:

The detect proxy script() function determines the C&C server’s path by uti-
lizing data provided by the client. The C&C server’s IP address is a parameter
extracted from the configuration file.[32]

HackKMS is a type of malware that is created to activate or operate unregistered
Microsoft software. Moreover, these programs can be used with other malicious
softwares. [33]

3.2.3 Backdoor

Trojan horses come in many faces and attributes that differentiates them amongst
each other. A backdoor trojan is one of them and while they are very basic sort of
malware they are potentially dangerous. As the name suggests, a backdoor trojan
can load varieties of malware into the device while acting as a door or gateway for
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them. It is often the malware of choice to set up botnets which are essentially a
network of computers infected by backdoors acting as per one malignant source.
Thus, without our knowledge our computer partakes in the operations of a zombie
network. [34]

Hlux is a type of backdoor malware that tries to connect to a dead IP:Port two
times and delays analysis tasks along with altering proxy settings. It ciphers infor-
mation on the victim’s harddrive to prevent access. [35]

Injector is another type of trojan that ‘injects’ malicious code into processes that
are already running on the computer and downloads external malware, disrupts web
browsing and spies on the user’s actions.

Families flagged by ’Injector’ detections primarily exhibit this functionality although
numerous malware families also utilize injection techniques to compromise a system.
Injector malware commonly consists of Windows executable (EXE) and JavaScript
files, but they may also arrive via spam emails, exploit kits, or as part of another
malware’s payload. The ramifications of code injection vary significantly among
Injector trojans due to the diversity of families and some common actions include
corrupting program data, providing unauthorized data access, inducing program
crashes or denial of service, monitoring or manipulating web browser activity, over-
seeing or influencing user actions on the device, downloading additional programs
or components onto the device, and enabling remote attackers to assume complete
control over the compromised device. [36]

Agent is an extensive collection of software, primarily responsible for downloading
and deploying adware or malware onto the target system. Variants within the Agent
family might additionally alter settings related to Windows Explorer or the Windows
interface. This umbrella term encompasses a diverse range of malware that doesn’t
neatly fit into established families. Within the Agent family, one can find trojans,
worms, viruses, backdoors, and various other forms of malicious programs.
Agent.FYI is one such variant of the Agent family that exhibits similar behaviors
with its peers. [37]

3.2.4 Trojan Horses

As the name suggests, the trojan horse malware mimics the historic incident of
Greek Mythology. This virus impersonates a normal or legitimate file and downloads
into the device. A more suitable explanation of what a Trojan Horse would be is
that it’s a form of malicious software that usually disguises itself as an attachment
in an email or a freely available file. It then infiltrates the user’s device. After
being downloaded, the harmful code carries out specific tasks as intended by the
attacker, like gaining unauthorized access to business systems, monitoring users’
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online behavior, or pilfering confidential information and so on. [38] Although it is a
prominent type of malware, due to its attacking style it is not considered as a virus.

Rbot!gen is one such trojan that allows perpetrators to control the affected com-
puters. Once a system is compromised, this trojan establishes a connection with a
specific IRC server and joins a dedicated channel, offering a pathway for attackers to
issue commands which enable the trojan to propagate by seeking out vulnerable net-
work shares, exploiting weaknesses in Windows and subsequently spreading through
accessible backdoor ports employed by diverse strains of malicious programs. More-
over, this trojan equips attackers with the capability to execute various backdoor
functions, including launching denial-of-service attacks and extracting system infor-
mation from compromised computers. When the malware runs it copies itself to
%windir% or system folder.

The malware often includes a process of adding a value to one or multiple registry
keys like:

The malware then proceeds to run every time the windows start.

Rbot!gen malware establishes a connection to an IRC server and enters a specific
channel that allows it to receive various commands. These commands encompass a
wide range of actions such as scanning for vulnerable computers within the network,
inspecting network ports, fetching and running remote files, monitoring network ac-
tivity, initiating HTTP/HTTPD, SOCKS4, and TFTP/FTP servers, managing the
activation or deactivation of the DCOM protocol, retrieving comprehensive com-
puter configuration data including Windows login details, user account specifics, ac-
cessible shares, file system details, and network connections. Additionally, the mal-
ware has the capability to log keystrokes, acquire game CD keys, capture screenshots
and images from webcams, reroute TCP traffic, transfer files using FTP, dispatch
emails, control processes and services, and execute denial-of-service (DoS) attacks.
After receiving commands via IRC the malware propagates to remote computers by
taking advantage of Windows vulnerabilities and the way the malware achieves this
is by trying on weak passwords from a list. [39]

Vilsel is another member of the Trojan family and it is dropped by other malwares
or gets downloaded into the device without the knowledge of the user. The malware,
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after gaining control of the user’s computer clones itself under random names to the
%temp%, %windir%, and %appdata% folders which are then joined to the list of
programs that run as soon as the operating system is turned on. Additionally, the
malware sends HTTP requests to the attackers server to download files that make
changes to the window’s registry such as deactivating Task Manager, Windows Fire-
wall, Registry Editor etc. and adds its own registry entries for Windows services. [40]

Alueron.gen!J is a type of trojan that upon entering a network changes the DNS
setting on routers. It gains access to the information of the network interfaces on
the affected device and determines the IP address and the DHCP server of the said
network. When the malware acquires an IP address, it proceeds to establish an
HTTP connection, aiming to access either the router’s default configuration page or
any of the specified pages associated with typical models of network routers which
serve as their web-based configuration interfaces. It does so by using one of the
following pages:

The malware first tries to authenticate itself on the router using commonly used or
default login credentials and after gaining access, it tries to modify the router’s DNS
settings. To confirm its success, the malware then conducts a DNS query for the do-
main ”infersearch.com” to verify that the returned IP address matches 69.50.190.107.
Additionally, the malware sends data to the IP address 216.255.186.238 after at-
tempting the aforementioned actions. [41]

Dinwod is one such virus that is dropped by other malwares and upon installation
adds the following process:
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also adds the following processes:

C2LOP.P is one such trojan that manipulates web browser settings by adding
bookmarks, bringing out pop up advertisements and so on. It enters a computer
bundled up within other software files and launches “Internet Explorer”, launches
malignant code into the Internet Explorer operation and as like other malwares
modifies the system registry.

The malware connects to an offshore website in order to download and launch
unspecified files and once they areb installed random pop up advertisements are
launched, e.g. a specific sample of Win32/C2Lop.P attempts to connect to ”ayb.host127-
0-0-1.com” via TCP port 80 and download files. [7]

C2LOP.gen!g is another member of C2LOP.P family and exhibits similar kind of
behaviour and installation habit.

Malex.gen!J is another trojan dropped by other malware and is installed once a
malicious site is visited and copies itself as:

%\ System%\ cftmon.exe

It adds the following process so that it is run every time the system is run:
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Skintrim.N is a variant of trojan that download and runs random files that include
on unnecessary updates and additional malwares from existing sites and ads. Oner
of its way to present itself is as ‘Microsoft Outlook’ add ons for emojis in emails.
Upon execution of the trojan’s installer, it generates the subsequent files: When the
installer for this trojan is run, it creates the following files:

Moreover, skintrim initiates a mutex named “mymutsglwork” and proceeds to inject
code into various executable files including explorer.exe, WLMail.exe, Winmail.exe,
Outlook.exe, and Thunderbird.exe. Additionally, it intercepts specific APIs such
as send from ws2 32.dll and OpenProcess from kernel32.dll. Furthermore, it
establishes communication with the updates.advert-network.com server for the
purpose of downloading a new component. [10]

3.2.5 Trojan Downloaders

A trojan-downloader belongs to the trojan category installing itself onto a system
and patiently waiting for an Internet connection to connect to a remote server or
website. Its primary function is to download additional programs, often malicious
ones, onto the compromised computer. These trojans are frequently delivered as part
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of another malicious program’s payload such as a trojan-dropper, which stealthily
places and installs the trojan-downloader onto a device. These are also commonly
distributed through deceptive file attachments in spam emails. These attached files
typically bear names that sound legitimate, like ’invoice’ or ’accounts.exe’, exploiting
social engineering tactics and opening such file attachments leads to the installation
of the trojan-downloader. [48]
One such Trojan downloader is Dontovo.A. Upon execution, the trojan initiates
a copy of %Windows% .exe and injects code into it, subsequently deleting its exe-
cutable file. Similar to most downloaders, it is commonly dropped by other malware
and executes arbitrary files by injecting code into the svchost.exe process. Follow-
ing this, the trojan contacts the domain ’iframr.com’ to retrieve configuration data,
potentially leading to further downloadable locations. Additionally, it has been ob-
served to establish connections with ’videofx4you1.com’. Finally, the downloaded
files are stored in the % temp % directory and executed.

Malware obfuscation refers to the practice of making a program’s code challenging to
uncover or comprehend, aimed at concealing its functionality from both humans and
computer systems while maintaining its original operational behavior. The objective
extends beyond mere code obfuscation, striving to completely conceal the program’s
existence. Moreover, threat actors commonly employ compression, encryption, and
encoding techniques as primary obfuscation methods. Often, multiple methods are
combined to thwart a broader range of cybersecurity defenses during the initial
intrusion phase.
The ways this process works are:

• Binary Padding: Random code is generated through a function and saved as
binary to exceed the maximum file size limit, typically 25 - 200 MB of malware
scanners. This tactic creates a situation where scanning will take time and
risks client timeout.

• Software Packing: UPX, a rather famous tool is used to compress malicious
payload into an executable file that changes the payload/s size and signature.
Moreover, it ensures that any efforts to reverse engineer the code are more
challenging and the executable file might additionally undergo encryption to
add further complexity and impede attempts to deobfuscate it.

• Compile after Delivery: A ransomware piece arrives in an uncompiled form
or as source code via spam email. Upon triggering by the user, it invokes a
native compiler like csc.exe to compile its payload directly on the device,
bypassing perimeter defenses like firewalls. Subsequently, the ransomware en-
crypts all files stored on the victim’s hard drive. [49]

Obfuscator.AD is one such malware obfuscation malware variant and little is
known about its functionality,threat and attack pattern. Swizzor.gen!E is one type
of trojan downloader that infiltrates a system either through a file dropped by
other malware or via files unknowingly downloaded while visiting malicious web-
sites. Upon installation, it establishes specific mutexes, Global{random and Lo-
cal{random, to ensure that only one of its instances operates at a given time. Ad-
ditionally, it injects threads into normal processes like IEXPLORE.EXE. In terms of its
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adware behavior, this Trojan connects to specific URLs, such as ads.BLOCKEDs-local.com,
to download and display advertisements. [50]

Swizzor.gen!I and Wintrim.VX other such trojan downloaders and are variants
of the Swizzor family. Them, like their peers, download malignant code and files
without their knowledge and execute them.

3.2.6 Password Stealers(PWS)

Lolyda is a malware known as ”AA” obtains private data associated with well-known
online games and transmits it to a remote attacker. Furthermore, it has the ability
to download and run any file.

Lolyda.AA tries to scan the active process memory of various well-known online
games with the aim of locating specific details, including the following:

• Username

• Password

• Server Address

• Character Information
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This information is posted to a remote server. It also downloads and Executes Ar-
bitrary Files.

Lolyda.AA may download and execute more files upon installation. The files are
usually downloaded to the %TEMP % folder. The URLs used for these downloads
are variable, for example, Lolyda.AA has been observed attempting to contact some
pre-specified domains.

Lolyda.AT attempts to search the running process memory of several online games
to find particular information, such as the following:

• User name

• Password

• Server address

• Character information

The gathered data is subsequently forwarded to a distant server. Captures screen
images The malware periodically checks the active Window title for specific text
strings such as “ACDSee” or “Internet Explorer.” If these strings are identified, it
captures a screenshot, saving it as a JPEG file in the Windows Temporary Files
directory, and then transmits it to a remote server. This process is intended to steal
the “password protector” picture file commonly used in online games. Additionally,
PWS:Win32/Lolyda attempts to terminate processes identified by their MD5 hash
values listed in a predefined roster.[52]

3.2.7 Dialer Viruses

A Dialer Virus is a program that utilizes a computer’s modem to establish a dial-up
connection through the internet, usually to generate revenue from the calls made.
Most malicious dialers operate similarly to existing computer viruses. Adialer.C,
categorized as a Trojan Dialer, impacts computers equipped with modems connected
via phone lines. Another Trojan dialer, Dialplatform.B, poses a similar threat,
potentially resulting in unexpected and considerable telephone expenses. Another
prime example of a dialer is Instanccess[53]
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3.2.8 Others

Despite being such a diverse categorization of malware, there are still malwares in
the wild that struggle to fit in with known families and Fasong is one such malware.
Though much information could not be found about this malware but seems to work
similar to worms only it does not actually fit with the worm family as well.
InstallCore is the type of malware that installs more than one application to the
user’s computer behind a known application combined with an adware. They are
often served as updates for plug-ins like Java or Flash along with adware and PUPs.
[54]
Multiplug utilizes a diverse range of techniques to distribute its advertisements.

It employs randomized names for files and folders and is typically installed through
bundling processes. [55]
Regrun operates by reading information from its own binary image, establishing

itself to automatically run during Windows startup, engaging in network activities
without leaving traces in API logs, attempting to modify browser security settings,
displaying abnormal binary traits, encrypting the files on the victim’s hard drive,
rendering them unusable, and impeding regular access to the target’s computer.
These actions collectively contribute to its harmful effects on the target system and
data security. [56]
Macro refers to a series of instructions that automate software to execute spe-

cific actions and threat actors exploit this functionality through converting them
to Macro Malwares. This type of malware capitalizes on VBA (Visual Basic for
Application) programming within Microsoft Office macros to disseminate various
forms of malware. Typically, these are distributed through phishing emails, where
the attacker entices the recipient to open an attached document and upon opening,
a security warning appears that prompts the recipient to ”Enable Content.” Sub-
sequently, the malicious macro runs, impacting the recipient’s system. When the
malicious macro is enabled, it typically triggers the execution of a base64 PowerShell
code, leading to the download of a file either in the % UserProfile% or %Temp% di-
rectories. This downloaded file then runs shortly after its download.[57] VBKrypt
is a diverse family of malware coded in Visual Basic. Depending on the specific vari-
ant, the malware may drop files, make changes to the registry, and perform other
unauthorized actions on the affected computer system. [58]
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3.2.9 Final Dataset

Based on this theoretical approach, the final dataset is made with 45 malware, which
are then grouped into 8 classes each family with 350 samples.

Figure 3.5: Balanced Dataset each having 350 samples

Figure 3.6: Malware Family Categorization
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3.2.10 Data Pre-Processing

In this thesis research, the aim to provide a complete approach to preparing a
balanced image dataset for implementing Convolutional Neural Networks (CNNs)
in the domain of malware classification. Primarily, the goal is to optimize the dataset
for optimal CNN training using the ImageProcessor class. This class is known for
simplifying preprocessing operations that are critical for preparing images for model
training later on.
Initially, 45 different kind of malware from both datasets were grouped into 8 classes
of malware families. Malwares belonging from the same family exhibiting similar
infiltration and execution patterns are grouped together.
Following dataset preparation, TensorFlow’s ImageDataGenerator has been used
to implement real-time data augmentation which entails randomly selecting images
and applying various adjustments such as rotation, shifting, shearing, and flipping.
Real-time data augmentation considerably improves the training dataset by diver-
sifying the images supplied to the algorithm, allowing it to handle a broader range
of instances.

Figure 3.7: Pre processing dataset flow chart

During the training, and testing phases, the outcomes of the data augmentation pro-
cess appear as generators, specialized structures, or functions that produce batches
of images. These generators are important in two ways. First, during training, they
provide the model with a constant stream of different images, assisting the model in
learning to generalize successfully. Second, they are tailored to each step, ensuring
that the model experiences a diverse set of data under a variety of conditions.

Figure 3.8: Samples
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After separating the data into training and testing sets, all photos are converted to
RGB and resized to 75 by 75 dimensions. Furthermore, rotation and translation
are applied to images, promoting rotation and translation invariance in the model.
Figure 3 represents the preprocessing technique.

This combination of the ImageProcessor class and TensorFlow’s ImageDataGen-
erator not only increases the model’s adaptability but also its performance. By
subjecting the model to a wide variety of image variations, it becomes more robust,
resulting in more accurate malware classification predictions.
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Chapter 4

Proposed Model And
Experimentation

4.1 Overall Approach

Initially, we had two datasets Malimg and Malevis, where one has imbalanced class
distribution and the other has equally balanced class distribution. Since we aim
to create a balanced dataset, we first calculate how many files must be added or
removed to reach the target file number. After that, by augmenting randomly se-
lecting images either it copies files to reach the target number or it randomly selects
images and removes them to reduce the number and reach the target file number.
After balancing the dataset, we proceed to Image Processing where all the files are
reduced to a general ratio of 75*75, and since the images were in grayscale so for
better clarification, they are turned into RGB. We have introduced TensorFlow’s
Keras API and data augmentation for the processing and generation of image data
for training, validation, and testing in machine learning models, especially those
involving CNNs. In the Domain Adaptation process, it fine-tunes a pre-trained
neural network model for domain adaptation, including which layers to fine-tune,
adding a custom final layer, compiling the model, training with early stopping, and
so on. We have also applied regularization techniques to prevent overfitting so that
it doesn’t perform well on only training data, but on unseen data as well. Later
on, we experimented with six Convolutional Neural Network (CNN) state-of-the-art
architectures on our dataset using Domain Adaptation. Then we implemented XAI
to understand model behavior or to know which key areas influence the prediction
of the models. We have applied LIME to the test dataset for all six models, and
since LIME required a segmentation method to divide the image into superpixels,
we used SLIC segmentation to get a better understanding of the model’s behavior
by highlighting key image features that influence its predictions
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Figure 4.1: Workflow
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4.2 Fine-Tuning for Domain Adaption

The Domain Adaptation process is a crucial step in order to adapt the pre-trained
CNN models and here in this paper, the FineTuning class is present to facilitate
that. This class is used for storing the domain adaptation process and is in charge
of organizing how a pre-trained CNN model can be adjusted to operate successfully
for the specific needs of a task. Here, individual layers can be marked as trainable
or non-trainable using the class which allows for fine-grained control over which
components of the model are updated during training. Therefore, we employed the
approach to freeze the model’s first layers which consequently signals that these
layers need to be updated throughout training. On the other hand, the latter layers
are free to adapt to the complexity of our dataset.

The model retains knowledge learned from pre-training on a broad dataset by freez-
ing the first layers thus allowing the latter layers to adjust and achieve a compromise
between using current knowledge and fitting the distinctive features of our image
domain. Then a final layer is added to the model as an additional step. Moreover,
regularization techniques can be used to prevent overfitting. This final layer is crit-
ical in enabling the model to produce predictions that are uniquely customized to
the characteristics of the domain. Finally, the end result is a fine-tuned model that
has preserved significant generic knowledge from pre-training while also adapting
to the specific unique features of the dataset, allowing it to generate accurate and
domain-specific predictions.

4.3 Experimentation with CNN Architectures

The study is to investigate and test multiple convolutional neural network (CNN) ar-
chitectures, each with its unique set of capabilities in handling categorization tasks.
The experiment model function contains the experiments, where it is intended to
run a series of experiments with various CNN architectures. Six distinct architec-
tures are fine-tuned in these experiments. These architectures are Inception ResNet
V2, DenseNet, VGG16, ResNet50, EfficientNetB0, and XceptionNet. This experi-
mentation is conducted methodically on a balanced dataset. This dataset has an
equal number of samples across different classes, ensuring that every class is fairly
represented. Each architecture is fine-tuned by the incorporation of domain adap-
tation strategies. The primary motivation is to understand or discern which model
is most effective in dealing with the intricacies present in the image data or how
well different models capture the complexities in the data. The research involves
exploring and fine-tuning not just one, but a diverse set of CNN architectures. Each
architecture has its own unique design and characteristics.

During the experimental phase, each model, including Inception ResNet V2, DenseNet,
VGG16, ResNet50, EfficientNetB0, and XceptionNet, is thoroughly analyzed. The
models are fine-tuned by designating individual layers as trainable in order to adapt
pre-trained architectures to the specific image classification. The addition of a final
layer gives the model the ability to make domain-specific predictions. The Adam
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optimizer, categorical cross-entropy loss, and a suite of measures for thorough eval-
uation, including as accuracy, area under the ROC curve (AUC), false positives,
precision, and recall, are included in the compilation. To prevent overfitting, the
training covers 40 epochs and employs early stopping based on validation loss. This
standardised technique ensures consistent comparison across various architectures.

Inception ResNet V2 differentiates it with enhanced inception modules that capture
multi-scale features and residual connections that address the vanishing gradient
problem. The dense network pattern of DenseNet encourages robust feature prop-
agation and reuse. VGG16 succeeds in hierarchical feature extraction via repeated
3x3 convolutional layers, despite its simplicity. ResNet50 uses residual connections
to achieve efficient gradient flow during backpropagation. XceptionNet uses depth-
wise separable convolutions for efficient feature extraction, while EfficientNetB0
strikes a balance between model size and performance. Despite the architectural
differences, the unified training and assessment strategy allows for an in-depth re-
view of each model’s capacity to capture the complexity of the heterogeneous image
collection.

4.4 Model Evaluation

The ModelEvaluator class is critical in evaluating the performance of each fine-tuned
model. Traditional criteria such as accuracy, precision, recall, and the area under
the ROC curve (AUC) are used during the evaluation process. The usual accuracy
metric, however, falls short in addressing the intricacies of our balanced multiclass
classification problem, where support for each class is the same.

Weighted metrics, notably weighted precision, weighted recall, and weighted F1-
score, are employed for a more detailed evaluation. These metrics accommodate for
the variable quantity of images available for each class during evaluation, ensuring
that the model’s performance is fairly and comprehensively assessed throughout
the whole dataset. Weighted accuracy, recall, and F1-score provide a more in-
depth understanding of the model’s capacity to handle a wide range of classes.
The inclusion of these indicators simplifies the evaluation procedure, enabling a
meaningful comparison of model performance across datasets with varying degrees
of balanced classes.

Precision

Precision =
True Positives

True Positives + False Positives

Recall

Recall =
True Positives

True Positives + False Negatives
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F1 Score

F1 Score =
2× Precision× Recall

Precision + Recall

In addition to numerical measures, visualization is critical for expressing the mod-
els’ training history. Plotting different metrics throughout epochs enable to notice
trends and potential areas for model performance improvement. The graphical rep-
resentation of training history makes it easier to investigate how the model evolves
over training epochs, which aids in the refining and optimization of model parame-
ters.

The ModelEvaluator class also creates a detailed classification report as well as a
confusion matrix. These tools provide deep insights into the model’s performance
across various classes, including precision, recall, and other critical measures. The
classification report contains detailed information for each class, whereas the confu-
sion matrix visualizes the alignment between the model’s predictions and the true
labels, improving interpretability and allowing model modification.

4.5 XAI

In the study’s exploration of Convolutional Neural Networks (CNNs),the perfor-
mance of six distinct models was diligently explored. Traditionally, a model’s qual-
ity is quantified through simple and predefined metrics. A pivotal question surfaces:
What defines the quality and value of a model, especially when it boasts phenomenal
Top-1 accuracy? While high accuracy is great, it doesn’t tell us everything about
the model’s true value. If a model is good at getting the top prediction right, does
that mean it’s the best model? Not necessarily. There are other important things
to consider. By using XAI to identify and correct biases in the models, the fairness
and prevention of unexpected results was ensured. Therefore, XAI has been utilized
to compare the behavior among various models and distinguish their differences.

By recognizing and emphasizing these critical regions, Lime’s technique provides
insightful information about how our models make decisions. For XAI, test dataset
is used for better results. The test dataset contains cases that were not encountered
by the model during training.Assessing the generalization of the models to new and
unforeseen events can be achieved through the utilization of this dataset..

In the context of the implemented code, Lime has been used to explain the predic-
tions of all six model’s on a subset of images from our test dataset. With the help
of superpixels, it modifies the images, tracks how this affects the predictions, and
then creates LIME explanations to show which key areas influence the prediction of
the model. This process helps identify which Superpixel areas are most important
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for predicting a specific class.

An initialization of a LimeImage Explainer object (explainer lime) has been incor-
porated within our model’s code. This object plays a crucial role in generating local
and interpretable explanations for image classification models. Moreover, LIME
requires a segmentation method to divide the image into superpixels. That’s why
the chosen method is SLIC (Simple Linear Iterative Clustering). SLIC played a
significant part in dividing the images into superpixels, which allowed for a deeper
understanding of the model’s behavior. Setting parameters such as n segments=100,
compactness=1, and sigma=1 allowed us to balance the segmentation granularity,
superpixel shape regularity, and the smoothing applied during the process.

Figure 4.2: XAI Analysis

In the visual analysis pipeline, a comparison is executed between the original image
and its LIME interpretation. This aims to provide a comprehensive understanding
of the decision-making process employed by the XceptionNet model. The original
image is displayed prominently on the left side of each subplot, emphasizing the
raw visual input that the model processes. On the right-hand side, the LIME in-
terpretation takes the spotlight. This visual representation is critical in identifying
the influential regions, or superpixels, that contribute significantly to the Xcep-
tionNet model’s prediction for the corresponding original image. By isolating and
highlighting these important regions, the LIME interpretation acts as a spotlight
on the specific features that contribute to the model’s decision. This dual presenta-
tion improves the transparency and interpretability of our XceptionNet-based image
classification system by presenting both the original image and its LIME interpre-
tation.

On the right-hand side, the LIME interpretation takes the spotlight. This visual
representation is critical in identifying the influential regions, or superpixels, that
contribute significantly to the XceptionNet model’s prediction for the corresponding
original image. By isolating and highlighting these important regions, the LIME in-
terpretation acts as a spotlight on the specific features that contribute to the model’s
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decision. This dual presentation improves the transparency and interpretability of
our XceptionNet-based image classification system by presenting both the original
image and its LIME interpretation. This allows for a more nuanced and under-
standable analysis of the complex interactions between image features and model
predictions.

Evaluating the LIME explanations revealed important insights into the decision-
making process as well as patterns. Certain superpixels were found to be visible in
all images and categories, implying that these characteristics were shared and had
a significant impact on predictions. Furthermore, the visualisations demonstrated
how sensitive the model was to particular aspects of the images, offering insightful
information on the elements that went into classifying the images.

Similarly, Local Interpretable Model-agnostic Explanations (LIME) has been imple-
mented across a diverse set of six prominent neural network architectures: Inception
ResNet V2, DenseNet, VGG16, ResNet50, EfficientNetB0, and XceptionNet. Each
model’s predictions are accompanied by LIME interpretations, where significant su-
perpixels are highlighted, offering insights into the critical features influencing their
outputs. The purpose of this systematic application of LIME across a diverse set of
architectures is to provide a comprehensive and comparative analysis.

4.6 Experimentation

The balanced dataset model performance comparison included an in-depth exami-
nation of six state-of-the-art deep learning models: Inception ResNet V2, DenseNet,
VGG16, ResNet50, EfficientNetB0, and XceptionNet. For each model, the evalua-
tion included visualizations of training history as well as classification data.

4.6.1 Xception

The Xception architecture across 15 epochs, with each epoch lasting between 800
and 1064 seconds(average 932 seconds) is run on GPU Geforce GTX 1050. The
model’s performance measures during training demonstrate a significant improve-
ment from the first to the fifteenth epoch, with reduced loss, increased accuracy
(from 24.04% to 86.11%), and improved precision and recall. There is an odd val-
idation precision of 0.0 in the first epoch on the validation set, prompting more
examination. However, by the 15th epoch, the model has achieved an admirable
accuracy of 79.80% on the validation set, with good trends in precision, recall, and
AUC metrics.
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Figure 4.3: Training history of Xception Model
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Figure 4.4: Xception Performance Metrics

4.6.2 EfficientNet

The EfficientNet architecture shows progress over ten epochs, with each epoch av-
eraging 768 to 1009 seconds(average 888.5 seconds) on the same GPU. Throughout
the training period, the model shows significant improvements, as seen by a decrease
in loss from 10.3237 to 0.3990 and an increase in accuracy from 59.57% to 92.60%.
Precision, recall, and AUC metrics show favorable trends as well, highlighting the
model’s ability to learn and adapt throughout training. The model obtains an out-
standing accuracy of 87.92% in the 9th epoch on the validation set. Precision, recall,
and AUC measures all regularly show strong performance.
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Figure 4.5: Training history of EfficientNet Model
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Figure 4.6: EfficientNetPerformance Metrics

4.6.3 ResNet

Over 11 epochs, the ResNet architecture demonstrates the model’s growth in terms
of loss, accuracy, and numerous metrics. Each epoch took an average duration rang-
ing from 951 to 1386 seconds(average 1168.5 seconds). Over the epochs, the model
shows a considerable reduction in loss from 21.1246 to 0.5474 and an improvement
in accuracy from 50.70% to 91.42%. Precision, recall, and AUC indicators all exhibit
positive trends during training, highlighting the model’s ability to learn and adapt
to new data. The model obtains an accuracy of 80.00% in the 11th epoch on the
validation set.
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Figure 4.7: Training history of ResNet Model
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Figure 4.8: ResNet Performance Metrics

4.6.4 VGG16

The VGG16 model’s training across 33 epochs (average 930.5 seconds) shows a
gradual increase in both loss reduction and accuracy on the validation set. The
model starts with a significant loss of 40.2224, but by the 30th epoch, this has been
drastically reduced to 0.5649. Simultaneously, the accuracy rises from 30.48% to
83%, reflecting the model’s improved ability to accurately categorize occurrences.
Precision, recall, and AUC measurements show favorable trends throughout train-
ing, highlighting the model’s efficacy over multiple classes. The confusion matrix
displays excellent results, particularly in classes such as ’pws balanced exact’ and
’others balanced exact.’ The weighted average F1-score of 0.83 obtained indicates
a balanced trade-off between precision and recall. With an accuracy of 83% on
the validation set, this model demonstrates its robustness in discriminating between
several malware classes, indicating its potential practical utility.
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Figure 4.9: Training history of VGG16 Model
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Figure 4.10: VGG16 Performance Metrics

4.6.5 DenseNet

The DenseNet model shows significant growth in terms of loss, accuracy, and other
metrics throughout 11 epochs. Each epoch takes a range of 863 to 1060 sec-
onds(average 961.5) to complete. The model improves in accuracy from 23.72% to
73.81% while decreasing in loss from 20.1405 to 0.8734. While the model achieves
relatively high precision and recall for some classes, it struggles to reliably cat-
egorize others, such as ”dialer balanced exact,” ”pws balanced exact,” and ”tro-
jan downloader balanced exact.” After 11 epochs, the overall accuracy on the vali-
dation set is 66%.
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Figure 4.11: Training history of DenseNet Model
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Figure 4.12: DenseNet Performance Metrics

4.6.6 InceptionResNetV2

In the first epoch, InceptionResNetV2 has a reasonably high loss, moderate accu-
racy, and precision, with recall levels changing between classes. The period of each
epoch ranges between 901 and 1165 seconds(average 1033 seconds). The model’s
performance improves noticeably as training goes on. Loss is reduced, while accu-
racy, precision, and recall levels improve. The model achieves an amazing overall
accuracy of 91% on the validation set by the 13th epoch. Individual class categoriza-
tion results are encouraging, with good precision and recall values reported across
multiple categories. This indicates that the model is effectively learning the data’s
properties and patterns.
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Figure 4.13: Training history of InceptionNetResnetV2 Model
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Figure 4.14: InceptionResNetV2 Performance Metrics
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Chapter 5

Result

5.1 Modelwise Comparison

InceptionResNetV2 is the best performer of the six models, with the highest ac-
curacy of 91% and the highest recall values. This means that it is effective at
correctly identifying occurrences of positive classes, making it a solid choice, par-
ticularly where minimizing false negatives is critical. However, InceptionResNetV2
training times were considerably longer, indicating potentially increased processing
requirements throughout the training process.

VGG16 is close behind, with a balanced performance across accuracy, precision,
and recall. VGG16 exhibits efficiency in training due to its shorter epoch durations,
giving it a dependable alternative for applications that require a good compromise
across several metrics.
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Figure 5.1: Comparision of Model Performance on Balanced Dataset
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Figure 5.2: Classification Matrics for Balanced datasets across all models

DenseNet, with a precision of 66%, demonstrated a trade-off between precision and
recall. While it delivered faster training times, it made a minor sacrifice in its abil-
ity to reduce false positives while capturing a considerable number of real positives.
The compromise between precision and recall in DenseNet may be acceptable de-
pending on the unique requirements of an application, particularly in cases where
computational resources are limited.

5.2 XAI Analysis

The Lime analysis of multiple models revealed different patterns of feature atten-
tion, which influenced their prediction accuracy. InceptionResNet demonstrated
high accuracy, attributing its success to strong identification and utilization of key
image areas. DenseNet, on the other hand, demonstrated lower accuracy, imply-
ing difficulties in capturing domain-specific features. For XceptionNet, ResNet, and
EfficientNet, Lime consistently highlighted relevant features, contributing to their
commendable accuracy.

It was observed that in some cases, Lime did not show any highlighted regions.

Here is an example of Desnet model prediction, where the Lime explanation showed
there is no highlight, which indicates that the model struggles to recognize essential
details in the image. This lack of highlighted regions in Lime’s explanation points
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Figure 5.3: XAI Analysis of DenseNet without highlight

to the model’s difficulty in identifying key features, giving us valuable insights into
its limitations in understanding certain aspects of the image. These findings under-
score the crucial role Lime plays in understanding model behavior and identifying
strengths and weaknesses in handling diverse image characteristics.

Figure 5.4: XAI Analysis of InseptionResnetv2 with highlight

In another case, it can be seen that distinct features are highlighted while using the
Lime explanation in the EfficientNet model.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The evaluation of diverse CNN models—Xception, EfficientNet, ResNet, VGG16,
DenseNet, and InceptionResNetV2—for malware image classification exhibited vary-
ing performance. InceptionResNetV2 showcased the highest accuracy at 91% on the
validation set, closely followed by VGG16, displaying a balanced performance across
metrics. However, DenseNet, despite quicker training, demonstrated a trade-off be-
tween precision and recall thus impacting its ability to discern false positives while
capturing true positives. The Lime analysis explained feature attention patterns,
highlighting InceptionResNet’s effective identification of key image areas for higher
accuracy, while DenseNet struggled to capture essential domain-specific features.
Additionally, Lime’s explanation underscored instances where models failed to rec-
ognize crucial image details, emphasizing their limitations. Overall, InceptionRes-
NetV2 emerged as the most accurate model, with Lime analysis providing insights
into feature attention patterns, contributing to a comprehensive understanding of
model performance in malware image classification. There is substantial potential
for future research and improvement in this domain.

6.2 Future Work

The 45 malware samples were classified into 8 distinct classes of malware families
through a theoretical research-based approach. To validate their categorization,
future examinations could leverage Virtual Machines or Sandboxes for verification
against these predefined families with actual malwares.

In this research, six Convolutional Neural Network (CNN) models were utilized,
with InceptionResNetV2 exhibiting the most promising performance. InceptionRes-
NetV2 amalgamates the strengths of two established models: Inception, focused on
determining computational cost, and ResNet, prioritizing computational accuracy.
The success of this hybrid model in outperforming others encourages the exploration
of additional hybrid models to further enhance accuracy like NASNet or AmoebaNet.
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Although only Local Interpretable Model-agnostic Explanations (LIME) were im-
plemented for analysis, other eXplainable AI (XAI) methodologies could offer more
comprehensive insights. Potential XAI elements like Grad-CAM (Gradient-weighted
Class Activation Mapping) or Integrated Gradients can provide more detailed and
accurate analysis compared to LIME, offering a deeper understanding of model de-
cisions and performance.
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