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Abstract

Citrus leaf diseases bring a danger to the earnings of citrus estates. When it comes
to recovering from illness, early detection and accurate diagnosis are very necessary.
In the last several decades, there have been advancements made in the diagnosis and
classification of citrus leaf diseases via the use of deep learning techniques in image
processing. When it comes to automating the detection of citrus leaf diseases, we
recommend making use of pre-trained convolutional neural networks (CNNs) like
ResNet-50, VGG16, MobileNet-V2, InceptionV3, InceptionResNet-V2, DenseNet-
201, and DenseNet-121.To accomplish this goal, a comprehensive data collection
consisting of images of citrus leaves that have been identified will be gathered and
pre-processed. Citrus canker, greening, and black spot leaves will be included in
the databases, along with healthy and diseased citrus leaves.For the purpose of ex-
tracting useful characteristics from leaf images, we shall make use of deep learning
models. For the purpose of picture classification, the models that were discussed
before are useful and often used.In this research, we propose a CNN model that is
both effective and efficient. The model was originally trained on 596 pictures, and
then it was augmented with 2800 images that were divided into three categories:
training, validation, and testing.70% of the data goes towards training, 15% goes
towards validation, and 15% goes towards testing.A few pieces of public data will
be served this model.Following that, we will evaluate the findings in relation to the
prebuilt models.Last but not least, we get a training accuracy of 95.95% and a val-
idation accuracy of 97.84%. Furthermore, our suggested model has a lower number
of training parameters compared to all other pretrained models, which enables our
model to categorise illnesses more quickly.This provides us with a decent level of
accuracy.

Keywords: CNN,ResNet-50, VGG16, MobileNet-V2,Inception-V3, InceptionResNet-
V2, DenseNet-201,DenseNet-121,Pre-processing,Augmentation, Deep Learning.
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Chapter 1

Introduction

The collective term ”leaf disease” is used to describe the presence of one or more
ailments that negatively impact the health and productivity of leaves. This is due
to the occurrence of a leaf disease, which may adversely affect the quality and func-
tionality of an organism’s leaves. The occurrence of similar illnesses in others may
have been caused by infectious agents such as fungus, bacteria, or viruses, as well
as environmental factors. The most common leaf diseases are often the result of
fungal infections (such as powdery mildew), bacterial infections (such as bacterial
leaf spot), viral infections (such as mosaic viruses), and physiological abnormalities
(such as leaf chlorosis). Within the agricultural sector, a major obstacle leading to
decreased productivity is the challenge of accurately identifying diseases that show
in the foliage of plants. Plant leaf diseases are a major cause of reduced productivity.
[1]-[2]

Citrus trees are one of the most economically crucial crop kinds growing all over
the world and give a large amount to both the manufacture and the marketing of
agricultural goods. Citrus is a highly sought-after commodity that is extensively
traded on a global scale[3]. The citrus business faces many obstacles, with the most
significant being the threat posed by illnesses. Infections may result in significant
crop reductions, impacting both the amount and quality of citrus fruits. They are
especially vulnerable to the adverse consequences of disease. Detecting illnesses
promptly and administering appropriate treatment is essential to avoid the spread
of infections and mitigate the damage they do to citrus plants.

Currently, citrus trees are at a heightened risk of acquiring many diseases.Leaf dis-
eases have a particularly negative impact on the general well-being of the plant and
its productivity. Citrus leaf diseases are caused by a range of infectious organisms,
including as fungus, bacteria, and viruses. These diseases attack the leaves of the
citrus plant and disturb its regular physiological functions. Citrus trees are prone
to several diseases, such as citrus canker, citrus greening, citrus scab, and citrus
black spot, among others. Specific symptoms, characterized by lesions on the leaves,
serve as diagnostic indicators for particular illnesses. Necrosis, lesions, discoloration,
and anomalies are representative manifestations of these illnesses[4].Previously, the
identification and diagnosis of citrus leaf diseases relied on the expertise of trained
specialists via the method of visual examination, a procedure that is both laborious
and subjective. When evaluating the reliability of visual examination results, the
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proficiency and experience of the examiner are crucial factors to consider. Scientists
have developed automated methods to detect citrus leaf illnesses by using advance-
ments in image processing and machine learning. Their objective was to overcome
the obstacles posed by these limitations by creating a system capable of detecting
citrus leaf illnesses.

Utilizing visual analysis and other automated learning techniques enables the cre-
ation of citrus leaf disease detection systems that are both efficient and precise.
These devices may be used for monitoring the well-being of citrus plants. These
systems use image processing methods to retrieve essential data from digital pho-
tographs of leaf surfaces. The obtained data is further classified based on the ex-
istence or nonexistence of illnesses in the corresponding images. Given a enough
quantity of annotated leaf pictures during the training phase, machine learning
models may be trained to identify patterns and provide precise predictions. Ma-
chine learning models are capable of acquiring information from instances, thereby
making this feasible.

Convolutional neural networks, often referred to as CNNs, are a kind of deep learn-
ing algorithm particularly developed for analyzing and interpreting visual input,
such as images [5].Convolutional neural networks (CNNs) are extensively used in
many computer vision tasks, such as picture classification, object detection, and
image segmentation. Neural networks consist of several layers, including convolu-
tional layers, pooling layers, and fully connected layers. These layers work together
to produce hierarchical representations of the input data. For instance, a pooling
layer has the potential to evolve into a fully linked layer[6].

ResNet-50 is a convolutional neural network with 50 layers, with 48 being con-
volutional layers, one MaxPool layer, and one average pool layer. Remaining neural
network structures are a subset of artificial neural networks (ANNs) that are created
by sequentially stacking remained blocks throughout the network construction pro-
cess[7]. VGG16, a CNN, is one of the finest computer vision models. The model’s
creators enhanced network depth using a 3x3 convolution filter design, significantly
outperforming previous setups. They added 16–19 weighted layers for 138 parame-
ters to be trained.

EfficientNet makes use of a technique known as compound coefficient in order to
enhance the efficiency of scaling up models in an easy manner. Unlike the practice
of arbitrarily increasing the size of settlement, width, or depths, compound scaling
makes adjustments to each dimension in an equal manner by using a certain set of
scaling parameters[8]. The developers used the scaling technique and AutoML to
generate seven separate models of different sizes, each designed to be efficient. Each
of them surpassed the accuracy achieved by most convolutional neural networks now
available, and they achieved this with substantially higher efficiency.

MobileNet is a computer vision model built by Google and published into the public
domain. It is a pre-trained model specifically designed for training classifiers[9].This
is achieved by the use of depthwise convolutions, which, when compared to other
networks, leads to a significant reduction in the number of parameters. The final
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outcome is a neural network that is both lightweight and capable of deep learning.
The first mobile artificial intelligence model created by Tensorflow is named Mo-
bileNet. The deep convolutional architecture of Inception was first presented under
the titles GoogLeNet and Inception-v1[10].MobileNetV2 is a compact convolutional
neural network model with 53 layers, designed to be lighter. It has a smaller number
of parameters and accepts input images of size 224×224. The MobileNetV1 design
included depth-wise separable convolutions, which involve applying a single filter to
each input channel. Additionally, point-wise convolutions (1×11×1) were used to
combine the output of the depth-wise convolutions.

Inception-v3 is a convolutional neural network architecture that is part of the In-
ception family. The model incorporates many improvements, such as the implemen-
tation of Label Smoothing, the employment of Factorized 7 x 7 convolutions, and
the inclusion of an extra classifier to propagate label information further into the
network.Again, InceptionResNet-v2 is a convolutional neural network design that
extends the Inception structure by including connections that remain to replace the
filtering assembly step.DenseNet-201 is a convolutional neural network with a depth
of 201 layers. The system has the capability to load a preexisting version of the net-
work that has been trained on over one million photos from the ImageNet database.
The preexisting network has the ability to categorize photos into 1000 distinct item
types. Consequently, the network has acquired comprehensive and complex visual
patterns for a diverse set of pictures. The network’s image input resolution is 224-
by-224 pixels.

Recent research has focused on establishing algorithms and models to identify citrus
leaf surface diseases.Smartphone image classification and detection of citrus leaf dis-
eases is more accurate and efficient using the SSCNN. Barman et al.’s 2020 research
confirmed similar. Furthermore, as compared to MobileNet, the SSCNN algorithm
demonstrates a reduced computational time, making it a more economically efficient
approach for diagnosing citrus illnesses[11]. Elaraby et al. (2022) proposed a tech-
nique including the implementation of two separate convolutional neural network
(CNN) models. The models in question are AlexNet and VGG19.The system per-
formed at a level that was 94 percent of its total capability.Compared to any other
approach, it is far more efficient[12].

The use of computerized techniques for the detection of diseases on citrus leaves
has the potential to revolutionize the disease management systems now employed
in the citrus sector. Timely and precise identification of a disease may facilitate
prompt actions, such as tailored therapies and the elimination of affected trees.
These proactive strategies have the capacity to help reduce total financial losses and
contain the transmission of diseases inside plantations.

This research uses a sophisticated automated method to enhance citrus leaf disease
diagnosis. The system will leverage cutting-edge computer vision methods includ-
ing neural networks and computational imaging. These methods seek to accurately
identify and classify citrus leaf diseases. Using a huge dataset of annotated leaf ail-
ment photographs to train and test machine learning models would provide excellent
disease detection accuracy. Training models using the dataset will accomplish this.

3



Chapter 2

Research Problems and Objectives

2.1 Research Problems

The human intelligence plays a crucial part in the construction of complex plans
that involve several phases. The development of plants for crops is negatively im-
pacted when they have been harmed or afflicted by disease. Diseases can also infect
crops that have been damaged. If there is no core or foundational basis, the readily
apparent evidence will remain challenging and fragmented into several components.
The failure of this attack is attributed to the synergy between the rising prevalence
of global computer access and the continuous advancements in neuroscience facil-
itated by reflective learning. Both of these variables collaborate synergistically to
attain this triumph. Given this symbiotic relationship, it is now imperative to be
well equipped for the identification and recommendation of illnesses facilitated by
systems.

Currently, the primary approach for determining the presence of citrus leaf diseases
is to do visual inspections. Implementing this strategy necessitates a substantial
allocation of time and is challenging to achieve flawlessness. Citrus trees can be
affected by many diseases, such as black spots, cankers, citrus early blight, citrus
late blight, and numerous more. Canker is a highly contagious disease that mostly
affects the foliage and fruits of citrus plants. Reports indicate varying crop re-
ductions, with Kinnow seeing a 22 percent fall, sweet oranges seeing a 25 percent
decline, grease witnessing a 10 percent drop, and lemons showing a 2 percent loss.
The percentages fluctuate depending on the type of fruit. It has been reported that
the losses have happened in each of these several types of crops. Citrus fruit diseases
are the primary cause of significant yearly losses in an otherwise promising export
crop. As a result, early detection of citrus illnesses increases the likelihood of timely
recognition, leading to reduced losses and expenses, as well as enhanced product
quality.

Conversely, it is plausible that deep learning will autonomously discern the hier-
archical organization of disorders.Therefore, there is a need for a reliable, efficient,
and automated technique of disease diagnosis. The aim is to create a deep learning
system that can reliably and effectively detect diseases in citrus leaf samples [13].In
order to effectively detect and classify particular conditions, it’s a must to have par-
ticular techniques and information.The challenges that may be encountered include
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the following:

1. Effectiveness of Automated Disease Diagnosis.

2. Robustness to Diverse Disease Types.

3. Maximizing the efficiency of resource distribution.

4. Generalization Across Citrus Varieties.

5. Model Bias and Class Imbalance.

2.2 Research Objectives

For the purpose of developing a deep network of convolutional neural networks that
is capable of classifying images of citrus fruit and leaves as either well or unhealthy,
and if the condition is determined to be diseased, it will display the name of the
ailment if it is discovered to be present in the image. One of the goals of our research
will be to do the above. Images of citrus leaves that are put into it will quickly show
its qualities. The system will learn attributes immediately. In consideration of this,
the system has the intention of accomplishing the following objectives:

1. Develop a deep convolutional neural network that is capable of identifying and
classifying diseases that may affect citrus leaves.

2. Perform an evaluation of the effectiveness of several pre-trained deep learning
models, such as ResNet-50, VGG16, MobileNet-V2, Inception-V3, InceptionResNet-
V2, DenseNet-201 and DenseNet-121 and after that, identify the most optimum
model.

3. Develop a network that is capable of learning from data while simultaneously
improving its ability to identify illnesses in citrus fruit or leaves.

4. Devise an effective technique for the training of a deep learning model using
a balanced dataset.

5. Carrying out a validation examination on the system that has been proposed.

Our research aims to identify ailments that impact citrus leaves. The recommended
approach utilizes the CNN model to classify citrus leaf diseases, including black spot,
canker, early blight, and late blight. These diseases impact the foliage of citrus trees
in various manners. The suggested deep learning model has an optimal number of
layers and parameters. The primary goal of the offered technique is to diagnose
citrus illnesses.A novel strategy is being implemented and should improve precision.
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Chapter 3

Literature Review and Related
Work

3.1 Related Works

Fruits are an excellent source of vital nutrients such as fiber, vitamins, and minerals,
in addition to plant chemicals with a high concentration. If our bodies do not have
the appropriate quantities of these components, we are more likely to suffer from a
range of ailments. These components are essential for our bodies to work well, and
these components are necessary for our bodies to function properly. There is also
vitamin C, flavonoids, and fiber in citrus fruit, all of which help to the development
of our immune system, enhance the working of our digestive tract, and play a sig-
nificant role in the prevention of diseases such as cancer and diabetes. Citrus fruit
is a great source of all of these nutrients[14].

Canker, Greening, Phyllocnistis citrella, Anthracnose, scale insect disease, and ele-
ment deficiency are only few of the illnesses that citrus trees are prone to. Citrus
trees are also subject to a broad number of other diseases. When it comes to the
underlying causes of these ailments, it is conceivable that bacteria, a poor diet, or
fungus are to blame. In order to guarantee that citrus fruit will continue to be in
good condition, it is critical that diseases that affect the leaves of citrus trees be
diagnosed and managed as early in the growing season as feasible. By observing
the yellowing and browning of certain places on the plant’s leaves, one may identify
the canker disease that is affecting the plant. Because of the canker, trees lose their
foliage, which results in a decrease in the amount of fruit they produce[4].Due to the
fact that it causes citrus trees to stop producing fruit, the citrus greening disease
is the most damaging disease that may impact citrus trees. Citrus diseases, such
as a change in the color of the leaves from green to yellow, are frequently brought
on by deficiencies in the essential nutrients that the plant needs[15].The black sores
on the leaves are called anthracnose, and they are caused by fungi [16].If we want
to avoid citrus leaf diseases, we need to make sure that the plants are adequately
fertilized and that they are watered every day. In addition, we are able to identify
trees and leaves that have been afflicted by the disease by performing field scouting
on a weekly basis. This is essential in order to forestall the growth of the illness,
which would lead to considerable financial losses for the farmers if the disease were
to continue to spread[17].
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The author of the paper [18] used AlexNet and ResNet, which are both differ-
ent forms of CNN models.AlexNet’s accuracy after the augmentation of its data is
97.92 percent, while ResNet’s accuracy is 95.83 percent. Phyllocnistis citrella leaves,
element-free leaves, scale insect leaves, and healthy leaves are some of the types of
leaves that are included in the dataset. Using data augmentation allowed for an
increase in the total number of photographs used for training purposes. To begin
the process of classifying the illnesses, they began with a dataset that had 180 pho-
tographs and utilized two different CNN models. When we look at the confusion
matrix of the AlexNet model with data augmentation, we can see that the type of
diseases that are produced by scale insects on leaves is only identified 83.7 percent
of the time. On the other hand, all of the other types of diseases are detected one
hundred percent of the time. Moreover, in the absence of data enhancement, neither
scale insects nor a shortage in elements are identified to their full degree. On the
other hand, different types of ailments are brought to light. On the basis of the con-
fusion matrix, we are able to make the observation that the ResNet model with data
augmentation does not totally identify scale insects, the kind of leaves, or the lack
of components; correspondingly, it identifies 83.7 percent and 71.4 percent of these
items. On the other hand, the remaining illnesses have been recognized in com-
plete detail. In the absence of data enhancement, indications of health and deficits
in components are not totally detected, although signs of other types of illnesses
are. We can see from the validation and test accuracy table that the validation and
test accuracy are better with the inclusion of data augmentation for both models
(AlexNet and ResNet) as compared to when they were done without the addition
of data augmentation.

In paper [19], the model has four steps and those are image acquisition, image
pre-processing, image segmentation, and lastly, feature extraction.Their approach
involved employing a concealed Markov model for the purpose of categorization.
Initially, for the process of obtaining the image, an image of a citrus leaf was cap-
tured and subsequently adjusted to a resolution of 250x250 pixels. Additionally,
contrast adjustment was employed for picture preprocessing in order to distinguish
the leaf from the backdrop. Additionally, normalization has been employed to scale
the pixel values within the range of zero to one, hence preventing abrupt changes
in color. Additionally, in the context of picture segmentation, they employed color
transformation into YCbCr and bi-level thresholding. Finally, they employed fea-
ture extraction with GLCM. Following the use of image processing techniques, the
Markov model was employed. The model accurately predicted the occurrence of
anthracnose with an accuracy rate of 84.21 percent, canker with an accuracy rate of
85.71 percent, citrus greening with an accuracy rate of 78 percent, and overwatering
with an accuracy rate of 82.50 percent.

In another paper [20],The study utilized k-means segmentation and top-hat en-
hancement image processing techniques in order to preprocess healthy leaves and
three forms of citrus leaf illnesses. The classification of leaf diseases was performed
using the multi-support vector machine (MSVM), achieving an accuracy rate of
93.18 percent.
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Figure 3.1: A brief description of the proposed system.

A dataset consisting of 140 photos was utilized, with 80 images allocated for train-
ing purposes and the remaining images reserved for testing. Four procedures were
employed to categorize the citrus leaf disease: picture enhancement using a top-hat
filter, image segmentation, k-means clustering, and finally, the GLCM function. In
order to determine the affected region, the RGB pictures are transformed into HSV
format, and then, the healthy and diseased regions are distinguished by pixel count-
ing. Based on the accuracy graph of both clusters, it is evident that the second
cluster approach outperforms the first cluster method significantly. The accuracy of
the second cluster is 100 percent for healthy leaves and Phyllocnistis citrella, and
81.8 percent and 90.9 percent for leaves without an element and leaves affected by
scale insects.

In paper [21],The collection has 11,800 photos depicting 7 distinct types of sick
leaves and 1 type representing a healthy leaf. A deep convolutional neural net-
work (CNN) model named TLNet (tomato leaf Net) was developed. The dataset
was utilized by dividing it into three distinct portions: training (80percent of the
dataset), validation (20percent of the dataset), and testing (50 photos from each
category). The accuracy of the specified model for this dataset was 98.77 percent.
The dataset preparation involved the removal of outliers, scaling of images, normal-
ization of data, augmentation of data, and encoding of class labels. The CNN model
(TLNet) consists of 5 convolutional layers and 3 dense layers. The Adam optimizer
was employed to determine the ideal parameters for the model, initially set with a
learning rate of 0.01 and a minimal threshold of 0.000001.
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In paper [12],Data augmentation techniques such as Affine Transformation and Per-
spective Transformation can be employed. GANs are employed to produce very
realistic counterfeit pictures when the training photographs of poor quality and tra-
ditional image editing methods are ineffective. The Stochastic Gradient Descent
with Momentum (SGDM) optimization method has been utilized. Anthracnose,
black spot, canker, scab, greening, and melanosis are among the citrus diseases that
were identified and classified using databases.

In paper [20],At each phase of an image analysis inquiry, datasets are necessary,
starting with the initial training of algorithms to the ultimate evaluation of the
efficacy of these algorithms. A total of 2293 photographs were captured from the
PlantVillage collection and the citrus dataset for this research. The primary objec-
tive of developing the Plant Village benchmark database was to furnish academics
with further insights into the well-being of plants. Four unique collections of in-
fected pictures were created using images that had been contaminated with one of
four distinct diseases that can appear in citrus fruits and leaves. The illnesses ex-
amined in the data sets included greening, black spots, cankers, and scabs. Another
condition was melanosis.The dataset may be divided into three separate sections:
training data, test data, and validation data.

In paper [21],Proposed a patch-based classification network for accurate disease
detection in citrus plants. The network comprises an embedding module, a cluster
prototype module, and a simple neural network classifier.The approach exhibits a
detection accuracy of 95.04 percent, requires less than 2.3 million tuning parame-
ters, and enables the diagnosis of citrus ailments using the trained model in less than
10 milliseconds. These results surpass the performance of the currently employed
state-of-the-art methods.

In study [22],Automated identification of yellow rust and septoria was suggested
to be performed via watershed segmentation.The method achieved a 95.48 percent
efficiency rate when applied to a set of 185 training photos.The sugar leaf spot infec-
tions were recognized more rapidly using a quicker R-CNN architecture compared
to a convolutional neural network-based area framework.The technique of visible
and near-infrared reflectance spectroscopy was employed to detect the presence of
Penicillium digitatum-induced decay in citrus fruits.The efficacy of this strategy
was evaluated using the manifold learning algorithms.It is crucial to identify citrus
huanglongbing (HLB) in order to prevent the spread of illness.Low-altitude satel-
lite imagery was employed to conduct area-wide surveillance of citrus huanglong-
bing.Citrus exports were impeded by fruit diseases such as citrus canker, black spot,
and scab.A refined convolutional neural network (CNN) method was used to detect
and evaluate imperfections in citrus fruits.The Sobel gradients partitioned the im-
ages into areas with defects, and the color and texture attributes were extracted.The
machine vision system was utilized to identify and evaluate imperfections in citrus
peels.Hyperspectral imaging was employed to detect citrus fruit illnesses, particu-
larly fungal infections.The accuracy of multiple classifications using receiver operat-
ing characteristic curves was 89.00 percent.
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In study[23],There are several methods available for diagnosing plant diseases, par-
ticularly those affecting citrus plants. These include many techniques for divid-
ing and extracting information, such as Gabor, edge, regional, threshold, principal
component analysis (PCA), and wavelet transform. Various techniques have been
employed for citrus disease detection, including as machine learning (ML), color
segmentation, lightweight CNN-based systems, texture-based hue, saturation, and
intensity (HSI) color characteristics, and statistical classification methods.Scientists
have devised techniques employing CNN, SVM, VGG16, Mask R-CNN, and region
proposal network (RPN) to detect and classify plant illnesses. The accuracy of these
procedures varies between 80percent and 100percent. Multiple studies have utilized
hierarchical SVM algorithms and feature distribution analysis to investigate citrus
leaf diseases, including canker, greening, and sooty moorland leaf miner. The ob-
jective of the proposed CNN-based system in this work is to enhance the accuracy
of detecting citrus leaf diseases and contribute to the existing knowledge in the field
of agriculture.

The study [24] primarily focuses on the utilization of two conventional neural net-
work models, namely AlexNet and ResNet, for the purpose of illness categorization
and detection. The main goal of this study is to utilize deep learning methods for
diagnosing citrus leaf diseases. The authors emphasize the need of swiftly detect-
ing plant illnesses, particularly in citrus plants, in order to guarantee food security.
Their focus is on demonstrating the potential applications of deep learning, namely
deep convolutional neural networks, for very accurate disease detection. Data aug-
mentation techniques may significantly improve the effectiveness of small datasets
by increasing the number of training samples without introducing new ones. The
paper references the utilization of AlexNet for image classification in many tests.
The authors also discuss the several afflictions that may damage citrus leaves, in-
cluding infestation by insect scale, nutrient deficiency, and infection by Phyllocnistis
citrella.Prior studies have explored the application of weakly dense connected con-
volutional networks and other CNN models to accurately identify citrus illnesses.
In summary, the work provides insights into the application of deep learning tech-
niques, specifically AlexNet and ResNet models, for diagnosing citrus leaf diseases.
It highlights the importance of early detection in ensuring food security. Addition-
ally, it discusses several ailments that might potentially damage citrus leaves and
references previous studies on the efficacy of CNN models in detecting citrus infec-
tions.

The study[25] utilizes symptomatic data and employs advanced analytical approaches
such as deep learning, machine learning, and image processing to assess nearly all of
the published articles on citrus illnesses and fruit grading throughout this timeframe.
This text provides a concise overview of pre-processing, segmentation, feature ex-
traction, and classification approaches. It also includes a tabulated comparison of
the benefits and drawbacks of the latest techniques. The work is on employing a
hybrid methodology that integrates deep learning and machine learning to automat-
ically diagnose and assess citrus diseases. Machine vision is predominantly employed
in citrus farming to primarily recognize different types of citrus fruits, classify dis-
eases, detect flaws, and evaluate the size and quality of the fruit.
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This study[26] utilizes analytical approaches such as deep learning, machine learning,
and image processing to analyze and evaluate a comprehensive range of publications
on citrus diseases and fruit grading throughout the specified period, providing valu-
able symptomatic data. This text briefly discusses techniques for pre-processing,
segmentation, feature extraction, and classification. It also provides an overview
of the advantages and disadvantages of the most recent approaches. The work
centers on the autonomous identification and assessment of citrus illnesses with a
hybrid approach that combines machine learning and deep learning. Machine vi-
sion is extensively employed in citrus farming for disease classification, identification
of various citrus fruit kinds, detection of defects, and assessment of fruit size and
quality. The CNN model proposed in this paper achieves training, validating, and
testing accuracies of 99.43percent, 99.48percent, and 99.58percent, respectively. It
surpasses previous CNN models in accurately identifying and categorizing citrus
plant illnesses. The proposed design employs a range of convolutional neural net-
work (CNN) models that have been pre-trained to diagnose diseases in citrus plants
via transfer learning, with the aim of enhancing classification accuracy rates.

The author of the paper[27] focuses on the identification and categorization of
illnesses affecting citrus plants using image processing and computer vision tech-
niques. The dataset included in the research study comprises of photos depicting
both disease-free and diseased citrus oranges. The researchers utilized the dataset to
discern and classify citrus diseases using a systematic four-step procedure, including
dataset refinement, lesion segmentation, feature extraction, and classification. The
scientists utilized a range of methodologies, including the Saliency map, Gaussian
function, weighted segmentation, and Top-hat process, to improve and divide the
photos. Ultimately, each instance of a picture was categorized utilizing the classifi-
cation technique according to the illnesses class.
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3.2 Background Study

A multitude of illnesses can manifest in Citrus Plants and create issues. Canker,
Black Spot, and Greening are often occurring illnesses. Traditionally, the detection
of citrus leaf diseases has mostly relied on visual examinations conducted by agricul-
tural experts. The existing inspection approach is distinguished by its substantial
labor demands, protracted duration, and susceptibility to human errors.Computer
vision technology have made identification simpler in recent times.The primary ob-
jective is to identify any kind of problem at the earliest feasible stage.A compre-
hensive understanding of the diseases and the associated risk factors is essential for
accurate detection and diagnosis of diseases.

3.2.1 Diseases

i) Canker

Citrus plants are susceptible to a condition called citrus canker, which causes the
shedding of leaves and premature fruit falling to the ground. The ailment impacts
several types of citrus fruits. Citrus canker has its most severe manifestations in
regions characterized by high temperatures and high humidity. The disease can be
transmitted between trees by irrigation or rain splashing, as the afflicted regions
of the plants release sap. Citrus canker can rapidly and extensively spread when
sick citrus fruits come into touch with other citrus fruits, flora, humans, and equip-
ment. Given the absence of any known remedy for the disease, it is imperative
to eliminate all affected trees and proceed with a thorough replanting of the or-
chards. Bacterial infections are the primary cause of citrus tree canker diseases.
The most prevalent offenders are Xanthomonas bacteria, particularly Xanthomonas
axonopodis. The bacteria infiltrate plant tissues via wounds or natural holes, induc-
ing diseases. Canker infections have the potential to harm citrus trees, resulting in
damage to both the fruit and foliage[28]. Citrus canker frequently presents as little,
elevated lesions on the leaves. Initially, these lesions are immersed in water, but
as they develop, they acquire a firm texture and have a characteristic ring-shaped
arrangement. The tree’s foliage may be shed due to the presence of lesions, thereby
compromising its general well-being.

Citrus trees facilitate the entry of bacteria through the stomata, which are tiny open-
ings in the leaves and stems, as well as through wounds caused by activities like as
pruning and insect feeding. Upon entering the plant, the bacteria rapidly proliferate
and disseminate, resulting in leaf infection. One of the signs is the presence of circu-
lar water-soaked lesions that may increase in size over time. The lesions may have a
wet periphery and seem raised and spiky. Cankers may develop when the bacteria
invades twigs and stems. Cankers are areas of necrotic or decayed tissue that might
stimulate the regrowth of dead branches. Citrus canker can also cause damage to
fruit. Lesions can develop on the surface of a fruit when germs enter through wounds
or naturally occurring openings. The lesions may have a profound, cork-like look
and appear soaked with water. Precipitation, specifically rain carried by the wind,
as well as contaminated equipment or accessories, might facilitate the dissemination
of the bacteria from infected trees to uninfected ones. Citrus canker is prone to
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Figure 3.2: Citrus Canker

thrive and propagate in climates characterized by high temperatures and humidity.
The bacteria flourish in these environments, and periods of intense rainfall or irri-
gation heighten the likelihood of infection.Treating bacterial illnesses such as citrus
canker becomes challenging after a plant becomes infected, as the bacteria deeply
infiltrate the plant tissues and may exhibit resistance to chemical treatments.Citrus
canker has no treatment, however care can slow its growth. These methods lessen
illness and prevent infection.Common management strategies include:

1. Pruning: Removing fruit, leaves, and other disease-causing plant detritus re-
duces germs and prevents sickness.
2. Copper-Based Sprays: These plant-surface bactericides reduce microbial popula-
tions. These sprays are best used early in an illness or as preventative measures.
3. Strict Quarantine regulations: Quarantine regulations can help stop unhealthy
citrus plants and fruit from spreading. This is crucial to stopping the disease.

ii) Black Spot

Phyllosticta citricarpa is the main cause of citrus black spot, a fungal infection
that reduces both the number and quality of citrus fruit on plants. The fungus
causes unattractive skin blisters on the fruit, hence diminishing its marketability.
The fruits that are considered to be the most delicate are grapefruit, lemons, navel
and Valencia oranges, sour oranges, and their respective varieties. Citrus black spot
is not seen on lemons with a rough texture or high acidity. Black spots manifest in
several forms, including pathogenic, firm, cracked, and pseudo-melanose blemishes.
Every location possesses a unique set of symptoms. The hard spot is the most
prevalent and practical indicator. One may observe small, melancholic, spherical
sores on the outer layer, characterized by gray centers and brick-red borders.

The disease primarily targets delicate and underdeveloped foliage, and its detrimen-

13



Figure 3.3: Citrus BlackSpot

tal effects can have adverse consequences on the overall well-being and productivity
of citrus plants. The appearance of small, water-filled blisters on the surface of young
leaves indicates the initial manifestation of black spot disease. Initially, it may be
difficult to discern these lesions.As the condition advances, the lesions become in-
creasingly conspicuous and acquire a unique raised, cork-like appearance. The cen-
tral area of the lesion undergoes a color change from dark brown to black.Lesions
on citrus leaves can impair chlorophyll, the pigment essential for photosynthesis.
Enlargement of lesions on the leaf hinders the leaf’s ability to carry out photosyn-
thesis and produce energy for the plant.Black spot is a challenging fungal disease
to cure because once it takes hold, the fungus typically infiltrates the plant tissues,
making chemical treatments useless.There is no cure for citrus black spot disease,
however some management methods may help: fungicides Chemical treatment may
be used to prevent or treat black spot sickness. Fungicides prevent fungal growth
and tissue contamination. The success of these therapies depends on the setting and
time. The orchard’s fungal bacteria can be reduced by removing damaged fruit and
vegetation. Trimming also improves airflow, reducing disease transmission. Cultural
methods that promote orchard cleanliness and suppress fungus may be beneficial.
Controlling soil moisture, avoiding overhead watering, and spacing trees are among
these methods.

iii) Greening

Citrus greening is a prevalent citrus plant disease worldwide. Once a tree gets
diseased, it is incurable. The infection has caused extensive damage to citrus crops,
spanning millions of acres, both locally and internationally. However, there is no
risk to either humans or animals. The deformed, acrid, and unripe fruits from
diseased trees are unsuitable for commercial distribution as either fresh produce or
juice. A significant number of infected trees perish within a short span of a few years.
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Figure 3.4: Citrus Greening

This disease has a detrimental impact on citrus trees, leading to significant harm to
the leaves and other parts of the plant. An unmistakable indication of citrus green-
ing is the discoloration of the leaves, resulting in a yellow hue. The occurrence of
uneven yellowing, often confined to one side of the leaf, results in the leaf acquiring
a mottled appearance. Citrus greening causes the leaf to exhibit variable yellowing.
Instead, it typically leads to an asymmetrical pattern characterized by one side of
the leaf being more yellow than the other. The disease is mostly diagnosed based on
its asymmetry.Citrus greening hampers a tree’s capacity to generate chlorophyll, the
pigment responsible for the green color of leaves. Consequently, the leaves that are
impacted exhibit a reduction in their green hue, resulting in the visible yellowing.
Citrus greening is subtle and has the potential to impact several components of the
citrus tree, hence presenting difficulties in its treatment. Traditional antibiotics are
ineffective in reaching the bacteria due to its location within the phloem tissue. Sci-
entists and researchers are now developing a range of management and mitigation
measures for citrus greening. Several methodologies encompass:

Controlling the population of Asian citrus psyllids is of utmost importance due
to their role in spreading the bacterium responsible for citrus greening. This entails
employing pesticides, implementing biological control techniques, and employing
other ways to diminish the population of psyllids. Enhancing the tolerance or resis-
tance of citrus cultivars to citrus greening is a prominent subject of scientific inquiry.
While type resistance can help lessen the impact, it should be noted that it is not a
kind of treatment.
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Chapter 4

Methodology

The research presented here gives a lot of information about how to use image pro-
cessing to find diseases on citrus leaves. It explains in detail how to get useful
information from computer pictures so that diseases can be correctly identified. As
computer vision and machine learning have improved, the suggested method auto-
mates the finding process. This makes it more useful than looking at things manu-
ally. Getting the data, pre-processing it, achieving features, and using cutting edge
image processing techniques are all parts of the method. For making models that
can correctly group diseases, it is important to use the power of deep learning, es-
pecially convolutional neural networks (CNNs). There is a full breakdown of each
step in the sections that follow. These sections show what was done to improve the
usefulness, accuracy, and efficiency of the method for tracking citrus leaf diseases.

4.1 Overview about Proposed Model

Initially, in order to illustrate our suggested model, we need to gather the data that
includes photos of citrus leaves which are effective in detecting illnesses.In order to
increase the total amount of data contained in the dataset that we have achieved,
we will need to employ data augmentation.In order for the models to be able to
differentiate between the many changes, the next step is to preprocess the photos
of the citrus leaves.In the following step, we will divide the data into three distinct
parts: the first portion is for training, the second part is for validation, and the
third part is for testing, which will be divided 70:15:15.Following that, the nor-
malization, rotation, zooming, shearing, shifting, shuffling, and flipping operations
will be used to resize all three components (the Training, Testing, and Validation
data separately).Following this, the resized photos will be split into two parts: the
first will be used by pretrained models, and the second will be used by our own
custom model.The performance of the models will be improved via the use of hy-
per parameter tuning in order to achieve the best possible result.In the following
stage, we will analyze both our unique model and all of the CNN models that have
been pretrained.Following that, we will determine the accuracy of the training, the
accuracy of the validation, and the accuracy of the testing.Last but not least, we
presented all of the findings using a variety of graphical techniques.The actions that
we took are depicted in a diagram in figure 4.1.
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We employed the Adam optimizer to alter its learning rate for hyperparameter
tuning. To enhance the precision of our model, we employed matrix accuracy and
Binary Crossentropy as the loss function.The learning rate was maintained at 0.0001
for all pre-trained models. Every model underwent 20 epochs of training.

4.2 DataFlow Diagram

Figure 4.1: DataFlow Diagram
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4.3 Dataset

4.3.1 Data Acquisition

As a direct consequence of diseases that attack citrus trees, the quantity of the citrus
that can be harvested for use in a broad variety of different businesses has greatly
diminished. This is because citrus plants are susceptible to a variety of illnesses.
These diseases have contributed to an increase in the number of citrus diseases that
have been reported. Researchers and industry experts working in this area came
to the realization that the illnesses known as greening, black spot, and canker were
the ones that happened the most frequently. Through the use of computer vision
and many other forms of deep learning, illnesses that have the potential to affect
citrus may be identified upon the basis of the symptoms that they exhibit. This
procedure of recognition is capable of being computerized. In this research, a set
of data is presented, which consists of 596 photographs that exhibit citrus leaves
in both healthy and ill stages. Studies are able to put a broad variety of computer
vision and image processing algorithms through their paces by using this collection
of images as a testing ground for disease identification in citrus plant life. This
collection of photographs acts as a proving ground.

There were three independent occurrences of citrus leaf infections, and each of these
diseases were allowed to continue existing on its own. The photos that were im-
pacted were split into these three distinct instances. As illnesses that were included
in the data sets, we concentrated our attention on Greening, Canker, and Black
Spot as the key topics of inquiry that we were looking at.

Description of data set against each of its disease class (Citrus Leaf)

Diseases Number of Images
Greening 204
Canker 163
Black Spot 171
Healthy 58
Total 596

Table 4.1: Without Augmentation Dataset
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Figure 4.2: Blackspot Figure 4.3: Canker Figure 4.4: Greening

Figure 4.5: Healthy

4.3.2 Data Preprocessing

A number of transformations, including rotation, zoom, skew, random distortion,
shear, random cropping, and random flipping, were utilized by us during the pro-
cess of augmenting the image.We have used Augmentator Library to augment our
dataset. Our goal is to have 700 photographs shown on that page that are cate-
gorized according to each of the categories that it covers. This improvement will
directly result in this achieving our goal. Through a process known as ”Data Split,”
70% of the data was distributed among the Training sets, 15% the Validation sets,
and 15% the Testing sets.Therefore, this is the best splitting ratio to use in or-
der to obtain more accurate results from the dataset. Since we needed each of the
three sets (Training, Validation, and Testing) to have four sub-classes of folders,
this was done in order to achieve our goal. The training sets provide a total of 1956
photos, the validation sets produce 420 images, and the testing sets produce 424
images. The total number of images obtained from these sets is 464. There were
a total of 2800 images that were sent to us.Before training the CNN models, all
three categories of all the images were rescaled from 0 to 1 pixels using Normaliza-
tion,roatation,zoom,sheare,shifting, shuffling and flipping.As we are using multiclass
classification thats why we have used classmode as catagorical, batch size was kept
32 and target size was (224,224). That’s how all the data have been stored using
ImageDatagenerator Library.
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Figure 4.6: DataSet

4.4 Model Description

4.4.1 Convolutional Neural Network(CNN)

A Deep Convolutional Neural Network (CNN) is a specialized kind of Neural Net-
works that has demonstrated outstanding results in many contests focused on Com-
puter Vision and Image Analysis[29].Convolutional Neural Networks (CNNs) are
very advantageous in detecting visual patterns inside pictures for the purpose of ob-
ject recognition. Additionally, they may be very efficient at categorizing non-image
data, such as audio, time series, and signal data.When it comes to a wide range
of computer vision tasks, CNN artificial neural networks have emerged as the most
successful technique. People’s interest in a wide range of subjects has been raised as
a result of it. There are several layers that make up a convolutional neural network.

These layers include convolution layers, pooling layers, and fully connected lay-
ers. In order to gain knowledge organizational structures of input in an autonomous
and adaptable manner, the network employs a reverse propagation technique.In
CNN, the kernels are nothing but a way of extracting features from the provided
images.Convolutional Layers are the the foundation of the CNN architechture and
they are the ones to execute the convolutional operations.While the kernel is wait-
ing for the entire picture to be scanned, it will make modifications in the vertical
as well as horizontal directions based on the striding quantity. In comparison to
an image, the kernel is smaller, but it has a greater degree of depth.This indicates
that the kernel height and width will be very little in terms of space if the image
has three RGB paths, yet the depth of the kernel will contain all three channels
individually[30].In this layer, the calculation of convolution is carried out between
the input image and a filter of a certain size MxM. This filter operates on the input
the image. It is possible to calculate the dot product between the filter and the
regions of the input picture that are proportional to the size of the filter (MxM) by
moving the filter across the image on which it is being applied.In general, the most
recent CNN model suggests using an input picture that is 224 pixels by 224 pixels.

In addition to convolution, the Non-linear activation function is an additional sig-
nificant component of convolutional layers. This component functions in addition
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to convolution. A non-linear activation function is applied to the outputs of linear
operations such as convolution once they have been processed.

Figure 4.7: Convolution layer

In the past, smooth nonlinear functions like the sigmoid or hyperbolic tangent (tanh)
function were employed since they are statistical illustrations of the operations that
are carried out by biological neurons. The rectified linear unit, often known as the
ReLU, is currently the non-linear activation function that is utilized the most fre-
quently. f(x) = max(0, x/x).

A Convolutional Layer is often followed by a Pooling Layer in the majority of in-
stances. It is the major objective of this layer to lower the size of the convolved
feature map in order to cut down on the amount of computing resources required.
Specifically, this is accomplished by reducing the connections that exist across layers
and performing separate operations on each specific feature map. There are several
sorts of Pooling procedures, each of which is determined by the method that is uti-
lized. Additionally, it provides a concise summary of the characteristics that are
produced by a convolution layer.One can distinguish between two distinct forms of
pooling, namely maximum pooling and average pooling. The largest value that can
be extracted from the region of the picture that is covered by the kernel is what is
returned by max pooling. Average pooling is a technique that returns the average
of all the values that are contained inside the portion of the picture that is covered
by the kernel.

The final layer is called Fully Connected Layer.It is the Fully Connected layer that is
responsible for connecting the neurons that are located between two separate layers.
This layer is made up of the weights and biases in addition to the neurons[31]. Since
the fully connected layer (FC) operates with a flattened input, this suggests each
input is tied to each and every neuron in the network. Following that, the vector
that has been flattened is sent across a few further FC levels, which are typically the
locations where mathematical functional operations are carried out. It is at this mo-
ment that the categorization process is initiated. In the event that they are present,
Fully Connected layers are often located not far from the conclusion of CNN designs.
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There are some inner functions that are also used in CNN.One is Dropout and
other one is Activation Function.Dropout is a method of regularization employed
in neural networks, such as Convolutional Neural Networks (CNNs), to reduce ex-
cessive fitting. Overfitting arises if a model excessively captures every detail of
the training data, covering its variance and outliers, hence resulting in inadequate
generalization on novel, unknown information.Dropout is commonly used in the con-
text of fully connected layers. During the process of prediction, the utilization of
dropout is often deactivated.Activation functions are utilized in neural network mod-
els to handle non-linear behavior which enables them to acquire knowledge about
subtle connections and trends within the information. Activation functions are car-
ried out individually to the output of convolutional and fully connected layers in
CNNs.ReLU, Softmax, Tanh, and Sigmoid functions are all examples of activation
functions of various kinds.ReLU, Softmax, Tanh, and Sigmoid functions are all ex-
amples of activation functions of various kinds.

Figure 4.8: Basic Convolutional Neural Network Architecture

4.4.2 Inception-V3

Inception-v3, a member of the Inception family of convolutional neural network ar-
chitectures, has several enhancements such as Factorized 7 x 7 convolutions, Label
Smoothing, and an additional classifier to effectively propagate label information
deeper into the network. The Inception V3 deep learning model utilizes convolu-
tional neural networks to do picture categorization. The Inception V3 model is an
upgraded version of the original Inception V1 model, representing an improvement.
The Inception V3 model is an enhanced and polished version of the Inception V1
idea. The Inception V3 model employed many strategies to improve network op-
timization and model adaption. The model comprises convolutions, max pooling,
average pooling, concatenations, dropouts, and fully linked layers, along with ad-
ditional symmetric and asymmetric building pieces. The primary reliance of the
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model is on batch normalization, which is applied to the inputs of the activation
function. The SoftMax function is utilized for loss computation[32].

Figure 4.9: Gride Size

The model runs with more efficiency and lower computing intensity compared to
the Inception V1 and V2 models. It utilizes auxiliary classifiers as regularizers and
exhibits quicker performance, independent of the network’s depth. In comparison
to previous versions, it consists of a total of 42 layers and has a reduced number
of errors overall. There are several improvements that strengthen the Inception
V3 model. The Inception V3 model has had the subsequent notable modifications:
Partitioning into smaller convolutions, utilizing asymmetric convolutions for spa-
tial combination, implementing additional classifiers, and decreasing the actual grid
size.In the past, the grid sizes of the feature maps were reduced by the implemen-
tation of max pooling and average pooling techniques.
Following all adjustments, the final Inception V3 model looks like this:

Figure 4.10: Inception V3 Architecture

The Inception V3 model increases the activation dimension of the network filters
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to effectively reduce the grid size. Reduction transforms a grid of size d×d with k
filters into a smaller grid of size d/2 × d/2 with double the number of filters, such as
2k filters. To do this, convolution and pooling are performed in two separate blocks,
which are subsequently combined by concatenation.

4.4.3 Mobile Net-V2

For image classification, agile models with fast analysis speeds without compromis-
ing accuracy are essential. MobileNetV2, a well-known competitor, has received a
lot of attention. This article examines MobileNetV2’s architecture, training pro-
gram, performance assessment, and practical implementation. The primary goal
of MobileNetV2, a lightweight convolutional neural network (CNN) architecture, is
to facilitate applications related to mobile and embedded vision. It was developed
by Google researchers to build upon the original MobileNet concept. Notably, this
kind strikes an excellent balance between accuracy and size, which makes it ideal
for low-resource devices.

Figure 4.11: MobileNetV2 Architecture

The effectiveness and efficiency of MobileNetV2 in photo classification tasks are
influenced by several significant parameters. Among these features are depthwise
separable convolution, bottleneck design, inverted residuals, squeeze-and-excitation
(SE) blocks, and linear bottlenecks. It takes all of these qualities to maintain the
model’s high accuracy while reducing its computational complexity. The use of Mo-
bileNetV2 for photo classification has several advantages. First off, because of its
compact architecture, it may be used efficiently on embedded and mobile devices
with little processing power. Second,MobileNetV2 achieves comparable accuracy
to larger and computationally more costly models. Lastly, the model’s small size,
which enables quicker inference times, makes it suitable for real-time applications.
The architecture of MobileNetV2 consists of squeeze-and-excitation blocks, bottle-
neck design, linear bottlenecks, inverted residuals, depthwise separable convolutions,
and many convolutional layers. When combined, these components help the model
capture complex features using fewer computations and inputs.To reduce the compu-
tational cost of convolutions, MobileNetV2 employs a technique known as depthwise

24



separable convolution. Pointwise and depthwise convolution are the two separate
processes that result from this division of the traditional convolution. The model
becomes more effective when the data are divided since it has to do fewer computa-
tions overall.Inverted residuals are a key component of MobileNetV2 that improves
the model’s accuracy. To increase the number of channels, a bottleneck structure
is built prior to applying depthwise separable convolutions. This addition increases
the representational capability of the model and enables it to capture more complex
elements.

4.4.4 Inception-Resnet V2

The Inception Resnet V2 architecture is a kind of convolutional neural network
(CNN) designed specifically for image recognition tasks. The technology was de-
vised by Google researchers and is renowned for its exceptional precision and effec-
tiveness[33].A combination of the Inception structure and the Residualconnection is
the basis for the formulation of the Inception-Resnet-v2 algorithm. Multiple sized
convolutional filters are merged via residual connections within the Inception-Resnet
phase of the neural network pipeline.

Figure 4.12: Inception-Resnet V2 Architecture Layers

Convolutional layers serve as the fundamental components of Convolutional Neural
Networks (CNNs) and are tasked with extracting information from the input pic-
ture. The Inceptionv3 architecture consists of many convolutional layers organized
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into modules known as ”inception modules.”In order to extract important charac-
teristics from the pictures, the Inception-Resnet-v2 employs a complex design[34].
Inception modules are the fundamental innovation of the Inceptionv2 architecture.
The network employs parallel convolutional filters of varying sizes (1x1, 3x3, and
5x5) to extract information at numerous scales concurrently. This enhances the
precision and effectiveness of the model. Max pooling and average pooling layers:
These layers decrease the dimensions of the feature maps by selecting the highest
or average value from a small group of pixels. This aids in managing the intricacy
of the network and mitigating overfitting. Fully linked layers are utilized to gen-
erate predictions by using the retrieved information. The Inceptionv2 architecture
consists of two fully connected layers, which are then followed by a softmax layer.
This softmax layer is responsible for producing the probability of each class in the
ImageNet dataset, which has a total of 1000 classes. The figure additionally has
supplementary components, including:
Dropout layers are utilized in neural networks during training to mitigate overfitting
by randomly deactivating a portion of the units. Batch normalization is a method
that enhances the stability of the training process and increases the accuracy of the
model.

Figure 4.13: Inception-Resnet V2 Architecture

Auxiliary classification branches refer to supplementary branches of classification
that are incorporated into some conception modules. These branches contribute
to enhancing the precision of the ultimate forecasts. In summary, the Inceptionv2
architecture is a robust and effective convolutional neural network (CNN) that has
attained cutting-edge performance on image identification tasks. The architecture
is intricate, but the diagram you gave offers a comprehensive picture of its essential
elements.
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4.4.5 DenseNet 121

Each convolutional layer (apart from the first) in a conventional feed-forward convo-
lutional neural network (CNN) receives input, analyzes the output of the preceding
convolutional layer, and generates an output feature map that is then passed on to
the convolutional layer that comes after it. As a result, for ’L’ layers, every layer
and the one that comes after it have ’L’ direct connections.

Figure 4.14: DenseNet121 Architecture

However, as the CNN goes deeper—that is, as the number of layers increases—the
”vanishing gradient” problem becomes apparent. This suggests that as the channel
that carries information from the input to the output layers gets longer, some infor-
mation can ”vanish” or be lost, which would reduce the network’s ability to train
efficiently.DenseNet-121 fixes this problem by modifying the traditional CNN archi-
tecture and simplifying the layer-to-layer link architecture. Convolutional networks
with dense linking resemble the DenseNet design, in which all layers are connected
to all other layers directly. For ’L’ layers, there are L(L+1)/2 direct connections.

Using the DenseNet-121 architecture, we can see that each dense block has two con-
volutions per layer, which helps us understand the table better. A 1x1 kernel occu-
pies the bottleneck layer and a 3x3 kernel performs the convolution process.DenseNet-
121 comprises 120 convolutions and four average pools.Because all layers distribute
their weights over several inputs, even those within the same dense block and transi-
tion layers, deeper levels can use characteristics that were recovered early on.Because
they generate a lot of duplicated data, the layers in the second and third dense blocks
give the transition layers’ output the lowest weights[35].
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Figure 4.15: DenseNet121 Architecture Layers

4.4.6 DenseNet 201

Gao Huang, Zhuang Liu, and Laurens van der Maaten created DenseNet-201, which
is an enhanced version of DenseNet-121, a very effective architecture for convolu-
tional neural networks. The design of image classification addresses issues such as
feature reuse, vanishing gradient difficulties, and model compactness[36]. DenseNet-
201’s intricate architecture comprises of the input layer, beginning convolutional
layer, dense blocks, bottleneck layers, transition blocks, global average pooling
(GAP), and fully connected final classification head. The gateway, also known as
the input layer, is designed to receive 224x224-pixel images for various image classi-
fication tasks. The primary convolutional layer performs convolutions on the input
data to collect essential features.

Figure 4.16: Layered Architecture of DenseNet201
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DenseNet-201 utilizes thick blocks to accommodate a large number of dense layers.
Bottleneck layers deliberately reduce the number of input feature maps in each dense
layer before applying 3x3 convolutions, with the aim of enhancing computational
efficiency. Strategically positioned transition blocks can decrease the spatial dimen-
sions of feature maps. Feature map compression and down sampling are achieved
by the utilization of 1x1 convolutions and average pooling. Once the dense blocks
have been finished, the global average pooling operation calculates the average value
of each feature map, resulting in a reduction of the spatial dimensions to 1x1. The
final classification head utilizes a thick layer with softmax activation to produce the
probability distribution for the target class.

4.4.7 ResNet50

The ResNet begins with ResNet-50, a pioneering design that uses smooth short-
cut connections to turn a basic network into its residual counterpart. ResNet-50
distinguishes itself from other neural networks by using 3x3 convolutional networks
and pulling inspiration from VGG neural networks, such as VGG-16 and VGG-19.
ResNets differ from VGGNets in that they reduce filter count and complexity. Be-
cause of its fifty weighted layers, ResNet-50 can achieve 3.6 billion FLOPs. This
is far better than the 1.8 billion FLOPs of its smaller 18-layer competitors. Layers
follow simple design rules to maintain filter counts for identical output feature map
sizes. With the feature map size decreased in half, the number of filters doubles,
but each layer’s temporal complexity is maintained.Due to ResNet-50 shortcut con-
nection improvements, input and output dimension decision-making is improved.
Identity shortcuts provide a direct path for stable dimensions, making them an ap-
pealing choice for expanding dimensions. A important choice is whether to continue
identity mapping while padding extra zero entries for dimension augmentation or
employ the projection shortcut to align dimensions harmonically.

Figure 4.17: Resnet50 Architecture

Deep Residual Learning, which is part of the ResNet paradigm, may tackle chal-
lenging issues when training incredibly deep neural networks. ResNet’s utilization
of residual blocks and ”skip connections.” is its most crucial feature. These links
reduce the hazards of disappearing gradients by providing an alternate gradient flow
channel and promoting identity function acquisition.The mutually advantageous link
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between skip connections and residual blocks allows ResNet to enhance top layers,
guaranteeing that they operate similarly to lower ones. This unique trait stream-
lines identity function learning, improving deep neural network performance. The
novel inclusion of skip connections combines outputs from previous levels with those
of stacked layers. This enables deeper network training than ever before.ResNet
has several variations, including ResNet-50, which has fifty neural network layers.
This numerical distinction shows how ResNet can handle a broad range of model
complexity while adhering to deep residual learning principles.

4.4.8 VGG16

VGG16, a Convolutional Neural Network (CNN) created by Karen Simonyan and
Andrew Zisserman at the University of Oxford, is widely regarded as a significant
advancement in the domain of computer vision. While it did not win the Ima-
geNet Challenge in 2014, its impact on the field and future progress cannot be
ignored.The key components of a convolution neural network are included in the
VGGNet design[37]. Before delving into VGG16, it is crucial to acknowledge no-
table advancements in the realm of computer vision. Commencing with Kunihiko
Fukushima’s ”neocognitron” in 1980, subsequently accompanied by Yann LeCun’s
innovation of backpropagation in 1998, and the establishment of ImageNet in 2011, a
sequence of noteworthy breakthroughs has been vital in propelling the area forward.
AlexNet, GoogLeNet, and ResNet have had a profound impact on the advancement
of computer vision. The VGG16 model, introduced in 2013 and participated in
the ImageNet Challenge in 2014, provided a unique approach. VGG16 distinguishes
itself from earlier models by constantly utilizing small 3 × 3 receptive fields through-
out the whole network, with a stride of 1 pixel. The use of several 3 × 3 filters offered
flexibility, enabling the formation of receptive fields with larger dimensions, result-
ing in more effective outcomes[38].

The ”D” configuration of VGG16 demonstrated outstanding performance on the
ImageNet dataset. The network’s architecture was streamlined by the regular uti-
lization of 3 x 3 convolutions. The configurations involved the arrangement of con-
volution layers with 3 x 3 filters, followed by max-pooling layers, and concluding
with completely connected layers.
The VGG16 design has five convolutional blocks, each including many layers, and
is then followed by three fully connected layers. The input comprises an image with
dimensions of 224 × 224 x 3, and the network progressively reduces the image size
through the utilization of max-pooling. The subsequent layers employ a softmax
activation function to facilitate the classification of categories. In order to construct
a VGG16 model using Keras, it is necessary to specify a sequential model and include
convolutional and pooling layers, followed by fully connected layers. Dropout layers
are employed for regularization. While it is possible to utilize a pre-trained model
using ImageNet weights, commencing from scratch allows for customization of the
model to meet unique requirements.
VGG16 is characterized by a significant parameter count, exceeding 138 million.
The complexity of this activity requires significant computer resources for training.
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Figure 4.18: VGG16 Architecture

Despite not winning the ImageNet Challenge, VGG16’s simplicity, improvement,
and capacity to transfer information have solidified its significance in the field of
computer vision.
Although VGG16 did not secure the top position in the ImageNet Challenge, its
impact on the field of computer vision is undeniable. The utilization of 3 x 3 convo-
lutions and combinations such as ”D” lays the groundwork for future advancements.
VGG16 is a notable achievement in the ongoing effort to enhance computers’ capac-
ity to understand visual data.

4.5 Custom Model

At the first level, there exists a convolutional layer. The layer consists of 32 filters
with a kernel size of (3,3). The activation procedure has incorporated the utilization
of a function called ReLU. The output shape was determined to be (222, 222, 32),
whereas the input shape was found to be (224, 224, 3). The architecture of this
layer consists of a total of 896 parameters.

The second layer’s input form is (224,224,32), and its pool size is (2, 2). This is done
in order to down sample the MaxPooling layer. The output shape with dimensions
(111,111, 32) is obtained by doing so. Because there are no parameters that can be
trained of this sort, it has parameters rather than none at all.A total of 64 filters
with a kernel size of (3,3) are included in the convolutional layer, which is the third
layer. A function known as ReLU has been applied as an activation function. The
dimensions of the input shape are measured as (111,111,32), while the dimensions of
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the output form are measured as (109,109,64). The total number of parameters in
this layer is 18,496. In order to get the output shape with dimensions of (54,54,64),
the input form for the fourth layer, which is referred to as the MaxPooling layer,
is (109,109,64). The pool size comes in at (2, 2). It does not have any parameters
because we do not have any trainable parameters of this kind.

The convolutional layer of the fifth layer consists of 128 filters, each with a ker-
nel size of (3,3). We utilized an activation function known as Rectified Linear Unit
(ReLU). The input shape has dimensions of (54,54,64), whereas the output form
has dimensions of (52,52,128). This layer has a total of 73,856 parameters. The
MaxPooling layer, positioned as the sixth layer, takes an input shape of (52,52,128)
and does a pooling operation with a pool size of (2, 2). Next, determine the mea-
surements of the resulting form, which are (26,26,128). Since there are no trainable
parameters, it is devoid of any parameters.

The seventh layer, known as the convolutional layer, consists of 512 filters with
a kernel size of (3,3). We utilized an activation function known as Rectified Lin-
ear Unit (ReLU). The dimensions of both the input shape and the output form
are (24,24,512). The input shape is a three-dimensional tensor with dimensions of
26x26x128. This layer has a grand total of 590,336 parameters.

The input for the MaxPooling layer, which is the eighth layer, is in the form of
(24,24,512). The layer has a pool size of 2x2.Furthermore, the dimensions of the
output form are acquired as (12,12,512). Given the absence of any trainable param-
eters, it may be concluded that it lacks any parameters.

The Ninth layer, known as the convolutional layer, consists of 256 filters with a ker-
nel size of (3,3). We utilized an activation function known as Rectified Linear Unit
(ReLU). The input shape is (12,12,512), whereas the output shape is (10,10,256).
The totality of this layer consists of a total of 1,179,904 parameters.The pool size is
(2, 2) and the input shape for the MaxPooling layer, which is the Tenth layer, is (10,
10, 256).Furthermore, the dimensions of the output form are acquired as (5,5,256).
Given the absence of trainable parameters, it may be concluded that there are no
parameters associated with it.

The GlobalAveragePooling layer, positioned as the eleventh layer, takes in an input
shape of (5,5,256) and utilizes a pool size of (2, 2).In addition, it is possible to obtain
the dimensions of the output form, which are (256). Given the absence of trainable
parameters, it may be concluded that there are no parameters associated with it.

The layer undergoing flattening is the twelfth layer. The resulting shape’s dimension
is obtained by this technique. As it does not employ backpropagation learning, this
model lacks any trainable parameters. Instead, it just calculates an integer that is
given as input.
The Thirteenth layer in the structure is a Dense layer with 512 units. The dimension
of the output shape is determined by this method. We utilized an activation func-
tion known as Rectified Linear Unit (ReLU).This layer has a grand total of 131,584
parameters.
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The Fourteenth layer consists of four densely packed units. By doing this, it obtains
the (4,) dimension of the resulting shape.We utilized an activation function known
as Rectified Linear Unit (ReLU).This layer has a total of 2,052 parameters.The Soft-
max function is utilized in the last layer of a Convolutional Neural Network (CNN)
to provide a probability distribution that contains all possible classes.

Figure 4.19: Custom Architecture

33



4.6 Interpreting LIME

Local Interpretable Model-agnostic Explanations, abbreviated as LIME. LIME pri-
oritizes describing the model’s prediction for specific occurrences rather than offering
a comprehensive comprehension of the model across the whole dataset[39].The pri-
mary goal of LIME is to provide explanations for individual predictions that are
both understandable and precise within the relevant local context. LIME utilizes
surrogate models to accurately comprehend and replicate the behavior of complex
models inside a specific instance’s domain.

To begin the method, it is necessary to choose a particular occurrence for which an
explanation is being sought. In the subsequent stage, LIME will generate a dataset
comprising of altered samples around this particular occurrence by introducing con-
trolled and minuscule alterations to the input characteristics. The complicated
model is used to generate predictions for these modified samples, resulting in the
generation of a labeled dataset that may be used to train a surrogate model.Lime
maintains model-agnosticism by refraining from accessing the internal workings of
the model. To determine the specific elements of the interpretable input that influ-
ence the estimate, we manipulate the input within the immediate area and observe
the behavior of the model’s predictions.

Subsequently, a simple and readily understandable model, such as a linear model, is
trained on the dataset that was generated. From a local standpoint, this surrogate
model offers an estimation of the behavior shown by the intricate model. Within
this interpretable model, the coefficients function as a rationale for the forecast pro-
vided by the original model at the specific moment being examined.

This is particularly crucial in scenarios where the comprehensibility of the model is
paramount. The objective of LIME is to provide insights into the decision-making
process of complex models, hence enhancing their transparency and comprehensi-
bility. Interpretability is highly valuable in building confidence in machine learning
models, especially when decisions impact individuals or organizations.
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Figure 4.20: Healthy Leaf Figure 4.21: Canker
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Figure 4.22: BlackSpot Figure 4.23: Greening
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Chapter 5

Result Analysis and Discussion

5.1 Resnet50 Implementation Result

In terms of accuracy and validation, Resnet-50 exhibits a remarkable accuracy of
99.70%, with enhanced accuracy coming in slightly lower at 99.49%. The find-
ings of the validation show that the accuracy of the unaugmented version dropped
significantly to 28.74%, but that the augmented version showed a strong rebound
to 98.57%. When compared to the F1 Score without augmentation, which is par-
ticularly low at 11.00%, the F1 Score with augmentation is exceptionally high at
99.00%Ȧ similar trend can be seen in recollection, with un-enhanced recall coming
in at 25.00% and augmented recall coming in at 99.00% total. Over the course of the
augmentation process, precision demonstrates a significant improvement, increasing
from 7.00% to 99.00%. During the process of augmentation, validation loss receives
a dramatic reduction, falling from 2.97% to 3.66% percent.

Resnet50 UnAugmented Augmented
Accuracy 99.70% 99.49%
Validation Accuracy 28.74% 98.57%
Test Accuracy 28.70% 98.60%
F1-score 11.00% 99.00%
Recall 25.00% 99.00%
Precision 7.00% 99.00%
Validation Loss 2.97% 3.66%

Table 5.1: Results Resnet50

Figure 5.1: Augmente-
dResnet50

Figure 5.2: UnAug-
mentedResnet50
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Figure 5.3: AugMented
Resnet50 ConMatrix

Figure 5.4: UnAug-
Mented Resnet50 Con-
Matrix

5.2 MobileNetV2 Implementation Result

MobileNet-V2 succeeds in achieving an un-augmented accuracy of 97.35% and an
augmented accuracy of 99.03% without any enhancements. The findings of the
validation reveal a tremendous rise, beginning at 35.63% and ending at 84.52%
with augmentation. ”F1” The scores of 88.00%, 88.00%, and 91.00%, respectively,
indicate that the score, recall, and accuracy all see significant gains as a result of
the augmentation.
Validation loss lowers dramatically from 45.38% to 51.60% with augmentation.

MobileNetV2 UnAugmented Augmented
Accuracy 97.35% 99.03%
Validation Accuracy 35.63% 84.52%
Test Accuracy 34.00% 88.00%
F1-score 13.00% 88.00%
Recall 25.00% 88.00%
Precision 9.00% 91.00%
Validation Loss 45.38% 51.60%

Table 5.2: Results MobileNetV2

Figure 5.5: AugmentedMo-
bilenetV2

Figure 5.6: UnAugmentedMobil-
netV2
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Figure 5.7: Augmented-
MobilenetV2 ConMatrix

Figure 5.8: UnAug-
mentedMobilnetV2
ConMatrix

5.3 VGG16 Implementation Result

In terms of accuracy and validation, the VGG-16 displays a high level of accuracy,
with un-enhanced and augmented accuracies coming in at 94.22% and 98.80%, re-
spectively. Using augmentation results in a marginal improvement in validation
accuracy, which goes from 90.80% to 98.33%. The F1 Score, recall, and accuracy all
show values about 98.00% with augmentation, indicating that there is consistency
in the performance parameters that are being examined. With augmentation, the
validation loss goes from 34.84% to 6.75%, a significant drop.

VGG16 UnAugmented Augmented
Accuracy 94.22% 99.00%
Validation Accuracy 90.80% 98.33%
Test Accuracy 82.00% 98.30%
F1-score 82.00% 98.00%
Recall 82.00% 98.00%
Precision 86.00 98.00%
Validation Loss 34.84% 6.75%

Table 5.3: Results VGG16

Figure 5.9: Augmented-
VGG16

Figure 5.10: UnAug-
mentedVGG16
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Figure 5.11: AugMented
VGG16 ConMatrix

Figure 5.12: UnAug-
Mented VGG16 ConMa-
trix

5.4 InceptionV3 Implementation Result

Inception-V3 is capable of achieving high accuracies of 99.28% (un-augmented) and
99.85% (augmented). This pattern is reflected in the validation findings, which
increased from 98.25% to 98.81% as a result of the augmentation. During the process
of augmentation, performance measurements experience slight enhancements, with
the F1 Score, recall, and precision all hovering around 99.00%. With augmentation,
the validation loss goes from 12.43% to 4.15%, a significant decrease.

InceptionV3 UnAugmented Augmented
Accuracy 99.28% 99.85%
Validation Accuracy 94.25% 98.81%
Test Accuracy 90.40% 99.00%
F1-score 90.00% 99.00%
Recall 90.00% 99.00%
Precision 91.00% 99.00%
Validation Loss 12.43% 4.15%

Table 5.4: Results InceptionV3

Figure 5.13: AugmentedIn-
ceptionV3

Figure 5.14: UnAugmentedIn-
ceptionV3
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Figure 5.15: AugMented
InceptionV3 ConMatrix

Figure 5.16: UnAug-
Mented InceptionV3
ConMatrix

5.5 DenseNet-121 Implementation Result

Densenet-121 has a validation rate of 96.01% and an accuracy rate of 98.55% when
it is not an enhanced version. The findings of the validation reveal that the augmen-
tation led to an increase from 83.91% to 94.05%. The F1 Score, recall, and accuracy
are all around 92.00%, which indicates that performance indicators have shown sig-
nificant gains as a result of augmentation. With augmentation, the validation loss
goes from 38.06% to 14.84%, a significant drop.

DenseNet-121 UnAugmented Augmented
Accuracy 98.55% 96.01%
Validation Accuracy 83.91% 94.05%
Test Accuracy 78.00% 92.00%
F1-score 73.00% 92.00%
Recall 78.00% 92.00%
Precision 81.00% 94.00%
Validation Loss 38.06% 14.84%

Table 5.5: Results DenseNet-121

Figure 5.17:
AugmentedDenseNet-
121

Figure 5.18:
UnAugmentedDenseNet-
121
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Figure 5.19: AugMented
DenseNet-121 ConMa-
trix

Figure 5.20: UnAug-
Mented DenseNet-121
ConMatrix

5.6 DenseNet-201 Implementation Result

The accuracy of Densenet-201 is 98.31% when it is not enhanced and 99.34% when
it is equipped with augmentation. Only a slight improvement can be seen in the
validation findings, which go from 96.65% to 98.81% with augmentation. The F1
Score, recall, and accuracy are all around 99.00% with augmentation, which indi-
cates that performance measures continue to be at a consistently good level. With
augmentation, validation loss drops from 9.96% to an astounding 5.02%, which is a
significant improvement.

DenseNet-201 UnAugmented Augmented
Accuracy 98.31% 99.34%
Validation Accuracy 96.65% 98.81%
Test Accuracy 91.50% 99.10%
F1-score 91.00% 99.00%
Recall 91.00% 99.00%
Precision 93.00% 99.00%
Validation Loss 9.96% 5.02%

Table 5.6: Results DenseNet-201

Figure 5.21:
AugmentedDenseNet-
201

Figure 5.22:
UnAugmentedDenseNet-
201
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Figure 5.23: AugMented
DenseNet-201 ConMa-
trix

Figure 5.24: UnAug-
Mented DenseNet-201
ConMatrix

5.7 Inception-Resnet-V2 Implementation Result

The accuracy of Inception-Resnet-V2 is 99.28% when it is not enhanced and 99.69%
when it is equipped with augmentation. An increase from 94.25% to 98.81% is
shown in the validation findings during the augmentation process. The F1 Score,
recall, and accuracy are all around 99.00%, which indicates that the performance
indicators showed minor gains with the addition of the augmentation. Through the
use of augmentation, the validation loss is reduced from 15.31% to 5.85%.

Inception-Resnet-V2 UnAugmented Augmented
Accuracy 99.28% 99.69%
Validation Accuracy 94.25% 98.81%
Test Accuracy 90.00% 99.10%
F1-score 90.00% 99.00%
Recall 90.00% 99.00%
Precision 92.00% 99.00%
Validation Loss 15.31% 5.85%

Table 5.7: Results Inception-Resnet-V2

Figure 5.25:
AugmentedInception-Resnet-
V2

Figure 5.26:
UnAugmentedInception-
Resnet-V2
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Figure 5.27: AugMented
Inception-Resnet-V2
ConMatrix

Figure 5.28: UnAug-
Mented Inception-
Resnet-V2 ConMatrix

5.8 Custom Model Implementation Result

The Custom CNN model achieves an un-enhanced accuracy of 78.80% and an aug-
mented accuracy of 95.95%. Validation involves determining whether or not the
model is accurate. The accuracy of validation is superior to both, with 86.00% of
the data being unaugmented and an astonishing 97.84% of the data being enhanced.
In terms of F1 Score, recall, and accuracy, there is a consistent relationship between
the results obtained with and without augmentation. The F1 Score hovers around
83.00%, recall hovers around 97.00%, and precision hovers around 83.00%. There
is a discernible reduction in validation loss as a result of augmentation, which goes
from 42.33% to 0.081%.The augmented dataset eliminates the overfitting problem
in the unaugmented dataset.

Custom Model UnAugmented Augmented
Accuracy 78.80% 95.95%
Validation Accuracy 86.00% 97.84%
Test Accuracy 83.00% 96.93%
F1-score 83.00% 97.00%
Recall 83.00% 97.00%
Precision 83.00% 97.00%
Validation Loss 42.33% 0.081%

Table 5.8: Results Custom Model

Figure 5.29: Augmented-
Custom Model

Figure 5.30: UnAug-
mentedCustom Model
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Figure 5.31: AugMented Custom
Model ConMatrix

Figure 5.32: UnAugMented Cus-
tom Model ConMatrix

5.9 Observation of Models and Parameters

5.9.1 Observation

Below we can see the observations of Accuracy,F1 and ValidationLoss for Augmented
and unaugmented Dataset :

Figure 5.33: Augmented Figure 5.34: Unaugmented

Figure 5.35: F1-score Figure 5.36: Validation Loss

Through the use of figures 5.33 and 5.34, we are able to see the accuracy of the
training, testing, and validation accuracy for both the un-augmented and enhanced
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versions of the models that were utilized.It is clear that the accuracy was not up to
par before to the application of augmentation, but after the application of augmen-
tation, there was a significant improvement in the accuracy.

Again,When it comes to classification jobs, the F1 score is a really essential indi-
cator. The class imbalance and performance comparison are both easier to manage
as a result.It is helpful for classification in both binary and multi class systems.Its
sometimes more important than the accuracy for class identification.After augmen-
tation we can see in figure 5.35, our F1 score has changed drastically.

Validation Loss is a very crucial metric for evaluating CNN models. It helps us
to detect the over fitting or under fitting issues.To overcome over fitting we used
augmentation and In figure 5.36 we see the differences between the augmented and
un-augmented data set.

5.9.2 Model Parameters

Model Name Total Parameters
Custom 1,997,124
VGG16 14,979,396
ResNet50 24,638,852
InceptionNetV3 22,853,924
InceptionresNetV2 55,125,732
MobileNetV2 2,915,908
DenseNet121 7,564,356
DenseNet201 19,307,588

Table 5.9: Parameters

In 5.9 figure, those models who have less accuracy than our custom CNN model,
we have trained those models but we can observe much more parameters on those
models. Also, on the other side, those who have just 1 percentage of better accuracy
than our custom CNN model, we have also trained those models and get more
parameters than our custom CNN model. So, the time complexity of our custom
model is better than other models.
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Figure 5.37: Comparison of
Worst Models

Figure 5.38: Comparison of Bet-
ter Models

Figure 5.39: Comparison of Different Models
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Chapter 6

Conclusion

We have built an unique CNN with an architecture that consists of five convolutional
layers and two dense layers. This CNN will be able to identify three different types
of illnesses with healthy leaves.We trained several different pre-trained CNN mod-
els, including ResNet-50, VGG16, MobileNet-V2,Inception-V3, InceptionResNet-
V2, DenseNet-201 and DenseNet-121 through its paces by utilizing a dataset of
photographs that included both healthy and damaged citrus leaves. The suggested
model, which is based on a CNN, is able to differentiate between citrus leaves that are
healthy and unhealthy. We have expanded our dataset and trained with our custom
model,because we were facing overfitting issue before augmentation which was re-
solved afterwards.When we apply the supplemented dataset to the pre-trained mod-
els, with the exception of InceptionResnet-V2, which has high accuracy of 99.00%
for training, testing, and validation, the other models show high accuracy for train-
ing but lower accuracy for testing and validation.Our Custom Model gave validation
accuracy of 97.84% using 20 epochs.

6.1 Limitation

The level of accuracy that the model that we attempted to construct is capable
of achieving is superior to the one that it presently achieves.We were unable to
solve this issue because there was insufficient data supplied.It is possible that the
outcome will be greater if we include additional data in the dataset.It is possible to
find solutions to the challenges that we are now facing if we are able to make use of
additional data.Then we will be able to train and test with greater precision.

6.2 Future Work

In the future, we will be working on this research with the goal of enhancing the
performance of our model beyond what it already possesses.We aim to construct
the model in such a manner that it is capable of identifying a large number of
illnesses that are present on the leaves of citrus fruits.In addition, we want to work
on enhancing the dataset by manually collecting photographs by visiting farms and
nurseries, which provides us with the opportunity to get better results with our
model.In addition, we intend to develop a website that will allow individuals to
upload pictures of their plants in order to determine whether or not they are affected.
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