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Abstract

Flooding is a complex phenomenon that, due to its nonlinear and dynamic charac-
ter, is difficult to anticipate. As a result, the prediction of floods has emerged as a
critical area of study in the field of hydrology. Numerous researchers have handled
this topic in various ways, spanning from physical models to image processing, how-
ever, the time steps and precision are insufficient for all applications. This report
looks at machine learning approaches for forecasting weather conditions and crite-
ria and assessing the related margins of uncertainty. The evaluated outputs enable
more accurate and precise flood prediction for a variety of applications, including
transportation systems.
Through the exploration of innovative approaches to flood forecasting, machine
learning algorithms have emerged as a potential solution. Up-and-coming methods,
including ANNs, SVMs, and Random Forests, have shown impressive performance in
identifying intricate patterns and connections in both weather and hydrological data.
By leveraging past weather and water information, these algorithms can generate
advanced predictions of future conditions and anticipate possible flood occurrences.
Responding to emergency scenarios can be made more efficient and beneficial by
exploiting machine learning capabilities and advanced sensor data to more accurately
predict and prepare for the devastation caused by floods, and more easily deliver
aid to flood affected regions.

Keywords: Flood; Machine Learning; Prediction
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Chapter 1

Introduction

1.1 Problem Statement

Floods all over the world have had a significant negative impact on the economic
and social life. Vietnam has seen the death of over 90 people and the disappearance
of 34 others. After the flooding of 10,000 acres of farmland, 100 villagers in Laos
were devastated by the impact. In Cambodia, there were 25 fatalities and 40.000
displaced people. According to disaster management authorities, the last year alone
1 million Bangladeshis over 13 districts were affected by flooding. Numerous north-
ern districts of the nation were flooded as a result of the country’s severe rains and
those in the river catchments of the neighbouring country of India. While another
7,31,958 people are still without access to safe drinking water, more than 3.3 million
people have been evacuated from flood-affected areas. 41 of the 93 fatalities that
have occurred since June 2020 have been children, with drowning accounting for the
majority of these deaths.
Despite floods being a regular yearly occurrence the damage caused by these nat-
ural disasters, recovery is not easy. Each severe flood brings back the same prob-
lems. Floods have a wide range of effects, including both social and economic ones.
It’s critical for water management, environmental challenges, and social safety to
predict river water levels after significant rain. For these purposes, mathematical
models based on statistical analysis or physical considerations have been created.
The forecasts they offer are time-consuming and imperfect in both situations. Flood
management technology dates back thousands of years, from simple dams and levees
to the modern day. But because floods are a natural occurrence, the inherent ran-
domness of the natural world prevents them being totally predicted using statistical
analysis. Thus machine learning provides a more effective strategy to predict floods
and manage their ill effects.

1.2 Aims and Objectives

This research aims to develop and implement machine learning techniques for accu-
rate and timely flood forecasting. Our primary goals are as follows:

• To identify the most appropriate machine learning algorithms for flood pre-
diction based on the analysis of the collected data by developing and training
machine learning models using the preprocessed data, taking into account
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various algorithms including Decision Tree classifier, K-neighbour classifier,
Logistic Regression, Naive Bayes and Random Forest

• To contribute to the field of flood prediction by utilising the potential of ma-
chine learning techniques to improve accuracy and provide early warnings for
flood-prone areas, allowing disaster relief to take a proactive stance rather
than the current reactive stance

1.3 Background Information

The South Asian population eagerly await the arrival of the monsoon season, every
summer. Between June and October, the region experiences more than 70% of its
annual rainfall. Rains that are unusually heavy nearly always signal calamity. Occa-
sional droughts occur when rain falls too little or too late. When there is too much
rain, vast swaths of land are washed away. This year has already been disastrous for
sections of Bangladesh and India. Rivers break their banks due to unusually heavy
rainfall in May and June. By June 22nd, 83% of Sylhet and 90% of Sunamganj, two
districts in Bangladesh’s north-east that are home to 6 million people, were entirely
submerged. Authorities and humanitarian workers are desperately attempting to
reach more than 9 million people throughout Bangladesh and the neighbouring In-
dian regions of Assam and Meghalaya. At least a hundred of them are believed to
have perished, with roughly 30 of them dying in Bangladesh. In the following days,
the death toll is virtually expected to rise. However, considering the intensity of the
floods, it is less than what would have been predicted. Heavy rain and flash floods,
for example, killed more than 180 people in Belgium and Germany in July 2021,
countries far richer and less populated than Bangladesh. The number of deaths
linked with such calamities has dropped considerably in Bangladesh. Cyclone Bhola
killed an estimated 300,000 to 500,000 people in 1970. Cyclone Amphan, predicted
to be the most severe cyclone to form in the Bay of Bengal in two decades, killed
roughly 30 people in 2020. June 2020 saw massive flooding, caused by an extended
and severe monsoon as well as upstream flooding, affecting 5.4 million people in the
north/central regions. About 37% of the country’s entire area was flooded, affecting
almost 33 districts, and it was deemed the country’s longest flooding event in the
past 22 years.
People in numerous regions saw repeated floods till the beginning of October 2020
as a result of monsoon rains and severe rainfall upstream [16]. Housing, clean water
accessibility, access to proper hygiene, and livelihoods were all severely damaged in
the majority of the impacted areas. According to a report from the Bangladesh
Ministry of Disaster Management and Relief (MoDMR) dated 2 August 2020, there
were 1,059,295 marooned homes and 41 fatalities as a result of the prolonged floods,
which affected about 5,448,271 people in 33 districts. In addition, the Ministry of
Agriculture (MoA) reported that 42 million dollars’ worth of crops, 125,549 hectares
of agricultural land, and 83,000 hectares of paddy fields were damaged. Fisheries
and cattle were also moderately to severely damaged by the floods. The Depart-
ment of Livestock Service (DLS) estimates that the industry lost 16,537 hectares of
grassland and USD 74.5 million in livestock. The Department of Public Health and
Engineering (DPHE) reports that 100,223 latrines and 928,60 tube-wells were elimi-
nated. In eight flood-affected districts in Rangpur division, rivers have deteriorated
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3,745 hectares of land, according to the north zone office of the Water Development
Board. The COVID-19 pandemic, protracted flooding, and monsoon rains all made
the population’s predicament worse.
How has Bangladesh mitigated the impact of harsh weather? Floods regularly in-
flict severe damage to numerous infrastructure and socioeconomic system elements,
resulting in large direct and indirect economic losses. River flow has complicated
behaviour that is influenced by soil qualities, land use, temperature, river basin,
snowfall, and other geophysical factors. It is essential to correctly estimate floods
and create flood mapping as a consequence to plan for emergency responses. It is
currently a popular study area in natural disaster prediction and risk management.
Physical, statistical, and computational intelligence/machine learning algorithms
are the most popular forms of prediction models.
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Chapter 2

Related Work

Due to the scarcity of research on this topic with respect to Bangladesh, our read-
ings focused primarily on other papers that utilised machine learning algorithms for
flood prediction and their implementation and findings with those algorithms.
The ANN is a computational model developed to simulate the cognitive processes
of the human brain and its capacity for acquiring new skills [2]. The system is de-
signed to acquire the ability to identify and extrapolate the correlation between a
given set of input variables and corresponding output values. In recent years, there
have been advancements in ANN technology, transforming it into an applied mathe-
matical technique that exhibits certain resemblances to the human brain [4]. ANNs
possess two fundamental attributes that resemble those of the human brain: the
capacity to acquire knowledge and the ability to extrapolate from limited data. Su-
lafa [15] developed a computational model of a neuron that is capable of performing
basic computations. The neuron gets information from its input links and utilises
these values to calculate the activity level. A neuron establishes connections with
other neurons through its input and output synapses. Every individual neuron that
receives input possesses an activity value, whereas each link that transmits informa-
tion between neurons is assigned a corresponding weight. Chonglin and Kwok [7]
proposed the development of ANN-GA model. This approach aims to leverage the
unique qualities of both the ANN and GA methods, potentially resulting in improved
performance. The incorporation of an ANN model has the potential to expedite the
convergence process and improve the local search capabilities of a GA model. The
approach utilises GA to optimise the initial parameters of ANN as an initial phase,
afterwards followed by training using a traditional ANN. The primary goal of the
genetic algorithm sub-model is to identify the most optimal parameters that will
result in the achievement of minimal cumulative errors between the measured data
and the computed values. The model proposed by Marina et al. [5] is based on a
feed-forward neural network architecture, employing a logistic activation function.
The network operates in a feed-forward manner, meaning that the transmission of
signals occurs in a unidirectional manner, without the presence of feedback loops
between nodes. This model receives input information through specialised input
nodes that are distinct from the processing nodes. This input information is then
transmitted to a set of inner hidden nodes. The University of Stuttgart developed a
software SNNS which was used to implement and calibrate this model. Li-Hua and
Jia [12] used four distinct algorithms: Hebb, Delta, Kohonen, and BP computation.
This model incorporates both forward and backward propagation during the learn-
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ing process. In this paper, the researchers normalised the original data to accelerate
convergence.
Khabat et al. [20] conducted a comparative analysis of four DT algorithms in the
context of flash floods. The LMT algorithm integrates both DT and LR techniques
where it is used at the internal nodes and leaves respectively [3]. In addition, the re-
searchers implemented the REPT technique which is a combination of REP and DT
methods. It produced high accuracy as it has the ability to simplify the structure of
the tree and reduce overfitting issues [10]. Additionally, the researchers conducted a
comparison of NBT, which is well recognized as a popular categorization technique
due to its simplicity and interpretability. The aforementioned approach necessitates
minimal computer memory and exhibits a rapid learning capability when trained on
a specific dataset [18]. Moreover, the ADT algorithm is used to boost the growth
of the tree for numeric prediction [17]. It is simple and robust as it formulates a
prediction based on a single input feature. BFT is a model presented by Binh et al.
[30]. In this model, the node that results in the greatest drop in impurity between
the existing nodes for splitting is extended first, therefore being referred to as the
best node. This advantage enables the exploration of novel pruning techniques that
employ cross-validation for the purpose of selecting the optimal number of expan-
sions. Peyman et al. [26] also used this model in their research with the addition of
other two models, BBFT and DBFT, to forecast the chances of flooding.
SVM is a linear regression approach which is only limited to linear functions as
the name suggests. There are specific assumptions which are trained according to
optimization theory. Compared to other learning machines, this one is adjusted in
order to maximize the capacity of the system to generalize. The goal of this ap-
proach is to find a specific linear function which best dissolves a collection of training
points. The method tends to cut down the total squared variance of the data and
the parameters are chosen accordingly. Some limits are introduced to allow for some
divergence between the ultimate objectives and the function. Of all the linear re-
gression methods, the most used one is 1-SV regression, where points outside the
hypothesis functions are taken as slack variables which increase in value away from
the function tube. A flood prediction model consisting of two stages is presented
by Gwo-Fong et al. [13] working with SVM. The first step concerns forecasting
rainfall, taking into consideration the relative features and observation of rainfall.
The next stage concerns forecasting runoff where the observation of runoff and the
predicted rainfall are worked with. 16 Taiwanese typhoons contributed to the final
dataset. The SVM model forecasted correct rainfall and runoff with a 1 to 6 hours
lead time, particularly for peak runoff values. Flood forecast performance improves
significantly with a 4 to 6 hours advance time. Finally, the SVM model gives an
operational benefit during typhoon situations by boosting prediction lead time. In
a different work, Jun Wan [21] sought to integrate SVM models in order to create
another forecasting model of urban floods. The SVM model gathered its final data
from a specific numerical model. The results from the SVM model were differen-
tiated from the other and the final extent of the difference was put to value. The
real-time urban flood forecast system was constructed using this technique with min-
imum monitoring data and expense. Han et al. [8] provide a look at the watershed
of Bird Creek with SVM and tackle several critical challenges in the development
and implementation of SVM regarding flood forecasting. This research demonstrates
that choosing the best input combinations and parameters from a huge number of
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options is a serious issue for any modeler utilizing SVMs. Comparisons with several
benchmarking models have been made. These illustrate that SVM can outperform
all of them in the test data set, although at a high cost in terms of effort and time.
In contrast to other results which were found beforehand, this work demonstrates
that kernel functions, both linear and non-linear can outperform one another under
various conditions. It also reveals an intriguing conclusion to how SVM reacts to
different rainfall inputs. High and low rainfall inputs were seen to produce responses
that were not similar. This could be a highly valuable technique to demonstrate the
behavior of a model run by SVM.
Logistic regression analysis takes on two variables, a dichotomous and polychoto-
mous response variable and a polychotomous predictor variable, y and x respectively
and figures out the association between them. The approach is based on an ordinal
or normal scale with a few categorical factors coming into play. ‘Success’ and ‘Fail-
ure’ are the two categories for the response variable y. The success class is assigned
a value of 1 whereas, the failure class is assigned a value of 0. The Bernoulli Distri-
bution is followed for every specific observation. Logistic regression makes way for a
route of link between the causes of floods and the occurrences themselves. Logistic
regression assesses the floods and picks the most suitable model to link the variables,
both dependent and independent. Ahmed et al. [19] aims for flood susceptibility
mapping in the Gaza Strip’s southern parts with the use of logistic regression. The
logistic regression makes the fundamental assumption that a flood will occur in the
future. The association between flood incidence and its dependency on many inde-
pendent conditioning factors was determined using logistic regression. The logistic
regression fitted parameters were utilized in the Geographic Information Systems
(GIS) to generate a flood susceptibility map. In a similar research, Jati [23] studied
to offer information about the primary cause elements and anticipate locations in
Indonesia that are likely to experience flooding is required. The study employs a
logistic regression analysis mathematical model and the use of GIS. It concerns the
usage of certain variables that lead to flooding, such as flow accumulation, land use,
slope and most importantly, rainfall. The prediction of flood disasters reached an
accuracy rate ranging from 85% to 94% approximately, with the usage of logistic
regression on the model. In addition to the above two, Lee and Kim [29] presented
a method to predict the real-time extent of floods. This was solely done to decrease
the amount of time required to issue an alarm after a flood occurs. This technique
aims to determine a discriminant, one for each regional grid, for probabilities of
floods with the use of logistic regression before forecasting extents of floods in Ko-
rea based on rainfall runoff. This calculation was done by a two-dimensional flood
inundation model. A value of 1 was produced if a grid was flooded and a value of
0 for when it was not. The discriminant was filled with these values to calculate
predicted danger of flood in a grid. With the use of this method, scenario rainfall
reached an accuracy rate of 84% whereas for real rainfall, it was slightly lower on
75%.
The K-Nearest Neighbor (K-NN) model is a machine learning technique that is fre-
quently used for classification and regression problems and is motivated by the idea
of similarity between data points. Based on the average of the K-nearest data points
in the feature space or the majority class, this model seeks to generate predictions.
In the worlds of statistics and pattern recognition techniques, nearest-neighbor tech-
niques have been thoroughly researched. Despite their inherent simplicity, nearest-
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neighbor algorithms are considered versatile and robust [9]. The capability to create
predictions based on proximity to known data points and the capacity to assimilate
knowledge from the dataset are two fundamental characteristics that K-NN inherits
from human cognition. The weighted K-NN technique put out by Altman [1] is
a major expansion of the conventional K-NN paradigm. This variation gives each
neighbor a weight based on how close they are to the query point, giving closer neigh-
bors a bigger impact on the prediction. The predicted accuracy of K-NN models has
been improved thanks to Altman’s method, particularly in situations where some
neighbors are more important than others. The work of Deegalla et al. [11] shows
how K-NN and dimensionality reduction methods can be combined. To enhance the
algorithm’s performance on high-dimensional datasets, they presented a technique
that combines Principal Component Analysis (PCA) with K-NN. By lowering the
dimensionality of the feature space while retaining crucial data, this method solves
the curse of dimensionality, a problem that frequently arises in K-NN. K-NN has
found practical use in the context of time series forecasting, as shown by Wu et al.
[14]. Their research focuses on modifying K-NN to forecast time series data while
taking into account the sequential character of time series data. The flexibility of
K-NN in handling various data sources was illustrated by their sliding window-based
technique, which uses historical time series segments to forecast future values. Ad-
ditionally, the use of K-NN models with imbalanced datasets has been investigated.
A method for addressing class imbalance issues was introduced [6] that uses the Syn-
thetic Minority Over-sampling Technique (SMOTE) in conjunction with K-NN. For
the purpose of classifying minorities, this combination has been shown to improve
K-NN performance.
Gradient Boost Algorithm utilizes an ensemble which is used to simplistically elimi-
nate bias, noise, and variance which dilute the effectiveness of the prediction model
[22]. Its relevance extends to practical applications where accuracy and model in-
terpretability are paramount. Two key characteristics of gradient boosting are its
iterative model construction process, where each new tree builds upon the mistakes
of the preceding one, and its capacity to represent intricate, non-linear relationships
in data [32]. These qualities support its adaptability in handling a range of jobs.
Gradient Boosting reduces the errors caused by earlier decision trees by building de-
cision trees one after the other and fine-tuning their parameters. Gradient descent
and a loss function are used in this technique to direct the optimization process, pro-
ducing ever-improved models [32]. Researchers have investigated Gradient Boosting
in combination with oversampling, undersampling, and cost-sensitive learning ap-
proaches to address class imbalance issues [31]. These methods seek to equalize the
attention paid to each class during model training. Gradient Boosting has advanced
machine learning from its origin to the present, always adapting to suit the needs
of complicated data processing. It is a great asset for predictive modeling and data-
driven decision-making due to its ongoing relevance and adaptability. Qian et al.
[24] trained 14 ML models based on 10 and 2 features where the 2 features are only
derived from a PCA. In the 10 features, Fine KNN obtained the least accuracy while
Subspace Discriminant, Linear SVM and Quadratic SVM had equally the highest
accuracy. For the other modification, Medium tree produced the worst accuracy
and in this case, only Linear SVM and Subspace Discriminant models had the best
accuracy. They have constructed both the SVM and Subspace ensemble models in
Matlab using functions like fitcsvm and fitcensemble respectively. Kruti et al. [28]
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used algorithms like DT, GB and RF to train their models to give the best possible
forecasting flood primarily occurring in certain regions of India. Then they utilised
this data to alert residents via Android applications for any risks. Suresh et al. [25]
used the Deep Neural Network as one of their algorithms to train their model. This
algorithm gave better results in comparison to the SVM and KNN on the basis of
their data set.
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Chapter 3

Methodology

3.1 Workflow

We initiate the workflow by collecting and then organizing the data. After the
formation of the collected data, it is pre-processed. Algorithms like Logistic Regres-
sion, Decision Tree, k-Nearest Neighbor, Random Forest and Gaussian Naive Bayes
are implemented which is then later evaluated based on accuracy, precision, error
etc. to put into comparison which one of the algorithm produces the best output
to give a better result. Therefore, we can determine the optimal model for flood
prediction based on historical data. Figure 3.1 is a block diagram illustrating the
methodology’s workflow in detail.

Figure 3.1: Top Level Overview of the Proposed Method
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3.2 Dataset Description

The dataset used in this study, comprising weather data from multiple weather
observation stations across Bangladesh since at least 1990, underwent a rigorous
cleaning process to ensure data quality and reliability. The dataset consisted of ap-
proximately 200,000 data points, encompassing various weather parameters relevant
to flood prediction.
The weather data chosen for this research was obtained from Bangladesh Meteoro-
logical Department (BMD) and Bangladesh Water Development Board (BWDB).
The dataset obtained from BMD consisted of most of the following parameters:
rainfall, minimum temperature, maximum temperature, average temperature, cloud
coverage, wind speed, wind direction, Humidity. The BWDB provided the max-
imum, minimum and average water-levels for chosen districts. The dataset was
purchased through official channels and government portals after submitting docu-
mentation of motivation and acknowledgement from the university. After approval
of the concerned government entities, the data was made available for purchasing
for research purposes.

Table 3.1: Variables Used in the Dataset and their Respective Units

Rainfall Rainfall in mm.
Humidity Relative Humidity in %
Tmax Maximum temperature in ◦C
Tmin Minimum temperature in ◦C
Tavg Average temperature in ◦C
Wind spd Average Wind Speed in Kmph
Wind dir Wind Direction
Cloud amt Cloud Amount
Area threshold Danger-level in m.
max wl Maximum Water Level in mPWD
min wl Minimum Water Level in mPWD
avg wl Average Water Level in mPWD
Date Day-Wise timestamp from 1/1/1990 to 31/12/2022
Flood Flag of 1 or 0

BWDB and other government departments refer water levels to the Public Works
Datum (PWD). PWD is a horizontal datum believed originally to have zero at a
determined Mean Sea Level (MSL) at Calcutta. PWD is located approx. 1.5 ft below
the MSL established in India under the British Rule and brought to Bangladesh
during the Great Trigonometric Survey. Flooding occurs when water level exceeds
danger level.1 representing danger level at a river location is the level above which
it is likely that the flood may cause damages to nearby crops and homesteads. In a
river having no embankment, danger level is about the annual average flood level.
In an embanked river, danger level is fixed slightly below design flood level of the
embankment. The danger level at a given location needs continuous verification.
Flood Label indicated Flood occurred when 1 and 0 representing no flood occurred.
The districts chosen were based on the random sampling across the four basins of
Bangladesh according to the annual flood report by Bangladesh Water Development
Board (BWDB) [33]. The Basins are Brahmaputra Basin, Ganges Basin, Meghna
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Basin, South East Hill Basin and about districts from each basin were chosen across
the basin with the most stations and day-wise historical data for the last thirty
years.
The data obtained from the BMD was parameter-wise. After the purchase, the
data was made available in a compressed format, from which the extracted dataset
for weather parameters consisted of CSV files for each of the parameters. Each
Parameter would have selected districts as multiple headers throughout the file
and timestamps as columns with day wise data in rows. The data was formatted
differently for each of the CSV files present in the folder. On the other hand, the data
received from BWDB consisted of CSV files with the water-level, river and station
name for each district and the data was row wise for the last thirty years for the
respective district. The total dataset consisted of 219,602 rows and upon grouping
Brahmaputra basin consisted 86,004 rows, Ganges basin consisted of 36,828 rows,
Meghna basin consisted of 35,912 rows, South East Hill Basin consisted of 60,858
rows.

Figure 3.2: Basin Map of Bangladesh with Water Level Gauge Stations [34]
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3.3 Data Preprocessing

Figure 3.3: Distribution Across the Basins

In order to run machine learning models the data was needed to be converted to a
flat file which is a single table of data which consists of all the attributes for flood
prediction such as rainfall, minimum temperature, maximum temperature, average
temperature, cloud coverage, humidity, wind speed, wind direction, water-level and
a flag of whether flood occurred or not as a label. Each csv file was parsed individu-
ally to form a combined dataset. The combined dataset consisted of date, attributes
and water level as features for the dataset. To flag whether flood occurred or not, a
threshold water-level was extracted from the annual flood report of BWDB and if
the water-level for an instance of the day crossed that threshold, the instance was
recorded as flooding.
To enhance data integrity, irrelevant parameters with no significant correlation to the
flood prediction results, such as weather station coordinates, were removed from the
dataset. Furthermore, all weather data variables were standardized to a consistent
format and unit of measurement, ensuring comparability across different features.
During the cleaning process, duplicate data instances were identified and eliminated
to prevent any bias in the analysis. Outliers, which could potentially distort the
modeling results, were detected using appropriate statistical techniques and either
removed from the dataset or corrected to maintain data integrity.
Within the dataset only wind direction feature which contains categorical dataset.
To train machine learning models the categorical values must be converted to numer-
ical values. Using label encoder wind direction values were encoded and integrated
into the dataset.
A portion of the dataset contained missing values. To deal with these, we used the
SimpleImputer from the sklearn library to impute these missing values. Mean based
imputation was used for numerical values such as temperature and water level, while
mode based imputation was used for quantitative values such as wind direction.
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Furthermore, a copy of the complete dataset before imputation was taken and di-
vided into four smaller datasets, each corresponding with the different flood basins
in Bangladesh. Having been divided, the missing values were filled in using those
imputation techniques. By employing exploratory data analysis and implementing
these data cleaning procedures, we ensured the reliability and quality of the dataset
for subsequent analysis. The cleaned dataset was then utilized to train and evaluate
various machine learning models for flood prediction in Bangladesh. However, the
cleaned combined dataset and basin dataset were imbalanced, which were resolved
using stratifying during training.
The dataset was split into 2 portions, train and test sets. The train set received
75% of the data while the test set was 25%. To ensure that the ratio of positive
and negative labels was retained, stratification was implemented. Stratification Is
used to sort data to ensure that the proportion of label values is the same across
the train and test sets. Since the dataset contains unequal numbers of positive and
negative labels, without stratification, a training set could be produced that does
not accurately portray the qualities of the entire dataset.

3.4 Classification

The dataset utilized in this study primarily consisted of weather data, which is a
crucial factor in flood prediction. The choices in the classifiers used were made with
certain considerations in mind:

3.4.1 Logistic Regression

Logistic regression excels at classifying data where there is a binary outcome, in
our case whether or not there will be a flood. Logistic regression provides inter-
pretable coefficients, allowing us to assess the influence of different predictors on
flood prediction. Moreover, logistic regression assumes a linear relationship between
the parameters of our dataset and the log-odds of the flood occurrence, which is a
reasonable assumption for many flood-related variables. This characteristic of logis-
tic regression aligns well with the objectives of our study, enabling us to analyze the
impact of individual predictors on the flood likelihood accurately and effectively.

Figure 3.4: Logistic Regression Mechanism
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3.4.2 Decision Tree Classifier

Decision trees, on the other hand, offer distinct advantages for analyzing complex
relationships within the flood prediction dataset. They excel at capturing nonlinear
relationships that may exist between predictors and the target variable. By em-
ploying decision trees, we can uncover intricate patterns and interactions among the
variables, thereby enhancing our understanding of the underlying decision-making
process. Moreover, decision trees provide an easily interpretable structure in the
form of if-else rules, allowing us to gain meaningful insights into the factors influ-
encing flood prediction.
Another strength of decision trees lies in their ability to naturally handle categor-
ical and ordinal features without the need for explicit encoding. This capability
makes decision trees particularly well-suited for datasets that include such types of
variables, as they can efficiently incorporate them into the modeling process.

Figure 3.5: Decision Tree Classifier Mechanism

3.4.3 KNN

This results of these algorithms were further supported by the implementation of
the K-Nearest Neighbour (KNN) algorithm. The KNN model was also trained using
the value of weather parameters and flood occurrence as the label. The KNN clas-
sifier fit the data points to the training dataset and the performance of the model
is compared using the accuracy scores from the test dataset [27].
By leveraging the strengths of logistic regression, decision tree classifier and K-
Nearest Neighbour our aim was to create a comprehensive flood prediction model
that considers both linear and nonlinear relationships among predictors. This ap-
proach allows us to capitalize on the interpretability of logistic regression while
harnessing the complexity-capturing capabilities of decision trees and K-Nearest
Neighbour. Through this combined methodology, we can develop a robust and ac-
curate flood prediction model that not only accounts for various predictors but also
maintains interpretability, essential for effective communication of research findings
in the academic realm.
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Figure 3.6: K-Nearest Neighbor Mechanism

3.4.4 Random Forest

Like forests consist of numerous trees, the random forest algorithm comprises of
multiple decision trees to float through the branch and leaf nodes before coming to
a final conclusion. The sole purpose of this algorithm in our flood prediction is to
significantly improve our overall accuracy by taking advantage of the ability of the
algorithm to work with complex datasets. Random forest efficiently handles both
classification and regression problems simultaneously, enabling us to deal with both
the continuous and the categorical variables of our dataset. Each decision tree of
the forest is not concerned with all the features of the flood data, thereby cutting
down feature space, increasing diversity and boosting stability. These benefits were
vital in shaping up the model in order to accurately predict an incoming flood.

Figure 3.7: Random Forest Mechanism
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3.4.5 Gaussian Naive Bayes

P (xi | y) =
1√
2πσ2

y

exp

(
−(xi − µy)

2

2σ2
y

)
(3.1)

Gaussian Naive Bayes is an excellent option because the features of our dataset are
continuous. In general, Naive Bayes is renowned for being simple and effective. It
can function well even with a minimal amount of data and is quick and simple to
implement. In addition to class predictions, Gaussian Naive Bayes also produce
probabilistic predictions, which are useful for figuring out how confident the model
is in its predictions. The Gaussian Naive Bayes algorithm has an accuracy of 0.692
and an error of 0.308 for our model.

Figure 3.8: Gaussian Naive Bayes Mechanism
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Chapter 4

Experimental Results and Analysis

4.1 Experimental Setup

This experiment’s training and testing methodologies are developed using Python
libraries including pandas, matplotlib, numpy and sklearn. The Google Colabora-
tory environment is utilized for training and accessing the models. Each of the five
machine learning algorithms was run on the full dataset and then on the four dif-
ferent flood basin datasets.

4.2 Performance Analysis

Several performance evaluation metrics, including accuracy, precision, and F1-score,
are used to compare and validate the performance of the model. Although accuracy
is the most common metric used in classification tasks, we evaluated our model
using multiple metrics from various angles. The following equations can be used to
express the various evaluation metrics used in this study.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

F1− Score =
2×Recall × Precision

Recall + Precision
(4.4)

4.2.1 Decision Tree Classifier

The decision tree classifier (Table 4.1) yielded a testing accuracy of 82.9%, a testing
recall of 87.5% and a testing precision of 87.4% for the full dataset. The testing
F1 score was a solid 87.4%, costing an error of 17.1% along the way. Pointing out,
the classifier also gave us a highest possible 100% accuracy, recall, precision and F1
score, without any error, for the Meghna Basin. Decision tree also scored highly
for the other 3 basins with accuracies of 78.5%, 97.7% and 96.2% for Brahmaputra,
Ganges and South East Hill Basin respectively. Overall, the algorithm was the most
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reliable right after Random Forest, which we will analyze later, with the second
lowest error and the second highest accuracy, precision and F1 score among the five
algorithms applied.

Table 4.1: Performance Comparison of the Basins Employing Decision Tree Classifier

Decision Tree Classifier Accuracy (%) Recall (%) Precision (%) F1 Score (%) Error (%)
Brahmaputra Basin 78.5 80.0 81.7 80.84 21.5

Ganges Basin 97.7 37.4 41.7 39.43 2.3
Meghna Basin 100 100 100 100 0
South East
Hill Basin

96.2 74.4 77.2 75.77 3.8

Entire Dataset 82.9 87.5 87.4 87.4 17.1

4.2.2 K-Nearest Neighbor

The results obtained from the KNN algorithm were the closest to the ones mentioned
above, obtained from the decision tree classifier. The testing accuracy achieved
was 80.9 percent with an error of 19.1 percent. Moreover, we obtained a testing
recall of 86.2%, a testing precision of 85.8% and an F1 score of 86%. The basin
datasets scored similarly, with Brahmaputra getting accuracy of 78.2%, Ganges
97.4%, Meghna 99.3% and Hill getting 92.9%. Thus, we can say that this algorithm
was almost as suitable for our prediction as the decision tree classifier.

Table 4.2: Performance Comparison of the Basins Employing KNN

KNN Accuracy (%) Recall (%) Precision (%) F1 Score (%) Error (%)
Brahmaputra Basin 78.2 80.0 81.3 80.64 21.8

Ganges Basin 97.4 40.7 36.3 38.37 2.6
Meghna Basin 99.3 87.0 92.3 89.57 0.7
South East
Hill Basin

92.9 53.1 55.3 54.18 7.1

Entire Dataset 80.9 86.2 85.8 86.0 19.1

4.2.3 Logistic Regression

For the Brahmaputra Basin and the Hill Basin, logistic regression(Table 4.3) dis-
played a stable performance with accuracies of over 82.6% and 92.0%. The F1 scores
varied, with the Brahmaputra Basin scoring 86.5% and the South East Hill scoring
8.0%. Their precision and recall also varied were the precision of 77.4% and 33.3%
and recall of 97.9% and 0.01% respectively. For the full dataset, logistic regression
scored very poorly with an accuracy of 69.3%. While logistic regression can be
dependable, it may not work well sometimes. It proved an issue with calculating
the recall and precision scores for the Ganges Basin and caused major errors where
no other algorithms did. However, logistic regression still managed to improve the
score of the 4 basin sets over the full set quite impressively.
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Table 4.3: Performance Comparison of the Basins Employing Logistic Regression

Logistic Regression Accuracy (%) Recall (%) Precision (%) F1 Score (%) Error (%)
Brahmaputra Basin 82.6 97.9 77.4 86.5 17.4

Ganges Basin 98.0 0.0 0.0 Undefined 2.0
Meghna Basin 99.0 80.4 87.7 83.9 1.0
South East
Hill Basin

92.0 0.01 33.3 0.02 8.0

Entire Dataset 69.3 94.1 70.6 80.7 30.7

4.2.4 Gaussian Naive Bayes

For the Meghna Basin, Naive Bayes(Table 4.4) produced impressive results with an
accuracy of 95.7%, recall of 91.4%, and F1 score of 59.0%; however, precision was
lower at 43.6%. Despite an accuracy of 80.1% and a high recall of 89.5% for the
Brahmaputra Basin, the precision was 78.5%, resulting in an F1 score of 83.8%.
With error rates ranging from 4.3% in the Meghna Basin to 21.7% in the Ganges
Basin, Naive Bayes’ performance varied between the basins, suggesting that the
unique features of the data from each basin can have a significant impact on how
well it performs. It also did not score well with the full dataset, receiving an accuracy
of 69.2%. Overall Gaussian Naive Bayes managed to score around average and thus
poses to be not well suited to this type of dataset.

Table 4.4: Performance Comparison of the Basins Employing Naive Bayes

Naive Bayes Accuracy (%) Recall (%) Precision (%) F1 Score (%) Error (%)
Brahmaputra Basin 80.1 89.5 78.5 83.8 19.9

Ganges Basin 90.1 69.2 12.9 21.7 9.9
Meghna Basin 95.7 91.4 43.6 59.0 4.3
South East
Hill Basin

85.9 19.4 16.7 17.9 14.1

Entire Dataset 69.2 93.1 70.8 80.4 30.8

4.2.5 Random Forest

For the Meghna Basin, Random Forest(Table 4.5) received perfect scores of 100%
for every threshold due to overfitting. The accuracy and recall in the Brahmaputra
Basin were strong at 83.1% and 90.7%, respectively, with an F1 score of 85.9%. The
level of recall for the Ganges Basin was lower, at 32.4%, indicating that Random
Forest’s sensitivity to different basins varies. Random Forest scored highest of all
for the full dataset with accuracy of 85.6%, with a recall and precision of 87.9ând
90.6Ôverall, Random Forest was a powerful performer with comparatively low error
rates among the 5 algorithms. This algorithm’s results point strongly that it is a
good candidate for these sorts of datasets and may prove useful in further research.

19



Table 4.5: Performance Comparison of the Basins Employing Random Forest

Random Forest Accuracy (%) Recall (%) Precision (%) F1 Score (%) Error (%)
Brahmaputra Basin 83.1 90.7 81.6 85.9 16.9

Ganges Basin 98.3 32.4 62.8 42.7 1.7
Meghna Basin 100 100 100 100 0.0
South East
Hill Basin

97.1 74.8 87.3 80.6 2.9

Entire Dataset 85.6 87.9 90.6 89.3 14.4

4.3 AUC-ROC Graphs

The ROC curve has two parameters: True positive rate at the y-axis and false pos-
itive rate at the x-axis. So it shows the execution of the models at the classification
thresholds. The AUC measures a classifier’s potentiality to differentiate amidst the
classes. Due to it being both classfication-therehold and scale invariant, it provides
a combined measurement of the performances. Therefore, higher the AUC-ROC
score, the better the model’s capacity to distinguish in-between the positive and
negative classes. Here, Meghna basin achieved the highest AUC scores in all the
models meaning it has the best predictions. The other basins also had decent AUC
scores as most of the value were greater than 0.5 which represents there were some
overlapping but not completely overlapped, otherwise it would have been useless.
Most scores came out to be moderate which ranges from 0.70 to 0.90.

(a) Decision Tree Classifier (b) Gaussian Naive Bayes

(c) K-Nearest Neighbor (d) Logistic Regression
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(a) Random Forest (b) Full Dataset

Figure 4.2: AUC-ROC Graphs

4.4 Confusion Matrix

Confusion matrix is a table of visualization that represents the performance of the
algorithms, which is usually used for classification problems. True Positives (TP):
These are cases in which the model predicted ‘Flood’, and the actual class was also
‘Flood’. True Negatives (TN): These are cases in which the model predicted ‘No
Flood’, and the actual class was also ‘No Flood’. False Positives (FP): These are
cases in which the model predicted ‘Flood’, but the actual class was ‘No Flood’.
False Negatives (FN): These are cases in which the model predicted ‘No Flood’, but
the actual class was ‘Flood’.

4.4.1 Combined Dataset

The confusion matrices for the combined dataset depict the Decision tree was the
most accurate out of the five models, following Random Forest. Decision tree gives
52076 true positives and only 1109 false negatives and 110899 true negatives and
only 617 false negatives whereas Gaussian Naive Bayes and Logistic regression gives
14329 and 14632 false positives respectively. Random Forest also showed promising
results with only 3450 false positives and 4540 false negatives. K-Nearest Neighbor
performed better with only 5336 false positives and 5140 false negatives.

4.4.2 Brahmaputra Basin

Upon grouping the dataset into basins, the results for the Brahmaputra basin sig-
nificantly improved where the decision tree results show 27764 true positives, 135
false positives and 36283 false positives and 321 false negatives. Results for -Nearest
Neighbor and Random forest also improved, showing only 228 and 261 false nega-
tives, similarly 361 and 195 false negatives respectively. The accuracy of the models
improved since most of the data is obtained from the stations in the Brahmaputra
basin.
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4.4.3 Ganges Basin

For the Ganges basin In the case of Decision tree, there are 27,073 true positives.
These are cases in which the model predicted ‘No Flood’, and the actual class was
also ‘No Flood’. In this case, there are 501 true negatives. In this case, there are 0
false positives. In this case, there are 47 false negatives. K-Nearest Neighbor and
Random Forest also showed similar results, but Logistic regression shows 0 false
positives and true negatives while Gaussian Naive Bayes shoes some false positives
and false negatives.

4.4.4 Meghna Basin

Confusion Matrices of Decision Tree, Random Forest and K-Nearest Neighbor for the
Meghna Basin shows 0 false positives and false negatives with, 26031 true positives
and 903 true negatives which is most likely due to overfitting of the data. Gaussian
Naive Bayes and logistic regression performs better in this regard, showing a spread
of 1154 and 103 false positives respectively.

4.4.5 South East Hill Basin

For the South East Hill Basin In the case of Decision tree, there are 41966 true
positives with 52 false positives and 52 false positives. K-Nearest Neighbor, Ran-
dom Forest and Logistic Regression gave similar results for positives but Logistic
regression and Gaussian Naive Bayes gave significant results for true negatives with
3610 and 29887 respectively whereas other models showed a range of 302 to 366.
The model has high accuracy in predicting flood conditions, with a significant num-
ber of true positives and relatively few false negatives. However, it seems to struggle
with predicting ‘No Flood’ conditions accurately, as indicated by the low number of
true negatives and the absence of false positives.
This might be due to the model being well-tuned to recognize patterns associated
with flooding conditions, but may miss some instances due to noise or other unpre-
dictable factors. It could also be that the ‘No Flood’ class is underrepresented in
the training data, leading to a bias in the model towards predicting floods. This is
a common challenge in machine learning and can be addressed through techniques
like resampling or using different evaluation metrics that are more robust to class
imbalance.
From the available data, it appears that the Gaussian Naive Bayes model has a
balance in predicting both ‘Flood’ and ‘No Flood’ events, but with some errors. On
the other hand, the Logistic Regression model perfectly predicts ‘Flood’ events but
fails to predict any ‘No Flood’ events.
This might be due to the models being trained differently or having different assump-
tions about the data. For example, the Gaussian Naive Bayes model assumes that
the features are independent given the class, while the Logistic Regression model
does not have this assumption. If this assumption is violated in the data, it could
lead to poorer performance for the Gaussian Naive Bayes model. On the other hand,
if the Logistic Regression model is overfitting to the ‘Flood’ class, it might fail to
generalize well to the ‘No Flood’ class. These are just potential explanations and
would need to be investigated further.
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(a) Decision Tree Classifier (b) Gaussian Naive Bayes

(c) K-Nearest Neighbor (d) Logistic Regression

(e) Random Forest

Figure 4.3: Confusion Matrices of the Entire Dataset
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(a) Decision Tree Classifier (b) Gaussian Naive Bayes

(c) K-Nearest Neighbor (d) Logistic Regression

(e) Random Forest

Figure 4.4: Confusion Matrices of Brahmaputra Basin
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(a) Decision Tree Classifier (b) Gaussian Naive Bayes

(c) K-Nearest Neighbor (d) Logistic Regression

(e) Random Forest

Figure 4.5: Confusion Matrices of Ganges Basin
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(a) Decision Tree Classifier (b) Gaussian Naive Bayes

(c) K-Nearest Neighbor (d) Logistic Regression

(e) Random Forest

Figure 4.6: Confusion Matrices of Meghna Basin
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(a) Decision Tree Classifier (b) Gaussian Naive Bayes

(c) K-Nearest Neighbor (d) Logistic Regression

(e) Random Forest

Figure 4.7: Confusion Matrices of South East Hill Basin
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Chapter 5

Conclusion

5.1 Conclusion

B. T. Pham et al. [30] used map data to run Decision Tree algorithms on Vietnam
flood history, achieved a result of 93.4%. This is slightly higher than ours but not
by a substantial amount and can be attributed to the difference in data types and
dataset size. However this points to the reliability and usefulness of Decision Tree
as a flood prediction algorithm. Logistic regression was used in the 2018 work by
Al-Juaidi et al.[19] published in the Arabian Journal of Geosciences to map the
southern Gaza Strip’s flood risk. Using variables including rainfall, land use, soil
type, and altitude, it examined 140 flood areas. With a prediction success rate of
76% and 81%, the model offered helpful data for reducing flood damage in the area.
Comparatively speaking, the results were not as accurate as we had anticipated.
Using this specific model in our work, we were able to get accuracy ranging from
69.3% to 90.9%.
The dataset that comprised the whole of Bangladesh acts as a control group for the
purposes of testing the different machine learning algorithms that were used. As
imputation and other preprocessing methods take the dataset in its entirety into
account, the effects of distant weather stations on each other is high and leads to a
large amount of noise in the dataset which greatly hampers the performance of the
algorithms. When the dataset is split into four separate subsets that are grouped
respective of their geographical location, the noise is greatly reduced and thus we
see that every algorithm is more accurate when using the divided data compared to
the data in whole. This, however, revealed an issue. The Meghna dataset performs
too well, scoring 99-100% on nearly every algorithm. This is an outlier and must be
discarded. Due to the fact that the Meghna basin readings comprised the smallest
portion of the full dataset and that as well due to the very low number of stations in
that region to take readings in the first place, the algorithms were overfitted to the
dataset and do not accurately reflect their usefulness. Only Gaussian Naive Bayes
managed to not overfit the data and gave a proper result. Taking the outliers out
the equation we can see the following: Decision Tree Classifier for the basins has an
average accuracy of 90.8% which is an increase of 7.1% compared to the full dataset;
K Nearest Neighbours saw its accuracy rise from 80.9% to 89.6% an increase of 8.6%;
Logistic Regressions’ accuracy rose greatly from 69.3% to 90.9%; Naive Bayes had
an average accuracy of 87.9% which is up 18.7%; and finally Random Forest saw
great increases from 85.6% to 92.8%, which is the highest average accuracy amongst
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all the algorithms. Thus we see that Random Forest is a prime candidate for use in
flood prediction, with Logistic Regression and Decision Tree tied in second place.

5.2 Future Work

For future work and further improvements in flood prediction using machine learn-
ing in Bangladesh, several avenues can be explored to enhance the effectiveness and
applicability of the models. Integrating data from other sources is crucial. Examples
of these include satellite images, real-time meteorological data, and geographical in-
formation system (GIS) data that includes topographical features and soil moisture
content. These many data sources can greatly enhance the prediction power of the
model.Because deep learning approaches can handle complex time series data, they
should be taken into consideration. In particular, Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), such as Long Short-Term Memory
(LSTM) networks, are strong candidates. Flood forecasts made with these cutting-
edge techniques might be more precise and trustworthy. It may also be possible
to achieve a balance between understanding and prediction capability by creating
hybrid models that integrate the advantages of several methods, such as decision
trees and neural networks.
Better feature engineering efforts can result in the discovery of new or more impor-
tant features, which will enhance the performance of the model. It would also be
beneficial to focus on real-time prediction systems, which would allow for processing
incoming data for accurate and fast flood forecasts. Equally vital are the implemen-
tation’s practical features, which focus on flexibility and compatibility with current
disaster management systems. This involves taking into account how the models
will be updated and maintained when new data becomes available. To better adapt
the models to particular geographical demands and increase their practical useful-
ness, cooperation with Bangladeshi local government agencies and communities is
crucial. Additionally, this partnership may yield constructive criticism for addi-
tional improvements. Finally, it is critical to take into account how flood patterns
are affected by climate change. The models must to be flexible enough to adjust
to changing circumstances and able to make reliable forecasts in light of shifting
climatic patterns. To guarantee the long-term sustainability and efficiency of flood
prediction models, this kind of foresight is required. A wider range of data sources
should be combined, advanced machine learning and deep learning techniques should
be used, the clarity of the models should be improved, and the models’ practical
applicability and societal influence should be guaranteed. Making these flood predic-
tion models an effective tool for disaster management and mitigation in Bangladesh
will also require close cooperation with local authorities and careful assessment of
the effects of climate change.
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