Fortifying Federated Learning: Security Against Model
Poisoning Attacks

by

Fabiha Anan
20101085

Kazi Shahed Mamun
20301471

Md Sifat Kamal
20101231

Nizbath Ahsan
23341119

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science

Department of Computer Science and Engineering
School of Data and Sciences
Brac University
January 2024

(©) 2024. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material that has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Fabiha Anan Kazi Shahed Mamun
20101085 20301471
Md. Sifat Kamal Nizbath Ahsan

20101231 23341119

Approval

The thesis titled “Fortifying Federated Learning: Security Against Model Poisoning

Attacks” submitted by
1. Fabiha Anan (20101085)
2. Kazi Shahed Mamun (20301471)
3. Md. Sifat Kamal (20101231)
4. Nizbath Ahsan (23341119)

Of Fall, 2023 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science and Engineering on January,

2024.

Examining Committee:

Supervisor:
(Member)

Co-Supervisor:
(Member)

Program Coordinator:
(Member)

Head of Department:
(Chair)

Dr. Muhammad Igbal Hossain
Associate Professor
Department of Computer Science and Engineering
Brac University

Md. Tanzim Reza
Lecturer
Department of Computer Science and Engineering
Brac University

Md. Golam Rabiul Alam
Professor
Department of Computer Science and Engineering
Brac University

Sadia Hamid Kazi, Ph.D.
Chairperson
Department of Computer Science and Engineering
Brac University

i

Ethics Statement

We hereby declare that this thesis is our own work and the discoveries are from
our research. The sources have been appropriately acknowledged which we used
in our study. Therefore, we are confirming that this thesis has not been submitted
published, or presented in any other educational institution for receiving any degree.

il

Abstract

Distributed machine learning advancements have the potential to transform future
networking systems and communications. An effective framework for machine learn-
ing has been made possible by the introduction of Federated Learning (FL) and due
to its decentralized nature it has some poisoning issues. Model poisoning attacks
are one of them that significantly affect FL’s performance. Model poisoning mainly
defines the replacement of a functional model with a poisoned model by injecting
poison into models in the training period. The model’s boundary typically alters in
some way as a result of a poisoning attack, which leads to unpredictability in the
model outputs. Federated learning provides a mechanism to unleash data to fuel
new Al applications by training Al models without letting someone see or access
anyone’s confidential data. Currently, there are many algorithms that are being
used for defending model poisoning in federated learning. Some of them are really
efficient but most of them have lots of issues that don’t make the federated learning
system properly secured. So in this study, we have highlighted the main issues of
these algorithms and provided a defense mechanism that is capable of defending
model poisoning in federated learning.

Keywords: Machine learning, Federated learning, Model poisoning, Defense

v

Contents

List of Figures

List of Tables

1

Introduction

1.1 Motivation
1.2 Research Organization
1.3 Research Problem oL
1.4 Research Objectiveo

Literature Review

Implementation

3.1 Attacks
3.2 Defense Algorithms L
3.3 Dataset Description Lo
3.4 Data Preprocessing

Proposed Model

4.2 Model Description
4.2.1 Non-iid
4.2.2 Model Selection
4.2.3 Experimental setup L.
4.2.4 Implemented Attacks in the training Model
4.2.5 Defense Algorithm

Result Analysis

5.1 Weighted Aggregation Defense against Median Attack
5.2 Weighted Aggregation Defense against Krum Attack
5.3 Weighted Aggregation Defense against Gaussian Attack
5.4 Experimental Results
5.5 Precision, Recall and F1 Score of proposed algorithm

Conclusion and Future Work
6.1 Future Works
6.2 Conclusion

vi

vii

16
16
17
18
19

21
21
22
22
22
24
24
25

30
30
32
34
36
37

List of Figures

1.1
1.2

4.1
4.2

4.3

4.4

0.1

0.2

5.3

5.4

2.5

2.6

Model Poisoning Attack 1
Federated Learning system model 2
Workflow of proposed Decentralized Defense Algorithm Training Model 21

Implemented handwritten data (MNIST) into normalized CNN Model

Architecture Lo 23
MNIST data to Softmax-Driven Predictions after sampled by a model
(CNN) . o 27
Weighted Aggregation Defense Workflow 28
Performance of WAD, LFR, and Union algorithms against Median
Attacks 30
Defense Performance Comparison against Median attack in Grayscale

and RGB Datasets 31
Performance of WAD, LFR, and Union algorithms against Krum At-

tacks L 32
Defense Performance Comparison against Krum attack in Grayscale

and RGB Datasets 33
Performance of WAD, LFR, and Union algorithms against Gaussian
Attacks 34
Defense Performance Comparison against Gaussian attack in Grayscale

and RGB Datasets 35

vi

List of Tables

5.1 Performance of different defense mechanisms against various attacks . 36
5.2 Precision, Recall, and F1 Score for Weighted Aggregation Defense
(WAD) . . . 37

vil

Chapter 1

Introduction

Federated learning (FL) is a relatively new concept, a promising solution in light
of this new reality. The process through which a model is trained across multiple
decentralized devices without sending the data of the user directly to the central
server is known as federated learning. In federated learning, decentralized devices
mainly refer to individual devices such as smartphones, tablets, or laptops that are
not connected to a central server. In the context of federated learning, decentralized
devices can be used to train a machine learning model locally, based on the data
available on the device. Here basically, the model is trained locally on each device
and the updates are sent to a central server and aggregated to improve the model.
The main target of federated learning is to protect the privacy of users. It offers
a privacy protection approach that trains the model by preventing the leakage of
sensitive data during data transmission. As there is the availability of numerous rich
dataset resources due to the abundance of mobile and other types of devices and so
federated learning can fully utilize them. Federated learning initially safeguards user
privacy to prevent attackers from accessing source data by communicating encrypted
processed parameters. But here along with this safeguard, there is still a chance of
privacy issues like: Model Poisoning.

Figure 1.1: Model Poisoning Attack

Model poisoning has now become a great threat while working in these fields. The
process through which poison is injected into the local model before sending it to
the server or inserting hidden backdoors into the global model during the training
process is known as model poisoning. We know poison can be a chemical term
in chemistry but in model poisoning, the poison indicates or defines the way or
method to pollute a machine learning-trained model by manipulating its training
data. It is also known as an adversarial attack in which malicious clients aim to
poison the global model by sending constructed local model updates to the central
server. The main aim of model poisoning is to reduce the working performance
of models by degrading their accuracy. It mainly occurs in the training phase of
the model. Due to model poisoning the trained models failed to show the correct
accuracy in the output or result. The method through which multiple attackers
are involved to manipulate the machine learning model is called distributed model
poisoning. In distributed model poisoning the attacker mainly tries to alter or change
a small portion of data of the trained model which changes the overall behavior of
the model to act in a wrong way. In centralized machine learning, several sources
of data are collected and stored on a single server or location in order to train
a global model. The model’s parameters are then repeatedly updated using the
combined dataset, and the model is then utilized to perform tasks or predictions
[1]. In decentralized machine learning distributes data among nodes or devices and
conducts local training, providing superior privacy and scalability but in centralized
machine learning gathers data into a single location for building a global model. In
addition, distributed model poisoning mostly occurs in federated learning systems.
Analyzing the Model poisoning attack, it is observed that it is more vulnerable to
federated learning.

Figure 1.2: Federated Learning system model

The action of this poison attack mainly differs in various fields in various ways as
their working procedure is different. Based on the attacker’s intention model poi-
soning can be divided into two categories, targeted attacks and untargeted attacks.
If the attacker wants to decrease the overall accuracy of the global model, it is
called an untargeted attack. And when the attacker wants to decrease the accuracy
of targeted test inputs then it is called a targeted attack. In this paper, we tried
to mitigate the untargeted attack model poisoning attack. This untargeted attack
decreases the accuracy of the global models and as a result, the model cannot show
the actual output due to the degradation of performance. For these types of attacks,
defensive algorithms have been discovered. Depending on aggressive poison attacks
in federated learning two types of defense have been initialized, mentioning evalua-
tion methods for local model updates and aggregation methods for the global model.
By studying the related works of model poisoning in federated learning we came to
know about different types of poison attacks and learned about various algorithms
to defend against these attacks and solve the security problems in federated learning.
So overall we have studied the attacks, existing algorithms and constructed a new
defense mechanism for the model poisoning attack. Our mechanism is very much
capable of defending a model from the model poisoning attack.

1.1 Motivation

Federated Learning is a very promising machine learning approach since it is capable
of training models across multiple decentralized edge devices including Smartphones,
[oT devices, or any local servers, etc. without any user privacy issues. However,
there is an issue of model poisoning which happens during the training process.
This model poisoning is a very serious concern since by manipulating the model, it
will not provide the proper outputs. Hence it will not be able to perform properly.
There are existing defense mechanisms but most of them have issues that can not
resolve all kinds of attacks properly. It represents that there is a research gap on
this. So this research paper aims to address these gaps and present a better defense
mechanism for the federated learning environment.

1.2 Research Organization

e In Chapter 1 (Introduction), we discuss the importance of federated learning
and the challenges posed by model poisoning. We define the problem and
outline the objectives of the research.

e In Chapter 2 (Literature Review), we review existing literature on federated
learning, model poisoning, and defense mechanisms.

e In Chapter 3 (Implementation), we describe various types of model poisoning
attacks and existing defense algorithms. We discuss the dataset used and the
preprocessing steps applied.

e In Chapter 4 (Proposed Model), we detail the architecture of the proposed
federated learning model and describe its components. We discuss the handling

of non-IID data, the criteria for model selection, the experimental setup, and
the implemented attacks.

e In Chapter 5 (Result Analysis), we discuss the performance of the proposed
model against various model poisoning attacks. We present the experimental
results and discuss the precision, recall, and F1 score of the proposed algo-
rithm.

e In Chapter 6 (Conclusion and Future Work), we summarize the findings of the
research, discuss potential improvements, and future research directions.

1.3 Research Problem

Our world is currently progressing with technology very fast. Along with develop-
ment, it is generating huge amounts of data per day which are being used for various
fields like Artificial Intelligence, Big Data, Data Analysis, etc. Meanwhile, advance-
ment in Artificial Intelligence is changing society very rapidly. For the activities
related to Al, some industries currently prefer to train data centrally which is very
hassle in a traditional way. So this has become very challenging for many industries.

So, In the case of working with decentralized training data, many industries currently
use Federated Learning. It’s a machine learning algorithm that has the ability to
train a set of small models on individual devices and then aggregate it with the
purpose of forming the final model with no security issues. However, there is still a
weakness in the security of the federated learning algorithm which makes it an easy
target for the model poisoning attack. Attacking the raw data of a model during
training is called Model Poisoning.

For preventing model poisoning, here [2] the author has investigated the current
defense methods for the model poisoning attacks on the Federated Learning algo-
rithm and classified them into two categories. These two categories are Evaluation
Methods for local model updates and aggregation methods of the global model. Eval-
uation methods for local model updates are testing the submissions of the clients for
the raw data which is a kind of straightforward way to defend the model from model
poisoning. On the other hand, aggregation methods of the global model are aggre-
gating raw data by making sure of proper security, though usually they are used
together to protect the model. According to the author’s [2] analysis aggregation
method also can be classified into two categories such as: Adjusting the weights of
local model updates based on specific criteria and designing aggregation algorithms
using statistical methods. In the case of the criteria-based method, some criteria are
being used for the evaluation of the model poisoning. For example Trust, Similarity,
Reliability, etc. On the other hand, Statistic Based Aggregation methods use sta-
tistical methods instead of following simple criteria during the aggregation process.
Trimmed Mean, Krum, Bulyan, etc. are examples of this method [2].

Some of the defense models related to these are discussed below:

1) Truth Inference-Based Evaluation Method:

Truth Inference-Based Evaluation (TIBE) is a method for evaluating the robustness
of machine learning models against adversarial attacks or “model poisoning”. This
method is based on the idea of inferring the “ground truth” or the true label of a
given data sample and comparing it with the model’s prediction. The basic idea
behind TIBE is that a robust model should be able to make accurate predictions
even in the presence of adversarial attacks. Reducing the weighted deviation from
the true aggregated parameters is the goal of this method in FL. The reliability score
is first calculated here for each update. Secondly, to aggregate the global model they
bring in two methods where the first method uses the reliability score according to
the weight of each update. Another method eliminates updates with low-reliability
scores [2].

Truth Inference-Based Evaluation Method assumes that the true label of a data
sample is known, which may not be the case in many real-world scenarios. Moreover,
it can be time-consuming, as it requires the inference of the ground truth for a large
number of data samples, which can be computationally expensive. Also, the Truth
Inference-based evaluation method only works when there is IID data but it is not
efficient for non-I1D cases.

2) Trimmed Mean Aggregation Method:

The trimmed Mean Method is a technique used in Federated Learning to mitigate
the impact of malicious or unreliable participants on the model’s performance. It’s a
coordinate-wise AGR (robust aggregation algorithm). Aggregating each dimension
of input gradients separately is the basic idea of this method. In this method, instead
of using the average of all the models from different participants, a trimmed mean
is used, which is calculated by discarding a certain percentage of the models with
the highest or lowest values. The idea is that these extreme values are likely to be
outliers, which can be caused by malicious participants [3].

It is challenging to determine the right percentage of models to be trimmed as
discarding too many models can lead to a reduction in the accuracy of the model,
while discarding too few models may not be effective in mitigating the impact of
poisoning attacks. The Trimmed Mean Method is not very robust to attacks that
are specifically designed to bypass this method. For example, an attacker can try
to manipulate the model’s parameters in such a way that the trimmed mean still
includes their malicious models.

3) Median Aggregation Method:

The Median Method is used to counter model poisoning attacks by computing the
median of the model updates received from all devices and then using that median
to update the global model. This is based on the assumption that the median of a
set of values is less susceptible to manipulation by outliers than the mean or other
aggregate statistics. It’s also a coordinate-wise AGR that aggregates input gradients
by calculating the median of the values of individual dimensions of the gradients [3].

One of the key limitations is that it only works well when the number of malicious
devices is small compared to the total number of devices. When the number of

malicious devices is large, the median can be skewed towards the malicious updates,
making the global model behave maliciously. Another limitation of the Median
Method is that it is not robust to more sophisticated attacks and can not provide
enough fidelity since a server is required to compute pairwise distances of local model
updates.

4) Krum Aggregation Method:

The Krum method works by robustly aggregating the model updates from each
client, by computing the median of the model updates and taking it as the final
model update. This reduces the impact of any outliers or malicious updates, as
the median is less sensitive to individual values compared to the mean. Krum
chooses the gradient in the squared Euclidian norm space that is close to its m-c-2
neighboring gradients from the set of its input gradients. Here m is an upper bound
on the number of malicious clients in Federated Learning [3].

The median may not always be the best estimate of the true model update, and the
Krum method may result in a lower accuracy compared to other aggregation meth-
ods. While the Krum method can mitigate the impact of model poisoning attacks, it
does not guarantee full protection against such attacks, especially if the attacker has
a large influence over the global model. Also, it becomes computationally expensive
if the client numbers become large.

5) Bulyan:

It’s a Byzantine fault-tolerant algorithm. The Bulyan method works by adding a
layer of randomization to the aggregation process so that the contribution of each
local model to the global model is weighted randomly, rather than equally. This
makes it more difficult for an attacker to manipulate the global model by poisoning
their local model, as their contribution to the global model will be diluted. It
constantly cycles via the updates. Along with this, it does trimmed mean. Especially
it uses Krum for the selection. Consequently, this method is a combination of Krum
and Trimmed Mean [2].

The Bulyan method has some limitations. For one, it requires a significant amount of
communication overhead, as each device must exchange a large amount of random
data with the server. Additionally, it can lead to decreased performance, as the
random weighting of the local models can lead to a loss of information and accuracy.
Moreover, it is non-scalable because it does Krum many times throughout every
iteration to compute pairwise distances within the local models. It is possible that
the Euclidian distance within two local models is influenced by individual model
parameters which can be resulted that Krum will be affected by anomalous model
parameters.

6. Dynamic Defense Against Byzantine Attacks (DDaBA):

DDaBA is a defense mechanism that helps protect against model poisoning attacks
by detecting and excluding malicious devices from the aggregation process. It dy-
namically adjusts the set of trusted devices based on their past behavior and the
consistency of their model updates. This makes it more robust to attacks compared
to static methods that use a fixed set of trusted devices, as the malicious devices
may change over time

DDaBA is also not a perfect solution since it has limitations. For example, it
requires devices to have enough computational resources to perform the necessary
computations, and the accuracy of the defense depends on the quality of the initial
set of trusted devices. Additionally, DDaBA can still be vulnerable to attacks if the
attackers are able to coordinate their efforts and present a consistent false model.
These models are capable of defending the attacks but they have various limitations
that actually do not represent enough robustness to these models. So there is a
research gap on these limitations. So in our study, we aim to investigate this and
construct a good defense mechanism for this attack.

1.4 Research Objective

This research aims to introduce an updated or better version of the defense algorithm
for the model poisoning of Federal Learning. Current defense algorithms for model
poisoning have several issues that can affect the accuracy of the model. So security
for this model is very concerning. The objectives of this research are:

e To deeply understand the Federated Learning algorithm and how it works
e Understand the security of federated Learning
e To analyze the security issues of the defense models for the Federated Learning

e Constructing a new defense model for the Federated Learning

Chapter 2

Literature Review

As computing devices are increasing, people are generating a huge amount of data
day by day. Collecting this type of data in centralized storage is very expensive
and time-consuming. Unfortunately, traditional Machine Learning can not support
this kind of issue due to infrastructure shortcomings like limited communication
bandwidth, network connectivity, delay constraints, etc. [4] For this kind of scenario
Federated Learning is playing a great role.

From the beginning, the role of federated learning can be observed while work-
ing in different industries for example Healthcare, Internet of Things (IoT), and
Transportation. Since federated learning can train models in different devices and
aggregate them without any security issues. Certainly, the application of this algo-
rithm is implemented for the development of 5G and 6G which can offer more secure
effective schemes for communication in the future [2].

Although the aggregator has no access to the info, model poisoning could create
data accuracy problems which are possibly considered as faulty for the model. In
addition during the training phase model poisoning is performed by adding crafted
data to training data resulting in low accuracy in the model. The model won’t
provide the actual result due to low accuracy. So ensuring the security of federated
learning algorithms became an important concern for researchers.

Model poisoning attack for federated learning (MPAF), which sends expertly pre-
pared fake local model refreshes to the host using phony clients. MPAF is able
to decrease the efficiency of the model structure in an untargeted approach and it
can still considerably reduce accuracy even when conventional defenses are used.
In contrast to current attacks with untargeted model poisoning, which are based
on compromised legitimate clients and construct distinct round-wise optimization
problems, A fixed base model is the goal of MPAF, which is conceptualized as a
global optimization problem that departs from the model structure. Future work
will focus on extending MPAF, carrying out focused model poisoning attacks and
improving it with new information and data. An attacker can choose a base model
that has the desired targeted behavior, such as a base model with a gateway. If
the learned global model is pushed to be substantially close to a corrupted base
model, it may display the same gateway behavior as the base model and anticipate
attacker-selected target categories for attacker-selected test data [5].

SparseFed is a defense against model poisoning attacks in federated learning that
uses global top-k update sparsification and device-level gradient clipping. The algo-
rithm computes gradients locally, clips them, aggregates them in the cloud, extracts
the top-k values, and broadcasts them as sparse updates to participating devices in
the next round. SparseFed is effective in training high-quality models under targeted
model poisoning attacks, in which the goal is to reduce performance on specific data
points or sub-tasks without compromising overall accuracy. The authors propose a
framework for analyzing the robustness of defenses using the certified radius metric
and show that SparseFed minimizes this radius by sparsifying aggregate model up-
dates. Limitations of the work are the lack of access to actual federated datasets at
the scale of tens of thousands of devices, our work is empirically constrained because
we are compelled to create faulty simulations of cross-device federated settings. Our
simulation technique is to simulate each device only drawing samples from the dis-
tribution of one class rather than many classes for CIFAR-10, CIFAR-100, and FM-
NIST, which lack any naturally occurring non-iid partitioning. However, this may
not always be the case in the actual world. To get around these constraints in the
future, we urge the federated learning community to submit large-scale, real-world
datasets [6].

Defense mechanisms for model poisoning attacks in federated learning are classified
into two categories: evaluation methods for local model updates and aggregation
methods for the global model. There are many types of attacks on federated learn-
ing, including poisoning attacks, backdoor attacks, and inference attacks. Poisoning
attacks can be further divided into data poisoning attacks, which manipulate raw
data on the clients, and model poisoning attacks, which manipulate local model
updates. Model poisoning attacks are more likely to cause damage to federated
learning than data poisoning attacks. Defense mechanisms against model poisoning
attacks involve identifying malicious submissions through evaluation mechanisms
for local model updates and designing novel, Byzantine fault-tolerant aggregation
algorithms based on mathematical statistics. These approaches are often used in
combination. A good defense mechanism should be effective against attacks, con-
serve resources, and protect data privacy. In the future, research should consider
the impact of different attack strategies, such as the number of malicious clients
and the timing of the attack, on the effectiveness of the attack, and design effective
defense mechanisms accordingly. The deployment of defense mechanisms should
also take into account computational resource limitations. One potential solution is
the combination of blockchain and federated learning, in which updates are selected
and aggregated through a voting process and written to blocks through a blockchain
network [2].

One of the research articles describes research on Dynamic Defense Against Byzan-
tine Attacks, a dynamic aggregation operator used in federated learning (FL) to
fight against byzantine (adversarial) attacks (DDaBA). This operator dynamically
discards hostile clients, allowing you to stop the global learning model from be-
ing tainted. Based on an induced-ordered function and a linguistic quantifier, the
induced ordered weighted averaging (IOWA) operator underlies DDaBA. It aggre-
gates clients on a weighted basis. Through the use of deep learning classification
models in FL. and a variety of image datasets, including Fed-E MNIST Digits, FM-

NIST, and CIFAR-10, the research evaluates the effectiveness of DDaBA as a defense
against adversarial attacks. According to the study, DDaBA is more effective than
FL’s current byzantine defenses. Additionally, the authors proposed a static ver-
sion of DDaBA, named Static Defense Against Byzantine Attacks (SDaBA), which
addresses the weakness of DDaBA when there’s a very high presence of adversarial
clients in the system [7].

Federated learning is a widely used method for securing data in Industrial Internet
of Things (IoT) devices, but it is vulnerable to model poisoning attacks, which are
difficult to detect, particularly in Industrial IoT applications. This study proposes
TIMPANY, a framework for detecting model poisoning attacks using accuracy as a
measure. Theoretical and experimental analysis shows that TIMPANY is effective
and efficient against model poisoning attacks in federated learning, with a true pos-
itive rate and accuracy of 100% and no false positives. TIMPANY is particularly
well-suited for resource-constrained Industrial IoT devices used in various industrial
applications. A popular machine learning method known as federated learning (FL)
enables decentralized learning and data privacy for end devices. However, it also
introduces a new security risk in the form of model poisoning attacks, making it
particularly suited for industrial Internet of Things (IIoT) applications. These at-
tacks are challenging to identify because, first, the server and FL participants cannot
identify tainted local models using only the specified weights, and second, each FL
iteration involves a large number of random participants, making it impossible to
verify each one individually. The authors suggested the TIMPANY detection frame-
work, which uses accuracy as a detection metric, to overcome this problem. The
TIMPANY system has been theoretically and empirically assessed by the authors,
who concluded that it is reliable and effective for spotting FL. model poisoning at-
tacks. Future research will examine more complex and automated model poisoning
attacks, and TIMPANY will be improved to address additional challenges like sys-
tem and statistical heterogeneity [8].

The author developed a brand-new kind of poisoning attack known as a “semi-
targeted attack” in which the perpetrator tries to trick the classifier into classifying
them as a different group. But switching to a different class makes the attack less
effective. Therefore, they suggested ADA (Attacking Distance-aware Approach),
a novel kind of semi-targeted model poisoning attack that seeks to undermine the
classifier by carefully choosing the target class. The major objective was to make it
difficult for the global classifier to correctly classify the source class’s data. They also
looked at harder cases where the foe knows nothing about the client’s information.
With the aid of backward error analysis, they were able to resolve this difficult
scenario. They completed three distinct image categorization tasks while altering the
element of attacking frequency for the evaluation. In the most difficult scenario, with
an attacking frequency of 0.01, it was successful in raising the attack performance
by 1.8 times [9].

The concept of model poisoning in the field of artificial intelligence (AI) is intro-
duced. Model poisoning involves injecting malicious triggers into machine learning
models during the training phase to compromise their performance and use them
for malicious purposes. The paper discusses two types of model poisoning attacks:

10

targeted and untargeted. It also examines the effectiveness of model poisoning at-
tacks on Pythia and GPT-2, two advanced neural code completion models. The
paper also discusses the goals and steps of model poisoning attacks, as well as the
various types of “baits” that attackers may use. Finally, the paper discusses three
methods of defense against model poisoning in neural code completion: activation
clustering, spectral signature, and fine pruning. By combining these methods, the
impact of model poisoning attacks can be reduced [10].

The topic of neural architecture search (NAS) is discussed, specifically how it can
be affected by model poisoning attacks. The focus is on cell-based search spaces
and differentiable NAS using the example of DARTS, which contains two types of
cell structures. The main attacks on NAS, including adversarial evasion, model
poisoning, backdoor injection, and functionality stealing, are analyzed and defenses
against them are explored. The limitations of this work, including the focus on
cell-based search spaces and differentiable NAS, and the exclusion of other search
strategies and NAS frameworks, are also mentioned [11].

The practical impact of poison attacks on neural networks introduces a new type
of attack called “black card” which manipulates a pre-trained model to create tar-
geted poison instances for deceiving the intended model. The paper shows that this
attack is effective, with a high success rate and misclassification confidence, while
maintaining certain desired properties. The paper also describes a method for solv-
ing blackcard using optimization algorithms and examines targeted and untargeted
poisoning attacks. The paper also points out that the proposed method, Black-
Card, is effective with a high success rate using only one or a few poisoning samples,
not dependent on the target model knowledge and labeling process, it can also use
arbitrary test-time instances [12].

The problem of model poisoning in deep neural networks (DNNs), is where an
attacker can manipulate a small portion of the training data in a way that alters the
behavior of the DNN model when it is presented with a specific trigger. The paper
discusses different types of attacks that can be used for this, and how existing defense
methods work against them. The authors then propose a new verification method,
called VPN, for detecting poison in DNN models. This method is based on solving
constraints using pre-existing neural network verification tools. The effectiveness
of VPN is demonstrated using two types of datasets and it is able to detect small
models that were trained to perform image classification tasks including triggers.
Future work is suggested to expand the research to more complex attack models
and investigate the idea of verification of large, complex models through the process
of transfer or abstraction [13].

A Trojan is a kind of (backdoor) attack on deep neural networks that involves the
attacker giving the victims a model that has been trained or retrained on harmful
data. Classification of the neural model is observed based on two classes of models
trained without trojans(clean) and (2) models trained with trojans (poisoned). The
objective of this work is to create a baseline strategy for identifying (a) potential
reference model architecture manipulation (changing a task-specific NN architecture
termed . A range of architectures contain Trojans, as well as (a) a reference model)

11

and (b). Our strategy is demonstrated. Methods have been demonstrated to solve
the problem mentioning the Pruning-based Approach: and Reduction of Search
Space. Different types of datasets were used to detect trojans in clean data and
poisoned data as the input dataset. It provided a baseline trojan detection method
based on pruning that was tested on 2104 NN models from Challenge of Trojan Al
[14].

Poisoning attacks on neural networks are attempts to influence the behavior of a
classifier on a single test instance. The paper proposes a novel class of attacks called
clean-label attacks, in which the attacker injects training instances that are cleanly
labeled by a recognized authority, rather than maliciously labeled by the attacker.
The idea is that these attacks are challenging to identify and provide attackers
a chance to succeed without having direct access to the data collection/labeling
process. The research presents a method for creating these clean-label poisoning
instances using an optimization algorithm and discusses the transferability of these
poison attacks. The paper also suggests the idea of training with poison instances
as a way to defend against these attacks and highlights the importance of data
provenance and dependability for neural networks [15].

Federated Learning is a Machine learning model that works with decentralized data.
It works with multiple clients to train a shared model to their local data with-
out sharing data. The paper “FLDetector: Defending Federated Learning Against
Model Poisoning Attacks via Detecting Malicious Clients” proposed a defense mech-
anism for the malicious clients and the name of that defense mechanism is “FL De-
tector”. This mechanism can able to check the consistency of model updates from
every client. It predicts the model update by its historical model updates. So here
by any chance, if the model update that was received is not able to show enough
consistency with the predicted model then the mechanism considers it as a malicious
client. Here evaluation process done by the author happened with three benchmark
datasets. The evaluation clarified that this mechanism is effective for detecting ma-
licious clients in multiple state-of-the-art model poisoning attacks. After discarding
the malicious clients the existing Byzantine-robust FL methods can learn accurate
global models. Overall the paper has made a good contribution to the Federated
Learning security system. Also, the proposed method by the author is simple to
implement and very effective for detecting malicious clients as well [16].

A new defense mechanism for the model poisoning attack in Federated learning,
named DEFL has been introduced in a research study. This mechanism works
by identifying critical learning periods (CLPs) during training where even a little
gradient error can have a good impact on the accuracy of the final model. So for
measuring fine-grained differences among DNN model updates it sets a federated
gradient norm vector (FGNV) metric. Here if a client’s update by any chance differs
from the other client’s the mechanism will consider the client as a suspicious client.
During CLPs DEFL discards the suspicious clients from aggregating which results in
the lesser impact of the model poisoning. For the evaluation process, the researchers
evaluate this with three benchmark datasets showing that it provides very effective
state-of-the-art model poisoning attacks. By comparing to the conventional defenses
DeFL provides very significant performance and maintains robustness in case of

12

detecting errors. DeFL shows promise as a cutting-edge approach for detecting
model poisoning attacks in FL [17].

Another study showed a new defense mechanism named, FLTrust. This mechanism
works for the Byzantine model poisoning attack. FLTrust operates by having the
server gather a small, clean dataset and train a local model on it in order to initially
bootstrap trust in the clients. Then the server uses this local model to determine
the trust scores for each client with higher trust scores provided to clients whose
updates are similar to the server’s local model. In every round, the server aggregates
those updates of the clients that have high trust scores. This helps to mitigate the
effect of Byzantine attacks. During the evaluation process, the authors evaluated
this mechanism on three benchmark datasets and showed that this mechanism is
effective in defending against Byzantine attacks even when a large number of clients
are flagged as malicious. This mechanism is effective for existing and strong adaptive
attacks. For example: using a root dataset with fewer than 100 samples, FLTrust
can still train global models that are as accurate as the global models that are
trained by FedAvg under no attacks, despite adaptive attacks with 40%-60% of
malicious clients where FedAvg is a very prominent technique in non-adversarial
settings. Overall, FLtrust is a potential new approach for FL that can lead to an
increase in the security and privacy of the FL system [18].

Another research proposes a defensive mechanism for the decentralized framework of
federated learning using blockchain. In this research work, the global model has been
built up by exchanging the data of the local model. But it faced robustness issues
in reality which is solved by the VBFL (Validation Accuracy Difference) framework.
This framework has been built using blockchain architecture. VBFL incorporates a
validation process, a role-switching policy, and a consensus algorithm to counter ma-
licious worker updates and remove bias toward specific worker nodes. Additionally,
alternative methods like blockchain-driven smart contracts and reputation-based
worker selection are explored but are noted for their constraints [19].

One research article has demonstrated the critical thinking power over the untar-
geted poisoning attacks of FL environment though the threat models. This article
has also explored the many kinds of poisoning attacks and how they could affect
federated learning models at the production level. It evaluates the effectiveness of
current defenses critically and suggests fresh tactics to strengthen these systems
against hostile attacks. This study delves into the various types of poisoning at-
tacks and their potential impact on production-level federated learning models. It
critically assesses the efficacy of existing defense mechanisms and proposes novel
strategies to fortify these systems against adversarial attacks [20].

Another research study is conducted with the introduction of the defensive mecha-
nism of federated learning to stop model poisoning. In this research the new defense
mechanism which is proposed against poisoning attacks is CONTRA. Poisoning at-
tacks can compromise the integrity of the global model by injecting malicious data
into the training process CONTRA utilizes a cosine-similarity approach to assess
the reliability of local model parameters in every iteration. It employs a reputation
system that dynamically adjusts the status of individual clients. This adjustment is

13

based on their contributions to the global model, considering both their current and
past engagements in each round. Clients are either encouraged or penalized based
on their consistency and impact on the collaborative model. Three well-known ma-
chine learning datasets were used to evaluate CONTRA: MNIST, CIFAR-10, and
Loan. Each dataset had a separate training length defined, with 100 epochs for
MNIST, 300 epochs for CIFAR-10, and 1000 epochs for the Loan dataset. While
the batch sizes varied (20 for MNIST and CIFAR-10, and 128 for the Loan dataset),
the learning rate was consistently set at 0.1. The training arrangement was guided
by the convergence rate found in the body of existing literature. The system took
an average of 18.43 seconds to finish 100 training cycles in a baseline federated
learning setup with 100 truthful clients. On the other hand, the average runtime
climbed to 29.36 seconds when CONTRA was implemented and 33% of clients were
malicious. In general, the material offers important perspectives on countering poi-
soning attacks in federated learning (FL) and introduces a new defensive strategy.
Yet, additional investigation is necessary to gauge its efficacy in intricate settings
and against advanced attack methods [21].

Moreover, this research work addresses the problem of poisoning attacks in feder-
ated learning, in which adversaries attempt to intentionally reduce the accuracy of
the model. In this work, FLAIR as a countermeasure against the directed deviation
attack (DDA), a novel model poisoning method, had been developed. Based on
participant behavior, FLAIR provides trust scores, guaranteeing that the model as
a whole is shielded from all known untargeted poisoning efforts. By identifying un-
common gradient sign flip patterns and using weighted averaging for convergence,
FLAIR finds fraudulent clients. It exceeds FABA with more than 20% of mali-
cious clients while matching the accuracy of the best defenders. It exceeds FABA
with more than 20% of malicious clients while matching the accuracy of the best
defenders. FLAIR’s protections hold up against a skilled attacker. However it ne-
cessitates client updates that aren’t encrypted, which lessens the value of gradient
encryption. Participating clients are evaluated by FLAIR according to their train-
ing conduct, and reputation scores are assigned. A weighted mix of these clients’
contributions is then included. FLAIR outperforms existing defenses: even in the
face of intense malicious activity, it operates remarkably effectively in a variety of
federated learning settings. This research, which is funded by prominent funds,
presents a viable answer to a significant federated learning problem. Different kinds
of datasets have been applied in this project such as FMNIST, MNIST, CIFAR-10.
Moreover, different kinds of attacks have been introduced to work for experiments
such as Full Krum, None, AND Full Trim. Flip-scores are used by FLAIR to analyze
unencrypted client updates and categorize them as benign or suspicious. Because
gradient encryption has a large processing load, it is considered less important in
cross-device settings. However, these restrictions open the door for further follow-up
studies in the field. FLAIR’s limitations indicate possible topics for further research
to improve its application in many circumstances, despite its promising nature [22].

Another one discusses a defense mechanism against model poisoning attacks in Fed-
erated Learning (FL). The paper proposes a client-based defense that can mitigate
the effects of model poisoning attacks on the global model. The defense mechanism
is designed to work even if the attackers have access to benign clients’ data. The

14

paper also introduces evaluation metrics to measure the effectiveness of the defense
mechanism. The proposed defense mechanism outperforms the baselines in mitigat-
ing the attack effectively and efficiently. The article examines a Federated Learning
(FL) protection tactic against model poisoning attacks. The client-focused response
that has been suggested effectively counteracts the effect that these attacks have
on the global model. Three metrics are used in the evaluation: attack, robustness,
and utility. These measures measure the accuracy of benign data, rounds required
to reduce this confidence, and misclassification confidence on harmful data, respec-
tively. FMNIST and CIFAR-10 datasets are used in the study’s experimental setting
to compare the defense against popular model poisoning attempts. The defense’s
effectiveness in fending off attacks in fewer rounds with little loss of model utility is
demonstrated by the results. Strengths include robustness and convergence guaran-
tees, flexibility to different poisoning attempts, and quantitative evaluation of the
impact of attacks. However the emphasis on targeted attacks begs the question of
how well they work against non-targeted ones. The paper concludes by stating that
the defense mechanism can be extended to other poisoning attacks [23].

The goal of one of the research works is to present FedMLSecurity, an addition
to the open-source FedML library that simulates adversarial attacks and related
defense mechanisms in the context of Federated Learning (FL). This benchmark,
which is integrated into FedML, increases the functionality of the library and makes
it possible to assess security issues and possible fixes in FL. FedMLAttacker, which
simulates injection attacks during FL training, and FedMLDefender, which simu-
lates defensive measures to neutralize these attacks, are the two main components of
FedMLSecurity. This highly customizable open-source application works with a va-
riety of machine learning models (including ResNet, GAN, and Logistic Regression)
and federated optimizers (like FedAVG, FedOPT, and FedNOVA). Furthermore, its
flexibility is extended to Large Language Models (LLMs), demonstrating its adapt-
ability and usefulness in a range of contexts [24].

In addition, another research paper worked on SAFEFL which tackles the twin is-
sue of security flaws and privacy in federated learning. While traditional federated
learning techniques safeguard privacy, they are nevertheless vulnerable to poisoning
and privacy inference attacks. To address these problems, SAFEFL uses Secure
Multiparty Computation (MPC), which guarantees cooperative computing without
disclosing personal information. It supports the assessment of security measures
against different types of attacks and combines with MP-SPDZ for secure protocols.
The framework offers a safe environment for creating reliable federated learning al-
gorithms and is compatible with PyTorch. It may also be extended to accommodate
various models. Though MPC has a significant computing overhead and linear re-
gression is the main focus at the moment, SAFEFL has the potential to improve
security in practical federated learning applications [25].

15

Chapter 3

Implementation

3.1 Attacks

Krum Attack:

In our model, we applied the Krum attack [5] purposefully to modify local model
updates on infected devices. It involves creating modified models by arbitrarily
choosing parameters. The objective of this attack is to weaken the resilience of
model aggregation in federated learning systems by using maliciously constructed
updates from hacked devices to subtly affect the global model.

Krum attack selects a local model as a global model in each iteration. To influence
the performance of Krum'’s attack on our model, the selection process was initialized
to select a particular manufactured local model rather than the valid model chosen
in an attack-free setting, the goal is to generate compromised local models. To
guarantee that Krum, using the aggregate rule, chooses the assigned constructed
model, this entails creating ¢ compromised models. By increasing the disparity
between the chosen constructed model and the valid model, this technique seeks to
impact Krum’s choice-making process in the process of model aggregation.

The purpose of this attack is to compromise the reliability of the model aggre-
gation procedure. Through deliberate manipulation of compromised local models,
the attacker hopes to influence the Krum aggregation rule to choose a particular
constructed model over an authentic one.

Gaussian Attack:

Apart from the Krum attack, another attack was applied to our model to com-
promise the integrity and accuracy of the collaborative model aggregation process.
The attack attempts to skew the learning process by introducing modified values,
sampled from a Gaussian distribution, into local models from compromised devices.
The intention behind the Gaussian attack [26] is to quietly modify the combined
model to suit the attacker’s goals, which may have an effect on the model’s overall
performance. In the end, the attack aims to introduce false information while trying
to avoid detection to compromise the federated learning system’s dependability and
efficacy. This attack specifically creates changes to the model parameters by select-
ing random numbers from a normal, Gaussian distribution. The attack attempts

16

to fool the aggregation process by inserting these modified variables into the local
models, which could have an effect on the integrity and accuracy of the global model.
By adding subtle but deceptive information to the aggregated model updates from
compromised devices, the goal is to obstruct the learning process while trying to
avoid being discovered by the defenses of the federated learning system.

This method of attack involves creating altered versions of the local models on com-
promised worker devices in a random manner. To execute this, for every parameter
of a given model, a Gaussian distribution is approximated using the initial local
models across all worker devices before the attack. Subsequently, for each compro-
mised worker device, a value is randomly selected from this Gaussian distribution
and substituted as the parameter for that device’s local model.

Median Attack:

The Trimmed Median attack in federated learning involves manipulating the model
updates contributed by compromised devices to influence the aggregation process.
In this attack, rather than sending a single model update, the attacker sends multi-
ple versions of their update, each slightly altered from the original. These alterations
are designed to be within a range that won’t be immediately flagged as outliers by
aggregation methods like the Trimmed Median. By doing so, the attacker aims
to subtly shift the aggregated model towards their manipulated updates, poten-
tially impacting the global model’s performance without triggering outlier detection
mechanisms. To manipulate the Median aggregation rule, we employ similar attack
tactics as those employed in trimmed mean attacks. Median attack [6] is used to
manipulate the learning process, potentially favoring the attacker’s objectives or
causing the global model to deviate from its intended performance. Ultimately, the
aim is to compromise the integrity and accuracy of the federated learning model
by introducing deceptive information while evading detection, thus impacting the
overall learning outcomes. The goal is to introduce biased or misleading informa-
tion into the aggregation process without being detected, thereby compromising the
integrity and accuracy of the federated learning model.

3.2 Defense Algorithms

LFR (Loss Function Reduction):

The algorithm operates by focusing on the concept of loss in machine learning, which
is a measure of how well the model’s predictions align with the actual outcomes.
Initially, the algorithm calculates the Sparse Categorical cross-entropy loss for each
client. This is done by excluding one client at a time and aggregating the model
updates from the remaining clients. The updated model is then used to make pre-
dictions on a validation dataset, and the loss is calculated. This process is repeated
for each client, resulting in a list of loss values, one for each client. Once the losses
have been calculated, the clients are sorted based on these values. The idea here is
that a higher loss value could indicate a malicious client, as their exclusion leads to a
model that performs better on the validation set. The algorithm then identifies the
non-malicious clients as those with the lowest associated loss values. The rationale
is that these clients are likely to be contributing beneficial updates that improve

17

the model’s performance. Finally, the algorithm aggregates only the updates from
these identified non-malicious clients to update the global model. By doing so, it en-
sures that potentially harmful updates from malicious clients are not incorporated,
thereby defending against model poisoning. Hence, the LFR [26] algorithm provides
a robust defense mechanism in federated learning systems, ensuring the integrity
and performance of the global model by smartly identifying and excluding poten-
tially harmful updates. It’s a significant step towards secure and reliable federated
learning.

Union:

The defense algorithm in federated learning is designed to protect against model
poisoning. Union [26] initiates by setting the server model weights, defining the loss
function, and creating two lists to record the loss and gradient norm for each client.
For each client, a temporary list of all other clients is created. The loss and gradient
norm for the current client is then calculated using the server model’s predictions
on the validation data and the defined loss function. Clients are ranked based on
their loss and gradient norm, with those having lower loss and higher gradient norm
considered non-malicious. The algorithm intersects the top-ranked clients based on
loss and gradient norm, selecting the top-ranked clients from this intersection as
the non-malicious clients. Finally, the server model weights are set and updates
from the non-malicious clients are aggregated. This process mitigates the impact of
malicious clients attempting to poison the model during federated learning, ensuring
the integrity and robustness of the learned model by only considering updates from
non-malicious clients.

3.3 Dataset Description

CIFAR-10: A well-known benchmark dataset used in computer vision and machine
learning research is the CIFAR-10 [27] dataset. It consists of 60,000 color photos
divided into ten different classes, with 6,000 images in each class. To ensure an even
distribution of classes, the dataset is split into a training set of 50,000 photos and a
test set of 10,000 images. The CIFAR-10 dataset includes photos that were compiled
from diverse sources and manually annotated by humans. Every picture has a fixed
resolution of 32x32 pixels and consists of red, green, and blue color channels. While
the CIFAR-10 dataset offers a wide range of images with clear class labels, it is vital
to recognize that it may also have inherent limitations, such as potential biases in
image selection and potential noise or mistakes in the categorization process.

MNIST: In the field of machine learning, the MNIST [28] dataset is a frequently
used benchmark dataset, notably for image classification tasks. It is made up of
a sizable number of photos in grayscale that represent the handwritten digits 0
through 9. The MNIST Special Database 19 served as the source for the dataset,
which was produced by Yann LeCun, Corinna Cortes, and Christopher J.C. Burges.
The pictures used in the MNIST dataset were gathered from scanned handwriting
samples and internet databases and preprocessed to a fixed size of 28x28 pixels,
centering normalization, and other operations. To ensure a balanced distribution
of each digit class, the dataset is split into a training set with 60,000 photos and a

18

test set with 10,000 images. The MNIST dataset is frequently used as a trustworthy
source for assessing and contrasting image classification techniques.

FMNIST: A well-known and frequently used benchmark dataset in machine learn-
ing and computer vision is the FMNIST [29] dataset. It was developed as an alter-
native to the original MNIST dataset to give image classification algorithms a more
difficult task by concentrating on photos linked to fashion. The dataset comprises
28x28 pixel grayscale photos of a variety of clothing items, including T-shirts, pants,
dresses, shoes, and more. There are 60,000 photos in the training set and 10,000
images in the test set. The FMNIST dataset is frequently used by academics and
industry professionals to assess and compare the effectiveness of machine learning
models and algorithms in fashion classification applications.

3.4 Data Preprocessing

For the preprocessing of datasets, firstly we load the predetermined datasets into
our FL setting with the help TensorFlow keras library function. Then we perform
the next steps of preprocessing.

Normalization: The pixel values in the original images of MNIST and FMNIST
datasets range from 0 to 255. The normalization step involves dividing each pixel
value by 255. This process scales the pixel values to a range between 0 and 1.
Normalization accelerates the training process and helps mitigate issues that may
arise from varying pixel value scales, ensuring more stable and efficient learning
for the neural network. Concerning mean and standard deviation adjustments,
for MNIST and FMNIST datasets, specific mean and standard deviation values
are applied after normalization. These values are determined empirically to center
and scale the pixel values appropriately. This standardization ensures that pixel
values are centered around zero, preventing biases in the model and contributing
to better convergence. Like MNIST and FMNIST, the CIFAR-10 dataset also has
its pixel values adjusted to a standard range. Each number for a pixel, which goes
from 0 to 255, is made smaller by dividing it by 255. This normalization helps
make the pixel values the same and helps the neural network learn better. For
CIFAR-10, which consists of color images in RGB format. The mean and standard
deviation are calculated for each channel (Red, Green, and Blue), and each pixel in
a channel is standardized by subtracting the respective mean and dividing by the
respective standard deviation. This process ensures that intensity across different
color channels is balanced, contributing to better convergence and training stability.

Reshape: To comply with the input requirements of the CNN model, the images
of MNIST and FMNIST datasets are reshaped to a standardized format of 28x28x1.
The original format, 28x28, captures the image dimensions, while the additional
dimension of 1 signifies a single channel, representing grayscale. This reshaping en-
sures uniformity in the input dimensions across the datasets, facilitating seamless
integration with the CNN architecture. Again, reshaping is a crucial step applied
to CIFAR-10. The original 32x32 color images went through reshaping to ensure
consistency in input dimensions, maintaining compatibility with the selected ResNet

19

architecture. This transformation is necessary as it establishes a standardized format
for the input data, enabling seamless integration. The reshaped images, conforming
to the ResNet model’s requirements, facilitate effective feature extraction and pat-
tern recognition during the training process, contributing to the overall success of
the deep learning model on the CIFAR-10 dataset.

20

Chapter 4

Proposed Model

4.1 Model Architecture:

Figure 4.1: Workflow of proposed Decentralized Defense Algorithm Training Model

21

4.2 Model Description

4.2.1 Non-iid

The type of data that is different in various kinds of devices is known as Non-iid
data [30]. In FL, we trained our model on decentralized devices. If the data on the
devices vary from each other then it will result in a model aggregation challenge.
Since the representation of specific patterns in each device is not good due to a lack of
distribution it will affect the convergence of the global model. To make the combined
model strong and enhance the working performance application of non-iid data is
important. In a model, the training data is dispersed among multiple clients such as
devices or servers. Here, the issue of non-identical data is referred to as non-IID data
which arises when the data distributions across clients vary, resulting in each client
possessing a distinct dataset with potentially different patterns. To mitigate this,
our function takes the non-IID nature into account. Non-iid datasets are created
where each client has a specific distribution of classes based on the non-iid parameter.
This controls the degree of non-iidness, determining how likely a data point is to be
assigned to its true class compared to other classes. We first created empty lists to
store indices for each class. Calculated probabilities for each class based on the non-
iid parameter which sums up to 1. Then we determined the number of clients for each
class based on the total number of clients and classes, distributing clients as evenly
as possible. It assigns random groups or classes to individual data points based
on specified probabilities, subsequently organizing client datasets by segregating
the data according to these assigned groups. Meaning for each class, indices are
shuffled considering the number of clients per class. Based on the indices, a dataset
is formed by selecting the corresponding data points and returned to the input data
and corresponding labels. This meticulous process ensures that each client’s dataset
exhibits a distinct class distribution, contributing to the overall non-IID nature of
the federated dataset.

4.2.2 Model Selection

After turning it into a non-iid dataset we are selecting the proper model for the
dataset to run. Here for our defense mechanism, we have used three image datasets
like: CIFAR-10, FMNIST, and MNIST. Since all the datasets will not work for
a single model so we have created different models for the different datasets. For
example: For MNIST we have used the CNN model since it works very efficiently for
the image classification tasks. MNIST is a handwritten dataset that includes 28x28
pixels of grayscale images and those pixels consist of digits 0 through 9. Similliarly
we have used CNN for the FMNIST dataset too. The CIFAR-10 dataset is also a
widely recognized dataset for the field of Machine Learning like MNIST. The dataset
has got 60,000 32x32 color images in 10 different classes, with 6,000 images per class.
For this dataset, we have used the ResNet model. ResNet’s ability is to handle deep
architectures and mitigate the vanishing gradient problem. Here we have given a
condition to check which dataset it is and then the mechanism will choose by itself
by checking the dataset which model it will use. We have also provided the input
shape (height, width, and number of channels), number of classes, target label, and
total number of clients corresponding to the datasets.

22

CNN:

We have implemented CNN for FMNIST and MNIST. Our model has a class of
neural networks which is specialized for processing data. It consists of three lay-
ers including convolutional layer, pooling layer, and fully connected layer. The
convolutional layer of our model is the core building block of this neural network
architecture. It involves the main portion of the network’s computational load which
basically works with the dot product of two matrices. In this project, our model
Convolutional Neural Network (CNN) [31] uses a pooling layer to reduce the input
data’s spatial dimensions while preserving crucial information. We need to reduce
the dimensionality of the data, which is why the pooling layer of our model splits
the input into smaller, non-overlapping sections and applies a pooling function (such
max pooling or average pooling) to each region. On our input data, the fully con-
nected layer of our model first applied a linear operation and then a non-linear
activation function.

Figure 4.2: Implemented handwritten data (MNIST) into normalized CNN Model
Architecture

ResNet:

Apart from the CNN model we also worked with another model known as ResNet(
Residual Neural Network) [32] for CIFAR-10. It helped to solve the problem of
gradient issues in very deep networks. Highway Networks are made simpler by
Residual Networks (ResNets), which mainly use identity functions as shortcuts.
This model is used to improve the neural network’s ability to approximate functions.
The deeper a neural network gets, the more training errors it tends to experience.
ResNet110 is intended to learn hierarchical data representations, particularly in
computer vision tasks such as picture classification. This could lead to improved
performance in challenging tasks, but it also means that careful training is needed
to avoid problems like vanishing gradients and optimization difficulties in very deep
networks. So our model has some layers that worked for experiment purposes.
Convolution, batch normalization, and ReLU activation are among the functions
that each block’s convolutional layer typically executes first. Features are extracted
from the input by this layer. The first convolutional layer’s output is added directly
to the second convolutional layer’s output. The concept of “residual” is found here
where ResNet models learn residuals, or modifications to the mapping, rather than

23

trying to learn the mapping directly. This helps the optimization of extremely deep
networks. The architecture is created by stacking these blocks on top of one another.
One block’s output serves as the input for another. We use this model to improve
training efficiency, reuse features, and represent Robustness to network depth.

4.2.3 Experimental setup

In this study, federated learning (FL) we are using three common datasets—MNIST,
FMNIST, and CIFAR-10. To maintain consistency, the experimental setup is uni-
form across all datasets, encompassing 100 clients per dataset. Within this exper-
iment, 0.25 or 25% of the clients are intentionally designated as malicious entities,
introducing a critical aspect of adversarial behavior. Furthermore, the datasets are
characterized by a non-IID degree of 0.5, emulating realistic scenarios of heteroge-
neous data distribution among clients. The optimization algorithm at the client level
adopts Stochastic Gradient Descent (SGD) with a learning rate of 0.1 per epoch,
and each client processes a batch size of 32 during training epochs. The study places
a special emphasis on the cross-device FL setting, acknowledging the distributed na-
ture of the training process. There are two methods of Federated Learning setting.
Cross-device setting and cross-silo setting. In cross-device setting, there is a large
number of clients, and only a subset of them is chosen per epoch. On the other
hand, In cross-silo setting the number of clients is small so every client participates
in every epoch. For our convenience, in this experiment, we are using a cross-device
setting.

After the FL setup, we will proceed to local training of the clients. For each com-
munication round, we are taking eight clients. After that, we will implement our
attack.

4.2.4 Implemented Attacks in the training Model

The Gaussian attack involves training each client in the client’s list and subsequently
perturbing their gradients with Gaussian noise, calculated based on the mean and
standard deviation statistics across all clients. In the second strategy, in the Krum
attack, the Krum aggregation method is applied to select a subset of clients with the
most similar gradients, and the mean gradient of this subset is maliciously modified.
This process iteratively refines the perturbation until a suitable set of adversarial
gradients is found. The third approach, the median attack modifies client gradients
by randomly sampling values within specified ranges determined by maximum and
minimum gradient values, with the direction of modification guided by the mean gra-
dient direction. These attack strategies collectively aim to compromise the integrity
of federated learning by subtly manipulating client gradients, thereby influencing
the global model update to align with adversarial objectives. These methods un-
derscore the imperative need for robust security measures and anomaly detection
in federated learning systems to mitigate the impact of such sophisticated model
poisoning attacks.

24

4.2.5 Defense Algorithm
Weights and Biases

In this research study, our model learns two types of parameters “weights and bi-
ases” to make accurate predictions. Weights adjust the contribution of each input
feature, while biases control the model’s overall output. The global understand-
ing of the model is generalized by the server’s model weights. It is very important
for federated learning as updates come from various clients. Aggregating updates
means combining the knowledge gained from different clients to improve the global
model collaboratively. Returning back to the original state before each aggregation
round to get a clear picture of the starting point is the purpose of resetting the
server model’s weight. As a result, it helps to prevent cumulative modifications by
maintaining the integrity of the global model in the iterations of federated learning.

Confusion matrix

A confusion matrix is a basic tool used in machine learning to check how well a
classification algorithm is working. It is a comprehensive breakdown of the model’s
predictions, categorizing the outcomes into four distinct groups. A true positive is
recorded when the model correctly identifies something as positive. This indicates
that the model has the capability to accurately identify the target. In contrast, true
negatives are revealed when the model correctly identifies scenarios in which the
desired item is not found. This shows that the model can tell when something is not
present. False positives happen when the model gets it wrong and says something is
positive when it is actually negative. This can happen when the model mistakenly
thinks something is there when it is actually not. On the other hand, false negatives
happen when the model doesn’t see a positive case, showing it can’t find something
that’s really there. This table helps to calculate different measures of how well a
model classifies things, like precision, recall, and the F1 score. This gives a detailed
assessment of how accurate and reliable the model is. The confusion matrix enables
a comprehensive and in-depth analysis of a situation.

Precision

Precise precision is crucial in machine learning and classification algorithms. It
measures how often positive predictions are correct by comparing the number of
true positive results to the total of true positive and false positive results. Basically,
precision measures how well a model can accurately identify positive instances out
of all the instances it predicts as positive. A high precision score means that the
model is good at predicting positive outcomes and is careful about giving false
positive results. In some cases where a mistake could have serious consequences,
it is essential to be extremely accurate. This shows that it is important to have
a dependable and exact way of identifying positive things. It helps to check if
a model’s predictions are accurate and reliable and help improve the model for

different situations. N
. True Positive
Precision =

True Positive + False Positive

True Positive

- True Predictive Positive

25

Recall

In machine learning, recall, also known as sensitivity or true positive rate, measures
the ability of a model to correctly identify all positive instances within a dataset.
It is found by dividing the number of true positives by the total of true positives
and false negatives. In simple terms, recall evaluates the model’s ability to identify
actual positive cases. A high recall score shows that the model is good at finding
most of the positive cases and reducing the number of cases that are missed. Re-
membering things is really important, especially when it comes to situations where
not remembering something good can cause big problems, like in medical tests or
security. It helps make sure a model can find all the positive cases in a dataset

without making mistakes.
True Positive
Recall =

True Positive (T'P) + False Positive (F'P)

F1 Score

The F1 score is a comprehensive metric in machine learning that strikes a balance
between precision and recall. It demonstrates the performance of a model, particu-
larly when there is an imbalance in the number of different types of things. The F1
score is a number that combines precision and recall to give a better overall measure
of performance than just looking at one of these measures alone. It is very useful
when being wrong in both directions can have serious consequences because it shows
the balance between being exact and not missing anything. A high F1 score shows
that a model is good at reducing both false positive and false negative results. It
is useful in areas like medical diagnoses or fraud detection where having a balanced
performance is important. It is a good way to see how well a classification algorithm
works in different real-life situations.

2
1 1

Precision + Recall

F1 Score =

B 2 x Precision * Recall
" Precision + Recall

Softmax Output

The softmax activation function, an extension of the logistic function, is instrumen-
tal in converting a vector of K real values into a normalized vector of K real values
that collectively sum to 1. This transformation ensures that irrespective of the in-
put values being negative, zero, positive, or exceeding one, the softmax function
maps each value within the range of 0 to 1, enabling their interpretation as prob-
abilities. If an input is negative or small, the softmax function assigns it a small
probability, while an excessively large input is converted into a high probability,
consistently constraining all probabilities within the 0 to 1 range. In the context of
multiclass classification, the softmax function assigns decimal probabilities to each

class involved, ensuring that the sum of these probabilities equals 1.
e

B Zszl e

26

In our algorithm, softmax transforms a vector of raw scores (logits) into a probabil-
ity distribution across multiple classes. Achieving this involves exponentiating each
logit and normalizing the results, effectively computing probabilities. The exponen-
tial function accentuates higher logits and diminishes lower ones, and the resulting
values are divided by the sum of all exponentiated logits, guaranteeing a probabil-
ity distribution summing to 1. This distribution aids in interpreting input data by
assigning likelihoods to different classes. In the algorithm, softmax is applied to the
model’s predictions based on validation data, facilitating the transformation of raw
scores into meaningful probabilities for subsequent analysis.

Figure 4.3: MNIST data to Softmax-Driven Predictions after sampled by a model
(CNN)

Weighted Aggregation Defense Algorithm (WAD)

The proposed defense algorithm aims to identify and prioritize clients that con-
tribute positively to the model’s accuracy during aggregation, mitigating the impact
of potentially malicious clients. The defense process begins by loading data and ini-
tializing variables. First, it resets the model to its initial state. Then it aggregates
with all the clients. After that, the model then predicts the validation data using
the softmax operation, converting raw model outputs into probability distributions.
The softmax operation is crucial in obtaining meaningful probability distributions
from the model’s outputs, enabling accurate comparison with ground truth labels.
The predictions are compared with actual labels to calculate the accuracy of all
clients together. Then, again for each client, the algorithm excludes one at a time
and performs model aggregation using the remaining clients. Then it subtracts the
currently calculated accuracy from the total calculated accuracy of all clients, which
we calculated at the beginning. Then this subtraction result is stored in a list and
we consider this as the accuracy for each client as shown in Fig. 2. This process
is repeated for each client, resulting in a list of accuracy scores for the different
exclusion scenarios. Clients are then sorted based on their accuracy scores, and a
subset containing the top non-malicious clients is selected. That’s how our main
defense method works. To have more clearer view we can look at the pseudocode of
core part of our defense algorithm Weighted Aggregation Defense (WAD).

27

Algorithm 1 Pseudo code of WAD

Suppose, number of non-malicious clients B
client_list = [n2,n1,n4,n3, nj]
all = accuracy(client_list)
accuracy_list = ||
for ¢ in client_list do
exclude = i {Suppose i = n2}
current = accuracy(all clients except n2)
accuracy of current client (n2) = all — current
accuracy_list.add(accuracy of current client)
end for
sort descending order (accuracy_list)
sort (client_list) according to sorted (accuracy_list)
non-malicious clients = Top B clients from (client _list)
Aggregate with non-malicious clients

As shown in Figure 4.4 in a hypothetical scenario we assume the total client number
is ‘n’ and consider that there is ‘m’ number of non-malicious clients. The process
firstly aggregates with all ‘n’ clients and calculates accuracy. Then it iterates by
excluding one client at a time, aggregating the model with (n-1) clients, and com-
puting accuracy. Then it subtracts the currently calculated accuracy from the total
calculated accuracy of all clients.

Figure 4.4: Weighted Aggregation Defense Workflow

Then this subtraction result is stored in a list and we consider this as the accuracy
for each client. In the first iteration, the first client is excluded, and the model is
aggregated, yielding accuracy. In the second iteration, the second client is excluded,
and the model is aggregated for accuracy calculation. This iterative process con-
tinues for all clients. The sorted order should be based on client with the highest
accuracy in descending order. With a count of non-malicious clients as 3 (m), top 3
clients will be selected as benign clients. The subsequent aggregation step involves

28

exclusively using the selected benign clients, resulting in a final aggregated model
that excludes the malicious clients.

Aggregation

For the aggregation, we have used the FedAvg aggregation method. This method
is responsible for computing the average of the client’s local model updates as the
global model update. In this process, each client means participating devices like:
Smartphones or edge devices. Here the whole computation is done with the three
key parameters. First, it takes the fraction of clients who are participating in com-
putation in each round. For instance, if the fraction of clients is 0.1 then 10% will
be the total clients that will be involved in the computation of that particular train-
ing round. Second, the number of training passes that each client creates its local
dataset on each training round. For example, if the number of training passes is
considered as 4 then each client will iterate to its local dataset 4 times during a
single training round. And the third one is local minibatch size. It means that the
size of the local minibatch that was used by each client for computing updates in the
training round. Let’s assume that if the local minibatch size is considered as 34 then
each client processes 34 data points at a time while training. These three key param-
eters are used for the computation. So overall the process happens by initializing a
global model on a central server. Then the participating clients or devices receive
the global model and independently train their local model in multiple rounds with
their respective datasets. After that, these local updates are provided back to the
central server where FedAvg aggregates them by computing the weighted average
of the updates.

29

Chapter 5

Result Analysis

5.1 Weighted Aggregation Defense against Me-
dian Attack

Figure 5.1: Performance of WAD, LFR, and Union algorithms against Median At-
tacks

30

The performance evaluation of three defense algorithms - WAD, LFR, and Union -
under the Median attack across the MNIST, FMNIST, and CIFAR-10 datasets pro-
vides a comprehensive understanding of their effectiveness in mitigating adversarial
changes in federated learning. The line graphs in Figure 5.1 illustrate this dynamic
performance across different epochs. In the MNIST dataset, WAD demonstrates a
commendable accuracy of 72.15%, surpassing LFR (68.73%) and Union (49.67%).
This is mirrored in the FMNIST dataset, where WAD continues to outperform with
an accuracy of 81.15%, significantly higher than LFR (68.01%) and Union (53.34%).
These results highlight WAD’s robustness and adaptability, as it consistently im-
proves its accuracy with each epoch. However, the more intricate CIFAR-10 dataset
presents a greater challenge for all three defense mechanisms. WAD achieves 53.52%
accuracy, indicating a decrease in effectiveness compared to simpler datasets. De-
spite this, WAD still outperforms LFR at 47.13% and Union at 41.02%, maintaining
the highest accuracy among the three. These findings, reflected in the volatility of
the lines in the CIFAR-10 graph, suggest that while WAD’s effectiveness diminishes
in more complex image datasets like CIFAR-10, it still remains the most effective
defense method against model poisoning Median attacks in federated learning.

Figure 5.2: Defense Performance Comparison against Median attack in Grayscale
and RGB Datasets

31

5.2 Weighted Aggregation Defense against Krum
Attack

Figure 5.3: Performance of WAD, LFR, and Union algorithms against Krum Attacks

As shown in Figure 5.3, the evaluation of defense algorithms WAD, LFR, and Union
under the Krum attack on various datasets reveals distinct performance metrics. On
the MNIST dataset, WAD emerges superior with an accuracy of 90.94%, outper-
forming LFR (87.48%) and Union (86.50%). The trend is consistent in the FMNIST
dataset where WAD again leads with an 89.35% accuracy rate, followed by LFR at
87.69% and Union at 87.53%. In the CIFAR-10 dataset, a more complex and in-
tricate set of data, all three defense mechanisms face heightened challenges but
maintain comparable accuracy levels; WAD at 61.58%, LFR peaking at 64.58%,
and Union trailing at 59.08%. The graphical representation illustrates a steady in-
crease in accuracy per epoch for each algorithm across all datasets, with noticeable
divergences highlighting the effectiveness of each defense mechanism under varying
conditions. The line graphs provide a visual representation of these findings, show-
ing the performance of each algorithm over 40 epochs. WAD consistently leads in
accuracy, demonstrating its robustness against Krum attacks. However, LFR and
Union, respectively, show significant volatility, especially in the CIFAR-10 dataset,
indicating their struggle to maintain consistent performance under the Krum attack.
These results underscore the effectiveness of WAD as a defense method in federated
learning, even in the face of complex attacks like Krum.

32

Figure 5.4: Defense Performance Comparison against Krum attack in Grayscale and
RGB Datasets

33

5.3 Weighted Aggregation Defense against Gaus-
sian Attack

Figure 5.5: Performance of WAD, LFR, and Union algorithms against Gaussian
Attacks

As shown in Figure: 5.5, the evaluation of defense algorithms WAD, LFR, and Union
under the Gaussian attack on MNIST, FMNIST, and CIFAR-10 datasets reveals al-
most identical performance patterns, like the Krum attack. In the MNIST dataset,
WAD demonstrates high effectiveness with an accuracy of 94.11%, showcasing its
robust defense capabilities. Union also performs well with an accuracy of 91.97%,
while LFR exhibits a lower accuracy of 68.73%, suggesting a potential vulnerability
to the Gaussian attack. The FMNIST dataset shows consistent and strong defense
performance across all algorithms, with WAD leading at 92.94%, followed by LFR
at 90.58%, and Union at 89.60%. However, in the more intricate CIFAR-10 dataset,
the defense mechanisms encounter increased challenges. WAD achieves an accuracy
of 67.12%, closely followed by Union at 67.45% and LFR at 66.02%. The line graphs
provide a visual representation of these findings, showing the performance of each al-
gorithm over 40 epochs. The WAD consistently leads in accuracy, demonstrating its
robustness against Gaussian attacks. However, LFR and Union, respectively, show
significant volatility, especially in the CIFAR-10 dataset, indicating their struggle
to maintain consistent performance under the Gaussian attack.

34

Figure 5.6: Defense Performance Comparison against Gaussian attack in Grayscale
and RGB Datasets

35

5.4 Experimental Results

Dataset — Defense Attack

Median | Krum | Gaussian
MNIST — WAD 72.15% | 90.94% | 94.11%
MNIST — LFR [26] 68.73% | 87.48% 68.73%

MNIST — Union [26] | 49.67% | 86.50% | 91.97%
FMNIST — WAD 81.15% | 89.35% | 92.94%
FMNIST — LFR [26] | 68.01% | 87.69% | 90.58%
FMNIST — Union [26] | 53.34% | 87.53% | 89.60%
CIFAR-10 — WAD | 53.52% | 61.58% | 67.12%
CIFAR-10 — LFR [26] | 47.13% | 64.58% | 66.02%
CIFAR-10 — Union [26] | 41.02% | 59.08% | 67.45%

Table 5.1: Performance of different defense mechanisms against various attacks

The evaluation of defense algorithms under the Median, Krum, and Gaussian attacks
across MNIST, FMNIST, and CIFAR-10 datasets shows performance variations, as
shown in Table 5.1. In the case of the Median attack, WAD consistently outper-
forms LFR and Union, achieving the highest accuracy in MNIST (72.15%), FMNIST
(81.15%), but faces challenges in CIFAR-10 (53.52%). The Krum attack results
showcase competitive accuracies for WAD, LFR, and Union in MNIST (90.94%,
87.48%, 86.50%), FMNIST (89.35%, 87.69%, 87.53%), and CIFAR-10 (61.58%,
64.58%, 59.08%). Similarly, under the Gaussian attack, WAD and Union exhibit
robust defense capabilities in MNIST (94.11%, 91.97%) and FMNIST (92.94%,
89.60%), while LFR lags behind (68.73%). CIFAR-10 presents challenges for all de-
fenses, with WAD achieving 67.12%, LFR at 66.02%, and Union at 67.45%. Overall,
WAD consistently demonstrates competitive defense across all attacks and datasets,
outperforming LFR and Union. However, the effectiveness diminishes in the more
complex CIFAR-10, indicating the need for further enhancements.

The Weighted Aggregation Defense (WAD) algorithm, is designed to defend against
model poisoning in federated learning and it works by calculating the accuracy of
the model for each client, excluding that client’s data from the aggregation. It then
ranks the clients based on these accuracies and considers the top clients, up to the
count of non-malicious clients, as non-malicious for the final aggregation. According
to our experiment data, WAD performs better in almost all attacks when applied to
the FMNIST and MNIST. This superior performance could be due to the simplicity
of these grayscale image datasets and the effectiveness of WAD in handling the
specific types of attacks present in these datasets. However, WAD’s performance
decreases when dealing with the CIFAR-10 dataset, which contains more complex
and diverse colored images. This decrease in performance could be due to the
increased complexity of the CIFAR-10 dataset, which might pose challenges for WAD
in accurately identifying non-malicious clients and potential limitations of WAD
in handling the specific types of changes present in the CIFAR-10 dataset. WAD
adopts a method where it assesses the accuracy of each client and excludes data from
clients considered malicious during the aggregation process. This strategy is effective
for simpler datasets with specific types of attacks, contributing to WAD’s superior

36

performance in such cases. WAD identifies malicious clients solely by evaluating
the accuracy of their local models. The distinct strategies for identifying malicious
clients lead to performance variations depending on the dataset and the nature of
the attacks.

5.5 Precision, Recall and F1 Score of proposed

algorithm
Datasets against Attacks Metrics
Precision 1 | Recall T | F1 Score 1

MNIST — Median 96.45% 62.41% 75.78%
MNIST — Krum 89.76% 94.51% 92.07%
MNIST — Gaussian 93.66% 94.98% 94.32%
FMNIST — Median 89.65% 91.50% 91.83%
FMNIST — Krum 89.65% 89.83% 90.69%
FMNIST — Gaussian 90.81% 95.99% 93.33%
CIFAR-10 — Median 72.58% 78.46% 81.36%
CIFAR-10 — Krum 85.34% 84.57% 87.34%
CIFAR-10 — Gaussian 89.34% 88.27% 90.34%

Table 5.2: Precision, Recall, and F1 Score for Weighted Aggregation Defense (WAD)

The evaluation metrics in Table 5.2 shows how well the Weighted Aggregation De-
fense (WAD) algorithm does against different attacks (Median, Krum, Gaussian) on
MNIST, FMNIST, and CIFAR-10 datasets gives us useful insights into how it per-
forms. In MNIST, WAD did really well in being precise in all attacks, hitting 96.45%
in Median, 89.76% in Krum, and 93.66% in Gaussian. But a drop in recall was no-
ticed, especially against Median (62.41%). The F1 score, which balances precision
and recall, stayed pretty high across all attacks. For FMNIST, WAD stayed con-
sistent, showing strong defense procedures with precision values of 89.65%, 89.65%,
and 90.81% against Median, Krum, and Gaussian. Now, CIFAR-10 brought more
challenges, with precision ranging from 72.58% to 89.34%, showing a bit of a de-
crease in accuracy against more complicated attacks. WAD turns out to be a good
defense, especially for simpler datasets like MNIST and FMNIST, where it manages
a good balance between precision and recall. However, it’s a bit less effective when
dealing with the more complex features of CIFAR-10 which should be addressed in
the future.

37

Chapter 6

Conclusion and Future Work

6.1 Future Works

We successfully applied our defense mechanism to MNIST and FMNIST datasets
but faced challenges with CIFAR-10 where it performed less effectively than others.
Despite this, our defense mechanism has proven effective against various attacks,
particularly excelling with Krum and Gaussian attacks compared to Median attacks.
We aim to optimize our mechanism for better performance in the future, addressing
the limitations observed. Also, we plan to enhance its capability to handle a broader
range of attacks and targeted model poisoning attacks, ensuring increased robustness
in the future.

6.2 Conclusion

We are dealing with enormous amounts of data as technology in our environment
continues to grow quickly. Federated Learning is now used by several industries to
manage decentralized training data. Federated Learning still has a security flaw that
renders it susceptible to model poisoning attacks, despite the fact that it is widely
used. We have researched the current defense strategies for defending Federated
Learning from model poisoning attacks in order to address this problem. With fed-
erated learning, a method for training models without disclosing any data to anyone,
the emphasis is protecting against model poisoning. The objective is to address the
security concerns of federated learning defense models and to enhance their efficiency
against poisoning attempts. The research attempts to deeply comprehend the fed-
erated learning, and the security challenges of defensive models in order to do this.
We expect that our study will resolve the crucial issue of data privacy in the quickly
expanding fields of technology and data-driven research defense models. We have
analyzed different kinds of defensive algorithms against model poisoning. We have
also proposed and implemented another robust defense mechanism and evaluated
against various attacks. Depending on different algorithms we have constructed a
defensive model that is capable of defending three types of model poisoning attacks
efficiently. However, we have planned to work on the other attacks in the near
future.

38

Bibliography

1]

[10]

[11]

G. Drainakis, K. V. Katsaros, P. Pantazopoulos, V. Sourlas, and A. Amdi-
tis, “Federated vs. centralized machine learning under privacy-elastic users: A
comparative analysis,” pp. 1-8, 2020. por: 10.1109/NCA51143.2020.9306745.

Z. Wang, Q. Kang, X. Zhang, and Q. Hu, “Defense strategies toward model
poisoning attacks in federated learning: A survey,” arXiv.org, Feb. 2022. [On-
line|. Available: https://arxiv.org/abs/2202.06414.

V. Shejwalkar and A. Houmansadr, “Manipulating the byzantine: Optimizing
model poisoning attacks and defenses for federated learning,” Feb. 2021. [On-
line]. Available: https://people.cs.umass.edu/~amir/papers/NDSS21-model-
poisoning.pdf.

L. Lyu, J. Zhao, and Q. Yang, “Threats to federated learning,” Research-
Gate, 2020. [Online]. Available: https://www.researchgate.net /publication /
347178320 Threats_to_Federated _Learning.

X. Cao and N. Z. Gong, “Mpaf: Model poisoning attacks to federated learning
based on fake clients,” arXiv.org, May 2022. [Online|. Available: https://arxiv.
org/abs/2203.08669.

A. Panda, S. Chakraborty, A. Bhagoji, and S. Mahloujifar, “Arxiv:2112.06274v1
[cs.lg] 12 dec 2021,” SparseFed: Mitigating Model Poisoning Attacks in Fed-

erated Learning with Sparsification, Dec. 2021. [Online]. Available: https://

arxiv.org/pdf/2112.06274v1.pdf.

N. Rodriguez-Barroso, E. Martinez-Camara, M. V. Luzén, and F. Herrera,
“Dynamic defense against byzantine poisoning attacks in federated learning,”
arXiv.org, Feb. 2022. [Online|. Available: https://arxiv.org/abs/2007.15030.

M. Sameen and S. O. Hwang, “Timpany—detection of model poisoning attacks
using accuracy,” IEEE Access, vol. 9, pp. 139415-139 425, 2021. por: 10.1109/
access.2021.3118926.

Y. Sun, H. Ochiai, and J. Sakuma, “Semi-targeted model poisoning attack on
federated learning via backward error analysis,” arXiv.org, May 2022. [Online].
Available: https://arxiv.org/abs/2203.11633.

R. Schuster, C. Song, E. Tromer, and V. Shmatikov, “You autocomplete me:
Poisoning vulnerabilities in neural code completion,” arXiv.org, Oct. 2020.
[Online]. Available: https://arxiv.org/abs/2007.02220.

R. Pang, Z. Xi, S. Ji, X. Luo, and T. Wang, “On the security risks of automl,”
arXiv.org, Oct. 2021. [Online]. Available: https://arxiv.org/abs/2110.06018.

39

https://doi.org/10.1109/NCA51143.2020.9306745
https://arxiv.org/abs/2202.06414
https://people.cs.umass.edu/~amir/papers/NDSS21-model-poisoning.pdf
https://people.cs.umass.edu/~amir/papers/NDSS21-model-poisoning.pdf
https://www.researchgate.net/publication/347178320_Threats_to_Federated_Learning
https://www.researchgate.net/publication/347178320_Threats_to_Federated_Learning
https://arxiv.org/abs/2203.08669
https://arxiv.org/abs/2203.08669
https://arxiv.org/pdf/2112.06274v1.pdf
https://arxiv.org/pdf/2112.06274v1.pdf
https://arxiv.org/abs/2007.15030
https://doi.org/10.1109/access.2021.3118926
https://doi.org/10.1109/access.2021.3118926
https://arxiv.org/abs/2203.11633
https://arxiv.org/abs/2007.02220
https://arxiv.org/abs/2110.06018

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

J. Guo and C. Liu, “Practical poisoning attacks on neural networks,” Com-
puter Vision — ECCV 2020, pp. 142-158, 2020. por: 10.1007 /978-3-030-
58583-99.

Y. Sun, M. Usman, D. Gopinath, and C. S. Pasareanu, “Vpn: Verification of
poisoning in neural networks,” The University of Manchester Login Service,
2022. [Online|. Available: https://arxiv.org/abs/2205.03894.

P. Bajcsy and M. Majurski, “Baseline pruning-based approach to trojan de-
tection in neural networks,” arXiv.org, Feb. 2021. [Online]. Available: https:
//arxiv.org/abs/2101.12016.

A. Shafahi and W. R. Huang, “Poison frogs! targeted clean-label poison-
ing attacks on neural networks,” Book, 2018. [Online]. Available: https://
proceedings.neurips.cc/paper/2018.

Z. Zhang, X. Cao, J. Jia, and N. Z. Gong, “Fldetector: Defending federated
learning against model poisoning attacks via detecting malicious clients,” Pro-
ceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2022. DOI: 10.1145/3534678.3539231.

Y. Yan Wang and Li, “Defl: Defending against model poisoning attacks in
federated learning via critical learning periods awareness,” Proceedings of the
AAAI Conference on Artificial Intelligence, 2023. [Online]. Available: https:
/ / scholar . google . com / citations 7 view_op = view _citation & hl = en & user =
wyHzGegAAAAJ&citation_for view=wyHzGcgAAAAJ-W7OEmFMy1HYC.

X. Cao, M. Fang, J. Liu, and N. Z. Gong, “Fltrust: Byzantine-robust federated
learning via trust bootstrapping,” Proceedings 2021 Network and Distributed
System Security Symposium, 2021. DOIL: 10.14722/ndss.2021.24434.

H. Chen, S. A. Asif, J. Park, C. Shen, and M. Bennis, “Robust blockchained
federated learning with model validation and proof-of-stake inspired consen-
sus,” CoRR, vol. abs/2101.03300, 2021. arXiv: 2101.03300. [Online]. Available:
https://arxiv.org/abs/2101.03300.

V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage, “Back to the
drawing board: A critical evaluation of poisoning attacks on federated learn-
ing,” CoRR, vol. abs/2108.10241, 2021. arXiv: 2108.10241. [Online]. Available:
https://arxiv.org/abs/2108.10241.

S. Awan, B. Luo, and F. Li, “Contra: Defending against poisoning attacks in
federated learning,” 2021. [Online|. Available: https://dl.acm.org/doi/abs/10.
1007/978-3-030-88418-5_22.

A. Sharma, W. Chen, J. Zhao, Q). Qiu, B. Saurabh, and C. Somali, “Flair:
Defense against model poisoning attack in federated learning,” 2023. DOTI:
10.1145 /3579856 . 3582836. [Online]. Available: https://dl.acm.org/doi/
abs/10.1145/3579856.3582836.

J. Sun, A. Li, L. DiValentin, A. Hassanzadeh, Y. Chen, and H. Li, “FL-WBC:
enhancing robustness against model poisoning attacks in federated learning
from a client perspective,” CoRR, vol. abs/2110.13864, 2021. arXiv: 2110.
13864. [Online]. Available: https://arxiv.org/abs/2110.13864.

40

https://doi.org/10.1007/978-3-030-58583-9_9
https://doi.org/10.1007/978-3-030-58583-9_9
https://arxiv.org/abs/2205.03894
https://arxiv.org/abs/2101.12016
https://arxiv.org/abs/2101.12016
https://proceedings.neurips.cc/paper/2018
https://proceedings.neurips.cc/paper/2018
https://doi.org/10.1145/3534678.3539231
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=wyHzGcgAAAAJ&citation_for_view=wyHzGcgAAAAJ:W7OEmFMy1HYC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=wyHzGcgAAAAJ&citation_for_view=wyHzGcgAAAAJ:W7OEmFMy1HYC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=wyHzGcgAAAAJ&citation_for_view=wyHzGcgAAAAJ:W7OEmFMy1HYC
https://doi.org/10.14722/ndss.2021.24434
https://arxiv.org/abs/2101.03300
https://arxiv.org/abs/2101.03300
https://arxiv.org/abs/2108.10241
https://arxiv.org/abs/2108.10241
https://dl.acm.org/doi/abs/10.1007/978-3-030-88418-5_22
https://dl.acm.org/doi/abs/10.1007/978-3-030-88418-5_22
https://doi.org/10.1145/3579856.3582836
https://dl.acm.org/doi/abs/10.1145/3579856.3582836
https://dl.acm.org/doi/abs/10.1145/3579856.3582836
https://arxiv.org/abs/2110.13864
https://arxiv.org/abs/2110.13864
https://arxiv.org/abs/2110.13864

[24]

[25]

S. Han, B. Buyukates, Z. Hu, et al., “Fedmlsecurity: A benchmark for attacks
and defenses in federated learning and federated 1lms,” 2023. arXiv: 2306.04959
[cs.CR].

T. Gehlhar, F. Marx, T. Schneider, A. Suresh, T. Wehrle, and H. Yalame,
“Safefl: Mpc-friendly framework for private and robust federated learning,”
2023, https://eprint.iacr.org/2023/555. [Online]. Available: https://eprint.
iacr.org/2023/555.

M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local model poisoning attacks to
byzantine-robust federated learning,” CoRR, vol. abs/1911.11815, 2019. arXiv:
1911.11815. [Online|. Available: http://arxiv.org/abs/1911.11815.

A. Krizhevsky, “Learning multiple layers of features from tiny images,” Tech.
Rep., 2009.

Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, vol. 2, 2010.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset
for benchmarking machine learning algorithms,” CoRR, vol. abs/1708.07747,
2017. arXiv: 1708.07747. [Online]. Available: http://arxiv.org/abs/1708.07747.

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learn-
ing with non-iid data,” CoRR, vol. abs/1806.00582, 2018. arXiv: 1806.00582.
[Online]. Available: http://arxiv.org/abs/1806.00582.

T. N. S. O. V. A. S. H. Sak, “Convolutional, long short-term memory, fully
connected deep neural networks,” 2015. [Online]. Available: https://ieeexplore.
ieee.org/abstract/document /7178838.

G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger, “Deep networks with
stochastic depth,” Mar. 2016.

41

https://arxiv.org/abs/2306.04959
https://arxiv.org/abs/2306.04959
https://eprint.iacr.org/2023/555
https://eprint.iacr.org/2023/555
https://eprint.iacr.org/2023/555
https://arxiv.org/abs/1911.11815
http://arxiv.org/abs/1911.11815
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1806.00582
http://arxiv.org/abs/1806.00582
https://ieeexplore.ieee.org/abstract/document/7178838
https://ieeexplore.ieee.org/abstract/document/7178838

	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Organization
	Research Problem
	Research Objective

	Literature Review
	Implementation
	Attacks
	Defense Algorithms
	Dataset Description
	Data Preprocessing

	Proposed Model
	Model Architecture:
	Model Description
	Non-iid
	Model Selection
	Experimental setup
	Implemented Attacks in the training Model
	Defense Algorithm

	Result Analysis
	Weighted Aggregation Defense against Median Attack
	Weighted Aggregation Defense against Krum Attack
	Weighted Aggregation Defense against Gaussian Attack
	Experimental Results
	Precision, Recall and F1 Score of proposed algorithm

	Conclusion and Future Work
	Future Works
	Conclusion

