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Abstract

As a widely popular sport worldwide, football necessitates precise and consistent
decision-making to uphold fair game-play. It has become essential to automate and
optimize certain aspects of the game for fairness and efficiency. Foul detection stands
as one of the most challenging and contentious areas where this could be applied.
This paper presents an approach for real-time foul detection in football matches
using advanced machine-learning techniques. Our research focuses on developing
and validating a machine learning-based model that uses video feed data, position
coordinates and historical match data to detect fouls in real-time. Faster R-CNN,
YOLOv5, YOLOv8 and YOLO-NAS like SOTA machine learning models have been
used for this research due to their higher processing speed and accuracy at real
time object detection workings. For the detection of foul, machine learning models
YOLOv5, YOLOv8, YOLO-NAS and Fast R-CNN have shown an accuracy of about
96%, 97%, 94% and 90% respectively. The potential impact of this system extends
beyond football, offering a framework that could be adapted to automate decision-
making in various sports, thereby ushering in a new era in sports technology.

Keywords: Real-time Foul Detection, Machine Learning, Football Refereeing, Fair
game-play
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Chapter 1

Introduction

As football’s global popularity and complexity increases, the need for accurate and
consistent decision-making within the sport grows proportionately [7]. The delin-
eation of fair play and foul conduct has long been a contentious area in football,
with referees’ judgment calls often in the eye of the storm [3]. To alleviate these con-
troversies and enhance the game’s integrity, recent research has leveraged machine
learning algorithms for real-time foul detection, a domain which this thesis further
explores and innovates.

The incorporation of machine learning techniques into sports analytics has gained
significant traction in recent years. Predominantly, convolutional neural networks
(CNNs) have been employed for image processing in sports, showcasing promising
results [8]. Recurrent neural networks (RNNs), particularly long short-term memory
(LSTM) units, have demonstrated their capability in processing sequential data, es-
pecially in sports where position and time sequence is crucial [29]. This thesis aims
to develop a machine learning-based model for realtime foul detection in football
matches.

Training and validating this machine learning model was carried out using a custom
dataset derived from several football leagues worldwide of all age ranges using their
videos converting them into frames and also collecting images from various online
image stocks. After creating the dataset we did various preprocessing and augmen-
tation steps using Roboflow. This vast data availability has not only facilitated
in-depth model training but has also ensured the generaliz-ability and robustness of
the foul detection system. Moreover, YOLOv5, YOLOv8, YOLO-NAS and Faster
R-CNN machine learning models primarily have been used for this research due to
their higher processing speed and accuracy in the real time object detection sector.
After training the models using our custom dataset we found that YOLOv5 and
YOLOv8 yielded best accuracies which were 96.6% and 97.2% respectively. After
finding the best models we used these models trained weights for our custom dataset
which were later used at web application deployment. This web application can be
used for real-time foul detection in football matches, as this has various sources
available to input data like images, videos, Real Time Stream Protocol(RTSP) and
YouTube links. Also multi-object trackers like ByteTrack and BotSORT are used as
well to track involved players and fouls in multiple frames. We also implemented the
Dark Channel Prior algorithm for Dehazing images or videos as because of weather
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conditions it can be hard for models to predict foul at poor visibility. Thus our web
application can be real handy at any weather conditions.

Our research contributes to the academic discourse on the application of machine
learning in sports analytics and the broader scope of artificial intelligence in decision-
making automation. Further, the proposed model’s real-world implications could be
profound, potentially revolutionizing football refereeing, and reducing human bias
and error.

Finally, the thesis addresses some of the ethical and societal implications of the
proposed technology. As automation continues to pervade all sectors of society, it
is crucial to evaluate and regulate its implications to ensure fairness and mitigate
unintended consequences.

1.1 Research Problem

The sport of football, due to its dynamic and unpredictable nature, brings forth an
intricate blend of strategies, skills, and actions [19]. One of the enduring challenges
in managing football games lies in identifying and adjudicating fouls. Despite the
professional acumen of referees, the fast-paced nature of football and the increasing
complexity of player interactions often makes the detection of fouls an arduous task.
Consequently, the inconsistent application of rules, stemming from potential human
bias or error, could affect the game’s fairness and outcomes [9].

Contemporary football leagues have partially mitigated this issue by implementing
technologies such as the Video Assistant Referee (VAR) system. However, VAR has
been critiqued for its inability to provide real-time decisions, thus causing significant
game interruptions, and detracting from the natural flow of the match [24]. This
identifies the exigency for an efficient, real-time system capable of detecting fouls
with high accuracy, thereby reducing reliance on subjective human judgment.

Machine learning, especially deep learning techniques like Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs) with Long Short-Term Mem-
ory (LSTM) units, have made significant inroads into sports analytics, particularly
in tasks such as player tracking, game pattern recognition, and injury prediction
[18]. However, their utilization for real-time foul detection in football is still in the
nascent stages, and the existing models demonstrate limitations.

This research aims to address these challenges by developing a more comprehensive
and robust machine learning model for real-time foul detection in football. The
model intends to leverage the strengths of CNNs for video data analysis, thereby
creating a synergy of these advanced machine learning techniques. Furthermore,
the model will be trained on a diverse custom dataset spanning multiple leagues
worldwide, enhancing its gener-alizability and real-world applicability.

The problem, therefore, lies in the development of this efficient, real-time machine
learning model for foul detection in football matches, capable of overcoming the lim-
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itations of current approaches, thereby potentially enhancing the game’s fairness,
reducing controversies, and improving the viewing experience.

1.2 Research Objectives

The research objective of this study is to provide accurate and instant information
about the fouls occurring on the football field. The images taken from the camera
will be analyzed with the already existing datasets made by us to see if a foul has
been committed and will notify the authority about the following results. There are
several objectives which are given below.

1. To analyze the potential of machine learning in case of accuracy.

2. To collect and create a comprehensive dataset of football fouls.

3. To develop a model which will work better with custom dataset in case of foul
detection programs.

4. To experiment how fast the research process can comply in the case of deliv-
ering results for foul detection.

5. To analyze the already made models and how to further improve those to
satisfy the current needs.

6. To examine the whole working flow for our current models.

7. To offer further suggestions and recommendations on the following research.
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Chapter 2

Related Work

The integration of artificial intelligence (AI) in football foul detection has the poten-
tial to bring forth numerous benefits and can hold great significance for the sport.
AI technologies, such as machine learning and computer vision, offer the potential
to revolutionize the accuracy, consistency, and fairness of foul detection in football
matches. By automating the process and reducing reliance on subjective human
judgment, AI-based systems can provide objective and real-time decision-making
capabilities.

There are similarities in between the detection of abnormalities in surveillance cam-
era footage and foul detection in the football match. For example, Computer Vi-
sion Techniques, Object Detection and Tracking, Anomaly Detection, Real-Time
Processing and Training Data and Model Development. The similarities have the
potential for the further research development.

2.1 Related Works

In this part, previous relevant work has been taken into consideration for the analy-
sis of real time foul detection in the football field which focuses mainly on the usage
of camera, frame detection and comparison to identify any abnormalities. As the
rate of occurrence of abnormality is low so the collection of datasets is one of the
challenging tasks. Several algorithms from different research papers seems to be
relevant for the analysis and detection of foul in real time match.

Principal Component Analysis (PCA) and Support Vector Machine (SVM) are used
to classify significant behaviors. The research paper [1], shows real-time human
abnormal behavior detection. It uses the border information of consecutive blobs
to select features and then applies PCA to extract relevant information and SVM
to classify normal or abnormal behavior. Consequently, optical flow is used to
determine velocity of pixels and detect abnormal behavior based on the obtained
information.

In the research paper [17], a feature descriptor called Histograms of Optical Flow
Orientation (HOFO) has been introduced, to encode the movement information of
the region of interest in a video frame. The HOFO feature is computed using the
Horn-Schunck algorithm to extract optical flow from consecutive frames. The Hid-
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den Markov Model (HMM) based classifier is used to distinguish between normal
events and abnormal events.

In this paper [5], real-time hand gesture recognition is covered where their main
components are hand detection, hand gesture tracking and hand gesture recognition.
The hand detection part system identifies skin pixels based on color tone informa-
tion and then detects moving objects to accurately detect hand regions. Then, at
hand gesture tracking it tracks the trajectory of the hand by analyzing the positions
of the hand centers overtime and analyzing the positions of the last 10 frames by
storing positions. Finally, at hand gesture recognition, the system obtains informa-
tion from hand gesture tracking and compares those with pre-defined hand gestures.

In this paper [11], suspicious behavior detection of people by monitoring cameras is
represented. They analyze the trajectory of moving objects based on their motion
vectors. By calculating the motion vector, they determine the speed and direction
of movement to detect suspicious behavior. Once suspicious behavior is detected
the system segments the object of interest from the background and tracks it within
the camera’s field of view to detect suspicious behavior more accurately.

In this research paper [28], there have been use of target detection and tracking meth-
ods. First, comparison between given datasets and the target is identified. With
the help of target detection, advanced video analysis technology is applied. Then
different block background modeling such as random block background modeling
(RBBM) or mixed block background modeling (MBBM) is used with the combi-
nation of adaptive block propagation background subtraction method (ABPBSM)
for foreground detection. Here evaluation matrices are also being used to assess the
performance of the ensemble model.

In the research paper [33], for object detection specially the players, a tool of object
detector called YoloV3 is used. Accuracy has been on focus for the detection which
sacrificed some speed. For tracking all the players on the field, a positional based
tracker is used. The researcher also trained the CNN to track and detect Numbers
on the jersey for accuracy. Also an outlier detection system is used to detect and
make the referee unique from the other teams using DBSCAN.

In this paper [10], a convolution neural network (CNN) method to recognize hand
gestures of human task activities from a camera image has been proposed. In order
to deal with light related complexities, a Gaussian Mixture model (GMM) has been
adopted. The task of such a type of model is to train the skin model which is used to
filter out non-skin colors of an image. The proposed system also had the satisfactory
results on the transitive gestures in a continuous motion using the proposed rules.

The idea of handling the problem based on correlation analysis of the optical flow
has been proposed in this paper [21] for accurate and quick identification of abnor-
mal behavior of a crowd. The related events are divided into categories such as
accidents, crowd density, crowd egress behavior and others. The modeling of crowd
movements has been done using the optical overflow technique. The hierarchical
agglomerative clustering algorithm, is used for understanding the motion pattern of
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crowded circumstances. For the analysis of human crowd behavior, graph modeling
and matching based on Delaunay triangulation have been proposed. The procedures
employed in this case involve gathering video from cctv cameras and determining if
the anomalous criteria have been met or not. If the answer is affirmative, the event
is either detected or it is not.

Data collection from raw films or events is quite difficult because the frequency of
odd happenings is relatively low. In this paper [2], unusual event detection has been
predicted. Using Bayesian adaptation models, unexpected models are derived from
the common models and then compared for detection. Because they perform well
in unsupervised learning, HMMs are used for temporal dependencies. The results
were satisfactorily produced using audiovisual features and comparisons to super-
vised and unsupervised baseline systems.

The research paper [4], focuses on the automatic detection of suspicious and anoma-
lous behavior by surveillance systems. Abnormal events are unpredictable due to
their timing, location, and circumstances of occurrence. Firstly, normal model has
been introduced, then comparison with the suspicious or changed ones has been
compared with normal ones. Thus, learning model like FFNN (Feed Forward Neu-
ral Network) is used. The hardware components that are employed are the Xetal
IC30 processor, the 8051 microcontrollers (for external connectivity and high-level
image processing), DPRAM and Wi-ca Smart camera (real-time behavior analysis
of high-level moving objects). Due to the limitation of IC3D memory capabilities,
the system can only follow one route at a time and be used on one object, but it is
still capable of detecting irregularities.

Utilization of a completely data-driven approach using deep learning for the predic-
tion of foul situations in real-time has been discussed in this paper [12]. Despite
achieving significant success, their model faced limitations in terms of scalability
and real-world applicability, as it relied on detailed player biometric data that may
not always be available or ethically permissible to use in real scenarios.

In this paper [20], the ”Pose-guided RCNN” framework is created by replacing a
standard Faster R-CNN with a 3-class RPN, extending it with additional key-point
branches, and adding human pose supervision. The dataset is taken from football
matches taken by camera. The following three insights are applied to this perfor-
mance: The implementation of pose-guided localization network, which can enforce
proposal refinement for jersey number location by human stance, the redesign of
the three-class RPN for anchor association, and the universality of the region-based
CNN model are the first two. The proposed strategy can be simply applied to dif-
ferent sports and is end-to-end trainable by combining the three elements.

In the research paper [27], YOLOv4 and deep sort is used to identify the object
tracking in case of camera movement. The dataset used is INRIA person dataset
for training YOLOv4. Market 1501 and Mars dataset used to train deepsort. It has
been seen that the object tracking problem is solved well by the model. Deepsort
and YOLOv4 both models have successfully identified the human body.
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To sum up, it can be said that all the procedures and techniques used in the above
mentioned articles and paper are relevant for the practical impliacations. So that,
the work for the implimentations can be enhanced. the real-time foul detection can
be managed more swiftly and smoothly.

2.2 Summary Table

Sl.
No

Name of the Work Algorithms/Models
Used

Dataset Accuracy

1 A Detection System for
Human Abnormal Behav-
ior [1]

Principal component
analysis, Support
vector machine,
Optical flow

Not men-
tioned

Not men-
tioned

2 Abnormal event detection
based on analysis of move-
ment information of video
sequence [17]

Histograms of opti-
cal flow orientation,
Horn-schunck, Hid-
den markov model

UMN,
PETS

91.39% to
97.24% to
100%

3 Hand Gesture Recognition
System [5]

Hand gesture track-
ing using positions of
the hand center

Not men-
tioned

94%

4 Feature Extraction of Foul
Action of Football Players
Based on Machine Vision
[32]

Threshold recogni-
tion algorithm using
Harris 3D operator,
AdaBoost, Cluster-
ing and Fusion

Not men-
tioned

Higher
(Per-
centage
not men-
tioned)

5 Suspicious Behavior De-
tection of People by Moni-
toring Camera [11]

Analyzing trajectory
of moving objects
based on the motion
vector

Not men-
tioned
(CAVIAR
/Real
image
sequence
used)

Percentage
not men-
tioned

6 Development of an algo-
rithm for abnormal human
behavior detection in in-
telligent video surveillance
system [30]

Convolutional neural
networks, Data pro-
cessing

Not men-
tioned
(Can be
static
and dy-
namic
hand
gestures
dataset)

91.31%

Continued on next page
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(Continued)

7 Design and Research on
the Foul Detector of a
Long Jump Jumping Line
Based on a Vision Sensor
[31]

Transmitter Prin-
ciple, Receiver
Principle, Voltage
Regulator Circuit,
Sound and Light
Alarm Circuit

Not men-
tioned

Not men-
tioned

8 Football Player Posture
Detection Method Com-
bining Foreground Detec-
tion and Neural Networks
[28]

Pixel Classification,
DetectNET

MPII,
MSCOCO,
LSP,
DPoseNet

Not men-
tioned

9 Fish Detection Using Deep
Learning [22]

CNN Architecture,
Dropout Algorithm,
YOLO

ImageNET Accurate
for ap-
plica-
tion(Not
men-
tioned
directly)

10 Football Games Analysis
from video stream with
Machine Learning [33]

YOLO, CNN, DB-
SCAN

COCO,
Street
View
House-
Numbers
(SVHN)

Not Fully
Covered,
still have
flaws

11 Hand Gesture Recogni-
tion using Image Process-
ing and Feature Extraction
Techniques [25]

Support Vector Ma-
chine, K-Nearest
Neighbors, Random
Forest

ASL[1],
ASL +
Digits
[18],
Mobile-
ASL [25],
ASL
(Pro-
posed
Ap-
proach)

92.25% to
95.81% to
96.96%

12 Real-Time Hand Gesture
Detection and Recognition
Using Bag-of-Features and
Support Vector Machine
Techniques [6]

Support Vector Ma-
chine

Not
available
publicly

96.23%

Continued on next page
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(Continued)

13 Hand Gesture Detection
with Convolutional Neural
Networks [14]

Convolutional neural
network

Manually
collected
and not
available
publicly

in local-
ization
(96%–
100%)
and in
recog-
nition
(99.45%)

14 Abnormal Behavior Recog-
nition Based on Key Points
of Human Skeleton [23]

Single-person hu-
man pose estimation
(HPE), Convo-
lutional neural
network

Manually
created
and not
available
publicly

89%

15 Human Hand Gesture
Recognition Using a Con-
volution Neural Network
[10]

Convolution neural
network (CNN),
Gaussian Mixture
model (GMM)

Manually
created
and not
available
publicly

95.96%

16 Detecting anomalous
crowd behavior using cor-
relation analysis of optical
flow [21]

Pure optical flow,
Social force model,
Graph modeling and
matching, Corre-
lation analysis of
optical flow

UMN,
PETS

78% to
85% to
91% to
97.05%

17 Semi-supervised Adapted
HMMs for Unusual Event
Detection [2]

Semi Supervised
adapted Hidden
Markov Model
(HMM)

Unusual
datasets
created
using the
model
then
com-
pared

Not men-
tioned

18 Abnormal Motion Detec-
tion in a Real-Time Smart
Camera System [4]

Feed Forward Neural
Network (FFNN)

Not men-
tioned

After 500
iterations
error of
3.34%

19 Wide Open Spaces: A sta-
tistical technique for mea-
suring space creation in
professional soccer [15]

The Voronoi tessella-
tion

Not men-
tioned

Not men-
tioned

20 Big Data, Artificial Intelli-
gence and Quantum Com-
puting in Sports [26]

miCoach System,
Neural network
modeling

Not men-
tioned

Not men-
tioned

Continued on next page
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(Continued)

21 Big data and tactical anal-
ysis in elite soccer: future
challenges and opportuni-
ties for sports science [12]

Neural network mod-
eling, the team cen-
troid method, expec-
tation maximization
algorithm with posi-
tion data

Not men-
tioned

Not men-
tioned

22 Exploring Generalization
in Deep Learning [13]

Lipschitz Continuity
and Robustness,
PACBayesian Analy-
sis

CIFAR
10
dataset

Obtains
close
to Zero
Training
Error

23 Small sided games in
soccer-a systematic review
[16]

SSG model Author
used two
group of
people to
test the
result

93.12%

24 Pose-Guided R-CNN for
Jersey Number Recogni-
tion in Sports [20]

R-CNN Custom
dataset

94.09%

25 A Sport Athlete Object
Tracking Based on Deep
Sort and Yolo V4 in Case
of Camera Movement [27]

YOLOv4, Deep Sort INRIA
Person,
Mar-
ket1501
and
MARS

97.67%
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Chapter 3

Dataset

3.1 Dataset Creation

As Real-time Football Foul Detection is a totally rare concept and we have to detect
abnormal or suspicious behaviors of players so that we can define foul type, that’s
why we had to make our dataset from scratch. Firstly, we have collected some videos
of different types of foul from the internet. Then, we collected frames from those
videos using opencv python, and we also collected images of different types of foul
or unfair tackle images from various online image stock resources. After that, using
those images or frames we have done annotation and labeling of different types of
fouls like tripping, sliding tackle, pushing etc, and players who were involved in that
foul using the bounding box with Computer Vision Annotation Tool(CVAT). Then
using Roboflow we generalized all foul types into foul only, thus we have mainly 3
classes which are foul, fouling player and victim.

3.2 Dataset Preparation

To prepare our dataset for our model we utilized Roboflow’s built in pre-processing
and augmentation technology. Firstly, we pre-processed our frames using auto-
orientation and resizing into the same size at 640 resolution so that no frames were
exported into different angles or sizes which might affect the accuracy of the model.
After preprocessing our scratch made custom dataset, we did data-augmentation to
get different perspectives of the same frames which will help our models to prevent
any kind of overfitting or under-fitting while detecting foul using the dataset. We
did augmentation at random images to help the model generalize for unseen images.
To augment our custom dataset, firstly, we flipped images from our custom dataset
for a different perspective view.
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Figure 3.1: Horizontal Augmentation

Then we did shear augmentation by tilting the images ±8°Horizontal and ±8°Vertical
to simulate views in different angles.

Figure 3.2: Shear Augmentation

Then our next augmentation step was changing brightness to -10% Dark and +10%
Bright to help in different lighting conditions.

12



Figure 3.3: Brightness Augmentation

After that we blurred our dataset images up to 0.5px to help model when predicting
at blurry images.

Figure 3.4: Blur Augmentation

Then finally we added noises into our custom dataset images up to 0.5% of pixels.
We did blur and noise augmentation a small percentage because after testing our
models we saw that blurring or adding noises more than that was affecting model
precision and accuracy of prediction, so using blur up to 0.5px and noise up to
0.5%px was good enough to help model predicting foul in different low resolution or
blurry images or videos scenario and affecting at accuracy was negligible as well.
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Figure 3.5: Noise Augmentation

Examples of Horizontal, Shear, Brightness, Blur and Noise Augmentations in our
custom dataset are shown at Figure 3.1, 3.2, 3.3, 3.4 and 3.5 respectively. This
augmentation was applied into the training set only as underfitting or overfitting
happens while training only so the model would need different perspectives at train-
ing only.

3.3 Dataset Splitting and Formation

Initially we gathered and annotated a total of 2497 frames. Then after preprocess-
ing we had to delete some of the annotations which were not good enough or blur
and affecting accuracy, thus our number of annotations which were working per-
fectly turned into 2242 frames.Then, we splitted our working dataset randomly into
3 parts: Training, Validation and Testing set. Dataset split percentage and number
of frames are given at below Table 3.1.

Subset Name Percentage Number of Frames

Training set 70% 1569

Validation set 20% 449

Testing set 10% 224

Table 3.1: Train,Valid and Test set

After data augmentation in the training set only, it turned into a total of 5380 im-
ages for our whole working dataset. At Figure 3.6, we can visualize the snippet of
our custom dataset from Roboflow after augmentation.
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Figure 3.6: Working Dataset after Augmentation

We exported our dataset into two formats which are YOLO and COCO, as for the
YOLOv5, YOLOv8 and YOLO-NAS model we used the YOLO format dataset and
for the Fast R-CNN we used COCO format dataset. At YOLO format every frame
has their corresponding text folder which contains coordinates of bounding boxes.
Example has been given at below Table 3.2.

Class Index Center X Center Y Width Height

0 0.65125 0.66666 0.0425 0.11666

1 0.68 0.66888 0.03437 0.12444

2 0.66375 0.66888 0.06687 0.12444

Table 3.2: YOLO format dataset

On the other hand in COCO format per train, valid and test sets have only 1 json
file which contains annotation coordinates of whole sets frames. Examples related
to this have been given at below Table 3.3.

Image ID Class Index X Y Width Height Area

1 1 823 14 885.71 1001.43 886976.565

2 1 563 74 307.14 752.86 231233.42

2 2 763 83 654.29 651.43 426224.135

Table 3.3: COCO format dataset

At total we have annotated around 2500 images with more than 6500 annotations
using 3 classes or labels foul, fouling player and victim using bounding box to train
model in foul features and involved players behaviors in the scenario. Some exam-
ples of our annotated images are shown below at Figure 3.7 from our workings.
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Figure 3.7: Example of Annotations

Thus, using our custom dataset with the help of proper models and algorithms sys-
tem will be able to detect involved players, and their locations on the field, the
system will analyze both fouling and victim players body gestures, compare them
with pre-defined gestures, and determine whether they indicate a foul or normal
behavior while in collision.
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Chapter 4

Methodology

4.1 Working Plan

In our real-time football foul detection , we have first collected different video footage
of fouls which were converted into frames and images from various online image stock
resources. Then labeled and annotated those frames and images into foul and play-
ers who were involved into it. And by doing this after some pre-processing and
augmentation we got the needed dataset to train our foul detection model.

Figure 4.1: Creation Process of Datasets
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With the augmented train set, the model will be trained. For the model we selected
Fast R-CNN, YOLOv5, YOLOv8 and YOLO-NAS, so we exported their own sup-
ported dataset format to train. After training, we have used our testing set to test
that our model is actually detecting foul or not using our custom dataset.

Figure 4.2: Flowchart for Basic Working Plan of Real-Time Foul Detection

After testing our model with proper tuning we deployed our model as a web appli-
cation which has various functionalities when detecting foul from football matches.
This whole working flow can be seen at Figure 4.1 and 4.2.

4.2 Model Explanation

YOLOv5, Fast R-CNN, YOLOv8, and YOLONas are the models that have been
used to detect foul and analyze the custom dataset for better precision and accu-
racy, including data training.
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4.2.1 YOLOv5

YOLOv5 is one of the most used models for object detection from the computer
vision models available. It was introduced in four versions where each offers dif-
ferent accuracy which are mostly high. These versions take different amounts of
time to get trained. The excellence of YOLOv5 is found in its capacity to strike a
balance between speed and precision, which makes it a flexible option for a range
of applications. Moreover, YOLOv5 keeps its real-time capabilities, which makes
it appropriate for applications where minimal latency is essential. Because of its
effective implementation, it can operate on a variety of hardware platforms, such
as GPUs and TPUs, which makes it accessible and flexible in a range of computing
settings. YOLOv5 is more advanced than YOLO because it generates anchor boxes
which are more dynamic. Allowing the bounding boxes to be more closely aligned
with the objects. The spatial pyramid pooling(SPP) is a type of pooling layer which
is used to reduce the spatial radiation of the feature maps. SPP performs better
in identifying small objects since it allows to view the objects in various different
scales. The previous version YOLOv4 also used the SPP but the YOLOv5 includes
several improvements so that the object detection of the small objects have be-
come more advanced to achieve better results. This model uses labeled images as a
dataset with different classes. Then will use these datasets to train the model for
which google colab is used. In this case we collected the frames from the selected
videos for each fouls with labeling for the dataset. The free graphic process unit and
tensor process unit is supported by google for research and learning about artificial
intelligence. The YOLOv5 has increased its speed and accuracy compared to the
YOLOv4. With the built-in pytorch framework that is user friendly and has a larger
community than the darknet framework. Thus, YOLOv5 is able to attain compet-
itive outcomes on benchmark datasets because of the enhanced detection accuracy
brought about by the architecture optimizations and increased model complexity.
In general, YOLOv5 is a noteworthy progression in real-time object identification,
providing an attractive blend of precision, velocity, and adaptability.

Architecture of Yolov5:

YOLOv5 architecture is made of three main parts which are Backbone, Neck and
Head. At Figure 4.4 we can see that CSP-Darknet53 is used as the backbone for
YOLOv5. CSP-Darknet53 is used as the backbone for YOLOv5. CSP-Darknet53
is just a convolutional neural network and works as backbone for object detection
which uses Darknet53 architecture. This Darknet53 architecture was used as the
backbone for previous versions as well. Main structure backbone is multiple CBS
modules stacking which stands for Convolution Layer, Batch Normalization and Sig-
moid Weighted Liner Unit, and then at end one SPPF module. Here CBS module is
used to assist in feature extraction for C3 module and SPPF module just enhances
feature extraction ability. PANet or Path Aggregation Network is used as the neck
to get the feature pyramid and upsample it which helps to identify the same target
in different sizes and scales. For head it uses the same as YOLOv3 Head which
works to generate the final output. It is composed from three convolution layers
which predicts location of bounding boxes, scores and object classes. Equations to
compute coordinates for the target bounding boxes are given below.
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bx = (2 · a(tx)− 0.5) + cx

by = (2 · a(ty)− 0.5) + cy

bw = pw(2 · a(tw))2

bh = ph(2 · a(th))2

Here c x and c y are coordinates of unadjusted predicted center point, b x, b y, b w
and b h are coordinates of adjusted prediction box, p w and p h are information of
the prior anchor, t x and t y are to represent offsets calculated by the training model.

Figure 4.3: Network Architecture for YOLOv5

4.2.2 YOLOv8

The most recent model in the Computer Vision discipline to be offered in the
YOLO algorithm series is YOLOv8. With an easy-to-implement architecture, it
offers cutting-edge results for image or video analytics. YOLO v8 is simple to use
and create because of its CLI-based implementation and Python package. It offers
a unified framework for training models to conduct object identification, instance
segmentation, and image classification; it is faster and more accurate than YOLOv5
and other YOLO models. In order to increase performance and versatility, YOLOv8
adds new features and enhancements to build on the success of its predecessors. To
improve its object identification skills, YOLOv8 adds new features. The model can
dynamically focus on different areas of a picture by incorporating a self-attention
mechanism into the network’s head. This allows the model to modify the significance
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of characteristics according to how relevant they are to the job at hand. The model’s
capacity to extract context and minute features from the input data is improved by
this flexibility. Furthermore, by using a feature pyramid network, YOLOv8 achieves
superior results in multi-scaled object detection. Built on several layers, this network
recognizes objects in an image that vary in size and scale with ease, guaranteeing
thorough coverage. By utilizing these sophisticated features, YOLOv8 exhibits an
innovative method of object recognition, maximizing scalability and attentional fo-
cus for enhanced performance in a variety of circumstances. YOLOv8 is likely to
train more quickly than the other two-stage object detection models.

Architecture of YOLOv8:

YOLOv8 architecture consists of two main parts which are backbone and head.
YOLOv8’s backbone essentially contains the C2f module instead of C3 module of
YOLOv5, and it is inspired by the ELAN module. Here C2 is CSP Bottleneck with
2 convolutions and C2f is the faster version of C2, C2f is designed to improve per-
formance by increasing the number of skip connections and adding an extra split
operation and that is why C2f was used here in this architecture of YOLOv8. To
form the backbone of YOLOv8 here also CSPDarknet53 architecture is used but
it is the modified version. With its 53 convolutional layers and a cross-stage par-
tial connection, this design essentially aids the model in enhancing information flow
between various architectural layers. At the head part of YOLOv8 architecture it
contains multiple convolution layers, C2f module, Upsampling and Concatenation
layers. At the head part of YOLOv8 architecture it contains multiple convolution
layers, C2f module, Upsampling and Concatenation layers which is visible at Figure
4.5. These layers are responsible for predicting bounding boxes, scores and classes.
Also, here all convolutional layers are 3x3 whereas for YOLOv5 convolutional layers
were 1x1.
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Figure 4.4: Architecture of YOLOv8

4.2.3 YOLO-NAS

With improved real-time object detection capabilities and production-ready per-
formance, YOLO-NAS is a foundation object detection model. The model’s key
strength is greater real time object detection capability. It exceeds previous ver-
sions by providing cutting-edge performance with unmatched accuracy-speed per-
formance. RepVGG is the foundation of YOLO-NAS, providing opportunities for
post-training optimization through methods such as Re-parameterization and Post-
training Quantization. This particular VGG-based neural network architecture
incorporates regularization techniques to improve the generalization performance
of deep learning models. Its architecture stands out for having more memory
and speed. RepVGG is first trained with a multi-branch configuration, then re-
parameterized to operate as a single branch in order to improve inference time. This
feature is fully utilized by YOLO-NAS, which is highly beneficial for efficient pro-
duction deployment. With this method, training and optimization may be precisely
adapted for maximum inference speed and memory efficiency. By combining the re-
parameterization of 8-bit quantization, the model employs QSP and QCI which are
called quantization-aware modules to lessen the accuracy loss during post-training
quantization. YOLO-NAS outperforms the previous YOLO versions by 10–20% in
speed. It employs a superior architecture, AutoNAC, and is more accurate than the
previous YOLO models. This offers the best accuracy and latency tradeoff perfor-
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mance, setting a new benchmark in object detection smooth support for NVIDIA
and other inference engines. It is a production-ready model because of this func-
tionality. It offers faster inference rates and improved memory efficiency. Compared
to the previous YOLO models, YOLO-NAS is 10–20% faster and is more accurate.
It also makes use of the superior AutoNAC architecture. With the best accuracy
and latency tradeoff performance and seamless support for inference engines like
NVIDIA, this breaks the previous record in object detection. YOLO-NAS has set
new standards for accuracy and speed with a phenomenal latency of less than 5
milliseconds. This accomplishment represents a significant advancement in object
detection models, especially in the context of the YOLO framework. It represents
a significant breakthrough in computer vision as it pushes the envelope by com-
bining neural architecture search methodologies, providing both high precision and
quick processing. YOLO-NAS offers a customizable solution that allows users to
customize and fine-tune their experience. By using fine-tuning recipes that are cus-
tomized for the Roboflow-100 datasets and come with pre-trained weights, users
may precisely customize the model to meet their needs. Users also gain from the
features of Deci’s SuperGradients, an open-source computer vision training library.
Users are able to train new models and improve ones that already exist with the help
of this library. Adding sophisticated approaches like knowledge distillation makes
training more subtle and effective by adding another level of complexity. Combining
these characteristics gives YOLO-NAS a more comprehensive approach and offers a
strong toolkit for those looking for computer vision applications that combine flex-
ibility and advanced capability. The model is ready for manufacturing because of
this feature. Its inference speeds are higher and its memory efficiency is better.

Architecture of YOLO-NAS:

YOLO-NAS model developed by DeciAI were found utilizing their own exclusive
NAS or Neural Architecture Search algorithm which is AutoNAC or Automated
Neural Architecture Construction. AutoNAC was utilized to determine the most
suitable architecture that combined the fundamental architectural contributions of
other YOLO variants for the given task and thus it automates the design process
of optimized training and inference which makes about 101̂4 network architectures.
Throughout the whole NAS process Quantization-Aware RepVGG or QA-RepVGG
blocks are integrated into the model architecture to ensure that the model is compat-
ible with Post-Training Quantization or PTQ. By using quantization-aware “QSP”
and “QCI” modules which contain QA-RepVGG blocks that offer the advantages of
8-bit quantization and reparameterization allowing for the least amount of accuracy
during PTQ. Here also Spatial Pyramid Pooling or SPP is utilizing the backbone of
this architecture.
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Figure 4.5: Architecture of YOLO-NAS
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4.2.4 Faster R-CNN

Faster R-CNN is also a deep learning model that is used for object detection in
computer vision. It stands for “Fast region based convolutional neural network”.
The processing inefficiencies of R-CNN were addressed with the introduction of
Fast R-CNN, which made object detection quicker and more useful for real-world
applications. The network basically suggests candidate bounding boxes that might
contain objects of interest and reduces the number of areas making it faster. After
region selection, Faster R-CNN extracts features using the convolutional neural net-
work(CNN). The region classification and bounding box regression refine the bound-
ing box coordi-nates, for a good alignment with the actual objects.The streamlined
architecture of Fast R-CNN is the main benefit. Fast R-CNN distributes the con-
volutional feature computation over the whole image, in contrast to R-CNN, which
handles each area proposal separately. This pooled computation expedites the detec-
tion process overall and considerably avoids unnecessary calculations. Additionally,
the Region of Interest or ROI pooling layer is introduced by Fast R-CNN, facilitating
the accurate and efficient extraction of features from region proposals. Compared to
its predecessor, this innovation results in faster inference times and better accuracy.
It is advantageous because it strikes a good balance between speed and precision,
which makes it appropriate for applications where object identification in real-time
is required.

Architecture of Faster R-CNN

Faster R-CNN architecture is built on two main components which are Region Pro-
posal Network or RPN and Fast R-CNN detector. At Figure 4.8, which is an ar-
chitecture diagram for our utilized Faster R-CNN model, we can see that at the
start of this architecture Convolution Neural Network layers worked as the back-
bone. Here it has multiple convolution layers which can be AlexNet, ResNet, VGG
etc. Then it goes to feature maps to extract different features or visual information
from the images. After that it goes to RPN and Fast R-CNN detector. Previously
R-CNN and Fast R-CNN models were utilizing the specific pursuit calculation that
produces around 2000 area propositions. These 2000 district propositions are then
given to CNN Engineering, which registers CNN highlights. But here in Faster R-
CNN architecture it utilizes RPN which shares layers with different detection stages
to improve feature representation and reduce proposal time of bounding boxes to
focus for each image than its previous ancestor models. Then at the Fast R-CNN
detector part it first goes to the Region of Interest or RoI pooling layer which helps
the model to transform variable sized region proposals from RPN into fixed size
feature maps that are flowed into the next network layers. Then from here it goes to
Fully Connected layers which are responsible for classifying objects and bounding
box regression. These are utilized by the Fast R-CNN detector which combines clas-
sification and regression losses and computes classification loss using a multi-task
loss function, which is given below.

L(pi, ti, vi) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ · 1

Nreg

∑
i

p∗i · Lreg(ti, vi)
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Here N cls and N reg are the number RoI’s utilized for classification and regres-
sion respectively, pi is the predicted probability of classifying the i-th RoI, p i* is
the ground truth indicator for whether the i-th RoI is a foreground or background
object, t i and v i represents the ground truth bounding box parameter and the
predicted bounding box adjustment for the i-th RoI. L cls and L reg are the classi-
fication and regression loss functions and finally lambda is the balancing parameter
that regulates trade offs between two losses.

Figure 4.6: Architecture of Faster R-CNN

Moreover, two multi-object tracking algorithms, ByteTrack and BoT-Sort, are also
used in the research.
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4.2.5 ByteTrack

ByteTrack is a recent object-tracking algorithm that proposes a simple but effective
optimization for the data association step. Most methods filter out detections with
low confidence scores. This is because low-confidence detections are more likely to
be false positives or related to objects not present in the scene. ByteTrack solves
this problem using all detections, regardless of their confidence score. The algorithm
works in two steps.

1. High-confidence detections: High-confidence detections are associated with
tracks using IoU or appearance features. Both approaches are evaluated in the
results section of the paper.

2. Low-confidence detections: Low-confidence detections are associated with
tracks using only IoU. This is because low-confidence detections are more likely
to be spurious or inaccurate, so it is important to be more conservative when
associating them with tracks.

ByteTrack’s combination with cutting-edge object detection systems, such as YOLOv5,
YOLOv8, YOLO-NAS and Faster R-CNN, upgrades its following capacities. By be-
ginning with high-accuracy object discoveries, ByteTrack establishes a strong start-
ing point for its subsequent interaction, guaranteeing that each ensuing step is based
on dependable information. In synopsis, ByteTrack is something other than a calcu-
lation; it’s an exhaustive answer for genuine difficulties in PC vision. Its capacity to
precisely track numerous objects progressively, no matter the climate’s intricacies,
positions it works as a significant method in the consistently developing scene of
computer-based intelligence and innovation.

Architecture of the ByteTrack algorithm

ByteTrack algorithm works in two stages. In stage 1, it works with the high con-
fidence box, and current frames are matched with previous frame tracklets. After
that, in the second stage, low-confidence detection boxes are matched with the re-
maining unmatched predicted boxes from previous frames. These stages are shown
at our drawn Figure 4.9 which is a architecture diagram of ByteTrack algorithm.
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Figure 4.7: Architecture of ByteTrack Algorithm
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4.2.6 BoT-SORT

Botsort is built based on ByteTrack and consists of three ideas that work very well
together. These are given below.

1. Kalman Filter update: SORT introduced a way of modeling the track state
vector using a seven-tuple. BoT-SORT proposes replacing the bounding box’s
scale and aspect ratio with the width and height to create an eight-tuple. They
also choose matrices from the Kalman filter as functions of the bounding box
width and height. Recall that in DeepSORT, only the scale of the bounding
box influences the matrices.

2. Camera Motion Compensation: In dynamic camera situations, static ob-
jects can appear to move, and moving things can appear to be fixed. The
Kalman Filter does not consider camera motion for its predictions, so BoT-
SORT proposes incorporating this knowledge. They use the global motion
compensation technique (GMC) from the OpenCV Video Stabilization mod-
ule. This technique extracts critical points from consecutive frames and com-
putes the homography matrix between similar pairs. This matrix can then be
reused to transform the predicted bounding box from the coordinate system
of the structure to the coordinates of the next frame.

3. IoU - ReID Fusion: BoT-SORT proposes a new way of solving the associa-
tion step by combining motion and appearance information. The cost matrix
elements are determined, and the appearance distance is recalculated. The
datasets are filtered out in pairs with large IoU or significant appearance dis-
tance. Then, the cost matrix element is updated as the minimum between the
IoU and the new appearance distance.

Architecture of BoT-SORT algorithm

Here, first we input the video footage of the foul section, and then it will detect the
objects. The tracking and motion estimation will be detected by using the Kalman
Filter, which can be seen at Figure 4.10 of BotSORT tracker architecture. Then
association and fusion occur using IoU and ReID. Moreover, the CMC (Camera
Motion Compensation) is used to register the images.
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Figure 4.8: Architecture of BoT-SORT Algorithm

4.2.7 Dark Channel Prior

As it is possible to get hazy video footage in a football match due to weather issues.
Due to bad weather, we can get frames with poor visibility.That’s why we need this
Dark Channel Prior or DCP method to dehaze or remove fog from images, so that
our model can predict foul properly in bad weathers as well. Mainly, DCP works in
4 steps.

1. Dark Channel Construction: In this stage, the color textures of the image
are transferred to the dark channel, whereas when a prominent local patch is
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utilized the hazy dark channels are obtained. Furthermore, a physically less
significant median filter is not effective when constructing dark channels.

2. Atmospheric light estimation: In the next stage, the atmospheric light is
predicted from the dark channel. It is therefore recommended to use an addi-
tional dark channel with a larger local patch size exclusively for atmospheric
light estimation if the local patch size used while constructing dark channel is
not large enough. Because of the possibility of preventing atmospheric light
estimation from bright objects, local entropy also effectively balances the es-
timation accuracy.

3. Transmission map estimation: The traditional gain and offset control tech-
niques are investigated in the third stage, however in order to accurately pre-
dict the transmission map, an adaptive correction strategy is required.

4. Transmission map refinement: In the last stage of DCP, when a hazy
image is utilized here as a guidance image, performance of transmission map
refinement improves . Moreover, the best transmission map estimation ac-
curacy can be seen when the soft matting method is used and second best
accuracy can be seen by utilizing the guided and cross-bilateral filters. Here,
the Gaussian, guided and cross-bilateral filters are used to complete the stage.

After selecting YOLOv5, YOLOv8, YOLO-NAS and Fast R-CNN models we started
to train to get trained weights or checkpoints for next stages.

1. Input data: We generated frames from the videos and also collected images
from various online image stocks, which were annotated using bounding boxes
into 3 different classes like foul, fouling-player and victim.

2. Processing: In this stage, frames with annotation data were used by the
selected models and trained with their supported annotation format like YOLO
for YOLOv5, YOLOv8 and YOLONas, and COCO for Fast R-CNN.

3. Validation: After training in the given dataset, after every iteration or epoch
it predicts from validation set frames and matches with ground truth to give
prediction accuracy.

After using these inputs, training has been done. The accuracy has been successfully
generated for the separate models used.
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Chapter 5

Implementation and Results

In this section, we will be describing the application of our selected models YOLOv5,
YOLOv8, YOLO-NAS and Fast R-CNN which were used in the process of detection.
In our implementation, we divided this into different stages: data pre-processing and
augmentation, model training and accuracy detection.

5.1 Implementation

For Fast R-CNN, YOLOv5, YOLOv8 and YOLO-NAS, basically for all of our mod-
els, we used the same dataset. At first, we used our collected frames from videos
of various types of football fouls and images from online stock resources to anno-
tate and label them. Using the frames and annotated data, we started to train our
models simultaneously. After successful training, we started to test the model for
its accuracy in detecting foul and players who were involved in that foul. We have
split our whole dataset into 3 parts, 70% for training, 20% for Validation and 10%
for Testing. In both models we applied data augmentation by making changes in
brightness- dark/bright, shearing- horizontal/vertical, blurring images, adding noise
in images and flipped images horizontally to prevent any kind of over-fitting. We
also pre-processed with the help of auto-orientation so that our frames do not flip
into the wrong side and resize all images to 640 resolution as well.

For YOLOv5, YOLOv8 and YOLO-NAS models we used the YOLO format dataset.
In this format, all the images have their own respective text file which contains the
specified image’s annotation coor-dinates.

For YOLOv5, YOLOv8 and YOLO-NAS model we used their medium variant of
them, like for YOLOv5 is YOLOv5m , for YOLOv8 is YOLOv8m and for YOLO-
NAS SOTA model we used YOLO NAS M pre-trained weights for transfer learning
and also did some fine tuning by changing hyperparameters like number of epochs,
batch size, learning rate etc to make our model work efficient as much as possible
for our custom dataset and hardware as well.

For the Faster R-CNN model we implemented that using Detectron2 architecture.
This Detectron2 architecture is a software system which helps to implement state-
of-the-art object detection models and it was developed by Facebook AI Research
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or FAIR. For the Faster R-CNN model, COCO dataset format was utilized. But
in case of COCO dataset format, all of the images have only one json file which
contains all of the annotation markings all together. For Faster R-CNN we used
R101-FPN pre-trained weight and also did some fine-tuning like before so that our
model makes efficient usage of hardware resources

At Table 5.1 we can see the used hyperparameters and pre-trained weights for all
of the selected models YOLOv5, YOLOv8, YOLO-NAS and Faster R-CNN when
training using our custom dataset.

Models Variants
Number of
Epochs

Batch
Size

Learning
Rate

YOLOv5 YOLOv5m 150 8 0.01

YOLOv8 YOLOv8m 100 8 0.01

YOLO-NAS YOLO NAS M 75 8 5e-4

Faster R-CNN ResNeXt 101 FPN 10000 4 0.001

Table 5.1: Models Fine Tune

All the models were trained and tested into the same hardware specification.

RAM 29 GB

CPU Intel Xeon 2GHz

GPU Nvidia Tesla T4 x2

Table 5.2: Hardware Specification

5.2 Results

The YOLOv5, YOLOv8, YOLO-NAS and Faster R-CNN models both displayed
different results regarding the detection process. Here, only YOLO-NAS and Faster
R-CNN results are processed by using an external Tensorboard.

5.3 YOLOv5 Model Results

The YOLOv5 model presented the following results when trained with our custom
dataset.
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Figure 5.1: mAP 0.5 Graph

Here, in the Figure 5.1 above, mAP 0.5 reached its final point at 0.966. Again, in
the figure 5.2 below, the precision graph shows that the precision of our model is
around 0.95. It shows that the accuracy and precision of predicting foul increased
as the model trained further.

Figure 5.2: Precision Graph

In the graph 5.3 below, a high level of precision in the classification findings is in-
dicated by the precision-confidence curve’s produced outcome of 1 for each of our
three classes, meaning the model showed a high degree of accuracy in identifying
and classifying cases that fall into these three groups, with almost 97% confidence
level.
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Figure 5.3: Precision-Confidence Curve

In the figure 5.4 below, we can see that as training progresses, the loss in predicting
the class probabilities started decreasing and settled below 0.3. This is because from
the start the classification loss was very high, but as the training iteration passes,
the accuracy of predicting class probabilities of detected objects also in-creases. So,
the class loss was gradually reduced.

Figure 5.4: Train Class Loss Graph

We analyzed the loss being less than 0.4 based on the validation class loss in the
figure 5.5. It implies that the model’s performance is maintaining a relatively low
level of error. A validation class loss of less than 0.4 suggests that the model is
generalizing to new, unobserved data in addition to fitting the training set of data
well.
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Figure 5.5: Validation Class Loss Curve

Here, in the figure 5.6 below, our Precision started from 1 while Recall was 0. But
as the Recall increased, the Precision started to decrease because of the trade off
between correct predictability of a positive instance vs identifying most of the pos-
itive instances in the given dataset.

Figure 5.6: Precision-Recall Curve
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Figure 5.7: F1-Confidence Curve

From the figure 5.7 above, we analyzed that our best F1 score is when the confidence
level threshold is between 0.5 and 0.6. In other confidence level thresholds, the F1
score does not wield a good result.

Figure 5.8: Confusion Matrix

From the confusion matrix, figure 5.8 above, we can see that our YOLOv5 model
can predict 91% of the time foul, 86% of the time fouling player and 87% of the
time victim correctly.
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5.4 YOLOv8 Model Results

After being trained on our own dataset, the YOLOv8 model produced the outcomes
listed below.

Figure 5.9: mAP 0.5 Graph

Here, in the above shown figure 5.13, mAP 0.5 reached its endpoint at 0.972. Once
more, the precision graph in figure 5.2.2 below indicates that our model’s precision is
approximately 0.96. It demonstrates how, as the model was taught more, accuracy
and precision grew.

Figure 5.10: Precision Graph

Our model’s precision score of 0.97 from the above figure 5.2.2 indicates its ability
to distinguish genuine positive instances from all of the predicted positive instances
is 97%. With a precision of 0.97, the model appears to be correct for the majority
of its positive predictions. This is an important measure, especially in situations
where reducing false positives is essential.
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Figure 5.11: Precision-Confidence Curve

The precision-confidence curve’s from the Figure 5.15 above produced outcome of 1
for each of our three classes indicates a high degree of precision in the classification
findings, indicating that the model achieved a nearly 98.7% confidence level in cor-
rectly identifying and classifying cases that fall into these three groups.

Figure 5.12: Train Class Loss Graph

As training goes on, the loss related to class probability prediction shows an ap-
parent decrease and finally settles around 0.25, as Figure 5.16 shows. The learning
process of the model is the cause of this behavior. At first, there was a noticeable
difference between the expected and actual class probabilities, as evidenced by the
comparatively large classification loss. Nonetheless, as training rounds continued,
the model’s ability to accurately forecast the class probabilities of recognized items
increased. As a result, the class loss steadily dropped.

From Figure 5.17, we can see that the loss in class probability prediction began to
decrease as training went on and settled at approximately 0.4. This occurs because,
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Figure 5.13: Validation Class Loss Curve

although the classification loss was initially quite significant, the accuracy of esti-
mating the class probabilities of objects that are detected also increases with each
training repetition. In other words, the class loss decreased with time.

Figure 5.14: Precision-Recall Curve

Here, in figure 5.18 above, our Recall was 0 and our Precision was 1. However,
as recall rose, precision began to decline as a result of a trade-off between accu-
rately predicting a positive instance and finding the majority of positive cases in the
dataset.
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Figure 5.15: F1-Confidence Curve

We can see from the above figure 5.19 that we have the best F1 score around 0.6,
or approximately 0.45, when the confidence level barrier is reached. The F1 score
does not yield a favorable outcome at other confidence levels.

Figure 5.16: Confusion Matrix

From the Figure 5.20 above, the confusion matrix, shows that our YOLOv8 model
can accurately anticipate 93% of time fouls and 88% of fouls involving both the
fouling player and the victim.
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5.5 YOLO-NAS Model Results

Following its training on our custom made dataset, the YOLO-NAS model yielded
the following results.

Figure 5.17: mAP 50 Graph

Here, mAP 0.5 reached its terminus at 0.944 in the figure 5.21 above.

Figure 5.18: Validation Class Loss Graph

Here, in the Figure 5.22 given above, we can see that our loss in class probability
prediction began to decrease as training went on and settled at around 0.7.
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Figure 5.19: Confusion Matrix

By analyzing the confusion matrix, as shown in Figure 5.23, we can see that our
YOLO-NAS model showed average predictive capability. It scored 61%, 62%, and
69% for foul, fouling player and victim, respectively. These percentages represent
how well the model detects and categorizes incidents within each relevant category.

5.6 Faster R-CNN Model Results

After being trained on our proprietary dataset, the YOLO-NAS model produced
the subsequent outcomes.

Figure 5.20: AP50 Graph
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In the figure 5.24 above, for Faster R-CNN we can see that mAP 50 reached its final
point at 89.85. Here, the accuracy of prediction also increased as the model trained
further.

Figure 5.21: False Negative Graph

The model depicted in Figure 5.25, has demonstrated a great ability to minimize the
number of times it incorrectly identifies positive cases, as seen by its false negative
rate of less than 0.1.

Figure 5.22: Foreground Class Accuracy Graph

From the two graphs presented in the figure 5.26 above and 5.27 below, we can see
that in fg cls accruacy and cls accuracy respectively, the rate of accuracy of classi-
fying objects in our custom dataset has increased the further the model is trained,
which is about 0.8 and 0.93 respectively.
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Figure 5.23: Classification Accuracy Graph

As can be seen in Figure 5.28 below, during the training phase, the loss related to
class probability prediction seems to have dropped and finally stabilized at 0.1. This
suggests that as time went on, the model’s capacity to forecast class probabilities
increased, eventually resulting in a comparatively low and steady loss amount.

Figure 5.24: Classification Loss Graph

From Figure 5.29 below, we can analyze the fact that our model’s total loss has
stabilized at around 0.5 which indicates that the model’s training procedure resulted
in average in reducing the difference between the intended and projected outputs.
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Figure 5.25: Total Loss Graph

5.7 Analysis

Models Mean Average Precision Class Loss

YOLOv5 0.966 0.2816

YOLOv8 0.972 0.2521

YOLO-NAS 0.944 0.713

Faster R-CNN 0.8985 0.125

Table 5.3: Analysis Table

From Table 5.3, result analysis table of all our trained model, we can come to
say that YOLOv8 models have the highest accuracy detection rate than the other
YOLOv5, YOLO-NAS and Fast R-CNN models while classification loss is lowest in
Fast R-CNN than all other models. Overall, YOLOv8 yields the best performance
among all other models for our custom dataset as it has the highest mean average
precision and second lowest class loss comparison to all of our trained models. Here,
for all of the cases the average precision was found in 0.5 IoU or Intersection over
Union threshold. Examples of the detected Fouls are given below Figure 5.29 for
our test sets.
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Figure 5.26: Examples of Detected Fouls

In both the images, our detection models have detected the foul and the related
players with a very high accuracy ranging from 0.91 to 0.97.

We can observe from the confusion matrices of our trained YOLO models that, while
YOLO-NAS prediction of true positive for all classes, it was less than 70%. However,
the prediction of true positives for all classes was greater than 85% for YOLOv5 and
YOLOv8. This might be a result of the different architecture used by YOLO-NAS.
The model uses a new architecture which is different from previous incarnations of
the YOLO framework due to its distinct model design. A noteworthy feature is the
addition of a brand-new basic block that is optimized for quantization, which has
been carefully designed to improve quantization performance. This innovative archi-
tectural style deviates from traditional YOLO designs and emphasizes YOLO-NAS’s
dedication to optimizing the model’s adaptability to many operational conditions in
addition to speed and accuracy. It’s critical to understand that, even though this
design is a huge breakthrough, its efficacy may fluctuate depending on the partic-
ulars of each dataset. Because of this, we came to the conclusion that our custom
dataset which has been tuned for other models did not work well for the YOLO-NAS
training. Another reason might be that YOLO-NAS finds it challenging to identify
small objects in clusters. As the model gains the ability to predict bounding boxes
from the input itself, it finds it difficult to generalize objects in novel or unusual
aspect ratios. In our dataset, we have bounding boxes of different sizes. So, it may
have affected the training process of the model which resulted in lower true positives
in the confusion matrix.
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Chapter 6

Web Application Deployment

6.1 Web App Work Process

The structure of our web application is created for optimal functionality and user
engagement. The first decision lies in the selection of a foul detection model, with
either YOLOv5 or YOLOv8. The models will determine the further detection work-
ing process. Secondly, the kinds of sources that the web application will support
must also be decided. Users can enter a variety of data forms, including YouTube
links, RTSP streaming URLs, images, and videos. Because of its adaptability, the
application can meet a wide range of user needs, which makes it a reliable and flex-
ible option for foul detection jobs in a variety of settings. Subsequently, distinct
techniques for data feeding need to be chosen for the various sources, including
picture uploads, pre-uploaded video selection, RTSP streaming URL input, and
YouTube link integration. With these features, the application can accommodate
different data sources and preferences which makes the model function well with a
variety of input formats. There can be an additional level of customisation added by
choosing to integrate dehazing into the Foul detection process. It is very helpful in
situations with difficult environmental conditions, such foggy weather, to be able to
select whether the program should conduct dehazing. The ability to boost visibility
is essential for accurate foul detection in many circumstances. In situations where
there is video, RTSP streaming, or YouTube links, there is an option for adding a
tracking tool. An ongoing and cohesive analysis of the visual data is provided by the
application’s ability to track fouls over time, which can be done by selecting from
the two tracking algorithms, BotSort or ByteTrack. Lastly, with all the selections,
the web app becomes ready to detect any foul in football in the given sources. We
can sethe User interface of our web application below in the Figure 6.1 and whole
workflow of our web application is drawn at Figure 6.2.
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Figure 6.1: User Interface of Web Application

Figure 6.2: Web Application Workflow
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6.2 Limitations

The YOLO-NAS library’s enforced limitations are one of the challenges faced during
the creation of the web application. A dependency error pertaining to the YOLO-
NAS library presented a challenge for the project, impeding the smooth integration
and operation of the application. As YOLO-NAS is an almost new model, it still has
many working problems which still need fixing. This constraint presented a technical
hurdle as well as a reminder of how crucial it is to identify and resolve dependencies
early in the development process in order to guarantee the web application runs
smoothly which can’t be done in the model’s current form. This restriction made it
more difficult to increase the system’s overall robustness and reliability.

We encountered the issue of improper datasets when dealing with a dataset. More
specifically, there are extremely few databases for photos related to ongoing foul
play. Fouls happen quickly, as they usually do, therefore it might be challenging
to get clear views at the right moment in photos or frames.This fact causes the
majority of the photos to become blurry or to have an improper angle, examples
of this shown at Figure 6.3 and 6.4. As a result, it becomes challenging to get the
models to effectively extract information from the photos, which eventually reduces
reliability as well as accuracy.

Figure 6.3: Example of Blurred Images

In this case, it is difficult to determine how the foul occurred because both photos ap-
pear sufficiently unclear. This makes recognizing the foul more difficult and complex.

Figure 6.4: Example of Overlapping Image
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Because both players are practically in a serial view of the camera in this picture, it
becomes impossible to determine who committed the foul and how. This indicates
that there is an error in the camera’s angle meaning, the camera is not at the right
position for a clear shot. These kinds of datasets cause the model to underperform
compared to expectations, which leads to limitations in both performance and ac-
curacy.

Lastly, hardware constraints also arose when we tried to implement the models. We
were unable to run the four models on our local hardware because they require a
lot of resources to run. Consequently, needing the assistance of third-party cloud
services like Kaggle and Google Colab. However, these platforms also have their
own restrictions, such time limits or restricted access. Again, the average run time
for these models was two hours, which increased the time required for adding and
applying additional datasets and other modifications.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Football is a very popular game for many people. As in the world of football, there
have been flaws in case of detecting fouls either by referee’s mistake or by any other
circumstances. From the starting of the game to the present date, these flaws have
immensely lowered in each passing time. But many flaws are still presenting differ-
ent challenges to solve those problems. Our research in Real-Time Foul Detection
can help tremendously in case of detecting foul more accurately. This will also en-
sure to deliver a fair match to both the teams playing and also to the audience. In
this research, machine learning models YOLOv5, YOLOv8, YOLO-NAS and Fast
R-CNN successfully detected fouls from our custom datasets with 96.6%, 97.2%,
94.4% and 89.85% accuracy respectively. Between these four models, YOLOv8 has
the highest accuracy rating. After finding our overall two best performing models
we used their trained weight for our custom dataset to deploy as a web application
which has multiple functionalities like tracker selection, confidence meter, dehaze,
source etc to detect foul from football matches for their own perspective. In future,
we plan to research our model further to improve the accuracy as close to perfection,
so that the detection rate of objects is more accurate in the live video services for
fair football matches.

7.2 Future Work

Going forward, a number of interesting ideas come to the forefront for investigation
and improvement. First off, improving the accuracy and consistency of our model
will depend much on our search for new precise football foul related datasets. The
intricacies of many foul scenarios can be more accurately captured by a large and
varied dataset, which enhances the algorithmic comprehension. Also, different types
of fouls can be implemented in our detection model. Furthermore, the incorpora-
tion of more recent and reliable models, such the YOLO-NAS, has great potential
to enhance the complexity and effectiveness of our detection system. Using state-of-
the-art models keeps our system on the leading edge of technology and maximizes
its capacity to identify fine nuances and minute differences in foul occurrences. In
addition, the introduction of high-definition cameras is a significant advancement
in the search for clearer and more precise photographs. Changing to a more mod-

52



ern camera raises the accuracy of foul detection overall by improving the quality of
the input data and enabling a more complex analysis of player motions and inter-
actions. A revolutionary path for our study, looking farther forward, is to deploy
our detection technology right on the football pitch. Complete integration with
the live broadcast infrastructure would be necessary for this audacious step to be
taken, allowing for real-time analysis and prompt intervention to ensure fair play. A
paradigm shift towards proactive action in the area of foul identification during live
matches is marked by this method, which also corresponds with the continuously
increasing demand for live sports analytics. Essentially, the work that is planned
for the future involves not just improving the computational components but also
advances further in data quality, model architecture, and real-time application.
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