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Abstract

Digital image processing utilizes deep learning to tackle challenging issues such as
image colourization, classification, segmentation, and detection. The medical image
analysis field is developing day by day, and segmenting organs, diseases, or abnor-
malities is a challenging task to complete. Dental disease diagnosis is one of these
fields where image segmentation can help gain significant improvements as dentists
worldwide face various problems in diagnosing dental diseases with the naked eye.
Compared to other medical images, dental radiographic images provide multiple
challenges in terms of processing, making segmentation a more complex task. Deep
neural network models are used more frequently for various image segmentation ap-
plications. U-Net is one such model. Multiple variations and advancements have
been created for this network model to serve better performance, mainly on seman-
tic segmentation of medical images. However, comparative studies must determine
how well these variants perform in segmenting dental x-ray images. This research
uses six U-Net architecture (Vanilla U-net, Dense U-net, Attention U-net, SE U-
net, Residual U-net, R2 U-net) variants for segmenting dental radiographic X-rays
that are extensively and effectively compared. Some U-Net architectural variations
under consideration still need to be evaluated for segmenting dental radiographic
X-rays. For all architectures, we used 2 and 3 convolutional layers. We used four
types of matrices to compare the models: Accuracy, Dice coefficient, F1 score and
IoU. Among the variants, Vanilla-unet with two convolutional layers provided the
best Accuracy of 95.56% and IoU score of 88% on the validation set for much lesser
time than other architectures. On the other hand, when we use three convolutional
layers, dense-unet provides the best Accuracy of 95.94% and IoU score of 89.07%
on the validation set. However, most of the examined architectures throughout the
dataset showed minor changes when segmentation performance was measured using
all four accuracy metrics. This study indicates that U-Net is enough for radio-
graphic X-ray segmentation. Choosing simpler models will save time and money
during testing and model creation. Therefore, our suggested approach might aid in
making automated dental disease diagnosis models.

Keywords: Dental; Semantic Segmentation; Data Annotation; OPG Image; U-net;
U-net Variants; Dice Coefficient; IoU; Architecture Comparison
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Chapter 1

Introduction

Dental diseases (i.e., bone loss, fluorosis, decay, gum disease, etc.) have become
the most common phenomenon in the field of medical science and therefore are in-
creasing highly in recent times. Health begins with the mouth, according to several
medical studies. Consequently, dental health is just one aspect of oral health, includ-
ing our body’s overall health and well-being [13]. However, when we only talk about
dental health, teeth are one of the body parts that are overused and have a high
resistance to damage and long-lasting architectural durability. Still, it is vulnerable
to various illnesses [5]. Dental diseases affect nearly 90% of individuals in the United
States, as mentioned in a survey of the National Health and Nutrition Examination
[2]. Furthermore, according to specific epidemiological statistics, dental disease is
more prevalent in communities with poor socioeconomic positions [3]. Even then,
Health and Retirement Studies show that even if an individual’s wealth drops by
50% in the US, they pursue dental care for their well-being.

A wide range of dental care is given through hands-on treatment or radiographic
images. Since the invention of X-ray imaging, oral radiographic images having three
types (Bitewing, Panoramic, and Periodical) have been widely employed [1]. These
dental X-rays enable the hidden and inner part of teeth that a dentist’s eye can
hardly detect. Among the three types of x-ray radiography in dental anatomies,
Panoramic x-ray, known as the Orthopantomogram (OPG), is less time-consuming,
has the lowest radiation value and causes less patient discomfort. Therefore, using
OPG images or panoramic x-ray can be a very impactful approach to detecting den-
tal diseases.

Nowadays, Deep Learning approaches show enormous potential and versatility in
every medical field, handling massive datasets using advanced computation pro-
cesses with reasonable accuracy and proper decision support. Convolutional Neural
Network is the most revolutionary algorithms in the field of a lot of sectors. As
mentioned in [16], CNN was created by Prof. YannLe-Cun in the 90s era. It was
initiated as a machine learning algorithm, a unique form of ANN, developed to
perform image analysis and 2D recognition of handwritten digits. Later on, CNN
became the most successful application for recognizing and categorizing images.

Direction finding with CNN and CRNN [25], face recognition using CNN [17], classi-
fication of different diseases such as Lung cancer, dental disease [19], Speech emotion



recognition [26], Handwritten digits recognition [14] etc. can be good examples of
CNN in terms of having different layers of computation process and detection, clas-
sification and recognition accuracy. There are various forms of CNN out there; one
of them is U-net. U-net is one of the breakthrough techniques which overcome the
various challenges in the medical imaging field. U-net is commonly used within the
medical imaging community. According to [23], In terms of the number of training
samples needed, memory requirements, and computing time, u-net, which is trained
in an encoder-decoder architecture, has excelled in earlier research. The primary
goals of the many U-net variations developed are to increase the segmentation accu-
racy and effectiveness of feature information passing both within and between layers.

Our research mainly focuses on segmentation. Early semantic image segmenta-
tion methods relied heavily on manually created features and their integration with
classifiers to categorize pixels at the pixel level. However, the robustness of the
constructed feature descriptors has always limited how well these systems function.
In recent years, the development of deep convolutional neural networks has hugely
promoted the widespread use of medical image segmentation. Medical image seg-
mentation is one of the essential steps in medical image analysis. The segmentation
results’ shape, size and total area can provide crucial information for understanding
early signs of potentially deadly diseases, as described in [28]. For this reason, we
selected U-Net, as it has shown massive success in semantic segmentation. Also, a
wide variety of variations and advancements have been created. In this study, we
have segmented our collected OPG images of teeth using several variants of U-Net
to determine the performance gain between them, considering different parameters.

1.1 Research Problem

Traditionally, dentists’ visual inspection and non-automated radiographic diagnosis
is the approach to diagnosing oral illness. A quicker approach with efficiency is
needed in case of treatment for patients to have less discomfort. Unfortunately, vi-
sual inspection is a difficult process to identify the oral illness. Moreover, according
to [27], both visual evaluation and x-ray imaging assessment are labor-intensive as
well as time-consuming in detecting dental decay on the jaw’s teeth. Similarly, as
mentioned in [20], Dentists look for roughness and discoloration on the tooth surface
with visual tactics for caries detection. This detection technique is highly subjective
and highly reliant on dentists’ expertise.

As stated in [27], above mentioned manual methods should not be considered, given
the COVID-19 pandemic situation. Where these approaches are the failure to main-
tain social distancing which further increases the risk of infection. In the current
COVID-19 outbreak, some children with dental caries must adopt social distancing
to minimize infection, which results in missing needed treatment for the oral illness.

Misdiagnosis is probable since typical tooth decay detection approaches including
ocular inspection and panoramic x-ray tests are dependent on competent practition-
ers. Medical misdiagnosis has become widespread in recent years, and many people
are affected directly or indirectly. Furthermore, because early and concealed caries
is difficult to diagnose, the rate of misdiagnosis is significant. [35]. If dental caries



is not treated promptly, they can spread over time, causing different oral disorders
eventually leading to tooth loss.

In addition, analyzing the x-ray images of teeth is more complex than analyzing
other medical images. Because digital radiography employs a tiny amount of ra-
diation, the image quality is poor, resulting in false-negative recording [20]. As,
digital radiographs are noisy, finding the edges is difficult. Dental radiography im-
age analysis is made more difficult by visual noise and poor contrast. Furthermore,
[8] claims that visual inspection has a lower acuity rate, meaning that man-made
assessment alone overlooks a significant proportion of decay. Although image seg-
mentation algorithms have improved over the years, due to variances in the images,
they remain complex and demanding operations. Artifacts from the treatment pro-
cedure, impacted teeth, varied varieties of teeth, and missing tooth space are all
issues. Finding an accurate and proper approach for segmenting dental X-ray pic-
tures remains a difficult task due to these issues.

Dentists continue to face difficulties in accurately diagnosing dental cavities early.
Existing caries detection technologies are not universally approved by dentists, and
the results are often inaccurate [20]. The main drawbacks of the diagnostic caries
monitor include false-positive diagnoses caused by food debris and plaque deposi-
tion, tooth staining, and low mineralization, which leads to an incorrect diagnosis.
Because the Electrical Caries Monitor (ECM) produces a significant number of false
positives for stained teeth, it should be used with caution. Direct Image Fiber Optic
Trans-illumination (DIFOTI) and QLF (Quantitative Light-induced Fluorescence)
become unsuccessful, because of having the interpretation of images by dentists with
costly equipment and being a complicated method with manual examination respec-
tively made hidden carries impossible to detect.

Decision-oriented algorithms show a more promising result and accuracy than the
traditional methods of teeth segmentation, as per [20]. The image contains both
teeth and bones that display similarly and using an engineering tool is an easier ap-
proach to detecting the tooth. As a result, computer-assisted methods for analyzing
detection and treatment may find the images more convenient.

Taking panoramic dental x-ray as the base of this system we can solve half of the
problems. As the panoramic x-ray emits less radiation as well as taking this type
of x-ray would provide patients deserving comfort. Moreover, the panoramic x-rays
will be preprocessed with the help of some algorithms. After that, with the help of
a decision-making algorithm which is a Convolutional Neural Network in this case
would be convenient for having a good detection accuracy building up a system that
would predict dental diseases accurately.

1.2 Research Objective

We aim to perform segmentation on panoramic x-ray images, extracting tooth-
eliminating jaw regions from the images. The goal is to gain a practical outcome for
our domain by comparing u-net variants. This comparison will show us if a simple
Vanilla-unet architecture would give us better accuracy in less time or if more com-



plex architecture would give us better accuracy in much more time. In our proposed
model, we use six variants of the u-net architecture. We will see which model will
perform the segmentation of teeth more efficiently. The objectives of our proposed
research are:

1. To increase the completeness of electronic dental data and save time.

2. Implement six models based on u-net architecture and apply them for segmen-
tation tasks.

3. To obtain better accuracy.
4. To evaluate the models.

5. To compare the outcome of these models based on training time and accuracy
matrices.

1.3 Research Motivation

Dentists can identify cysts, carries, and other issues with the help of X-rays that re-
quire more information than can be obtained through a patient’s direct examination.
Dentists can assess the overall dental structure from the X-ray images and design
patients’ treatments. Nevertheless, analyzing an X-ray is not a simple task. How-
ever, analyzing x-ray images by eyes is no easy task. A professional must have years
of training and experience before providing an accurate diagnosis. An automated
system can help to analyze X-rays more accurately. Most research articles on auto-
matically examining dental X-rays relied on custom feature extractors. These works
mostly ignored Panoramic X-rays, perhaps because they provide unique challenges.
That is why we decided to seize the chance to offer our unique perspectives on this
study area. Image segmentation is a tremendously difficult task in the medical field
due to the many imperfections in the images. In terms of medical image analysis,
deep learning approaches are the most promising. A deep learning methodology can
automatically learn the rules from a dataset and solve the primary problems in that
domain with different models. The paper [29] serves as a significant motivation for
this study. It is centred on several models built on U-net architecture and provides
extensive descriptions of how they are constructed and operated. Also, it shows the
excellencies of these models in performing image segmentation tasks. So, In this
situation, u-net can reveal structural and functional information about the tooth,
aiding in the analysis of x-ray images. Moreover, our work might help in the case of
detection in the future.

1.4 Research Outline

The thesis is organized in the following manner: We gave an overview of the potential
of deep learning models in panoramic x-ray image segmentation in Chapter 1. We've
also discussed our research objectives and our motivation to proceed with our work.
Chapter 2 is the literature review focusing on relevant work and existing methods

4



based on our topic. In Chapter 3, we showed how we made our dataset and its
description and how to preprocess it to suit the models. In Chapter 4, we showed
our workflow. Moreover, we discussed all the architectures that we employed in
our thesis. Then, we demonstrated how we implemented those architectures and
described the evaluation methods. We examined and then analyzed the data in
Chapter 5. Finally, Chapter 6 concludes our whole work. Also, we talked about our
future intentions.



Chapter 2

Literature Review

The operation of our brain is imitated by the mathematical models of Neural Net-
works. Its computing system is composed of various basic, highly interconnected
processing components that process information by responding to external inputs
with dynamic responses. Artificial neural networks are built based on a similar con-
cept. Although neural networks offer several characteristics that make them suited
for a variety of tasks in healthcare, such as performing segmentation on various
types of medical images, research on this application in dental care, particularly in
the dental image, is relatively minimal.

2.1 Related Works

Dental illnesses have a high chance of spreading over the world, especially among
adults. In comparison to other medical images, analyzing dental X-ray images
presents some challenges, making segmentation and detection more complicated.
For a caries detection system, both segmentation of teeth and the disease detection
method improve the accuracy and reliability.

As mentioned in [12] that, it resolves the challenge of initializing the tooth model by
itself, and the findings demonstrate that the tooth morphologies may be extremely
closely matched, particularly if the set of teeth is accurately specified. The teeth
segmentation problem is solved in two phases using RFRV-CLMs, which is one of
the most recent contributions in the statistical model field. The first stage is esti-
mating a few teeth and related mandibular areas that are being used to begin the
search for individual teeth, and phase two involves searching each tooth individually.
To identify missing teeth, an automated quality-of-fit measure was devised. While
detecting the contour of existing teeth, a median point-to-curve error of 0 : 2 mm
for every single tooth is displayed by the system.

The paper [15] focuses on convolutional neural network, which is based on the U-
net model and is used to create a model for teeth segmentation from panoramic
images. The model has quite a commendable competency in the case of segmenta-
tion. They made the following alterations to the U-Net architecture: they applied
batch normalization prior to every max pooling, up-sampling and concatenation
layer instead of dropout during training. Moreover, they utilized the Nadam opti-
mizer for the optimization. For research purposes, 1500 panoramic radiographs and



7 were chosen. They achieved a dice score of 0.936. By taking into account the
benefits of both residual networks (ResNet) and DenseNet, they suggest an effective
network architecture in this study [23]. While using much fewer model parameters
than DenseNet, our approach adds more skip connections than ResNet. They Use
two datasets to test the suggested approach. For the ISIC 2018 dataset and the
brain MRI dataset, they gained a mean dice coefficient of 0.861 and 0.8643, respec-
tively. Again, in [28], they provide a brand-new network for segmenting medical
images called the MFFRU-Net. They create an easy-to-use multi-scale feedback
mechanism. Through upsampling and 1 x 1 convolution, the feature maps from the
decoder are given back to the encoder, combining several high-level and low-level
features to create more relevant features. They used a public image dataset to assess
their proposed MFFRU-Net. MFFRU-Net has a 96.78% accuracy rate and a 98.56%
AUC, respectively.

Research done in [30] is centered around the segmentation of the 3D image. For
end-to-end learning of tooth instance segmentation in 3D point of ios cloud data, a
new deep learning-oriented computational model named Mask-MCNet is introduced
in this research. The suggested model separates the points that are relevant to each
distinct tooth instance while also predicting each tooth’s 3D bounding box to local-
ize each tooth instance. This property results in highly precise segmentation that
is necessary for clinical practice by preserving the intricate context of data, such as
the little curves in the boundary between adjacent teeth. They made use of two
datasets that were gathered from two distinct kinds of scanners. The first dataset
includes 120 optical images of odontiasis from 60 adult patients, including lower
and upper jaw images, which were used both for training and testing. The second
dataset consists of 48 optical images of 24 adult people and is exclusively used to
assess the robustness of MCNet’s to various scanner types. The outcomes demon-
strate that the Mask-MCNet beats modern models by reaching a tooth instance
segmentation score of 98% IoU, which is extremely similar to the performance of a
human expert. Similarly, the paper [32] proposes a hierarchical multi-step model
based on deep learning, which automatically identifies and segments 3D individual
teeth from dental CBCT images. To get over the computational difficulty posed by
high dimensional data, it generates panoramic photos of the upper and lower jaw
images on its own. Following that, 3D individual teeth’s loose- and tight- ROIs are
captured from the acquired 2D images. They used 97 dental 3D CBCT images to
do the research. They got a 93.35 F1 score and a 94.79 Dice coefficient percentage
for the study.

The study in [33] looks towards lightweight deep learning techniques for segmenting
dental X-ray images. This research proposes a novel lightweight knowledge distilla-
tion neural network technique. Knowledge distillation is typically a method of trans-
ferring information from heavy-duty teacher models to lightweight student models
that imitate teacher models. They propose an attempt to retrieve reliable data from
a teacher network using a knowledge network. They referred to it as a knowledge
consistency neural network for simplicity (KCNet). In total, 1321 dental panoramic
images were employed in this research. As their student and teacher networks, re-
spectively, they selected U-Net and ESPNet-v2. There are 432 training images, 111
validation images, and 778 testing images. In terms of the IoU score of 80.4% and



the Dice coefficient of 89%, it delivered the best performance. Similarly, the study
done in [31] assesses the precision and effectiveness of deep learning-based automatic
teeth segmentation in digital dental models. A DGCNN-based algorithm was used
to do this research. Three different methods were used to compare electronic den-
tal models: (1) AS (automatic tooth segmentation), (2) LS (landmark-based tooth
segmentation) and finally, (3) DS (tooth designation segmentation). Five hundred
sixteen dental models were used to train a deep learning system to segment teeth,
and 30 dental domains were used to evaluate the precision and efficiency of the seg-
mentation. The accuracy of tooth segmentation was 97.26%, 97.14%, and 87.86%
for the AS, LS and DS, respectively.

Furthermore, the study [34] shows the viability of the SWin-U-net CNN model for
segmenting teeth on panoramic x-rays. SWin-Unet is an encoder-decoder system
that uses transformers and is shaped like a U with skip connections. In SWin-Unet,
a symmetric encoder-decoder structure is built using jump connections. It uses a
local to a global strategy for self-attention. Moreover, it builds a patch-expanding
layer to increase sampling and feature dimension without using convolution or in-
terpolation techniques. For research purposes, 100 panoramic radiographs of adult
patients were randomly chosen. They used 10 panoramic radiographs for testing
and 90 for training. They achieved an accuracy of 88.52% using SWin-Unet.

The paper [21] states that using a Genetic Algorithm for automated teeth extrac-
tion and classification from panoramic radiographs. The system performs image
enhancement preprocessing in two steps - (i) Preprocessing for Initial ROI Detec-
tion and (ii) Preprocessing for Last ROI Detection. Then at the end of the extraction
process, it initiates Jaw separation using the middle point method. Finally, after
drawing 30 random lines, it applies the Genetic algorithm to determine the Best Fit
line, completing the Extraction process with a 77.56% accuracy (maxillary 81.44%,
mandibular 73.67%). A similar approach has been demonstrated in [22] where a
genetic algorithm extracts teeth from panoramic images. They used the Capsule
Network classifier for dental caries diagnosis and PaxNet for dental disease identifi-
cation. The raw images are considered and go through preprocessing, ROT extrac-
tion, and jaw separation to be prepared for the Genetic algorithm to separate teeth
with vertical lines. After that, these extracted teeth are fed into PaxNet (Panoramic
dental x-ray network) for caries detection, which has a feature extractor (Encoder,
CheXNet, InceptionNet) and CNN classifier modules. The architecture of PaxNet
contains four layers in feature extraction and 2 layers in Capsule Network. Initially,
teeth extraction is done by running some algorithm on 42 panoramic images where
jaw extraction accuracy is 95.23%. A genetic algorithm is then applied to extracted
jaws to isolate the tooth, and the accuracy of extracting maxillary and mandibu-
lar teeth is 81.44% and 73.67%, respectively. PaxNet is trained with healthy and
unhealthy samples. Finally, using a dataset of 5948 extracted tooth images, the
training and testing accuracy of Pax Net is 91.23% and 86.05%, respectively, while
having an F0.5-score of 0.78.

Mask R-CNN could be used to assist dentists in an instance, segmentation of teeth
and diagnosing problems. According to [9], a faster version of R-CNN conducts
instance segmentation of teeth. First, features from ResNet101 are extracted, and
these features are combined to form an FPN that defines anchors and extracts ROIs.



These removed ROIs are then molded into the same size, referred to as 9 the tooth.
The training portion of the dataset was completed in two parts-Adam Optimizer
and SGD. The segmentation requires quick weight adjustment with the values of
103, 1 as 0.9, 2 as 0.999, and 108, which the Adam optimizer can provide. The SGD
is used to fine-tune the weights without any momentum, with 10 — 6 as the learn-
ing rate. The MSCOCO dataset is utilized, which contains 193 buccal panoramic
x-ray images divided into 10 categories. After training with these images, the Mask
RCNN achieved 98 percent accuracy and a 0.88 fl-score. Similar utilization of this
algorithm has been mentioned in the image segmentation phase in [24], where they
used it from the sample library. The Al model successfully reached 90% of diagno-
sis accuracy. The paper demonstrates making up an intelligent dental Health-IoT
system that is organized and has 3 layers of services. CMOS-1 megapixel sensor
is used, allowing the system to have images that are being processed or enhanced,
and then the teeth segmentation from the image is performed. After making the
training data set using the semi-automatic labeling method, the clinical images were
labeled by the detector, classifying them into 7 types of dental diseases. The detec-
tor’s function includes visual enhancement, coarse localization, and classification,
and following these functionalities with labeling errors and classification errors, the
system performs Artificial Screening.

This article [8] was addressed by establishing a unique segmentation strategy of
the image that both solved the shortcomings of current approaches and produced
more significant outcomes. The suggested system comprises three primary stages;
pre-processing, segmentation, and analysis. These stages suggested technique for
the segmentation phase is based on a two-phased enhanced level set (LS) method.
In the latter stage, various Back-Propagation Neural Networks (BPNN) algorithms
are applied to utilize the algorithm known as ”"Traingda” under diverse setups. In
addition, a new strategy for isolating individual images of the segmented teeth has
also been presented using an integral projection method and a region-based fea-
ture map constructed on every tooth to retrieve the local data and, as an outcome,
identify the area which contains caries. When tested on the 120 oral radiographic
X-ray pictures, the proposed segmentation algorithm obtained an all-inclusive score
of 90.83% and a remarkable outcome of 98% accuracy in detecting the total 155
segmented teeth.

Similarly, as per [35], CariesNet is a new deep learning architecture created as a
U-shape network with an extra full-scale axial attention mechanism. It is used for
segmenting caries types from dental Radiographics. From 1159 x-rays, three types
of labeling are applied to 3217 caries locations. The feature extraction process from
multi-level CNN is combined with the U-shaped framework. They rely on Res2Net
as a reliable backbone. Experiments reveal that their technique can segment three
degrees of caries with a mean Dice coefficient of 93.64% and a 93.61% accuracy.



Ref | Task Classifier Dataset Accuracy
[8] | Computer-aided BPNN Private: Total 120, | 90.83% for segmen-
Caries detection 84 training-set, 36 | tation algorithm,
testing-set. From | 98% for detection
university students | phase
of age 25 to 35.
[9] | Instance segmenta- | Mask R-CNN Public: ~ MSCOCO | Accuracy is 98%, F1-
tion of teeth dataset of 193 buccal | score is 88%, Preci-
panoramic x-ray im- | sion is 94%, Recall
ages categorized in | is 84%, Specificity is
10 categories 99%
[12] | Adult OPG Image | RFRV-CLMs, Private: Total 346, | Each tooth has a me-
Teeth Segmentation | quality-of-fit training 261, testing | dian point-to-curve
measure 85 error of 0 : 2mm.
[15] | Accurate  Segmen- | Fully Convo- | 1500 dental | a Dice score of 0.936
taion of  Dental | lutional neural | panoramic radio-
Panoramic =~ Radio- | network  based | graphs
graphs with U-nets | on U-net archi-
tecture
[21] | Teeth extraction on | Genetic ~ Algo- | Public: a dataset of | Accuracy is 77.56%
Panoramic images rithm 42 images
[22] | Dental caries detec- | Genetic algo- | Private 470 | By  Genetic algo-
tion rithm for teeth | Panoramic im- | rithm, maxillary and
extraction, ages mandibular  teeth
PaXNet extraction  accura-
cies are 81.44% and
73.67%. PaXNet
accuracy is 86.05%
and the f0.5 score is
0.78
[23] | DRU-NET: An Effi- | DRU-NET, Public dataset. 1) | Mean dice coefficient
cient Deep Convolu- | Dense and | the ISIC 2018 Grand | of 0.861 for the ISIC
tional Natural Neu- | Residual Challenge: 2594 | 2018 dataset and
ral Network for Med- RGB images of skin | 0.8643 for the brain
ical Image Segmen- lesions, 2) a local | MRI dataset.
tation brain MRI dataset:
310 2D slices
[24] | A smart IoT Plat- | CNN (Mask | Private: 12600 clin- | Accuracy is 90%
form for home-based | RNN) ical x-rays from 10

dental healthcare

services

clinics
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Ref | Task Classifier Dataset Accuracy

[28] | Multi-scale Feedback | The Multi- | Public dataset | 96.78% accuracy
Feature Refinement | scale Feedback | DRIVE, LUNA and | rate and a 98.56%
U-net for Medical | Feature Refine- | Montgomery County | AUC
Image Segmentation | ment U-Net

(MFFRU-Net)

[30] | Mask-MCNet: Mask-MCNet 2 datasets: 1) 120 | IoU 98%
Tooth instance optical scans 2) 48
segmentation in optical scans
3D point clouds of
intra-oral scans

[31] | Accuracy and effi- | Dynamic graph | 516 dental models | 97.26%, 97.14%, and
ciency of automatic | convolutional for training and uti- | 87.86% for the AS,
tooth segmentation | neural network- | lized 30 dental mod- | LS and DS respec-
in digital dental | based algorithm | els for testing tively.
models using deep
learning

[32] | A fully automated | A deep learning- | 97 dental 3D CBCT | Fl-score of 93.35%
method for 3D in- | based hierarchi- | images a Dice coefficient of
dividual tooth iden- | cal = multi-step 94.79%
tification and seg- | model
mentation in dental
CBCT

[33] | Lightweight deep | KCNet 432 training images, | IoU 80.4% and Dice
learning methods for 111 validation im- | 89%.
panoramic dental ages, and 778 testing
X-ray image seg- images
mentation

[34] | Transformer-Based | SWin-Unet deep | Private: ~ PLAGH- | 88.52%
Deep Learning | convolutional BH 100 panoramic
Network for Tooth | neural network | radiographs
Segmentation on
Panoramic  Radio-
graphs

[35] | Segmentation of | U-Net  (convo- | Private: 1159 | A mean Dice coeffi-
multi-stage  caries | lutional neural | datasets cient of 93.64 percent
lesion network) and A 93.61 percent

accuracy.

Table 2.1: Summary of all papers related to our research
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Overall, the studies discussed above mainly focus on medical image segmentation,
more specifically, the segmentation of dental images. Although some of them focus
on other types of medical images [23], [28] and some provide both teeth segmenta-
tion as well as disease classification [9], [24]. The studies done in [31], [32] are based
on 3D image segmentation, which is not our area of concern at this moment as we
are focusing on 2D panoramic x-rays. Some of the research introduced new novel
models for segmentation [15], [31], [32] by combining features from U-net variants
or by introducing new features.

In this study, we want to compare six U-net variations on dental panoramic x-
ray images to evaluate their segmentation performance based on the architecture
complexity and total model training time. Though some of the studies above used
modified U-net structure and a combination of U-net variants for segmentation, our
study aims to compare some U-net architecture variants to figure out which network
model is best for our domain for segmentation operation. We want to evaluate the
impact of the number of convolutional layers by analyzing two and three levels per
block. This study aims to develop observations about semantic dental panoramic
image segmentation via U-Net architectures to be used on any dental dataset and
save a lot of time for later research.
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Chapter 3

Dataset

In this section, we have talked about the dataset that we have used for our research
purpose. We want to elaborate on the fieldwork collection process, the used device
and process of getting the pictures and then how we processed it into a comprehen-
sible format to feed it into different deep learning models for finding the best models
for our purpose.

Deep learning is mainly applied to unstructured data like images to extract infor-
mation from it. So, we have to find the OPG (Orthopantomogram) images, mostly
called the panoramic x-ray images, to have a proper dataset for our models.

3.1 Data Collection

Our work purpose was to develop a complete dataset of our own. So, after being con-
sulted in many dental clinics, we convinced one of the renowned dentists of Bogura,
Bangladesh, Dr. Ashique Mahmud Igbal (BDS, Dhaka Dental College) who allowed
us to gather the OPG images of the live patients as well as some pre-stored OPGs
of his dental Clinic, IQBAL’S Dental Clinic, with the condition of not sharing the
personal information of his patient’s name, age and address.

Finally, after getting permission to get the OPG images of the patients, we started
fieldwork capturing the OPG images of the live patients with corresponding informa-
tion. We used our mobile phone cameras. The device used is a Xiaomi Redmi Note
9 Pro with a 64 MP camera for capturing the raw images of the patients. In the first
3 months, we captured 250 images of different patients and manually selected 200
images eliminating blurred images. In the last 2 months, we captured 250 images
and manually selected another 189 images. Finally, after merging the images, we
got 389 clinical images of patients of the best quality. In the image collection, we
found the versatility of patients from children of 5 — 6 years to older, both male and
female patients of 60 — 70 years. Nevertheless, we mostly got images of middle-aged
patients.
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3.2 Data Sample

As data, we have used the Panoramic X-ray images or OPG images. Some of the
samples are given below:

(c) Example OPG image (d) Example OPG image

Figure 3.1: Data sample

3.3 Data Description

In the two stages of data collection, we get a total of 389 in our dataset, where all
the images are from different individuals. From visual inspection, we can see that
some images have “blue” tints, and some have “grey” tints. These images are of
various aged people, including children, men, and women. Our dataset shows that
some x-ray contains 32 teeth; some have less than that, which differs from age to
age, man to woman, or even child. Children aged 6 to 10 tend to have different
patterned and missing teeth. Overall, our dataset contains a good variety of data.

3.4 Data Annotation

Label Studio is used to label the 389 panoramic x-ray images. We used the in-built
Computer vision template of the label studio named "Semantic Segmentation Using
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Mask” for the data labelling of the OPG images. At the very beginning, we selected
our very own colour format (R=255 G=76 B=66) for our labelling. We set up some
minor changes in the Labeling Interface for the convenience of our work. After the
data was imported into the label studio, we set up the region named the region
"Tooth’ Then for the labelling, we eventually masked up the regions or areas that
are precisely the teeth areas of a particular x-ray image. We masked the images
one by one and generated each image’s ’Ground Truth’ or mask. Finally, we got
precisely 389 masks for each x-ray image after annotation.

Label Studio = Projects / NewProject#3 / Labeling

image 474 (u) mubtasim.bashar v @ o5 x & Projects / New Project #3 / Labeling

74 (@) mubtasimbashar clzoexoma= m
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(a) Label Studio interface (b) Labelling in process
New Project #3 /  Labeling
; mubtasim bash: v
E“V»;anuz\ Grouping () Ordered by Tim:
: I
(c) Labelling done (d) Generated mask

Figure 3.2: Data annotation

In figure 3.2a, we have shown the Label studio interface and a particular image that
has not been annotated. Then, in the next stop, in figure 3.2b, we have shown the
process of labelling the teeth one by one using the brush tool. After that, in 3.2c,
we showed the full image after labelling, which finally generates a mask or Ground
Truth in 3.2d after exporting from the label studio.

3.5 Data Pre-processing

Focusing on the tooth part of each x-ray and highlighting the valuable details, a
few pre-processing steps are considered in the figure 3.3. After creating a dataset
from scratch, some steps are implemented before extracting teeth as the primary
region within images. The collected raw x-ray images have dimensions of 4000 x 3000
pixels. As we are using different variants of the Unet network model for the Semantic
segmentation process, the 4000 x 3000 pixels dimension is unsuitable for the Unet
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architecture to take as input. So, we have gone through some steps to make the
images suitable for our constructed 256 x 256 U-Net models.
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Figure 3.3: Pre-process steps

3.5.1 Crop and Resize Image

After taking the raw OPG images from the Dataset, we used manual cropping to
make squared-sized shapes. At the beginning of the pre-processing step, we crop
the images to eliminate irrelevant backgrounds and resize images into 1024 x 1024
pixel dimensions for the convenience of unet models.

3.5.2 Patchify Data

U-net architecture with patch-based data is more convenient in the case of images
with large dimensions, giving better accuracy. We need to convert the raw (1024 x
1024) images into patched images with 256 x 256 pixels for the proposed models to
work. Using Patchify, we divided each image into 4 x 4 sub-parts of 256 x 256 pixels
each and constructed patched images. Finally, after the Patchify, we get 389 x 16
= 6224 patched images and masks with 256 x 256 pixels, which will be used for
training and validation.

3.5.3 Normalization of Data

Our proposed method of normalization of the data is Linear Scaling (equation 3.1).
As the images are converted into an array, their values are 0 — 255 for each pixel. So,
using an algorithm like MinMaxScalar, KNN-normalization and so on is unnecessary.

16



So, we will divide the data by 255 to normalize our data, considering 0 as the
minimum value, and 255 as the maximum value.
’ T — Tmin

r=— (3.1)

Lmaz — Lmin

3.5.4 Data Classification

With a random state of 42, we divided the dataset into an 8 : 1 : 1 ratio for the
train, test and validation set where we have kept the data training size = 0.80 and
test data = 0.10 and validation data = 0.10.

Training Set

A training set is a collection of data for any deep-learning model. It consists of
input-output pairs, where the input is patched images and the output the patched
masks or ground truth. We trained our models with 80% patched images and masked
data in pairs so that these models can make the prediction closer to the actual value
in performing segmentation. The more training data we provide for our models to
learn, the more accurate predictions they can make when used with a validation
set to evaluate all unet variants’ performance. For our case, we used 4978 patched
images and corresponding masks from the overall dataset as a training dataset for
training. The training data set is 80% of the total data.

Testing Set

A testing set is a collection of input-output pairs used to test a deep learning model’s
performance and to estimate how well the model will generalize to new, unseen data.
We have used 623 patched images and masks, 10% of the overall data that the unet
architecture variants have not seen before, to evaluate the model performance on
the unseen data.

Validation Set

When developing a model, a validation set is a set of data separated from the training
set and used to evaluate how well the model performs. The validation set is used
to tune the model’s hyperparameters, which are the parameters set before training
the model and cannot be learned from the data. The model’s performance on the
validation set helps to determine the optimal values for these hyperparameters. We
have used around 623 patched images and corresponding masks from the overall
dataset, 10% of the overall data, to tune the hyperparameters to train our unet
variants with optimal values.
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Chapter 4

Research Methodology

In this chapter, We will go through our model methodology, the Unet architecture
variants we utilized, and the testing, validation, and evaluation techniques employed
in this section’s study on panoramic X-ray images in detail.

4.1 Working Progress

In figure 4.1, the flowchart for our thesis work is shown, which includes data collec-
tion, data preprocessing, data splitting, 6 different variants of U-net architectures
implementation, testing & validation, evaluation of performance, and comparison of
the architectures and analysis.

This research starts with collecting data, so we did fieldwork to convince differ-
ent dentists to share their OPG images for our study. Then, we got a response from
Dr. Ashique Mahmud Igbal, a dentist from Bogra who was interested in our research
and helped us by sharing the OPG images with the condition of not revealing his
patients’ information. Then these x-ray images are taken with a smartphone. As the
pictures were manually taken by hand, some unwanted background was also clicked
with the image. So we cleaned 389 data and resized it to 1024 x 1024 pixels. We
later patched each picture to 256 x 256 pixels with a non-overlapping approach to
avoid losing any pixels throughout the model training. Furthermore, we used this
patched data and split them into train test and validation sets with an 8 : 1 : 1 ratio.

For training, we used six different Unet variants (Vanilla U-net, Attention U-net,
Dense U-net, R2 U-net, Residual U-net, SE U-net), and to check performance, we
used a validation set. We then used four accuracy matrices (dice coefficient, IoU, f1
score, and accuracy) on the validation set. Then we used a test set to evaluate the
model’s performance on unseen data.

Moreover, we compared each variant’s accuracy over time to find an optimal so-
lution for our domain. Lastly, we took some significant images, patched them again,
and predicted on that image, and after segmentation, we unpatched it to see seg-
mentation on a large image.
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Figure 4.1: Work plan
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4.2 Used Architectures

Unet was introduced in 2015 by Olaf Ronneberger [4] to perform segmentation on
biomedical images. According to [29], U-net is primarily used in different domains
of biomedical images, such as CT scans, MRIs, microscopy, and X-rays. This archi-
tecture is mainly used for segmentation purposes, but many more applications have
been seen. So, the potential of this architecture is increasing. Different variants
of U-net have been introduced to the world since the first introduction of U-net.
We have used six different architecture variants of this model to compare model
performance for our domain.

4.2.1 Vanilla U-net

The Vanilla U-net [4] architecture (figure 4.2a) is the base of all the U-net architec-
ture variants used for comparison in this paper. This particular architecture has two
paths, one of them is the contracting path on the left side and the other one is the
expansive path on the right side. The contracting path is made with convolution
blocks (figure 4.2b) or encoder blocks which are shown with yellow tint. The convo-
lution blocks consist of 3 x 3 convolution layers (padding = “same”) according to the
layer defined beforehand followed by Batch Normalization and a rectified linear unit
(ReLU). After this convolution block, a 2 x 2 max pooling operation is done with
stride 2. This convolution block and max-pooling layer is a repeated application for
the down-sampling of this architecture.
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Figure 4.2: Architecture of Vanilla U-net
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Furthermore, for the expansive path, it creates the decoder block (figure 4.2c) which
is shown in figure as blue tint. This decoder block has 2 x 2 convolution layers that
take the feature map from the previous layer as input, followed by Batch Nor-
malization and RelU activation functions. The output of this decoder block then
concatenates with the adequately aligned skip connection feature map from the
convolution block or the encoder block. Skip connections are a crucial part of this
architecture as it provides feature information that gets lost in the deep architecture.

Finally, a 1 x 1 convolution is used on the output of the final layer with a sigmoid
activation function having stride 1.

4.2.2 Dense U-net

The Dense-Unet [18] architecture (figure 4.3a) replaces the Convolution and pooling
operation with the Dense blocks to have a deep network structure. Functionally,
there are two paths in Dense-Unet architecture; the Dense upsampling path (on the
left) and the Dense down-sampling path (on the right).
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Figure 4.3: Architecture of Dense U-net

Instead of a convolution block or encoder block in Vanilla-Unet, Dense-Unet dense
block is used here. For the downsampling, there are densely connected convolutional
layers in each dense block(figure 4.3d) with batch normalization and ReLU activation
function. This dense block is shown with the purple tinted block throughout the
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architecture. Then, the Transition Block, containing a max pooling layer of 2x2 with
a stride of 2, is applied between two Dense blocks to concatenate the dense blocks
perfectly. After all the downsampling operation is over, the upsampling operation
begins, and each up-sampling layer contains a transpose convolution operation(figure
4.3c) with a stride of 2 and the same padding. There are merge operations after
every up-sampling layer to concatenate their extracted features with the adequately
aligned skip connection feature map from the dense or encoder block. Then, each
merged output is fed into a dense block, and the upsampling operation repeats until
there are 4 upsampling layers. Finally, after 4 upsampling layers, a convolution layer
performs a 1 x 1 convolution operation with a sigmoid activation function having
stride 2, generating the final output.

4.2.3 Attention U-net
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Figure 4.4: Architecture of Attention U-net

An attention U-Net (figure 4.4a) [10] is a variant of the U-Net architecture that
incorporates attention mechanisms into the network. During training, attention in
Unet is a technique to draw attention to only the relevant activations. It improves
network generalization and reduces computing resources wasted on pointless acti-
vations. There are two types of attention, Hard Attention, and Soft Attention. We
know, Unet skip connection combines spatial information from the down-sampling
path with the up-sampling path to retain good spatial information. But this process
brings along poor feature representation from the initial layers. A soft attention gate
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implemented at the skip connections actively suppresses activations at irrelevant re-
gions. This attention gate is shown in figure 4.4a with a square shaped block with
A. In this attention block, the gating signal and skip connection go through 1 x 1
convolution having stride 1 (padding= "valid”), then batch normalization. Then we
add them, and the aligned weights get larger while unaligned weights get relatively
minor. The added value then goes through the ReLLU activation function. After
that, comes a 1 x 1 convolution operation with stride 1 (padding= "valid”) having
only 1 filter. Furthermore, these weights are passed through a sigmoid activation
function. Finally, this weight multiplies with the element-wise original skip con-
nection, and this output goes to the next layer. This is how the attention block is
incorporated in Unet architecture.

4.2.4 Residual U-net
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Figure 4.5: Architecture of Residual U-net

A residual U-Net (figure 4.5a) [6] is a variant of the U-Net architecture that incor-
porates residual connections into the network. Residual connections are a type of
skip connection that allows the network to learn residual functions or the difference
between the input and the desired output of a layer. Residual networks overcome
the problems of deep convolutional neural networks. Stacking convolutional layers
and making the model deeper hurts the network’s generalization ability. Residual
network architecture was introduced, which adds the idea of ”skip connections”, ad-
dressing this problem. In traditional neural networks, each layer feeds into the next
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layer. In networks with residual blocks, each layer provides into the next layer and
directly into the layers about 23 hops away. Inputs can propagate faster through
the residual connections (shortcuts) across layers.

In our case, Residual blocks (figure 4.5d) are implemented in place of convolu-
tion or encoder blocks of unet architecture as shown with purple block and create
a Residual-Unet model. Residual blocks consist of 3 x 3 convolutional layers with
stride 1 (padding = ”same”), batch normalization and ReLU activation function.
After calculating one set of convolutional operations, that value adds to the last
layer output as the residual connection. After these four downsampling operations,
the upsampling process begins. The previous residual blocks output of the down-
sampling acts as an input for the deconvolution block where a Conv2DTranspose
procedure is done with stride 2 (padding = ”same”). This value feeds into the batch
normalization and ReLLU activation function. The returned value of this deconvolu-
tion block then concatenates with the element-wise original skip connection, and this
output goes through the residual block and this process repeats for all the element-
wise operations. Finally, the output of the last upsampling block is passed through
a 1 x 1 convolution operation with a sigmoid activation function and generates the
outcome.

4.2.5 R2 U-net

R2U-Net (Residual and Recurrent U-Net) (figure 4.6a) is a variant of the U-Net
architecture that incorporates both residual connections and recurrent connections
into the network. According to [7], some of the benefits of this network architecture
is that while we train the deep network architecture, a residual unit helps. Another
advantage is that segmentation tasks get better feature map accumulation with
recurrent residual convolutional layers, which ensures better feature representation.
Lastly, this allows us to have a better version of Unet architecture with the same
network parameters. For our research, we again use RRCNN( Recurrent Residual
convolutional neural network) blocks (figure 4.6d) instead of convolutional blocks or
encoder blocks as shown with purple tint. The input first goes through this RRCNN
block, and one 3 x 3 convolution operation with stride 1 (padding = "same”) is
done on the given input then recurrent unit implements two recurrences for the
convolutional layers with batch normalization and ReLLU activation function. Then
the output of the initial convolution is added to the recurrent unit’s output, and
this final value is the output of the RRCNN block. The previous RRCNN blocks
output of the downsampling acts as an input for the deconvolution block where a
Conv2DTranspose procedure is done with stride 2 (padding = "same”). This value
feeds into the batch normalization and ReLU activation function. The returned
value of this deconvolution block then concatenates with the element-wise original
skip connection, and this output goes through the RRCNN block and this process
repeats for all the element-wise operations. After the four upsampling operations,
finally, with 1 x 1 convolution operation with sigmoid activation function, we get
the outcome.
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Figure 4.6: Architecture of R2 U-net

4.2.6 SE U-net

SE-Unet (figure 4.7a) [11] is a variant of the U-Net architecture that incorporates
squeeze-and-excitation (SE) blocks into the network. SE blocks are a type of atten-
tion mechanism that allows the network to dynamically weigh the features at each
position in the input data based on their relevance to the task at hand, which can
be helpful for tasks such as image segmentation, where the network needs to accu-
rately identify and segment objects in the image, even if they are small or partially
occluded. To implement SE blocks in a U-Net, they are typically added after each
convolutional layer in the network. Each SE block consists of two parts: a squeeze
layer, which reduces the dimensions of the input data by aggregating the features
along the channel dimension, and an excitation layer, which re-weights the features
using a learnable weighting function. The excitation layer allows the network to as-
sign higher weights to essential features in the input data and lower weights to less
essential features, which helps the network to focus on the most relevant features
when making predictions.

In our research, we use Scse-blocks as the red marked block in figure 4.7a, after
each encoder block and decoder block, and this Scse-block takes input from the
encoder block. Scse-block consists of Cse and Sse-blocks. The Sse-block takes input
and runs a lx convolutional operation with a sigmoid activation function with only
one filter(use_bias = "False”). After that, this value is multiplied by the input and
returned to the Scse-block. For the Cse-block, it first performs spatial squeeze with
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Figure 4.7: Architecture of SE U-net

global average pooling. This value is used to perform two fully connected convo-
lutional layers. One has a ReLU activation function, and the other has a sigmoid
activation function. The output from this then excites the input feature map. Fur-
thermore, Scse-block gets the result from Cse-block. These two blocks’ value is then
compared, and their maximum is returned as the value of Scse-block. Finally, the
output of the Scse-block is passed on to the next encoder or decoder block. In the
end, like any other unet model in the last layer, a 1 x 1 convolution is performed
with a sigmoid activation function to generate the output.

4.3 Implementation of Architectures

We aim to perform semantic segmentation on dental x-ray images (panoramic x-ray
images). To achieve that goal, we are training six different unet variants.

4.3.1 Training and Architecture Parameters

Our network architectures use a 1 x 1 convolution layer with stride one followed by
a sigmoid activation. The output of these networks gives us binary classification
probabilities corresponding to each pixel in the original input teeth x-ray images.
All the networks use 2 x 2 max-pooling and transposed convolution on the down-
sampling and upsampling, respectively. Furthermore, Network architecture consists
of four downsampling and four upsampling layers. The first downsampling layer
starts with 16 filters, and as the network goes deep, the filter size increases twice
the previous amount. However, the filter size decreases by half the prior amount for
the upsampling layers. We use 2 and 3 convolution operations per block for perfor-
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mance comparison for each of these encoder and decoder blocks. These convolution
operations are followed by batch normalization and RelLU activation functions.

For training purposes, adam optimizer is used with a learning rate of 0.0001, the
batch size is 16, and all the models are trained for 100 epochs. The dice coef loss
function is used to calculate the loss, and for accuracy metric, we are using “accu-
racy”, “dice-coefficient”, “fl-score”, and “Iou” on the validation set. To compare
the networks, we consider these metrics with the best epoch.

4.3.2 Semantic Segmentation on Patches

After training all of our architectures, we have predicted on some test images using
all of the models and each of their variants. The steps are similar for all architectures.

As shown in figure 4.8, first, we need to create patches out of the image that we
want to predict. To do so, we will take a dental x-ray image as our input that we
would like to segment i.e., predict using our model (figure 4.8a).

Next, we divide our image into 4 x 4 = 16 patches, each with a 256 x 256 pixel
size. Also, we need to normalize all the values before feeding the patches for predic-
tion (figure 4.8b).

(a) Original image (input) (b) Created patches from the image

Figure 4.8: Creating patches

As we have already trained our model, we can use it to predict and segment an
image. So, now we will use our model to predict each of the patch (figure 4.9).

After predicting all the patches, we will be left with 16 segmented patches for an
image.
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Figure 4.9: Segmentation on patches

4.3.3 Reconstruction of Segmented Image

As illustrated in figure 4.10, after we get the 16 segmented patches, we will recon-
struct the entire image. In simpler words, we will put together all 16 segmented
patches and form the entire image with a final size of 1024 x 1024 pixels.

ek

HEE3N
HEkJdB

(a) Segmented patches (b) Reconstruction of the patches

Figure 4.10: Reconstruction of the segmented image



4.4 FEvaluation Method

As we aim to train segmentation models, more than common metrics such as accu-
racy or fl score is needed to evaluate our models properly. Alongside these metrics,
we have considered our two-layer and three-layer variants on dice coefficient and IoU
for further clarification by comparing the training and validation curves. Further-
more, we used a confusion matrix as a tabular analysis to evaluate the performance
of our U-net variants.

4.4.1 Performance Metrics

We have used accuracy, Dice coefficient (Dice’s similarity coefficient), F1 score, and
Intersection over Union (IoU) to evaluate the performance of our binary image seg-
mentation models. By using these four metrics to evaluate our models’ performance,
we can better understand how well the models perform on the image segmentation
task.

The four quantities TP, FP, TN, and FN are used to calculate various performance
metrics for binary image segmentation, including accuracy, Dice coefficient, ToU,
etc. In binary image segmentation, true positives (TP) are the number of pixels
that are correctly classified as foreground (teeth). False positives (FP) are the num-
ber of pixels that are incorrectly classified as foreground (i.e., they should be the
background). True negatives (TN) are the number of pixels correctly classified as
background. False negatives (FN) are the number of pixels incorrectly classified as
background (i.e., they should be foreground).

Accuracy

In binary image segmentation, the accuracy metric can be defined as the number of
pixels that are correctly classified by the model divided by the total number of pix-
els in the image. More formally, the accuracy can be calculated using the following
formula:

TP + TN
TP + TN+ FP + FN

Accuracy = (4.1)

This formula can be used to calculate the accuracy of a binary image segmenta-
tion model, where the model is trying to classify each pixel in the image as either
belonging to the foreground or the background.
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Vanilla U-net In figure 4.11, it can be seen that the train accuracy and validation
accuracy are both increasing over time, and the difference between the two is small
and stable for the Vanilla U-net (two-layer variant) architecture.
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Figure 4.11: Validation accuracy for Vanilla U-net (two-layer variant)
Correspondingly, figure 4.12 for three-layer variant Vanilla U-net illustrates similar
result. The difference between the training and validation accuracy is typically

small, which indicate that the model is generalizing well and is not overfitting to
the training data, this is a good sign for the model’s performance.
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Figure 4.12: Validation accuracy for Vanilla U-net (three-layer variant)
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Attention U-net In figure 4.13, we can see that the training accuracy increases
as the model is trained and reaches a high value for the Attention U-net model
with two convolutional layers. The validation accuracy increases as the model are
trained, but plateau at a lower value than the training accuracy and stays relatively
stable. This suggests that the model is balanced with the training data.
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Figure 4.13: Validation accuracy for Attention U-net (two-layer variant)

Likewise, looking at figure 4.14, we can draw similar conclusion. However, with
addition of one convolutional layers per block, the gap between the training accuracy
and validation accuracy is narrower compared to the previous architecture.
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Figure 4.14: Validation accuracy for Attention U-net (three-layer variant)
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Dense U-net As seen in figure 4.15, the model’s performance, Dense Unet (two-
layer variant), seems decent as the validation accuracy is close to training accuracy.
This could be a sign that the model can learn the general pattern of image segmen-
tation from the training data and apply the same to the validation data.
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Figure 4.15: Validation accuracy for Dense U-net (two-layer variant)

Similarly, figure 4.16 depicts similar results for this model by adding one convolu-
tional layer per block. The difference between the training and validation accuracy
is typically tiny, indicating that the model is generalizing well and is balanced with
the training data.
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Figure 4.16: Validation accuracy for Dense U-net (three-layer variant)
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R2 U-net We can see from figure 4.17 for R2 U-net (two-layer variant) that the
validation accuracy is stable and close to training accuracy. This is a positive indi-
cation of the model’s performance on unseen data.
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Figure 4.17: Validation accuracy for R2 U-net (two-layer variant)

As seen in figure 4.18 for R2 U-net (three-layer variant), the validation accuracy
fluctuates a bit in the early stages of training which is typical. However, the valida-
tion accuracy is stable after a certain point, suggesting the model is not overfitting.
Even the gap between training and validation accuracy is even narrower than the
two-layer variant of this model.
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Figure 4.18: Validation accuracy for R2 U-net (three-layer variant)
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Residual U-net Based on figure 4.19, Residual U-net (two-layer variant) is well-
performing in terms of accuracy and generalization. The model’s performance seems
robust as training and validation accuracy has reached a high value. Also, the
validation accuracy is stable after a certain point which suggests the model is not
overfitting.
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Figure 4.19: Validation accuracy for Residual U-net (two-layer variant)

Similarly, figure 4.20 illustrates that the gap between the training and validation
accuracy is low and even narrower than the model previously mentioned. It usually
depicts that this model, Residual U-net (with three convolutional layers), fits the
training data well and can generalize to unseen data. This indicates that the model
will perform well on new, unseen data.
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Figure 4.20: Validation accuracy for Residual U-net (three-layer variant)
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SE U-net As seen in figure 4.21, the training accuracy and validation accuracy are
relatively close together throughout the entire training process, with the validation
accuracy staying slightly behind the training accuracy. This suggests that the two-
layer variant SE U-net model is generalizing well and is balanced with the training
data.

Training and validation: accuracy

0.975 4

0.950 4

0.925 4

0.900 4

Accuracy

0.875 4

0.850 4

0.825 - -
Tralnlng accuracy

— Validation accuracy

0.800 4

T
0 20 40 60 80 100
Epochs

Figure 4.21: Validation accuracy for SE U-net (two-layer variant)

Likewise, figure 4.22 indicates that with the addition of another convolution layer,
this model can perform well on both the training and validation sets and is likely to
perform well on unseen data. Based on this graph, the model is well-performing in
terms of accuracy and generalization.
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Figure 4.22: Validation accuracy for SE U-net (three-layer variant)
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F1 score

It is worth noting that accuracy is a simple metric and may only sometimes be the
best choice for evaluating the performance of a binary image segmentation model.
For segmentation tasks, the F'1 score can be a better performance metric than accu-
racy in some cases. The main reason is that while accuracy measures the proportion
of correctly classified pixels, it does not consider false positives and negatives, which
can be critical in segmentation tasks. A model with high accuracy may still need
to catch more of the structure of interest, which could have severe consequences in
specific applications such as medical imaging.

The F1 score, on the other hand, represents a harmonic mean of recall and ac-
curacy. The proportion of true positive pixels in the predicted positive pixels is
measured by precision. In contrast, the proportion of true positive pixels in the
actual positive pixels is measured by a recall. F1 score combines precision and recall
in a single metric and balances them, which is particularly useful when it is essential
to balance between detecting as many of the structures of interest as possible (recall)
and detecting as few false positives as possible (precision).

In the case of teeth segmentation, a model with high precision but low recall may
miss many teeth, but the ones it detects will be accurate. This can be a problem
in cases where missing teeth can cause serious consequences. While a model with
high recall but low precision would detect many teeth, most of them will be false
positives. This will cause a lot of noise and confusion and may result in unneces-
sary treatments. Therefore, the F1 score can be a better performance metric than
accuracy, as it considers both precision and recall. It can balance both to compre-
hensively evaluate the model’s performance in detecting teeth.

The equation 4.2 for calculating F1 score is:

precision X recall

K score =2 precision + recall (42)
The equation 4.3 for calculating precision is:
precision = TPT——E)FP (4.3)
The equation 4.4 for calculating recall is:
recall = % (4.4)
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Vanilla U-net In figure 4.23, it can be seen that the train f1 score and validation
f1 score are both increasing over time, and the difference between the two is small
and stable for the Vanilla U-net (two-layer variant) architecture.
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Figure 4.23: Validation f1 score for Vanilla U-net (two-layer variant)

Correspondingly, figure 4.24 for the three-layer variant Vanilla U-net illustrates a
similar result. The difference between the training and validation f1 score is typically
tiny, which indicates that the model is generalizing well and is not overfitting to the
training data; this is a good sign for the model’s performance.
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Figure 4.24: Validation f1 score for Vanilla U-net (three-layer variant)
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Attention U-net In figure 4.25, we can see that the training f1 score increases
as the model is trained and reaches a high value for the Attention U-net model
with two convolutional layers. The validation f1 score also increases as the model is
trained but plateaus at a lower value than the training f1 score and stays relatively
stable. This suggests that the model is balanced with the training data.
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Figure 4.25: Validation f1 score for Attention U-net (two-layer variant)

Likewise, looking at figure 4.26, we can draw a similar conclusion. However, with
the addition of one convolutional layer per block, the gap between the training f1
score and validation f1 score is narrower compared to the previous architecture.
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Figure 4.26: Validation f1 score for Attention U-net (three-layer variant)
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Dense U-net As seen in figure 4.27, the performance of the model, Dense U-net
(two-layer variant), seems decent as the validation f1 score is close to the training
f1 score. This could be a sign that the model is able to learn the general pattern of
image segmentation from the training data and applies the same to the validation
data as well.
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Figure 4.27: Validation f1 score for Dense U-net (two-layer variant)

Similarly, figure 4.28, depicts similar results for this model by adding one convolu-
tional layer per block. The difference between the training and validation f1 score is
typically small, indicating that the model is generalizing well and is not overfitting
to the training data.
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Figure 4.28: Validation f1 score for Dense U-net (three-layer variant)
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R2 U-net We can see from figure 4.29 for R2 U-net (two-layer variant) that the
validation f1 score is stable and close to the training f1 score. This is a positive
indication of the model’s performance on unseen data.
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Figure 4.29: Validation f1 score for R2 U-net (two-layer variant)

As seen in figure 4.30 for R2 U-net (three-layer variant), the validation fl score
appears to be fluctuating a bit in the early stages of training which is typical.
However, the validation fl score is stable after a certain point which suggests the
model is not overfitting. Even the gap between the training f1 score and validation
f1 score seems to be even narrower than the two-layer variant of this model.
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Figure 4.30: Validation f1 score for R2 U-net (three-layer variant)
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Residual U-net Based on figure 4.31, it appears that Residual U-net (two-layer
variant) is well-performing in terms of accuracy and generalization. The model’s
performance seems robust as both training and validation f1 score have reached a
high value. Also, the validation f1 score is stable after a certain point which suggests
the model is not overfitting.
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Figure 4.31: Validation f1 score for Residual U-net (two-layer variant)

Similarly, figure 4.32 illustrates that the gap between the training and validation
f1 score is low and even narrower than the model previously mentioned. It usually
depicts that this model, Residual U-net (with three convolutional layers), is not only
fitting the training data well but also able to generalize to unseen data. This is a
good indication that the model will perform well on new, unseen data.
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Figure 4.32: Validation f1 score for Residual U-net (three-layer variant)
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SE U-net As seen in figure 4.33, the training f1 score and validation f1 score are
relatively close throughout the training process, with the validation f1 score staying
slightly behind the training f1 score. This suggests that the model, the two-layer
variant SE U-net, is generalizing well and is not overfitting to the training data.
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Figure 4.33: Validation f1 score for SE U-net (two-layer variant)

Likewise, figure 4.34 indicates that this model, with the addition of another convo-
lution layer, is able to perform well on both the training and validation sets and is
likely to have a good performance on unseen data. Based on this graph, it appears
that the model is well-performing in terms of accuracy and generalization.
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Figure 4.34: Validation f1 score for SE U-net (three-layer variant)
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Dice coefficient

A standard metric for assessing how well a segmentation model is working is the
dice coefficient. It is frequently used to assess how well models perform in recogniz-
ing certain structures or regions of interest in image segmentation, particularly in
medical imaging.

As illustrated in figure 4.35, the Dice coefficient (Dice’s similarity coefficient) is
a metric that measures the overlap between the predicted segmentation and the
ground truth segmentation in binary image segmentation. The Dice coefficient is
calculated by first finding the intersection between the predicted foreground and the
ground truth foreground, and then dividing this value by the sum of the number
of pixels in the predicted foreground and the number of pixels in the ground truth
foreground.

2*

DICE
COEF =

Figure 4.35: Dice coefficient Venn diagram

In terms of teeth segmentation, the model’s predicted segmentation set (A) would
represent the pixels that the model has identified as teeth, and the ground truth
set (B) would represent the pixels that have been manually annotated as teeth. To
calculate the true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN) from the Dice coefficient sets, we need to compare the predicted seg-
mentation set (A) with the ground truth set (B). The true positives (TP) are the
pixels that the model correctly identifies as teeth and are also present in the ground
truth set (A B). The true negatives (TN) are the pixels that the model correctly
identifies as background and are not present in the ground truth set. The false
positives (FP) are the pixels that the model incorrectly identifies as teeth and are
not present in the ground truth set (A-B). The false negatives (FN) are the pixels
that the model incorrectly identifies as background and are present in the ground
truth set (B-A).

The following equation 4.5 defines dice coefficient:

2x TP
Di fficient = 4.
ice coefficient = o——— s r (4.5)
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Vanilla U-net In figure 4.36, it can be seen that the train dice coefficient and
validation dice coefficient are both increasing over time, and the difference between
the two is small and stable for the Vanilla U-net (two-layer variant) architecture.
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Figure 4.36: Validation dice coefficient for Vanilla U-net (two-layer variant)

Correspondingly, figure 4.37 for the three-layer variant Vanilla U-net illustrates a
similar result. The difference between the training and validation dice coefficient
is typically small, which indicates that the model is generalizing well and is not
overfitting to the training data; this is a good sign for the model’s performance.
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Figure 4.37: Validation dice coefficient for Vanilla U-net (three-layer variant)
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Attention U-net In figure 4.38, we can see that the training dice coefficient
increases as the model is trained and reaches a high value for the Attention U-net
model with two convolutional layers. The validation dice coefficient also increases as
the model is trained but plateaus at a lower value than the training dice coefficient
and stays relatively stable. This suggests that the model is not overfitting to the
training data.
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Figure 4.38: Validation dice coefficient for Attention U-net (two-layer variant)

Likewise, looking at figure 4.39, we can draw a similar conclusion. However, with
the addition of one convolutional layer per block, the gap between the training
dice coefficient and validation dice coefficient is narrower compared to the previous
architecture.
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Figure 4.39: Validation dice coefficient for Attention U-net (three-layer variant)
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Dense U-net As seen in figure 4.40, the performance of the model, Dense U-net
(two-layer variant), seems decent as the validation dice coefficient is close to the
training dice coefficient. This could be a sign that the model is able to learn the
general pattern of image segmentation from the training data and applies the same
to the validation data as well.
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Figure 4.40: Validation dice coefficient for Dense U-net (two-layer variant)

Similarly, figure 4.41, depicts similar results for this model with the addition of one
convolutional layer per block. The difference between the training and validation
dice coefficient is typically small, indicating that the model is generalizing well and
is not overfitting to the training data.
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Figure 4.41: Validation dice coefficient for Dense U-net (three-layer variant)
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R2 U-net We can see from figure 4.42 for R2 U-net (two-layer variant) that the
validation dice coefficient is stable and close to the training dice coefficient. This is
a positive indication of the model’s performance on unseen data.
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Figure 4.42: Validation dice coefficient for R2 U-net (two-layer variant)

As seen in figure 4.43 the validation dice coefficient appears to be fluctuating a bit in
the early stages of training which is typical. However, the validation dice coefficient
is stable after a certain point which suggests the model is not overfitting. Even the
gap between the training dice coefficient and validation dice coefficient seems to be
even narrower than the two-layer variant of this model.
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Figure 4.43: Validation dice coefficient for R2 U-net (three-layer variant)
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Residual U-net Based on figure 4.44, it appears that Residual U-net (two-layer
variant), is well-performing in terms of accuracy and generalization. The model’s
performance seems to be robust as both the training and validation dice coefficient
have reached a high value, and also the validation dice coefficient is stable after a
certain point which suggest model is not overfitting.
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Figure 4.44: Validation dice coefficient for Residual U-net (two-layer variant)

Similarly, figure 4.45 illustrates that the gap between the training and validation
dice coefficient is low and even narrower than the model previously mentioned. It
usually depicts that this model, Residual U-net (with three convolutional layers),
is not only fitting the training data well but also able to generalize to unseen data.
This is a good indication that the model will perform well on new, unseen data.
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Figure 4.45: Validation dice coefficient for Residual U-net (three-layer variant)
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SE U-net As seen in figure 4.46, the training dice coefficient and validation dice
coefficient are relatively close together throughout the entire training process, with
the validation dice coefficient staying only slightly behind the training dice coeffi-
cient. This suggests that the model, the two-layer variant SE U-net, is generalizing
well and is not overfitting to the training data.
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Figure 4.46: Validation dice coefficient for SE U-net (two-layer variant)

Likewise, figure 4.47 indicates that this model, with the addition of another convo-
lution layer, is able to perform well on both the training and validation sets and is
likely to have a good performance on unseen data. Based on this graph, it appears
that the model is well-performing in terms of accuracy and generalization.
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Figure 4.47: Validation dice coefficient for SE U-net (three-layer variant)
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Intersection over Union (IoU)

The IoU is a valuable metric for assessing the effectiveness of a binary image seg-
mentation model as it offers a straightforward, comprehensible way to evaluate the
degree of overlap between predicted and ground truth segmentations.

As shown in figure 4.48, the intersection between the predicted foreground and the
ground truth foreground is first found, and this value is then divided by the union
of the predicted foreground and the ground truth foreground. This calculation is
used to determine the IoU.

OVERLAP

I0OU =

UNION

Figure 4.48: Intersection over Union (IoU) Venn diagram

The intersection over union (IOU) sets are produced by comparing the predicted
segmentation set (A) with the ground truth segmentation set(B), and they are used
to calculate the metrics true positive (TP), true negative (TN), false positive (FP),
and false negative (FN).TP represents the number of pixels that the model has
correctly identified as teeth (A N B), TN represents the number of pixels that the
model has correctly identified as background (A’ N B’), FP represents the number of
pixels that the model has incorrectly identified as teeth (A N B’), and FN represents
the number of pixels that the model has incorrectly identified as background (A’ N
B). A high number of TP and TN and a low number of FP and FN in the teeth
segmentation are desirable signs that the model is correctly classifying the teeth and
background.

The following equation 4.6 defines IoU:

B TP
~ TP +FP +FN

IoU
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Vanilla U-net In figure 4.49, it can be seen that the train IoU and validation
IoU are both increasing over time, and the difference between the two is small and
stable for the Vanilla U-net (two-layer variant) architecture.
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Figure 4.49: Validation IoU for Vanilla U-net (two-layer variant)

Correspondingly, figure 4.50 for the three-layer variant Vanilla U-net illustrates a
similar result. The difference between the training and validation IoU is typically
small, which indicates that the model is generalizing well and is not overfitting to
the training data; this is a good sign for the model’s performance.
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Figure 4.50: Validation IoU for Vanilla U-net (three-layer variant)
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Attention U-net In figure 4.51, we can see that the training IoU increases as the
model is trained and reaches a high value for the Attention U-net model with two
convolutional layers. The validation IoU also increases as the model is trained but
plateaus at a lower value than the training IoU and stays relatively stable. This
suggests that the model is not overfitting to the training data.
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Figure 4.51: Validation IoU for Attention U-net (two-layer variant)

Likewise, looking at figure 4.52, we can draw a similar conclusion. However, with
the addition of one convolutional layer per block, the gap between the training loU
and validation IoU is narrower compared to the previous architecture.
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Figure 4.52: Validation IoU for Attention U-net (three-layer variant)
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Dense U-net As seen in figure 4.53, the performance of the model, Dense U-
net (two-layer variant), seems decent as the validation IoU is close to training IoU.
This could be a sign that the model is able to learn the general pattern of image
segmentation from the training data and applies the same to the validation data as
well.
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Figure 4.53: Validation IoU for Dense U-net (two-layer variant)

Similarly, figure 4.54, depicts similar results for this model with the addition of one
convolutional layer per block. The difference between the training and validation
IoU is typically small, indicating that the model is generalizing well and is not
overfitting to the training data.
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Figure 4.54: Validation IoU for Dense U-net (three-layer variant)
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R2 U-net We can see from figure 4.55 for R2 U-net (two-layer variant) that the
validation IoU is stable and close to training IoU. This is a positive indication of
the model’s performance on unseen data.

Training and validation: 10U

0.9 W
0.8
= 0.7 4
e
0.6
0.5 1
Training 10U
—— \Validation 10U
0.4
T T T T T T
0 20 40 60 80 100

Epochs

Figure 4.55: Validation IoU for R2 U-net (two-layer variant)

As seen in figure 4.56 for R2 U-net (three-layer variant), the validation loU appears
to be fluctuating a bit in the early stages of training, which is typical. However,
the validation IoU is stable after a certain point which suggests the model is not
overfitting. Even the gap between training IoU and validation IoU seems to be even
narrower than the two-layer variant of this model.
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Figure 4.56: Validation IoU for R2 U-net (three-layer variant)
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Residual U-net Based on figure 4.57, it appears that Residual U-net (two-layer
variant) is well-performing in terms of accuracy and generalization. The model’s
performance seems to be robust as both training and validation IoU have reached a
high value, and also, the validation IoU is stable after a certain point which suggests
the model is not overfitting.
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Figure 4.57: Validation IoU for Residual U-net (two-layer variant)

Similarly, figure 4.58 illustrates that the gap between the training and validation [oU
is low and even narrower than the model previously mentioned. It usually depicts
that this model, Residual U-net (with three convolutional layers), is not only fits
the training data well but also able to generalize to unseen data. This is a good
indication that the model will perform well on new, unseen data.
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Figure 4.58: Validation IoU for Residual U-net (three-layer variant)
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SE U-net As seen in figure 4.59, the training IoU and validation IoU are rela-
tively close together throughout the entire training process, with the validation IoU
staying only slightly behind the training IoU. This suggests that the model, the
two-layer variant SE U-net, is generalizing well and is not overfitting to the training
data.
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Figure 4.59: Validation IoU for SE U-net (two-layer variant)

Likewise, figure 4.60 indicates that this model, with the addition of another convo-
lution layer, is able to perform well on both the training and validation sets and is
likely to have a good performance on unseen data. Based on this graph, it appears
that the model is well-performing in terms of accuracy and generalization.
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Figure 4.60: Validation IoU for SE U-net (three-layer variant)
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4.4.2 Tabular Evaluation

We used a confusion matrix to summarize the effectiveness of all U-net variants
because it is clear and easy to understand. For a certain test set, it generates a
table that is used to compare the predicted class labels to the ground truth class
labels and gives a summary of the number of accurate and inaccurate predictions
the model made.

Predicting the class label for each pixel inside an image is the aim of image seg-
mentation. The performance of a model may be assessed using a confusion matrix
by evaluating the predicted class labels with the true class labels for a certain test
set. It depicts the number of true positives, true negatives, false positives, and
false negatives. The general format of a confusion matrix table for binary image
segmentation is as follows:

background

True Label

-0.4

tooth

-0.2

backglmu nd tooth
Predicted Label

Figure 4.61: Basic 2 x 2 confusion matrix

In figure 4.61, the columns correspond to the predicted class labels, whereas the
rows correspond to the true class labels (foreground and background) for a confu-
sion matrix table. The cells of the table contain the following quantities:

True positives (TP): The portion of pixels that are correctly classified as foreground
(teeth).

False negatives (FN): The portion of pixels that are incorrectly classified as back-
ground (i.e., they should be foreground).

False positives (FP): The portion of pixels that are incorrectly classified as fore-
ground (i.e., they should be background).

True negatives (TN): The portion of pixels that are correctly classified as back-
ground.
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Vanilla U-net As illustrated in figure 4.62, the confusion matrix table for this
two-layer variant model is quite decent. 87% pixels of teeth that were correctly iden-
tified by the model as teeth. Additionally, the true negative rate is also very high at
0.98, meaning that 98% of the pixels of the background were correctly identified as
background. The false positive rate is relatively low at 0.02, indicating that only 2%
of pixels of the background were incorrectly identified as teeth. Similarly, 13% of
pixels of teeth were incorrectly identified as background. Overall, this model seems
to be performing well in terms of accurately identifying teeth and background.
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Figure 4.62: Confusion Matrix for Vanilla U-net (two-layer variant)

Figure 4.63 depicts that the three-layer variant shows an improvement in the false
negative rate compared to the previous variant, indicating that the model is better
at identifying teeth pixels. Overall, this model has a high accuracy in identifying
teeth pixels and is an improvement over the first model.
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Figure 4.63: Confusion Matrix for Vanilla U-net (three-layer variant)
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Attention U-net According to figure 4.64 Attention U-net with two convolutional
layers has outperformed Vanilla U-net (by 2 — 3%) in all four TP, FP, TN, and FN
quantities on the test sets. This indicates that this model has a high overall accuracy
where the model is able to correctly classify a majority of the images as either teeth
or background. Additionally, the high true positive rate of 0.9 and the low false
negative rate of 0.1 are, in fact, the highest among the two-layer variants.
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Figure 4.64: Confusion Matrix for Attention U-net (two-layer variant)

Figure 4.65 demonstrates that the confusion matrix for the three-layer variant is
similar to the first one. However, the true negative rate (0.98) and false positive
rate (0.024) are even greater and smaller than the previous variant. This indicates
that the model has improved misclassifying background as teeth. Both models have
similar performance, but the second one might be slightly more accurate as per its
confusion matrix on the test sets.
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Figure 4.65: Confusion Matrix for Attention U-net (three-layer variant)
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Dense U-net As shown in figure 4.66, Dense U-net (two convolution layers) has a
high true positive rate of 0.87 which means the model is able to accurately identify
teeth in the images. Additionally, the true negative rate is also high at 0.98, which
means that the model is also able to correctly identify the background in the test
sets. This combination of high true positive and true negative rates is a positive
indication that the model is performing well overall.
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Figure 4.66: Confusion Matrix for Dense U-net (two-layer variant)

Figure 4.67 depicts this three-layer variant has an even higher true positive rate of
0.89, which is a great indication that the model is accurately identifying teeth in the
test images. Additionally, the false negative rate is also lower at 0.11, which means
that the model is identifying a larger proportion of teeth in the images. Furthermore,
the true negative rate is also high at 0.98, which confirms that the model is also
able to correctly identify the background in the images. Overall, the second model
is performing slightly better than the first one, thanks to the higher true positive
rate and lower false negative rate.

=]
5 0.8
3 .
o
v
- &
g a 0.6
[1+]
-l
S
E 0.4
i)
-}
3
= 0.2

backglround tooth
Predicted Label

Figure 4.67: Confusion Matrix for Dense U-net (three-layer variant)
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R2 U-net Figure 4.68 displays that R2 U-net (two-layer variant) has an out-
standing true negative rate of 0.98, which means that the model is very accurate
at identifying non-teeth. Additionally, the false positive rate of 0.025 is very low,
indicating that the model is not frequently misclassifying non-teeth as teeth. Fur-
thermore, the true positive rate of 0.89 is also very high, which means that the
model is accurately identifying teeth in the images.
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Figure 4.68: Confusion Matrix for R2 U-net (two-layer variant)

Figure 4.69 illustrates that R2 U-net (three-layer variant) is also very similar to the
previous variant while classifying the background pixels, with a true negative rate
of 0.98 and a very low false positive rate of 0.024. However, the true positive rate of
0.91 is higher than the two-layer variant, which means that the model is accurately
identifying teeth even better with very high precision. Additionally, with an FN rate
of 0.087, it is even more accurate than the first model. This variant of R2 U-net is
the best among all variants of all architectures.
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Figure 4.69: Confusion Matrix for R2 U-net (three-layer variant)
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Residual U-net As displayed in figure 4.70, Residual U-net (two-layer variant)
has a very high true negative rate of 0.98, indicating that the model is very good at
correctly identifying non-teeth. Additionally, the false positive rate of 0.019 is very
low, showing that the model is not frequently misclassifying background as teeth.
Although the false negative rate is at 0.14 and the true positive rate is at 0.86, the
model still performs well overall. This is because even though the model might miss
some teeth in the images, it is still correctly identifying the majority of them.
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Figure 4.70: Confusion Matrix for Residual U-net (two-layer variant)

Figure 4.71 demonstrates that this three-layer variant of the model has an even
better performance than the first one. With a true negative rate of 0.98, a false
positive rate of 0.018, and a true positive rate of 0.88, the model is able to correctly
identify almost all instances of teeth and non-teeth in the test sets. The false
negative rate of 0.12 is lower than the first one, indicating that the model is better
at identifying all instances of teeth. With the results of these two models, it’s obvious
that the second one is more accurate and reliable.
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Figure 4.71: Confusion Matrix for Residual U-net (three-layer variant)
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SE U-net As illustrated in figure 4.72, SE U-net’s performance on the test sets is
identical to both of Residual U-net’s variants. However, this model’s false positive
rate of 0.016 is relatively lower. Additionally, it has a high true negative rate of
0.98, indicating that the model is very effective at correctly identifying non-teeth in
the images. The False Negative rate of 0.14 is relatively low, meaning the model
can correctly identify most of the teeth in the images.
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Figure 4.72: Confusion Matrix for SE U-net (two-layer variant)

Figure 4.73 depicts this model’s three-layer variant also has a high true negative
rate of 0.98, similar to the first variant. The False Negative rate of 0.12 is even
lower than the previous variant, meaning that the model is even better at correctly
identifying teeth in the images. Additionally, the false positive rate of 0.019 is also
low, indicating that the model is not frequently misclassifying non-teeth as teeth.
Both models have similar accuracy, but this variant is slightly better.
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Figure 4.73: Confusion Matrix for SE U-net (three-layer variant)

63



Chapter 5

Result Analysis

The segmentation performance of the OPG teeth image dataset was examined using
six distinct U-Net variations in this study. Using two and three convolutional blocks
per layer, comparisons of each design were also made.

5.1 Visual Inspection

Visual inspection is a valuable technique for analyzing the results of different seg-
mentation models. It involves looking at the predicted segmentations and comparing
them to the ground truth segmentations visually in order to get a sense of how well
the models are performing.

(a) Sample image (b) Prediction on the image  (c) Overlay of prediction

Figure 5.1: Sample of Visual Inspection

Figure 5.1 shows how it is done by overlaying the predicted segmentation on top of
the original image. Later, we can analyze the results produced by different segmen-
tation models. By comparing the overlaid images for different models, we can get a
sense of which model is doing the best job of accurately predicting the class labels
for each pixel in the image.
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Vanilla U-net As depicted in figure 5.2, the segmented image predicted by the
Vanilla U-net (two convolutional layers) shows a clear separation of the teeth from
the surrounding tissue, with minimal error in the segmentation. The model has
accurately captured the shape and size of the teeth for most of the parts.

Figure 5.2: Visual Inspection for Vanilla U-net (two-layer variant)

In figure 5.3, the segmentation quality of the incisors, canines, and molars was
enhanced by this model with an additional convolutional layer, although a few pixels
of the gums around the premolar teeth were misclassified.

Figure 5.3: Visual Inspection for Vanilla U-net (three-layer variant)
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Attention U-net As seen from figure 5.4, Attention U-net (two-layer variant)
struggled quite a bit in accurately identifying the teeth in the test image. Even
though most of the teeth were correctly segmented, there were a few occasions
where a few pixels were misclassified, such as jawbone, in between teeth and gums.

Figure 5.4: Visual Inspection for Attention U-net (two-layer variant)

From figure 5.5, we can see that this model with an additional convolutional layer
improved its performance in terms of accurately identifying the teeth in the test
image. The overall segmentation quality was high.

Figure 5.5: Visual Inspection for Attention U-net (three-layer variant)
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Dense U-net Inspecting figure 5.6, we can see that Dense U-net (with two convo-
lutional layers) has accurately segmented the teeth, with clear boundaries separating
the teeth from the surrounding tissue. The segmentation results match well with
the original image.

Figure 5.6: Visual Inspection for Dense U-net (two-layer variant)

figure 5.7 for Dense U-net (three-layer variant) shows a similar result. Except for
the misclassified overlap of pixels between premolars on the upper-right, most of the
edges for the teeth were even better classified by this model compared to its model
with two convolutional layers.

Figure 5.7: Visual Inspection for Dense U-net (three-layer variant)
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R2 U-net As depicted in figure 5.8, we can see a couple of small segments of
gums were misclassified by the model, R2 U-net, with convolutional layers per block.
Excluding these minor errors, this model has correctly separated the teeth from the
surrounding tissue, and the segmented image clearly shows the individual teeth.

Figure 5.8: Visual Inspection for R2 U-net (two-layer variant)

As seen from figure 5.9, this model with an additional convolutional layer resolved
its previous issue. Overall, the segmented image shows a clear separation of the
teeth from the surrounding tissue, with minimal error in the segmentation.

Figure 5.9: Visual Inspection for R2 U-net (three-layer variant)
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Residual U-net Inspecting figure 5.10, it is clear that Residual U-net (two-layer
variant) has accurately segmented the majority of the teeth in the images. The
incisors, canines, and premolars are clearly defined and separated from the sur-
rounding tissue. However, the model is struggling to define the edges of the wisdom
teeth a bit.

Figure 5.10: Visual Inspection for Residual U-net (two-layer variant)

From figure 5.11, we can see that additional convolutional layers per block helped
this model to further improve its performance in terms of accurately identifying all
the teeth, including even the edges of wisdom teeth.

Figure 5.11: Visual Inspection for Residual U-net (three-layer variant)
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SE U-net Looking at figure 5.12, we can see that the teeth are clearly defined,
and the boundaries between the teeth and gums are accurately captured for most
of the parts by SE U-net (two-layer variant). The overall segmentation quality was
high for this model with two convolutional layers per block.

Figure 5.12: Visual Inspection for SE U-net (two-layer variant)

As seen from figure 5.13, the majority of the teeth in the images, including the
incisors, canines, and premolars, have been correctly classified and separated by this
model (three-layer variant), just like Residual U-net. However, the model appears
to have misclassified some of the surrounding tissue as being part of the upper-left
wisdom teeth.

Figure 5.13: Visual Inspection for SE U-net (three-layer variant)
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Upon visual inspection of the segmentation results, all the models showed decent
performance in terms of accurately identifying the teeth in the test image. Upon
closer examination of the results, some issues appeared, such as small regions of
the gums being misclassified as teeth. But these cases were small in numbers and
overall, the segmentation models performed well, specifically in terms of identifying
the main boundaries of the teeth.

5.2 Graphical Analysis

Figure 5.14 provides a visual segmentation accuracy vs. mean epoch train time vs.
architecture parameter with a subplot of the four matrices (Accuracy, F1 score, Dice
coefficient, and IoU) for our dataset. Here, the circle shapes represent the two-layer
variants, and the square shapes represent the three-layer variants. Also, the sizes
of the two shapes vary based on their network complexities. As we’ve seen in the
visual inspection analysis, their performance is hard to distinguish. Moreover, it
is known that accuracies are crucial factors to take into account when comparing
models, but they are not the only ones. Other factors, such as network complexity
and train time, should also be taken under consideration, especially if most of the
models are producing similar results. So, the idea behind creating this graph is to
get a generalized idea about the performance as well as evaluation time and com-
plexity of all the models at a glance.

For all four matrices, we can see that most of the two-layer variants (circles) are
clustered together or very close to one another. A similar occurrence can be found
among the three-layer variants (squares). This portrays that most of the models
with the same variant are conveying comparable performances. On the other, with
an increase of convolutional layer per block, all six models seem to improve slightly.
But it is the cost of increasing the model complexity to almost 1.5 times for all the
architectures. Not only that, as we can see that all of the models’ training or evalu-
ation drastically increases when an additional convolutional layer is added per block.

While Dense U-net (three-layer variant) performs best across all matrices, it is the
second slowest training U-net variant among all architectures. Moreover, this vari-
ant of Dense U-Net uses the most amount of parameters among all the six U-net
models. Therefore, one may need to consider this architecture before implementing
it due to its model complexity. Similarly, R2 U-net (three-layer variant) is among
the best-performing models while being the slowest to evaluate and train. The most
impressive among the three-layer variants has to be SE U-net. Not only does it
appear to have training time that is relatively comparable to those of the majority
of two-layer variations, but it also has one of the best segmentation accuracies.
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Considering a faster training model with fewer parameters while excluding the
thought of segmentation accuracy, the two-layer variant Vanilla U-net stands out
the most. Because not only it possesses the fewest network complexity among the
architectures, but also it has the lowest training and evaluation time. Even more
impressive is that its performance is very much comparable to all the architectures.
While Attention U-net and Residual U-net might not be among the best in segmen-
tation accuracy, their two-layer variants are one of the fastest to train.

These results demonstrate that one or more factors, such as training speed, model
complexity, or segmentation accuracy, must be compromised. However, many may
come to an agreement that the benefits in performance are negligible across all
architectures. Therefore, suggesting faster, simplified architectures seem to be an
optimal solution for OPG teeth segmentation.
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Figure 5.15: Mean epoch training time for each model

Figure 5.15 shows us the differences in the time taken to train the models. As men-
tioned earlier, Vanilla U-net appears to be the fastest training U-net model, while
R2-Unet is the slowest by a significant margin in comparison to all other architec-
tures.

Table 5.1 provides the summary of the results obtained for our dataset. The find-
ings imply that all of the architectures appear to operate in a relatively comparable
manner. We can observe that the accuracy (measured using four matrices; Accu-
racy, F1 score, Dice coefficient, and IoU) of the six U-Net architectures was similar,
while each architecture’s performance was marginally increased by adding an extra
convolutional layer per block (making it three instead of two). The addition of a
convolutional layer per block, unfortunately, came at the expense of larger and more
complex and training time.

Although each architecture’s performance has improved as a consequence, our con-
clusion on the comparison between them has essentially stayed unchanged. In fact,
despite some of the U-Net variations having reduced training speed and higher com-
plexity, their segmentation accuracy was not noticeably better than the standard
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. . Mean Epoch
. Conv.| Accuracy (SD) | F1 Score (SD) Dice Coef. o o Params
Architecture Layer %] (%] (SD) [%] IoU (SD) [%)] Train Time [x 109]
(SD) 5
Vanilla Ut | 2 95.56(0.01) 89.34(0.08) 89.11(0.08) 88.00(0.05) 30(0.5) 1.9
3 95.65(0.01) 89.69(0.07) 89.53(0.06) 88.22(0.04) 40(0.53) 2.9
Attontion Uonct | 2 95.44(0.01) 89.37(0.09) 89.12(0.08) 87.76(0.05) 37(0.74) 2
3 95.72(0.02) 90.02(0.09) 89.78(0.08) 88.39(0.05) 47(0.61) 3
Dense Ut 2 95.56(0.01) 89.24(0.07) 89.14(0.06) 87.93(0.04) 37(0.53) 2.7
3 95.94(0.01) 90.45(0.06) 90.33(0.06) 89.07(0.04) 62(0.62) 5.4
R2 Uonet 2 95.51(0.02) 89.41(0.09) 89.22(0.09) 87.78(0.05) 48(0.81) 2
3 95.88(0.02) 90.52(0.09) 90.35(0.09) 88.87(0.05) 82(0.92) 3
Residual Uonet | 2 95.42(0.01) 88.86(0.06) 88.73(0.06) 87.50(0.04) 31(0.52) 1.9
3 95.75(0.01) 89.82(0.07) 89.73(0.06) 88.50(0.04) 42(0.53) 2.9
SE Uonet 2 95.51(0.02) 88.97(0.09) 88.87(0.08) 87.84(0.05) 37(0.61) 2.1
3 95.89(0.02) 90.28(0.09) 90.15(0.07) 88.96(0.05) 48(1.13) 3

Table 5.1: Comparison of all architectures

Vanilla U-Net, which already performs quite well for OPG teeth segmentation.

In addition to segmentation accuracy, other significant factors, including assessment
speed and network complexity, should be taken into account from the standpoint of
practical implementations in both clinical settings and research. In some applica-
tions, modest performance gains may not be desirable if they come at the expense
of much more complexity and slower speed.
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Chapter 6

Future Work and Conclusion

6.1 Conclusion

Panoramic x-ray images help to detect diseases that are hardly visible to dentists;
manual identification relies entirely on the dentist’s expertise. So, better diagnosis
models are required to have a better inspection that demands better teeth segmen-
tation from the input panoramic x-ray images, which is highly emphasized in our
paper. In this study, we provided an extensive and impartial analysis and com-
parison of six U-Net architectures of both two and three-layer variants for teeth
segmentation of panoramic x-ray radiographs on our dataset, which can aid in cre-
ating a successful segmentation model. All the U-Net models used in our study
perform significantly well in teeth segmentation from dental panoramic x-rays from
our dataset. However, after analyzing the results using the dice coefficient and
IoU score as the main accuracy matrices, their performance has minimal differences.
Rather depending on the condition of clinical applications and the limitation of time
and complexity, a few adjustments are highlighted in this study. Our paper mainly
focuses on the impartial and deep analysis of the U-net models that can be very use-
ful for segmentation approaches and significantly impact the ever-changing U-Net
models, which can help build disease diagnosis models using the best segmentation
method. In this study, we have found that the 3-layer variants of R2 U-net (Recur-
rent Residual U-net) and the Dense U-net is significantly better in performance with
dice coefficient percentage of 90.35 and 90.33, respectively, and with the IoU score of
88.87 and 89.07, respectively. According to our study, focusing only on performance
and segmentation accuracy, the R2 U-net and Dense U-net can be the optimum for
teeth segmentation on panoramic x-ray images. But considering the complexity of
more layers and time, these two variants can be unsuccessful. On the other hand,
the 2-layer variant of the Vanilla U-net model with a dice coefficient percentage of
89.11 with less time and layers can be a very optimal model in terms of clinical ap-
plications considering limitations and less hardware availability. Our study, which
includes impartial analysis and optimal model selection for teeth segmentation, can
be significantly helpful in the future findings of the optimal model for segmentation
without wasting valuable time in this field. To conclude, our study can determine
the comparisons finding the optimum U-net model for teeth segmentation on our
dataset made from scratch, which can be significantly valuable in future studies
reducing human effort and time in this field of research.
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6.2 Future Work

In our work, we have implemented U-Net as our base segmentation model. Addi-
tionally, we used several variants of U-Net and achieved satisfactory accuracy. In
our future work, we will differentiate between healthy and unhealthy teeth. Then,
we will train our model in such a way that our model can detect dental diseases.
Last but not least, we will try different deep learning learning algorithms to detect
diseases and try to acquire the best possible result.
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