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Abstract

This thesis presents a novel approach for the automatic detection, categorization,
and sub-categorization of violent and nonviolent behaviors in video footage. This
research addresses the growing necessity for enhanced security protocols in both
public and private sectors. Surveillance cameras are commonly accessible and easily
affordable; however, their utilization is frequently inefficient due to boundaries re-
lated to human real-time monitoring. This occurrence may lead to delayed responses
to unanticipated events, hence highlighting the need for enhanced and efficient mon-
itoring measures. Our thesis presents a novel approach for the automation of vi-
olence detection by utilizing machine learning and deep learning techniques. The
techniques applied in this study integrate object and motion detection through the
utilization of optical flow analysis and a MobileNet-Bi-LSTM fusion architecture.
This methodology exceeds conventional methods by incorporating both temporal
dynamics and spatial features. We have invested notable efforts in enhancing our
dataset acknowledging the significance of training an efficient violence detection
system. In addition to the existing dataset, we have systematically compiled an
adequate number of video footage. The compiled videos contain a diverse array
of circumstances, effectively representing a variety of environments, lighting con-
ditions, and situations. The inclusion of this range is crucial in facilitating our
model’s ability to generalize and adapt to real-world scenarios seamlessly. A thor-
ough annotation procedure of meticulous labeling of ‘violent’ ‘non-violent’ actions,
along with specific subcategories of violence like ‘Beating,’ ‘Use of Weapons,’ and
‘Burning’ was done to uphold the standards of quality and precision in the enhanced
dataset. For an in-depth review, a comparison study was undertaken to examine
two unique methodologies. The first approach centers on the categorization of ac-
tions into two distinct categories: ‘Non-Violence’ and ‘Violence,’ based on a binary
classification system. The second approach entails the categorization of behaviors
of the videos of our unique dataset named ‘Beating-Burning-Weapon (BBW) Vio-
lence’ Dataset into two main groups, namely ‘Non-Violence’ and ‘Violence,’ which
further subdivided into three sub-categories of violence, which are ‘Beating,’ ‘Burn-
ing,’ and ‘Use of Weapons.’ In our comprehensive evaluation of violence detection
methods, we tested two violence detection methods on the two previously men-
tioned datasets. The ‘Frame Selection at Equal Intervals’ method achieved higher
accuracy, 90.16% in the ‘Real Life Violence Situations (RLVS)’ Dataset and 85.32%
in the BBW Violence Dataset, making it a precise choice. On the other hand,
the ‘Merged Frame Stacking’ method, offering computational efficiency, achieved
respectable accuracies of 85% and 74% in the RLVS and BBW Violence Datasets
respectively. This provides a foundational baseline for violence detection, thus high-
lighting method-specific advantages and trade-offs. Our research holds significant
potential for proactive security management by promptly detecting and responding
to possible threats.

Keywords: Surveillance Camera, Violence Detection, Machine Learning, Deep
Learning, Motion Detection, Beating, Use of Weapons, Burning, Optical Flow, Bidi-
rectional Long Short-Term Memory (Bi-LSTM), MobileNet V2, Crime Detection,
Real-Time Monitoring, Proactive Security Management, Image Classification
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Chapter 1

Introduction

In an era of technological progress, video cameras are essential to our commitment
to safeguarding public spaces and ensuring security. Surveillance systems offer an
effective method for monitoring human actions and identifying potentially unlawful
or criminal conduct [11]. Despite their extensive deployment, current surveillance
systems encounter certain constraints to reach their full potential [5]. The reliance
on human operators to monitor video footage often results in the oversight of suspi-
cious activities, undermining the system’s prompt identification of such behaviour.
Furthermore, the post-incident analysis of video recordings proves to be a time-
consuming and inefficient endeavour, doing little to suppress rising crime rates [20].
Addressing these limitations, the integration of automated software and intelligent
algorithms emerges as a promising avenue to unlock the full potential of surveillance
systems. [9]. By doing so, the detection of unusual behaviours and violent activities
can be substantially improved [6], [7]. Advanced software solutions have emerged
that efficiently organize digital video footage into searchable databases, streamlining
analysis procedures and enabling quicker and more accurate detection [8].Harness-
ing these technologies optimally positions surveillance systems as powerful solutions,
particularly by enhancing their effectiveness and efficiency in real-time monitoring
and detection. The landscape of violence detection research has witnessed a notable
shift, prompting our study’s evolution [17].

This thesis aims to transcend the constraints of existing surveillance systems, in-
troducing an innovative methodology for detecting both violent and non-violent
behaviours. Furthermore, it endeavours to differentiate and classify specific types
of violence, including ‘Beating’, ‘Burning’, and ‘Use of Weapons’. These sub-sectors
represent distinct manifestations of violence, demanding fine detection approaches.
Recognizing the need for a comprehensive evaluation of our methodology’s effective-
ness, we have incorporated a comparative analysis between two distinct methods.
The first method focuses on binary classification of ‘Non-Violence’ and ‘Violence’.
The second method involves the classification of behaviours into ‘Non-Violence’
and ‘Violence’ with sub-categories encompassing ‘Beating,’ ‘Burning,’ and ‘Use of
Weapons’. This meticulous categorization enables a refined understanding of the
nature of detected violence. This comparative examination empowers us to mea-
sure the performance of our approach across these dimensions. In response to the
shortage of appropriate and relevant datasets within contemporary research commu-
nities, our work undertakes a proactive measure. The creation of the new dataset in
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conjunction with the existing dataset [23], addresses our novel approach. This aug-
mentation effort, supported by detailed annotation, enables a rich repository capable
of refining our model’s understanding of diverse events. The predicted outcome is a
comprehensive framework capable of distinguishing between violent and non-violent
actions and further classifying specific types of violence. This advancement bears
transformative potential for proactive security management, enhancing surveillance
systems’ effectiveness in swift threat detection and response. This thesis seeks to
advance the realm of violence detection in surveillance videos by deploying optical
flow [30] analysis alongside a Hybrid MobileNet-Bi-LSTM architecture. Through
enhanced classification techniques and an enriched dataset, the study endeavours to
create a paradigm shift in automated surveillance systems, trained to deliver precise,
efficient responses to a range of security threats.

1.1 Motivation

The rising demand for enhanced surveillance systems that are able to detect suspi-
cious behaviour [29] and acts of violence in an accurate and timely manner is what
motivated us to write this thesis. The limitations of human operators in the con-
text of real-time monitoring underscore the necessity for automated solutions. This
thesis aims to enhance the effectiveness and efficiency of surveillance systems by im-
plementing machine learning and deep learning approaches. This will be achieved
by creating a dataset with a mixture of more relevant videos, categorizing specific
violent acts (‘Beating,’ ‘Burning,’ ‘Use of Weapons’) for greater precision. More-
over, a novel approach was taken by including optical flow [30] in the pre-processing
stage. The primary objective of this study is to contribute towards a worldwide
problem by enhancing public safety and security procedures through the utilization
of advanced algorithms for automated detection processes [17].

1.2 Problem Statement

The global rise in terrorism and violent incidents necessitates the widespread imple-
mentation of CCTV and IP surveillance systems to ensure security [29]. However,
the reliance on human operators in these systems compromises their effectiveness,
leading to underreported instances of violence and suspicious behaviour [20]. Fur-
thermore, the post-incident investigation process is often protracted and fails to
effectively reduce crime rates. Prior research has explored various methodologies,
emphasizing the importance of analyzing appearance and motion features for pre-
cise violence detection [15], [16]. Techniques like key frame extraction and sampling
have shown promise in achieving heightened precision [19]. This thesis addresses
these critical challenges by developing a new crime detection system. Our main
motivation is to enhance the efficiency and accuracy of surveillance systems. To
achieve this, we created a new dataset and included more relevant videos. Following
that, by incorporating advanced algorithms for automated detection processes have
been used. In essence, this thesis seeks to bridge the gap in surveillance systems,
ensuring that they can accurately and promptly identify violent behaviour, thereby
contributing to the improvement of public safety and security procedures on a global
scale [29].

2



1.3 Research Objective

The main purpose of this thesis is to create an advanced violence detection sys-
tem through the utilization of machine learning and deep learning techniques [28]
including object and motion detection, along with posture estimation, and other
significant methodologies, to ensure a thorough analysis. Our primary objective is
to significantly enhance the identification and classification of violent incidents in or-
der to get an increased degree of precision in detection. Furthermore, we undertake
a comprehensive examination of current methodologies for detecting violence, with
the objective of identifying their respective merits, constraints, and prospects for
improvement [21]. Additionally, this work aims to solve the existing lack of diverse
datasets within the field [23]. Finally, we conduct thorough testing and evaluation
of the performance of the violence detection system that has been established. This
involves comparing it with established methods and benchmarks in order to assess
its accuracy, efficiency, and reliability. The research has the potential to significantly
improve security and safety on a larger scale.

1.4 Research Contributions

Our thesis contributions encompass dataset refinement, novel methodological inno-
vation, enhanced preprocessing techniques, and the introduction of a sub catego-
rization schema. These collective contributions substantially elevate the accuracy,
comprehensiveness, and sophistication of violence detection systems. Additionally,
our work establishes a robust foundation for ongoing exploration in the domain of
event categorization, offering a pathway for the incorporation of additional cate-
gories in future research endeavors. The datasets were efficiently processed using
optical flow [30] and afterwards inputted into a hybrid model consisting of BiLSTM
[26], [27] and MobilenetV2 [22]. This approach yielded a more accurate outcome in
the identification of violent incident.

The key contributions are concisely described as follows:

1. This research commenced with the meticulous creation of an enriched dataset
named BBW Violence Dataset. This new dataset was thoughtfully structured
to encompass a diverse spectrum of 1,150 violent videos which includes categor-
ical violence manifestation of 625 videos as ‘Beating’, 252 videos as ‘Burning’,
and 273 videos as ‘Use of Weapon’. Notably, the augmentation of this dataset
which is based on numerous features such as pixel quality, fps rates, and du-
ration sourced from various online platforms yielded a notable advancement
in the field of violence identification in categorical classifications.

2. A pivotal contribution of our research was the introduction of a pioneering
methodology tailored to detect non-violent and categorical violent events. This
methodological innovation revolved around the concurrent utilization of both
our original dataset named BBW Violence Dataset and existing RLVS Dataset
[23]. We used a novel approach by integrating optical flow-based features into
the data preprocessing pipeline. This integration underscored the pivotal role
of optical flow-based features in augmenting the discriminatory prowess of
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violence detection models. Subsequently, by harnessing the collective power
of BiLSTM [26], [27] networks and MobileNetV2 [22] algorithms, this novel
approach significantly improved accuracy measures in the realm of violence
classification.

3. Another notable contribution of our research was the formulation of a label-
based categorical violence detection schema. This scheme facilitated a more
definitive identification of violent events across three distinct categories. More
importantly, this meticulous categorization framework not only enhances the
precision of violence classification but also offers a foundation for future re-
search endeavors. Our thesis stands open to the prospect of introducing ad-
ditional categories, both violent and non-violent, to further enrich the field of
violence detection.

1.5 Thesis Organization

This thesis is organized into seven main sections. The introduction (Chapter 1) es-
tablishes the background by presenting the motivation, problem statement, research
objectives, and research contributions made by the study. Chapter 2 explores the
literature review, delivering significant background knowledge. Chapter 3 focuses on
the dataset, including its description, collection methods, and data pre-processing.
Chapter 4 provides a comprehensive analysis of the proposed OptiMobBi-LSTM
Model in detail, encompassing Dense Optical Flow, Bi-directional Long Short-Term
Memory (BiLSTM), MobileNetV2, and the Proposed OptiMobBi-LSTM Model.
This chapter delves into an extensive review of these models. Chapter 5 presents
the results and discussions, beginning with an exploration of performance evalua-
tion measures, followed by an analysis of experimental results for frame selection and
merged frame stacking techniques on both the BBW Violence Dataset and Real Life
Violence Situations Dataset. This chapter also includes a series of graphs, charts,
and tables that provide a visual representation of the findings, enhancing the reader’s
understanding and facilitating a deeper analysis of the results. Chapter 6 concludes
the thesis, highlighting key findings and suggesting future research directions. The
bibliography cites the sources referenced throughout the thesis.
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Chapter 2

Related Works

This chapter aims to conduct an in-depth review of the existing literature, identify-
ing areas where knowledge is lacking, offering valuable insights into the theoretical
framework, and situating the study objectives within the wider academic discourse.

In recent years, the development of reliable automatic surveillance systems has at-
tracted significant attention, particularly in areas prone to recurrent criminal ac-
tivities. The necessity for real-time violence recognition has become paramount
in enabling swift police responses during criminal incidents. Various techniques
for action recognition have been explored, with 3D Convolutional Neural Networks
(CNNs) emerging as a prominent method.

Traditional CNNs are capable of classifying individual image frames and can process
2D inputs. However, the dynamics of video data require models that capture both
spatial and temporal information effectively. This is where 3D CNNs come into
play. These models can extract information from multiple consecutive frames, al-
lowing them to capture the motion encoded within these frames [10]. For instance, a
deep 3D-CNN model, trained with 152 ResNets layers on the Kinetics database [18],
achieved remarkable results, with accuracy rates of 78.4% on the Kinetics dataset
and up to 94.5% on the UCF101 test set. However, a limitation of such approaches
lies in the requirement for complete sequences of frames, making them less adapt-
able to scenarios where actions are not contextually bound. Consequently, some
actions may be perceived as constrained or learned with irrelevant contextual data,
potentially resulting in over-fitting.

The analysis of both the video’s appearance and its motion are essential components
in the process of determining whether or not it contains violent content. Researchers
are increasingly utilizing audio features to aid in the detection of violent videos be-
cause the vast majority of videos contain data from both the visual and auditory
modalities. The early works primarily concentrate on hand-crafted aspects of the
design. Common appearance descriptors include SIFT, HOG, etc. Motion features
that are frequently employed include space-time interest points (STIP), also known
as improved dense trajectories (iDT). For auditory features, Mel-frequency cepstral
coefficients (MFCC) emerged as a prevalent choice. Afterwards, a classifier is ap-
plied to the extracted features to determine an overall rating. Deep neural networks
such as 2D ConvNet [13], 3D ConvNet [10], LSTMs [1] have been used by some
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researchers to detect violent video in recent years. This improvement can be seen
in both the publicly available dataset VSD2015 [12] and VCD. As data from two
different modalities, audio and visual signals, there may be a heterogeneity gap issue
that prevents the full use of multimodal data. Data from several modalities are to be
integrated into a single intermediate common space using this method. Researchers
have been exploring methods to integrate data from multiple modalities into a single
intermediate common space to bridge this gap.

Efforts in video summarization have led to the development of key frame extraction
methods. These techniques aim to efficiently represent a video’s content. Key frames
play a pivotal role in creating video summaries, allowing for quicker analysis and
retrieval of crucial content. Using Key frame extraction Authors of [24], proposed a
new sampling method. The video is first segmented based on the keyframes that are
retrieved from it, and then the segmented movie is displayed. First, they transform
the RGB frames into grayscale and then determine the centroid of the grayscale.
The next step is to move on to the second frame, at which point we will be able to
determine whether or not the frames share a visual similarity. The concept of visual
similarity threshold refers to the minimum number of successive images that show
similar visual characteristics to a certain extent. The currently shown frame and
any frames that came before it can be thought of as being part of the same sequence
of succeeding frames that have a visual similarity. Following this, the selection of
the key frame within a sequence is achieved through the use of a filtering process,
where the frame showing the shortest distance between the gray centroid and the
average gray centroid is selected. This is a novel sampling method they introduced.
In most cases, the uniform sampling approach samples every frame or sample frames
at predetermined intervals. Videos are split into 16 consecutive frame chunks for
3D ConvNet using a unique uniform sampling technique. When sample movies are
kept to a manageable length, the uniform sampling approach is an efficient and
straightforward option. However, for longer films, the fixed sample technique in-
troduces redundancy and motion discontinuities. They tested their method against
traditional means which resulted in a new sampling method achieving 94.3 percent
accuracy whereas the traditional method scored 93.5 percent.

In response to the increasing prevalence of terrorist attacks and social issues, video
surveillance systems have become a focal point of academic research. To improve the
effectiveness of video surveillance systems, this research suggests a new method of
motion detection. This paper has proposed three modules: background modelling,
alarm trigger, and object extraction. When compared to other approaches, the PRO
method for motion detection is noticeably more effective. The sgn function is used
to predict the background intensity in the first calculation. It is suggested that
the MSDE approach be used to construct the flexible backend model. The formula
for the underlying model is as follows: Multiple moving objects can be detected
with more precision using the Simple Statistical Difference (MSDE) approach than
using the SDE method alone. This is because the MSDE technique uses a multi-
modal backdrop model to produce a binary maskD (x, y) of moving objects. To
describe the adaptive background in the DCT domain, the RADCT algorithm [4]
employs a modified RA technique. The RADCT approach generates the adaptive
backdrop by using a DCT coefficient, as opposed to the classic RA method’s focus
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on pixel intensity. In this paper, we introduce a unique motion detection strat-
egy for use in stationary camera surveillance systems. Our method incorporates
three proposed components that together enable full detection of moving objects.
The proposed BM module begins with the development of a one-of-a-kind two-stage
background matching technique that combines speedy matching alongside precise
matching. With the help of the proposed AT module. The OE module will only
need to process blocks that actually contain moving objects, rather than the full
surrounding region. Optimum background modelling’s (OBM) primary goal is to
isolate the steady signal from the next frame in the video stream. Quickly matching,
employing the stable signal trainer, and figuring out the best background pixels are
the three key components of OBM. The PRO technique outperforms MSDE, SDE,
SSD, and RADCT in terms of precision across the field. Only the PRO approach
achieves an overall accuracy of 80% or above across the field [8]. Compute time
can be reduced by 14.09% using the proposed AT module. Using only a few simple
computations, the suggested AT module can improve motion detection performance
overall.

As a central topic of study in the field of computer science, motion detection has in-
spired a wide variety of methods for its study and solution. To establish whether an
item is in motion between a set number of frames, say three, a three-frame difference
algorithm is used. Anti-theft and anti-destruction initiatives utilize cutting-edge
technologies. With their help, we can track and record an object’s every movable
detail in real time. However, they largely stand by and do nothing to prevent or
reduce criminal activity. In 1965, closed-circuit television (CCTV) was the first step
toward what is now known as video surveillance. Whenever there is activity on a live
footage feed, it is picked up by a system. When motion is detected, the software will
sound an alarm and save the current clip for further review. With the tapes wearing
out and the VCR’s storage capacity capped at eight hours, video storage was never
reliable. It is crucial to be aware of the many possibilities of video surveillance in
the areas of security and the monitoring of assets. Organizations need to watch how
their proposed video surveillance system is built and run to make sure it doesn’t
invade people’s personal space too much. The latest in video monitoring technology
should make users feel very safe. According to Nafisiaty Mbabu, a person may only
rest easy if he knows he would be alerted of any possibility of his stuff getting robbed
in real-time. Creating a monitor and control setup that could identify movement
in real-time footage. As soon as motion is detected, an alarm will sound and the
footage will be saved for analysis. One way to deal with a potential security threat
is to set off an alert. Motion can be detected in a webcam’s footage by analyzing a
series of frames captured at a constant rate (frames per second). The AVI format is
a hybrid video and audio container. Frames from the video are saved in a sequential
order. Pixels from many photos are added up to create a histogram [9]. A greater
entropy value is indicative of activity in the area surrounding a given pixel. The
best value of T can be determined using the entropy-based threshold method.

For example, computer vision is widely used in the sectors of security and surveil-
lance for the purpose of detecting and monitoring abnormal activities. Detecting
irregularities involves looking for things that are out of the conventional or unex-
pected. Whenever one observes a pattern that deviates from a baseline of expected
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behaviours, one is witnessing an anomaly. The suggested system is designed to accu-
rately detect and categorize firearms. COCO is a picture dataset that was made by
its creator and features commonly used objects with their labels. The dataset was
trained with a Single Shot Detector (SSD) model that was trained in SAS over the
course of 2669 iterations with the COCO dataset and the SSD VGG-16 Architecture.
[19]. An average of 74% MAP and 59 frames per second can be achieved with these
images. Anaconda’s python -i anaconda-xlsd.py script generates a CSV export of
the data. Using an SSD in place of RCNN for weapons identification reduces data
loss to 0.05 percent. 72% and 67% accuracy in identifying AK-47s, M1911s, and
Smith & Wessons, respectively. As a whole, IEEE’s Faster R-CNN is accurate 84.6%
of the time and runs at a pace of 1.606 s/frame. The chart evaluates the precision
of various firearms against a pre-labeled dataset, including the AK-47, Colt M1911,
Smith & Wesson Model 10, UZI Model, Remington, and more. A trained model was
created for five distinct firearms using SSSD and R-CNN. These firearms include the
AK-47, the Smith & Wesson Model 10, the Colt M 1911, the UZI Model, and the
Remington Model. SSD and Faster RCNN achieve better results than self-created
image datasets when using a pre-labeled dataset like A K47. The improved perfor-
mance of RCNN (1.606s/frame) is mediocre in comparison to SSD. However, the
accuracy of the faster RCNN is much higher at 84.6%. [25]. THigh-end DSPs and
FPGA kits can be trained to do this for larger datasets.

Background modeling plays a pivotal role in motion detection by reliably identifying
the static elements in video scenes. A natural scene in a video usually consists of
dynamic objects such as shaking trees, swaying curtains, undulating surfaces of the
water, waving flags, etc. A reliable method for spotting moving items is made possi-
ble by accurately identifying the image’s background. There are three stages to video
processing: acquiring an image, processing a background image, and de-noising the
foreground. Several algorithms are available [3] for this task. The threshold is ap-
plied for determining whether a pixel within an image is classified as being a part
to the background or the foreground. In this context, N indicates the total count
of pixels in an image, while D denotes the spacing between each individual pixel.
Additionally, M signifies the dimensions of the image’s size. The use of information
geometry involves the isolation of entities from their surrounding, which is achieved
through the utilization of convex contours and the analysis of the number of edges
or corners present on these contours. The Sum of Absolute Differences (SAD) is
used as a means of detecting the existence of motion. This method represents the
second proposed approach for the identification of non-rigid objects showing a spe-
cific geometric shape. The process of motion detection can be described as follows:
Acquired images must first undergo preprocessing, during which noise and other
defects are fixed. Geometric shapes are then isolated in a second process (square,
rectangle, circle, and ellipse). We are using Microsoft Windows 8.1 Professional
Compiler C++ under Microsoft Visual Studio and OpenCV 2.4.10 (Open Source
Computer Vision Library) as well as Intel(R) Core(TM) i3-380M (2.53 GHz) for
our analysis. The objective is to identify moving objects that have a definite geo-
metric outline (square, rectangle, circle, and ellipse). An object’s speed determines
how long it takes to spot it in motion. If we know where the object was located
at two different times, we can figure it out. Pixels are used to determine the dis-
tance, and a reduced form of Newton’s trigonometric equation is used to convert the
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result to meters (m). To assess how well our system performed, we employed the
F1-measurement family of metrics in addition to recalling r and precision p. When
compared to the second method, the first can identify moving objects travelling at
speeds greater than 1.19 m/s [15]. The F1 metric is a hybrid of the scene’s object
recall and detection accuracy. The final result for an object identification experi-
ment is based on a weighted average of the two individual measurements (F1). We
can see from the figures that F1 is superior to the original method when it comes to
detecting items that have a certain geometric shape (FP, R, and P). False positives
manifest when an object is obscured by another, cast into shadow, or subject to a
sudden increase or decrease in brightness. One method can identify things based on
their geometric shape (circular or quadrilateral) Image analysis is another method
that has been used to solve similar problems.

The importance of computer technology in human detection continues to grow.
Computer scientists are constantly creating new algorithms to process both simple
and complex jobs, such as video and audio analysis. Many different strategies for
identifying people in photographs have been developed by researchers. Intensity
maps like Visual Saliency show where people tend to look based on where they see
the most contrast. Image content is used as a metric for measuring visual atten-
tion. When we have many data points that share similarities, we can use clustering
to group them into a single category. We were able to identify people’s motion
patterns in the video by employing the k-means algorithm. This holds significance
in relation to another widely studied topic, namely the re-identification of persons.
This study is focused solely on expanding upon the HOG [2]. For this, the Ohio
State University Color-Thermal Pedestrian Dataset has been used. HOG features
use a convolutional neural network to analyze RGB human photos in order to detect
people in them. The fundamental algorithm for human detection takes as input a
picture with a fixed-size window. Images are segmented into windows of this size
using convolutional techniques, and HOG features are then calculated for each seg-
ment. Calculations showed a remarkably high recall of 0.93 [16]. Developing an
effective model for identifying people in surveillance footage needs an equal measure
of precision and imagination. Using a visual saliency model allowed us to make ed-
ucated guesses about the possible locations of people within the frame. While other
models struggle on the SILICON Dataset, the deep Multi-Layer Network presented
in [14] excels on the MIT Saliency Benchmark. The approach works well enough for
our purpose, which is human detection in video surveillance. As compared to Nor-
mal images, the performance of the Salience-windowed image increased by a factor
of 76.866. Salience-windowed video frames were added to the HOG + SVM classi-
fier, which resulted in an increase in Human Detection accuracy [2]. Optical motion
tracking is something we want to implement. People in motion can be identified in
surveillance footage using a combination of Flow and Visual Saliency windowing.
In addition, the k-means algorithm has played a significant role in identifying mo-
tion patterns in video data, which is essential for re-identifying individuals. This is
particularly relevant in the context of person re-identification, where the challenge
is to match individuals across different camera views.

In conclusion, this section provides an in-depth exploration of the academic land-
scape surrounding video surveillance, with a particular focus on motion detection,
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violence recognition, and firearms identification. Researchers have made signifi-
cant strides in these areas, leveraging advanced techniques, neural networks, and
multimodal data fusion to enhance security and safety measures. These findings un-
derscore the continual evolution of surveillance technology in response to emerging
security challenges.
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Chapter 3

Dataset

Real-world violent incidents are a problematic issue for public and personal safety.
Addressing this challenge, the application of Artificial Intelligence (AI) and Ma-
chine Learning (ML) models are crucial to be developed as an effective strategy to
suppress or respond to such situations. To accurately predict and classify violent
incidents, these models require to-the-point and comprehensive data. The critical
issue at hand is the timely recognition and response to such instances of violence.
To face the challenge, we find the urgency to develop AI models with the right
datasets. To allow these models to differentiate between violent and non-violent
situations, it is crucial to have access to a dataset that encompasses a diverse range
of real-world violence scenarios. Such a dataset should be equipped with attributes
that capture the key characteristics of each incident. The effectiveness of AI and
Machine Learning models in this context is profoundly influenced by the diversity,
quality and quantity of the training data they receive. A dataset that contains all
required attributes for differentiating different types of violence from non-violence is
vital to optimizing model training and testing. Currently, available online datasets
of this specific nature remain very limited. This lack of such a complete dataset
made our team undertake the step of creating a compilation of a dataset tailored
to address this critical need. For this purpose, we have collected relevant videos
from many online sources to create a unique dataset that we have named the ‘BBW
Dataset’. These videos contain a broad spectrum of scenarios, capturing a variety
of environments, lighting conditions, and situations. In addition to this, we have
chosen to utilize the “Real Life Violence Situations Dataset” sourced from Kaggle
[23]. This existing dataset was selected because it features a significant amount of
footage from the Indian region, demonstrating resemblances with the situation in
Bangladesh. This mixture helped us in creating a bigger and better dataset to train
our model. This enlargement step, supported by detailed annotation, enables a rich
repository capable of refining our model’s understanding of diverse events. Real-
world violent incidents are multidimensional, encompassing an overload of complex
factors. These factors include the number of parties involved, contextual informa-
tion, location, the form of violence, and the outcomes of these incidents. While these
variables contribute to a more subtle understanding of violent situations, they also
introduce variability that challenges the precision of predictive models. Therefore,
it is imperative for the dataset to contain both routine and exceptional instances of
violence, enabling AI and Machine Learning models to navigate this complexity with
greater accuracy. The dataset utilized in our research serves as the cornerstone of
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our violence detection framework. Its comprehensiveness, coupled with its relevance
to real-world scenarios, equips our models with the necessary foundation to distin-
guish violence from non-violence, thereby enhancing the accuracy and effectiveness
of our model.

3.1 Dataset Description

Our violence detection framework leverages two distinct datasets to enhance the
precision and comprehensiveness of its training and testing phases:

1. Real Life Violence Situations Dataset(RLVS) (Kaggle): This dataset
forms the foundation of our research efforts, containing a total of 1000 videos
depicting real-life violent incidents and an equal number of 1000 videos show-
casing nonviolent scenarios [23]. This initial dataset provides a diverse range
of video footage, enabling our model to discern between violent and nonviolent
behaviours effectively. From the figure 3.1 we can see the visual representation.

Figure 3.1: RLVS Dataset

2. Beating-Burning-Weapon (BBW) Violence Dataset: We have metic-
ulously compiled a unique dataset to fulfil the demand for a more special-
ized and nuanced approach to violence detection, which we have named the
‘Beating-Burning-Weapon (BBW) Violence Dataset.’ This dataset encom-
passes 1,150 violent videos, meticulously categorized and labelled as follows:
625 videos as ‘Beating,’ 252 videos as ‘Burning,’ and 273 videos as ‘Use of
Weapon.’ These videos were judiciously selected based on specific criteria, in-
cluding pixel quality, frame-per-second (fps) rates, and video duration, sourced
from various online platforms. Furthermore, we have incorporated 850 videos
from the ‘RLVS Dataset’ [23] available on Kaggle to enrich our research. In
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a nutshell, this unique dataset comprises a total of 2000 videos, distributed
among three distinct types of violent acts (‘Beating,’ ‘Burning,’ and ‘Use of
Weapon’), with 850 nonviolent videos included for comprehensive analysis.
Figure 3.2 illustrates the catagorization.

Figure 3.2: BBW Violence Dataset

The dataset’s feature extraction phase encompasses a rich array of attributes drawn
from diverse sources, offering a comprehensive perspective on the underlying video
content. This rigorous feature extraction process is applied to two datasets com-
prising 1,000 violent and 1,000 non-violent videos, with the violent video subset
encompassing a wide spectrum of real-life violent scenarios in various settings and
conditions.

Our feature extraction methodology combines both static and dynamic approaches
to comprehensively analyze and classify the behaviour and characteristics of violent
incidents within the videos. These extracted features are subsequently subjected to
in-depth scrutiny using a feature analyzer, enabling the derivation of a multitude of
insightful metrics.

During the analysis phase, numerous key metrics of interest are computed to shed
light on the nature and patterns of real-world violence situations. These metrics en-
compass various facets, including the severity, intensity, frequency, and contextual
factors associated with each incident. By quantifying these attributes, we gain a nu-
anced understanding of the nuances within violent behaviours and their contextual
implications.

The culminating stage involves the application of a discriminant function or classi-
fier, which leverages the extracted features and their associated metrics to determine
whether a given input should be classified as a violent or non-violent situation. This

13



decision-making process, informed by the rich feature set, underpins the founda-
tion of our violence detection system, ensuring its ability to effectively discern and
classify diverse forms of violent behaviours within surveillance video sequences.

Categories
Average Duration

(sec)
Minimum Duration

(sec)
Maximum Duration

(sec)
NonViolence 5.41 2.90 375.75
Violence 5.1 1 179.91

Table 3.1: RLVS Dataset (Kaggle)

Categories
Average Duration

(sec)
Minimum Duration

(sec)
Maximum Duration

(sec)
NonViolence(Kaggle) 5.14 2.77 179.91

Beating 4.98 2.90 11.32
Burning 4.87 3.01 7.00

Use of Weapon 6.63 2.97 12.93

Table 3.2: BBW Violence Dataset

3.2 Dataset Collection

The process of gathering and curating our datasets involved a systematic approach
to ensure relevance and diversity:

1. Real Life Violence Situations Dataset (Kaggle): We obtained the first
dataset, titled the “Real Life Violence Situations Dataset”, from Kaggle [23].
This dataset was selected for its extensive collection of 1,000 violent and 1,000
nonviolent videos, offering a broad spectrum of real-world scenarios.

2. BBW Violence Dataset: The creation of our second dataset was a meticu-
lous endeavour. We initiated this process by extracting 850 nonviolent videos
from the Kaggle dataset. To diversify our collection, we categorized 625 videos
as ‘Beating’ and 34 videos as ‘Use of Weapon’ based on stringent criteria such
as pixel quality, fps rates, and video duration. Subsequently, we meticulously
sourced an additional 239 videos depicting ‘Use of Weapon’ scenarios and 252
videos portraying ‘Burning’ violence from various online platforms. This com-
prehensive approach ensured that our custom dataset encompassed a total of
2000 videos, distributed across the three specific types of violent behaviours,
‘Beating,’ ‘Burning,’ and ‘Use of Weapon’ alongside an efficient number of
nonviolent videos.

These two datasets, each with their unique characteristics and composition, form
the cornerstone of our violence detection research, empowering our model to dis-
cern a wide spectrum of violent and nonviolent behaviours within surveillance video
footage.
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3.3 Data Pre-Processing

As the RLVS [23] from Kaggle has two different folders containing violent videos and
non-violent videos respectively, we have taken one variable for directories and one
list for all the video file names. Then we created two different video paths for violent
and non-violent folders. We have iterated the whole dataset and converted all the
videos into a single format (.mp4). The procedure of extracting individual frames
or images from a given dataset, which may comprise many types of multimedia data
including images and videos, is typically denoted as frame extraction. In contrast, to
the process of extracting frames from a video database, the task of frame extraction
from a dataset entails the acquisition of frames from diverse sources or formats, as
opposed to a coherent video sequence. The frames that were extracted possess the
potential to serve as input for the purpose of training machine learning models or
for executing diverse computer vision tasks. Furthermore, it is possible to assign
labels or annotations to the frames for purposes such as object recognition, scene
comprehension, or activity Identification.

In the first method of preprocessing, we have taken 51 frames for each video and pro-
cessed it through the dense optical flow method [30]. Then we proceed to the optical
flow [30] implementation stage. The conversion of each frame to grayscale is a com-
mon practice in order to streamline the computation of optical flow [30]. Grayscale
images exclusively encompass luminance data, which may prove adequate for the
purpose of motion detection activities. Moreover, spatial smoothing approaches,
such as the application of Gaussian blurring, have the potential to effectively reduce
noise and improve the resilience of optical flow [30] computing. The implementation
of smoothing techniques may effectively reduce the presence of minor fluctuations
and enhance the precision of flow estimation.

The computation of dense optical flow [30] is performed on a per-pixel basis across
consecutive frames. The primary concept revolves around the estimation of the
movement of individual pixels between consecutive frames. The typical procedure
frequently involves the resolution of the optical flow equation [30], which establishes
a connection between the spatial and temporal gradients of image intensity. Fur-
thermore, flow field visualizations can be created by overlaying the computed dense
optical flow vectors [30] onto the original frames, which can assist in visual analy-
sis and solving issues. These visualizations facilitate the comprehension of motion
patterns inside the video. Lastly, the dense optical flow vectors [30] may undergo
further post-processing procedures, such as motion filtering or trajectory analysis,
depending on the specific application. This technique has the potential to extract
significant motion data or effectively eliminate extraneous noise. Afterwards, we get
optical flow based 50 different frames at an equal distance as shown in 3.4.

Then, we have specified the height and width to which each video frame will be
resized in our dataset. For first method, we have selected a 64 × 64 resolution for
each video. Moreover, we specified the number of frames of a video that will be fed
to the model as one sequence. which is 50. Now, in the video file we count the total
number of frames in that video. Then, we get the interval after which frames will be
added to the list by dividing the total number of frames in that video by the total
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sequence length.

SkipFramesWindow = max(TotalV ideoFramesCount/Sequencelength, 1)
(3.1)

For example, if we get 80 frames in a video then we will take every 5th frame from
the video in order to process our dataset. To resize the data, we will convert the
interval frame into our selected resolution for this process. With the continuation
of the previous example, after taking that 5th frame we will convert it into 64× 64
resolution. Then normalize the resized frame and get the value between 0 and 1.
Afterwards, we get the 50 pre-processed frames for each video which we kept in a
list. These lists are sent into the hybrid model which categorizes the video (vio-
lent or non-violent) and violent subcategory (Violent: Beating, Burning or Use of
Weapon) by identifying the frame sequences.

Figure 3.3: Original Frames Figure 3.4: Processed Frames
(first method)

Then, in the second method, we are adding the initial 50 frames for each video,
stacking one onto another. As a result, we get only 1 merged frame but the RGB
value becomes more than 255. So, we divide each pixel of that 1 frame by 50 so that
each pixel value becomes less than 255. Afterwards, similarly like the first phase,
we resize, normalize and get the 1 final frame which will be feeded to our hybrid
model. Finally, we will get 1 merged frame as shown in 3.5 for each video which the
model will categorize if the video is violent or non-violent and violent subcategory
(Beating, Burning or Use of Weapon) by identifying the frame sequences.
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Figure 3.5: Merged Frame (second method)

Subsequently, we used one-hot encoding, which is a technique used to represent
categorical data in a binary format which involves transforming each category into
a binary vector, where all elements are assigned a value of zero except for the index
that corresponds to the category, which is assigned a value of one. We categorized the
original dataset 0, 1 for non-violence and violence respectively in the first method and
0, 1, 2, and 3 as per non-violence, beating, burning and use of weapons respectively
in the second method of preprocessing.
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Chapter 4

Methodology

This thesis presents a novel strategy for automating violence detection. The sug-
gested approach utilizes machine learning and deep learning techniques, including
object and motion detection, as well as pose estimation through optical flow [30]
analysis. The architecture employed is a hybrid MobileNet-Bi-LSTM model. Our
approach surpasses conventional techniques by capturing temporal dynamics and
spatial features. The selection of models was based on their key features. The op-
tical flow [30] analysis was selected for its efficient and accurate estimation of pixel
motion, which was used in the data pre-processing. Bi-directional Long Short-Term
Memory (BiLSTM) [26], [27] addresses the need to capture sequential dependencies
and temporal context within video frames and the MobileNetV2 [22] was used for its
accuracy in image classification. All these models have been applied in our analysis
based on their theoretical reliability and practical effectiveness in tasks similar to
the identification of criminal activities in video recordings.

Figure 4.1: Workflow
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4.1 Model Specifications

Our violence detection framework integrates Optical Flow [30], MobileNetV2 [22],
and BiLSTM [26], [27] models, harnessing their unique capabilities to create a com-
prehensive system for identifying violent behaviours in surveillance videos. Optical
flow captures motion [30], MobileNet [22] extracts spatial features, and Bi-LSTM
[26], [27] explores sequential dependencies, collectively enhancing precision and ac-
curacy. This balance between computational efficiency and performance ensures the
practical and reliable deployment of the system in real-world scenarios.

4.1.1 Dense Optical Flow

Dense optical flow [30] is a powerful computer vision technique implemented within
our violence detection framework to comprehensively analyze motion patterns in
video sequences. This method goes beyond the basic optical flow [30] by calculating
motion vectors for every pixel in each consecutive frame, creating a dense grid of mo-
tion vectors across the entire image. The underlying principle behind dense optical
flow is the preservation of fine-grained motion details, enabling a granular under-
standing of how each pixel moves over time. This is particularly valuable in violence
detection, as it allows us to capture subtle motion variations that may indicate vio-
lent behaviours, such as aggressive gestures or rapid movements. Dense optical flow
[30] operates by tracking the displacement of image pixels from one frame to the
next, considering variations in pixel intensity. It relies on mathematical formula-
tions, with one of the common equations being the Lucas-Kanade method, which
minimizes an energy function to estimate flow vectors. The choice to integrate dense
optical flow [30] in our framework is driven by the need for precise motion analysis,
which is essential to identifying violent acts accurately. By using dense optical flow
[30], our model gains the ability to discern fine-grained motion patterns, enhancing
its overall effectiveness in violence detection within surveillance video footage.

Optical flow [30] estimation can be represented mathematically by the Lucas-Kanade
method. The Lucas-Kanade method makes the assumption that the displacement
of the image content between two adjacent instants (frames) is negligibly large and
roughly constant in the area surrounding the point p under consideration. There-
fore, it is safe to assume that the optical flow equation holds for every pixel inside a
window with the origin at p. Namely, the local image flow (velocity) vector (Vx, Vy)
needs to meet the following conditions:

Ix(q1)Vx + Iy(q1)Vy = −It(q1)

Ix(q2)Vx + Iy(q2)Vy = −It(q2)

· · ·
· · ·
· · ·

Ix(qn)Vx + Iy(qn)Vy = −In(q1)

(4.1)

Here, we consider a window containing pixels q1, q2, ......, qn. The image I is analyzed
by evaluating the partial derivatives Ix(qi), Iy(qi), It(qi) with respect to position x,y
and time t, at the point qi and at the current time.
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A =


Ix(q1) Iy(q1)
Ix(q2) Iy(q2)

...
...

Ix(qn) Iy(qn)

 v =

[
Vx

Vx

]
b =


−It(q1)
−It(q2)

...
−It(qn)

 (4.2)

Utilizing deep learning methods, dense optical flow estimation can deliver precise
and trustworthy motion data between frames, assisting numerous computer vision
applications.

4.1.2 Bi-directional Long Short-Term Memory (BiLSTM)

BiLSTM [26], [27] is a type of recurrent neural network architecture that is capable
of processing sequential data in both forward and backward directions. The BiL-
STM model [26], [27], which is an advancement of the conventional LSTM, exhibits
the capability to efficiently capture contextual information from both past and fu-
ture sequences. In contrast to unidirectional LSTM, BiLSTM [26], [27] is capable of
processing data in both forward and backward directions, which enhances its ability
to detect patterns over a longer time frame. For this reason, this architecture plays
a pivotal role in our framework’s temporal sequence learning. Violence detection
requires an understanding of not only spatial but also temporal context. Bi-LSTM
[26], [27] excels in capturing sequential dependencies within video frames, enabling
the model to discern patterns of behaviour over time.

As we explore the utilization of LSTM as a chain model for time sequence pro-
cessing. The distinctive feature of LSTM lies in its implementation of memory cells
to substitute hidden layer nodes, thereby effectively addressing the issues of gradient
vanishing and gradient explosion. The model acquires temporal information of the
EEG signal by inputting continuous time sequences. Thesis: The LSTM’s weight
between the hidden layer and the output layer exhibits recyclability and possesses
significant memory capacity for extended information sequences. The structure of an
LSTM unit consists of three gate control units, namely the forget gate, input gate,
and output gate, with their respective calculation formulas defined by equations,
which are:

ft = σ(Wf .[ht−1, xt] + bf )

it = σ(Wi.[ht−1, xt] + bi)

C̃t = tanh(WC .[ht−1, xt] + bC)

Ct = ft × Ct−1 + it × C̃t

Ot = σ(WO.[ht−1, xt] + bO)

ht = tanh(Ct)×Ot

(4.3)

Here, the notation used in the context of time sequences, including the representa-
tion of input time sequences as xt, the sigmoid function represented by , the weight
matrix denoted by W , and the bias vectors associated with the weights represented
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by b terms. The continued use of the feature is determined by the forget gate ft.
The information of the previous state and the current state simultaneously inputs
into the σ function. The responsibility of the input gate is to update the state of the
LSTM unit. The cell state, denoted as Ct is a fundamental component in cell state.
The hidden output of the backward layer is ht. In the context of LSTM units, the
output gate Ot is responsible for regulating the output values that are passed on to
the subsequent LSTM unit.

The Bi-LSTM [26], [27] network adds a backward layer to learn the future emotion
information, which is an extension of the past, in comparison to the aforementioned
unidirectional LSTM network. The core computation in a Bi-LSTM [26], [27] unit
can be expressed through the following equations:

hf
t = tanh

(
W f

xhxt +W f
hhh

f
t−1 + bfh

)
hb
t = tanh

(
W b

xhxt +W b
hhh

b
t+1 + bbh

)
yt = W f

hyh
f
t +W b

hyh
b
t + by

(4.4)

Figure 4.2: Bi-LSTM

There are two distinct hidden layers referred to as the ‘forward’ hidden layer and
the ‘backward’ hidden layer. The ‘forward’ hidden layer hf

t calculates the input in
ascending order, t = 1, 2, 3, ..., T . Whereas, the ‘backward’ hidden layer hb

t considers
the input in descending order, t = T, ..., 3, 2, 1. Finally, they both are combined to
generate output yt .

The BiLSTM [26], [27] model effectively tackles the issue of long-term dependencies
in a sequence, including the challenge of gradient vanishing, by utilizing the gating
mechanisms of LSTMs. This particular capability holds great significance within
our current context, as it is imperative to uphold continuity and extract relevant
data from lengthy video sequences.
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4.1.3 MobileNetV2

MobileNetV2 [22] is incorporated into our framework as an integral component of
our feature extraction process. MobileNetV2 [22] is widely recognized for its abil-
ity to maintain a high level of accuracy while exhibiting low latency and minimal
computational expense. Its efficiency and effectiveness in image classification tasks
make it an ideal choice. By utilizing MobileNet [22], we can efficiently convert each
video frame into feature vectors that capture spatial information. The desirable na-
ture of this attribute is particularly evident in real-time criminal activity detection
scenarios, where immediate action is often critical and computational capacity may
be limited.

The MobileNetV2[22] architecture is founded on an inverted residual structure that
incorporates linear bottlenecks. It achieves this efficiency through depthwise sep-
arable convolution, which reduces computational complexity while preserving the
quality of extracted spatial information. This structure facilitates the extraction
of abstract and generalized characteristics from video frames, which is pivotal in
the identification of a wide spectrum of criminal behaviours. As MobileNetV2 [22]
employs depthwise separable convolution, a process that combines depthwise con-
volution and pointwise convolution to generate feature representations from input
tensors, which can be mathematically represented as:

Y = DWConv(X,K) = PointwiseConv(DepthwiseConv(X,K), K) (4.5)

Here, X represents the input tensor, K is the convolutional kernel, and Y denotes
the output tensor.

Figure 4.3: MobileNetV2

To put it in a nutshell, by integrating these models into our violence detection frame-
work, we leverage their individual strengths to construct a holistic system that can
effectively determine violent behaviors in surveillance video footage. The optical
flow [30] model captures motion information, the MobileNet [22] model extracts
spatial features, and the BiLSTM [26], [27] model delves into sequential dependen-
cies, collectively enhancing the system’s precision and accuracy. The equilibrium
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between computational efficiency and performance accuracy guarantees the effec-
tive deployment of the system in real-world situations, making this approach both
practically feasible and theoretically reliable.

4.1.4 Proposed OptiMobBi-LSTM Model

In this section, we introduce a novel approach that combines the strengths of mul-
tiple violence detection models. This Proposed OptiMobBi-LSTM Model aims to
leverage the complementary characteristics of Optical Flow [30], MobileNetV2 [22],
and BiLSTM [26], [27], offering a holistic solution to enhance violence detection ac-
curacy and adaptability. By intelligently integrating these components, we envision
a more robust and versatile model capable of addressing the intricacies of real-world
surveillance scenarios.

Figure 4.4: Proposed OptiMobBi-LSTM Model
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Chapter 5

Result and Discussion

In this section, we comprehensively analyze the performance of our violence detection
models across various datasets and methodologies. We delve into the implications
of our findings, highlighting the strengths and limitations of each approach.

5.1 Performance Evaluation Measures

The evaluation of results has been conducted using established performance mea-
sures, including accuracy, precision, recall and F-1 Score. The computation of these
metrics entails the consideration of True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN) values. The variables TN and TP represent
the quantities of accurately categorized negative and positive samples, respectively.
The variables FN and FP represent the quantities of positive and negative samples
that have been misclassified, respectively.
TN represents a negative case which also predicted negative. On the other hand, TP
stands for a positive case which is also predicted positive. Similarly, FN symbolizes
a positive case but predicted negative. Conversely, FP depicts a negetive case but
predicted positive.

Here, accuracy is a metric that quantifies the overall efficacy of a classification
strategy. The calculation can be determined using the following formula:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100 (5.1)

Precision refers to the classifier’s capacity to accurately identify instances as negative
when they are indeed negative. The class-specific metric is determined by calculating
the ratio of true positives to the sum of true positives and false positives.

Precision =
TP

TP + FP
(5.2)

Recall refers to the capacity of a classifier to accurately identify and retrieve all
instances that are classified as positive in classification. The class-specific metric is
formally defined as the quotient of true positives divided by the sum of true positives
and false negatives.

Recall =
TP

TP + FN
(5.3)
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Finally, The F1 score is a mathematical measure that combines precision and recall
in a weighted harmonic mean. It ranges from 0.0 to 1.0, with 1.0 representing the
highest possible score and 0.0 indicating the lowest possible score. In general, F1
scores tend to be lower than accuracy measures due to their use of precision and
recall in their calculation. It is often recommended to utilize the weighted average
of F1 scores rather than global accuracy when comparing classifier models.

F1− score =
2× (Recall ∗ Precision)

Recall + Precision
(5.4)

5.2 Experimental Results

The purpose of this thesis was to develop an effective violence detection system. To
achieve this, a comprehensive implementation of models was conducted, followed by
a thorough analysis of the received data. The performance of two distinct methods
applied to two distinct datasets was evaluated.

5.2.1 OptiMobBi-LSTM Model Based Frame Selection at
Equal Intervals on Real Life Violence Situations Dataset

For Frame Selection at Equal Intervals Method in the Real Life Violence Situations
Dataset from Kaggle, the results demonstrated promising performance.. The results
for this model showcased impressive accuracy, standing at 90.16%. The precision,
recall, and f1-score for violence and nonviolence classes were consistently high, un-
derlining the model’s robustness in distinguishing between violent and nonviolent
scenarios.

Precision Recall f1-score
Nonviolence 0.90 0.91 0.90
Violence 0.91 0.89 0.90
Accuracy 0.90

Table 5.1: OptiMobBi-LSTM Model Based Frame Selection at Equal Intervals on
Real Life Violence Situations Dataset
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Figure 5.1: OptiMobBi-LSTM Model Based Frame Selection at Equal Intervals on
Real Life Violence Situations Dataset

Figure 5.2: OptiMobBi-LSTM Model Based Confusion Matrix of Frame Selection
at Equal Intervals on Real Life Violence Situations Dataset

5.2.2 OptiMobBi-LSTMModel Based Merged Frame Stack-
ing on Real Life Violence Situations Dataset

As we applied our evaluation further to the Merged Frame Stacking method on the
Real Life Violence Situations Dataset, where we applied the merged frame stacking
technique. In this model, the accuracy reached 85%, indicating its effectiveness in
discerning violence from nonviolence in the Kaggle dataset.
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Precision Recall f1-score
Nonviolence 0.83 0.87 0.85
Violence 0.87 0.83 0.85
Accuracy 0.85

Table 5.2: OptiMobBi-LSTM Model Based Merged Frame Stacking on
Real Life Violence Situations Dataset

Figure 5.3: OptiMobBi-LSTM Model Based Merged Frame Stacking
on Real Life Violence Situations Dataset

Figure 5.4: Confusion Matrix of OptiMobBi-LSTM Model Based Frame Stacking
on Real Life Violence Situations Dataset
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5.2.3 OptiMobBi-LSTM Model Based Frame Selection at
Equal Intervals on BBW Violence Dataset

Our analysis extended to our meticulously created BBW Violence Dataset. For
Frame Selection at Equal Intervals Method in our BBWViolence Dataset, the results
demonstrated promising performance. This approach involved the selection of 50
different frames at equal intervals from each video, aiming to capture a diverse
set of frames representing the video content effectively. The precision, recall, and
f1-score for each violence class (‘Beating,’ ‘Burning,’ and ‘Use of Weapon’) along
with nonviolence were notably high. Moreover, the accuracy achieved in this model
was 85.32%, showcasing its effectiveness in distinguishing between different types of
violent and nonviolent behaviours within the custom-compiled dataset. The tabular
and visual representation of the result is shown in Table 5.3, Figure 5.5 and the
confusion matrix 5.6.

Precision Recall f1-score
Nonviolence 0.91 0.87 0.89
Beating 0.81 0.90 0.85
Burning 0.81 0.85 0.83
Weapon 0.81 0.72 0.76
Accuracy 0.85

Table 5.3: OptiMobBi-LSTM Model Based Frame Selection at Equal Intervals
on BBW Violence Dataset

Figure 5.5: OptiMobBi-LSTM Model Based Frame Selection at Equal Intervals
on BBW Violence Dataset
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Figure 5.6: Confusion Matrix of OptiMobBi-LSTM Model Based Frame Selection
at Equal Intervals on BBW Violence Dataset

5.2.4 OptiMobBi-LSTMModel Based Merged Frame Stack-
ing on BBW Violence Dataset

Our second method, Merged Frame Stacking applied on our BBW Violence Dataset
involved the technique of stacking the initial 50 frames from each video into a single
merged frame. This approach aimed to condense video information into a single
representation. The results for this model displayed a decent performance, with an
overall accuracy of 74%. While precision, recall, and f1-score varied across violence
classes, this method provided a reasonable baseline for violence detection within the
custom-compiled dataset. The tabular and visual representation of this result is
shown in Table 5.4, Figure 5.7 and the confusion matrix 5.8.

Precision Recall f1-score
Nonviolence 0.80 0.77 0.79
Beating 0.79 0.72 0.75
Burning 0.54 0.72 0.62
Weapon 0.68 0.65 0.67
Accuracy 0.74

Table 5.4: OptiMobBi-LSTM Model Based Merged Frame Stacking
on BBW Violence Dataset
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Figure 5.7: OptiMobBi-LSTM Model Based Merged Frame Stacking
on BBW Violence Dataset

Figure 5.8: Confusion Matrix of OptiMobBi-LSTM Model Based Merged Frame
Stacking on BBW Violence Dataset
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Both methods employed in this preliminary analysis share the goal of effectively de-
tecting violence within surveillance video footage. Method 1 focused on capturing 50
different frames at equal intervals from each video, providing a diverse set of frames
for comprehensive representation. On the other hand, Method 2 condensed video
content by stacking the initial 50 frames into a single merged frame. These method-
ologies serve as the initial building blocks for our violence detection system, offering
alternative approaches to address diverse scenarios and computational requirements
while laying the foundation for further refinement and optimization.

5.3 Discussion

The comprehensive evaluation of our violence detection methods, encompassing two
distinctive datasets and two different techniques, yields valuable insights into the
performance and versatility of our approach.

Frame Selection at Equal Intervals method, which involved selecting 50 frames at
equal intervals, exhibited remarkable accuracy, with a noteworthy 90.16% in the
RLVS Dataset. In this method, the model demonstrated the ability to distinguish
between nonviolence and violence with exceptional precision and recall. In con-
trast, the Merged Frame Stacking method, which condensed video content into a
single merged frame, displayed a lower but still respectable accuracy of 85% in the
Real Life Violence Situations Dataset, indicating its robustness in identifying violent
scenarios. This method offers computational efficiency advantages and serves as a
practical alternative.

Within the BBW Violence Dataset, the Frame Selection at Equal Intervals Method
exhibited strong performance with an accuracy of 85.32%. This approach excelled
in distinguishing between different types of violent behaviours, including ‘Beating,’
‘Burning,’ and ‘Use of Weapons.’ On the other hand, when we applied the Merged
Frame Stacking on the BBW Violence Dataset, delivered a decent accuracy of 74%,
providing a foundational baseline for violence detection within this dataset.

Frame Selection at
Equal Intervals Method

Merged Frame
Stacking Method

Real Life Violence
Situations Dataset

90.16% 85%

BBW Violence
Dataset

85.32% 74%

Table 5.5: Overall Comparison
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Figure 5.9: Overall Comparison

From the overall findings, we can say that the Frame Selection at Equal Intervals
method consistently demonstrated higher accuracy in both datasets, making it a
preferred choice for scenarios where precision is paramount. On the other hand,
the Merged Frame Stacking method, while offering slightly lower accuracy, may be
favoured in situations where computational efficiency is critical. These results lay
the groundwork for further enhancements, aiming to achieve even greater accuracy
and versatility in real-world surveillance scenarios.
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Chapter 6

Conclusion

This study has presented an innovative methodology for automatic detection of vi-
olence in surveillance footage, effectively addressing the urgent requirement for im-
proved security measures in both public and private settings. The research presented
here demonstrates the utilization of a combination of machine learning and deep
learning methodologies, such as object detection, motion analysis, and optical flow-
based [30] pose estimation. Additionally, a hybrid MobileNet-Bi-LSTM architecture
is employed to effectively capture both temporal dynamics and spatial features, sur-
passing conventional approaches. A thorough framework has been developed by the
careful augmentation of datasets and the rigorous annotation of numerous scenarios,
lighting conditions, and acts including ‘Beating,’ ‘Use of Weapons,’ and ‘Burning.’
In this research, we tested two violence detection methods on the two previously
mentioned datasets. The ‘Frame Selection at Equal Intervals’ method achieved
higher accuracy, 90.16% in the Real Life Violence Situations Dataset and 85.32%
in the BBW Violence Dataset, making it a precise choice. On the other hand,
the ‘Merged Frame Stacking’ method, offering computational efficiency, achieved
respectable accuracies of 85% and 74% in the RLVS and BBW Violence Datasets
respectively. This paradigm not only differentiates between acts of violence and non-
violence, but also enables a more nuanced understanding of the characteristics of
violent incidents. As a result, it has the potential to bring about significant changes
in proactive security measures and the timely identification of threats. The effec-
tiveness of the research is substantiated through empirical validation using graphical
representation and comparative analysis. This holds the potential to revolutionize
the field of surveillance systems by facilitating the efficient detection and prevention
of violence.

6.1 Future Works

The discipline of violence detection presents a multitude of possible avenues for fur-
ther research. In order to enhance the accuracy and adaptability of our models, it is
important to implement certain measures by investigating advanced deep learning
architectures and ensemble methodologies. The utilization of transfer learning from
extensive datasets and the ongoing process of fine-tuning on specific violence detec-
tion tasks offers a potential avenue towards improving the overall generalization of
models. The process of converting our models into real-time implementations for
surveillance systems is a significant stage, accompanied by the application of incre-
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mental learning techniques to adjust to the changing patterns of violence. Moreover,
the incorporation of multimodal methodologies that incorporate audio and textual
data in conjunction with visual clues has the potential to provide an extensive un-
derstanding of violent events. The prioritization of ethical factors, such as privacy
concerns and bias prevention, remains of utmost importance. Finally, the addition
of dataset size and diversity, potentially achieved through collaborative efforts with
relevant agencies, has the potential to strengthen the resilience and practicality of
models in real-world scenarios. The forthcoming initiatives have the objective of
progressing the domain of violence detection, with a focus on guaranteeing precision
and ethical accountability in practical security implementations.
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