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Abstract/ Executive Summary 

Detecting prior bearing faults is an essential task of machine health monitoring because 

bearings are the crucial parts of rotating machines. The performance of traditional intelligent 

fault diagnosis methods depends on feature extraction of fault signals, which requires signal 

processing techniques, expert knowledge, and human labor. Deep learning algorithms have 

recently been applied for industrial machine health monitoring with their advanced features. 

With the capacity to automatically learn complex features of input data, deep learning 

architectures have great potential to overcome the drawbacks of traditional intelligent fault 

diagnosis. This paper proposes a rolling bearing fault diagnosis method based on Convolutional 

Neural Network and Leaky ReLU to solve the above problems. Firstly, the Continuous Wavelet 

Transform converts one-dimensional original vibration signals into two-dimensional time-

frequency images. Secondly, the obtained time-frequency images are used to train the 

constructed model. Finally, the diagnosis of the fault location and severity is completed. The 

method is verified on the MFPT, MIMII data set, and vehicle engine. The results demonstrate 

that the suggested approach achieves higher diagnostic accuracy which is 95.49% on average 

and 2% greater than other advanced techniques. We have also incorporated XAI in the input 

images to make the network more transparent. 

Keywords: Transfer Learning, CNN, SqueezeNet, ResNet18, Leaky ReLU, XAI 
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Chapter 1 

Introduction 

In today's industrial landscape, the smooth operation of machinery is crucial for maintaining 

productivity and minimizing downtime. However, faults and malfunctions are inevitable, 

potentially leading to costly disruptions and safety hazards. In the recent report by Senseye, the 

AI-powered machine health management company, has researched that Large industrial facilities 

lose more than a day’s worth of production each month and hundreds of millions of dollars a year 

to machine failures. The report "The True Cost Of Downtime" shows that large plants lose an 

average of 323 production hours per year, costing $172 million annually due to lost revenue, 

financial penalties, idle staff time, and restarting lines. Cumulatively, manufacturing and 

industrial firms on the Fortune Global 500 list lose an estimated 3.3 million hours per year to 

unplanned downtime, which costs them $864 billion annually, equivalent to 8% of their revenues 

[37]. 

Industrial downtime is a costly problem that affects all sectors. Alexander Hill, chief global 

strategist at Senseye, warns that when machinery breaks down, it can cost manufacturers over 

$100,000 per hour in lost revenue. On average, automotive plants lost 29 production hours a 

month due to unplanned downtime, costing $1.3 million per hour. This led to approximately $557 

billion and 414,800 lost annual hours for automakers and suppliers. Senseye's study revealed that 

72% of large manufacturers have made predictive maintenance a strategic objective and 20% have 

established in-house teams to lead these initiatives [37]. 

 

In Bangladesh, it is evident from recent news and articles that businesses are losing significant 

revenue due to decreased production rates caused by faults in their manufacturing machines. 

Therefore, efficient fault diagnosis techniques are essential to identify and address these issues 
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promptly. With recent advancements in deep learning and artificial intelligence, Convolutional 

Neural Networks (CNNs) have emerged as powerful tools for automated fault diagnosis [1]. This 

thesis focuses on developing an advanced and modified Transferable CNN for fault diagnosis of 

industrial machinery, incorporating explainable Artificial Intelligence (XAI) techniques [2] [3]. 

1.1 Overview 

This thesis aims to develop advanced CNN model for fault diagnosis of industrial machines. The 

primary objective is to develop a comprehensive network architecture that combines advanced 

data processing techniques and machine learning algorithms to enable efficient fault detection and 

classification. 

This research begins with data collection where we have worked with three different datasets, one 

is MFPT, second one is MIMII and another one real engine dataset from a transportation company. 

For the MFPT dataset, we have collected the data from the open internet which is for rolling 

bearing faulty data [9]. For MIMII dataset, we have collected normal and faulty data of industrial 

fan from open internet [23]. Lastly, for real dataset, we have collected faulty engine sound and 

normal engine sound from a transportation bus from a local company of Bangladesh [24]. 

Following this, all the inputs are processed with advanced signal processing tool Continuous 

Wavelet Transform. Noise reduction of the vibration signal by CWT can express the fault features 

of the vibration signal more accurately and comprehensively. Hence, CWT is used to analyze the 

vibration signal in the time-frequency domain, draw the vibration signal time-frequency diagram, 

and save it to the designated folder [27].  

After signal processing, we have deployed two existing architectures of CNN and our proposed 

architecture where we have changed the activation function in the hidden layers. We have trained 

the three mentioned datasets with all three models and the final result is compared in the bar chart. 

We have implemented XAI algorithms to identify fault characteristics, allowing CNN models to 



15 
  

provide results. When a model is considered a black box, the user receiving the diagnosis does 

not know how the model reached the final conclusion. This lack of transparency compromises the 

reliability of the diagnosis, making it less likely to be used. Studies have been developed to explain 

why a model's final classification was obtained. The Gradient-weighted Class Activation Mapping 

(Grad-CAM) is currently the state-of-the-art approach in post-hoc methods that provide visual 

explanation.It is useful to identify faults in IFD through a heatmap that highlights the most 

relevant frequencies for classification, overlaid on the input signal, as faults are typically 

identified through visual analysis of the signal in the frequency domain. 

In conclusion, this thesis aims to contribute to the field of fault diagnosis for industrial machines 

by developing a comprehensive and effective framework by working with the hidden layers of 

CNN network. By addressing the limitations of existing techniques and leveraging advanced data 

analysis and machine learning algorithms, this research seeks to enhance fault detection 

capabilities, reduce maintenance costs, and improve overall system reliability [31]. 

1.2 Problem Statement 

Fault diagnosis of industrial machinery is a critical task in ensuring the smooth operation and 

productivity of manufacturing systems. Traditional approaches to fault diagnosis often rely on 

manual inspection or rule-based methods, which can be time-consuming, labor-intensive, and 

prone to human errors. There is a need for an automated and efficient system that can accurately 

detect and diagnose faults in industrial machinery [28]. 

Convolutional Neural Networks (CNNs) have shown great potential in various computer vision 

tasks, including image classification and object detection. However, the application of CNNs to 

fault diagnosis of industrial machinery poses specific challenges. These challenges include the 

complex nature of industrial machine data, such as vibration signals, acoustic signals, or thermal 

images, which require specialized preprocessing techniques to extract relevant features [29]. 
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The traditional approach to fault diagnosis of industrial machinery through CNN involves several 

steps. Firstly, a large dataset of labeled samples comprising both normal and faulty machine 

conditions is required for training the CNN model. The dataset needs to capture a wide range of 

fault types and severities to ensure the model's robustness. Secondly, preprocessing techniques 

are employed to extract meaningful features from the raw data. This may involve techniques such 

as time-frequency analysis, wavelet transforms, or spectrogram analysis to convert the time-

domain signals into a format suitable for input to the CNN. Next, the CNN model is designed and 

trained using the labeled dataset. This involves selecting an appropriate architecture, determining 

hyperparameters, and training the model on the labeled data. The training process typically 

involves optimizing a loss function, such as categorical cross-entropy, through techniques like 

backpropagation and gradient descent. Once the CNN model is trained, it can be used for fault 

diagnosis by inputting new, unlabeled data. The model analyzes the input data and predicts the 

presence of faults and, in some cases, provides insights into the specific fault type or severity. 

Despite the promising capabilities of CNNs, the traditional approach of fault diagnosis through 

CNN still faces challenges. These include the need for large and diverse labeled datasets, the 

selection of appropriate preprocessing techniques, and the interpretability of the CNN model's 

predictions [30]. 

Therefore, the aim of this paper is to compare and analysis the traditional approach of fault 

diagnosis of industrial machinery through CNN, including its challenges and potential solutions, 

to contribute to the advancement of automated fault diagnosis systems for industrial applications. 

In this paper, the architecture of CNN networks is modified to solve the back propagation problem 

of traditional approach. 
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1.3 Research Objective 

The objective of this research paper is to compare and analysis the effectiveness of the traditional 

approach of fault diagnosis of industrial machinery through Convolutional Neural Networks 

(CNN) and to propose new approach which provides better accuracy than existing approaches. 

The study aims to accomplish the following objectives: 

Firstly, the research will evaluate the accuracy and efficiency of CNN models in detecting and 

diagnosing faults in industrial machinery. This objective includes analyzing the impact of 

different CNN architectures on the diagnostic performance.  

Secondly, the study will examine various preprocessing techniques, such as time-frequency 

analysis, wavelet transforms, and spectrogram analysis, to extract relevant features from raw 

industrial machine data. The objective is to evaluate the effectiveness of these techniques in 

enhancing fault detection accuracy and reducing false positives/negatives by working with the 

hidden layers. 

In this research, we have worked with three different datasets. First one is MFPT dataset [9] where 

we have taken the data for rolling bearing machines. Second dataset is MIMII dataset [23] where 

the data of industrial fan is collected for the experiment. For the third and customized dataset, we 

have collected the data from vehicle engine of Saintmartin Travels [24], a transportation company 

of Bangladesh. This objective aims to assess the impact of dataset size and diversity on the CNN 

model's performance and generalization capabilities. 

The study will explore and integrate Explainable Artificial Intelligence (XAI) techniques into the 

CNN model to improve interpretability and provide explanations for the model's decision-making 

process. This objective includes investigating methods such as saliency maps, attention 

mechanisms, or feature visualization to highlight the regions or features influencing the model's 

fault diagnosis predictions [3]. 
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By addressing these research objectives, the paper aims to contribute to the understanding and 

advancement of fault diagnosis techniques using CNNs for industrial machinery, facilitating the 

development of more accurate and automated systems for real-world applications.  

1.4 Methodology 

The methodology followed in this paper is shown in Fig 1. In this research, a network architecture 

based on CNN and Leaky ReLU is established for rolling bearing fault diagnosis, which we call 

CNN-LR model. This chapter mainly includes the structure and design of CNN-LR model and 

industrial machine fault diagnosis based on the proposed model.  

 

Figure 1: Top Level Overview 

 

First, faulty and normal audio vibration were collected from three datasets. In this research, we 

have implemented the whole experiment into three kind of datasets. All the details of three 

datasets are mentioned in the subchapter 3.1. These datasets were stored as MATLAB files as 

one-dimensional format. They were then pre-processed for 2-D CNN input, each sample was 

created from 12,496 data points; for the 2-D CNN input, a two-dimensional image representation 
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of 227 × 227 pixels was created for SqueezeNet, 224 × 224 pixels was created for ResNet18 and 

proposed ResNet18 model. We then used each model to perform feature extraction and 

classification. Finally, we performed a performance analysis and drew conclusions. 

1.5 Thesis Outline 

This paper is organized with below thesis outline: 

Chapter 2 Literature Review  

This chapter is dedicated to the theory of CWT, CNN and Leaky ReLU following with the state 

of the art of related work. 

Chapter 3 The Proposed CNN-LR Model 

The design of CNN-LR model is explained in this chapter with our proposed method for Industrial 

Machine Fault Diagnosis. 

Chapter 4 Experimental Setup 

In this chapter we have done the experiment with three different dataset: MFPT, MIMII and Real 

Dataset. All three datasets are explained with description, data pre-processing and result of the 

experiment. At the end of these chapter, we have also included XAI. 

Chapter 5 Conclusion 

Finally, the paper has been concluded with the summary of our proposed method that provided 

better accuracy and also mentioned the future opportunities to improvise our method. 
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Chapter 2 

Literature Review 

This paper proposes an intelligent diagnosis method for industrial machinery fault diagnosis. 

Firstly, we convert the original vibration signals into time-frequency images using CWT. Then, 

CNN is applied to extract the in-depth features of the time-frequency images. Finally, the ReLU 

layer is replaced with Leaky ReLU using MATLAB. The following fundamental theories of 

CWT, CNN, and Leaky ReLU are introduced. 

2.1 CWT for 1D Signal Processing 

The CWT time-frequency analysis technique efficiently focuses on the signal using scaling and 

translation operations at various scales. Therefore, CWT can automatically adapt to the 

requirements of time-frequency signal analysis, clearly describing the change in signal frequency 

with time. [6]. Here, CWT is used for preliminary feature extraction, converting the original 1-D 

time-domain signals into 2-D time-frequency images. The conversion process is shown in Fig. 2 

[7]. 

 

Figure 2: Conversion process from 1D time-domain signal to 2D time-frequency image 
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CWT is a technique used to extract distinctive signal data that can then be utilized to analyze and 

manipulate nonlinear signals. Its algorithm is relatively mature, and the basic definition can be 

expressed as [8]: 

𝑊𝜑  (𝑎, 𝑏) =  
1

√𝑎
 ∫ 𝑥 (𝑡)𝜑∗ (

𝑡 − 𝑏

𝑎
) 𝑑𝑡, 𝑎 > 0 

In this formula, a the scale parameter, b is the time or translation parameter, x(t) represents the 

original one-dimensional data signal, φ represents the wavelet function with scale a and position 

offset b, and φ∗ is the complex conjugate of φ. 

2.2 Convolutional Neural Network 

Industrial machine fault diagnosis using sound is a technique that involves analyzing the sounds 

produced by machines in order to detect and diagnose any potential faults or abnormalities. A 

sound-based fault diagnosis is a valuable tool in industries where machines and equipment play a 

crucial role, such as manufacturing, automotive, aerospace, and power generation [8]. In rolling 

element bearings, localized faults can occur in different components, such as the outer race (outer 

ring), the inner race (inner ring), the cage (which holds the rolling elements in place), or one of 

the rolling elements (balls or rollers) [9]. These faults can result from various issues, such as wear, 

pitting, cracks, or improper lubrication. As this is much defined to analyze and detect faults in 

industrial machinery, sound analysis plays a vital role; many research and techniques have been 

established to determine the optimum strategy. The research shows that Artificial Neural Network 

(ANN) has been chiefly used as an algorithm [21]. An ANN has three components for its most 

popular form: an input layer, a hidden layer, and an output layer. Units in the hidden layer are 

called hidden units because their values are not observed. Artificial neural networks (ANNs) use 

algorithms to mimic neurological functions, such as learning from experiences, generalizing from 

similar situations, and evaluating past poor outcomes [10]. 

(1) 
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However, it is not easy for many tasks to know what features should be extracted to feed to the 

AI algorithms. The utilization of deep learning techniques can surpass the shortcomings of current 

intelligent fault diagnosis techniques by using feature hierarchies that include lower-level features 

that are composed to form higher-level features. When using deep learning techniques, the system 

can learn how to map the input to output by automatically learning features at various levels of 

complexity. This enables the system to grasp complex functions directly from the data. In order 

to comprehend intricate functions, it is crucial to employ deep architectures that comprise multiple 

levels of non-linear operations. Deep learning-based methods utilize deep architectures to capture 

representation information from natural input signals through non-linear transformations. With a 

small error, they can adaptively approximate complex non-linear functions [11]. 

Several deep learning methods have already been used for fault diagnosis of rotating machines, 

such as deep auto-encoder [12], sparse filtering [13], and deep belief network (DBN). DL has 

achieved better results as compared to traditionally used ML algorithms. Nevertheless, the 

usability of DL methods for fault diagnosis is yet to be explored. CNN is a popular and more 

efficient DL approach that has also been applied in the fault classification of rotating machines. 

The raw vibration signature acquired from the machine is a time-domain signal; the 1D CNN has 

been applied to monitor the bearing condition [14]. Some researchers have converted signals into 

images, then applied a 2D CNN to classify the bearing conditions [11]. 

When using a CNN for fault detection of roller element bearings, the raw or pre-processed sensor 

data, such as vibration signals or sound recordings, is fed as input to the CNN model. The CNN 

comprises different layers, such as convolutional, pooling, and fully connected layers, which work 

together to create hierarchical representations of the input data. The following are definitions of 

different layers shown in Fig 3 [11]. 
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Figure 3: Hidden Layers of Convolutional Neural Network 

 

Convolutional layer: A more advanced feature representation is obtained through convolution 

operations in the convolution layer. The number of network parameters is decreased, and the 

complexity of the model is reduced by performing local feature extraction on input data. The 

convolution formula can be defined as follows:  

𝑥𝑗
𝑙 =  𝑓 ( ∑ 𝑥𝑖

𝑙−1𝐾𝑖𝑗
𝑙 +  𝑏𝑗

𝑙

𝑖 ∈ 𝑀𝑗

) 

where 𝑥𝑗
𝑙 is the output of layer 𝑙, 𝑥𝑖

𝑙−1 represents the output of layer 𝑙 − 1,  that is, the input of 

layer 𝑙,  𝑀𝑗 is the feature set of layer 𝑙 − 1, 𝐾𝑖𝑗
𝑙  represents the weight matrix, 𝑏𝑗

𝑙  represents the 

network bias, and f (⋅) represents the activation function. 

 

Pooling layer: In the pooling layer, the data is reduced in size by taking a specific area's average 

or maximum value. This helps to simplify the network calculations and keep the essential features, 

resulting in more efficient feature extraction. The calculation method can be expressed as:  

𝑥𝑗
𝑙 = 𝑓 (𝛽𝑗

𝑙𝑑𝑜𝑤𝑛(𝑥𝑗
𝑙−1) +  𝑏𝑗

𝑙) 

(2) 
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where down (⋅) is the down-sampling function, β represents the weight of the network. 

Fully connected layer: After being alternately transferred through convolutional and pooling 

layers, the image features are input into the fully connected layer. The in-depth feature 

information with category distinction is integrated into the fully connected layer, and the mapping 

relationship between the extracted features and sample types is constructed. The mathematical 

formula can be expressed as:  

𝑦𝑘 = 𝑓(𝑤𝑘𝑥𝑘−1 +  𝑏𝑘) 

where k represents the network of layer k , 𝑦𝑘 represents the output of the fully connected layer, 

𝑥𝑘−1 is the input of the fully connected layer, 𝑤𝑘  is the weight coefficient, 𝑏𝑘  represents the 

network offset. 

Furthermore, CNN-based fault diagnosis approaches have shown promising results in accuracy 

and robustness. They can effectively handle large datasets and generalize to unseen data, making 

them suitable for real-world applications in condition monitoring and fault detection of rotating 

machinery systems [15] [16]. If we consider the most popular architectures among CNN for fault 

diagnosis of industrial machineries, SqueezeNet and ResNet18 will come into the consideration. 

SqueezeNet: The SqueezeNet model minimizes the network's parameters while maintaining its 

classification accuracy and enhancing its training speed. This allows for better performance of the 

neural network model in practical applications. The main contribution of the SqueezeNet network 

model is the proposed Fire module, which replaces a 3 × 3 convolutional kernel with a 1 × 1 and 

a mixture of 1 × 1 and 3 × 3 two-layer convolutional kernels. This replacement method deepens 

the network depth, maintains or improves the network performance based on the original model, 

and reduces the number of parameters required for the model [17]. The network structure of 

SqueezeNet is shown in Fig 4 (a). 

(3) 

(4) 
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ResNet18: The ResNet18 is a deep neural network architecture consisting of 72 layers, with 18 

being deep layers. Its design allows for the efficient functioning of numerous convolutional layers. 

The input size to the network is 224 × 224 × 3, which is predefined. The network is considered a 

DAG network due to its complex, layered architecture and because the layers have input from 

multiple layers and give output to multiple layers [18]. In Fig 4 (b), the architecture of ResNet-18 

is mentioned. 

              

 

Figure 4: Network architecture of SqueezeNet (a) and ResNet-18 (b) 
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2.3 Activation Functions 

Though CNN standard architectures have proven excellent in diagnosing machines' faults, adding 

multiple deep layers to a network often results in a degradation of the output. This is known as 

the problem of vanishing gradient where neural networks, while trained through backpropagation, 

rely on gradient descent, descending the loss function to find the minimizing weights [18]. The 

drawback of ReLU is that they cannot learn from examples for which their activation is zero. The 

issue often arises when ReLU is applied to the hidden layers and the neural network is initialized 

with all zeros. One possible reason for this is that if a ReLU neuron experiences a high gradient 

flow, it may update its weight and result in a negative weight and bias. If this happens, this neuron 

will always produce 0 during the forward propagation, and then the gradient flowing through this 

neuron will forever be zero, irrespective of the input [20]. 

In other words, the weights of this neuron will never be updated again. Such a neuron can be 

considered a dead neuron, a kind of permanent "brain damage" in biological terms. A dead neuron 

can be considered a natural Dropout [26]. However, the problem is if every neuron in a specific 

hidden layer is dead, it cuts the gradient to the previous layer resulting in zero gradients to the 

layers behind it. It can be fixed using lower learning rates, so the significant gradient does not set 

a considerable negative weight and bias in a ReLU neuron. Another fix is to use the Leaky ReLU, 

which allows the neurons outside the active interval to leak some gradient backward [19]. 

With the Leaky ReLU function, the accuracy of fault detection is better but increased with very 

small value. Another activation function is PReLU (Parametric ReLU)  in which we don’t 

multiply the negative input directly with any small value, rather we learn that small value from 

the training model. In feed-forward networks, each layer learns a single slope parameter. In CNNs, 

we can learn a separate slope parameter for each channel within each layer. The total number of 

slope parameters to be learned equals the sum of all channels in every layer. 
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Here in this paper, we have implemented modified ResNet architecture by changing the activation 

function with Leaky ReLU and Parametric ReLU, which successfully increased the accuracy of 

our experimental setup. 

 

2.4 State of Art 

Deep learning has become a vital research direction and gradually applied to various fields [a]–

[d]. In [e], a dual-input model based on a convolutional neural network (CNN) and long-short 

term memory (LSTM) neural network has been applied. Haidong et al. [f] used a novel method 

called continuous deep belief network with locally linear embedding is proposed for rolling 

bearing fault detection. Xingqiu et al. [g] utilized modified health index based hierarchical gated 

recurrent unit network (GRUN) for rolling bearing health prognosis. Among them, CNN has more 

sophisticated applications in image processing, including image classification [h], target 

positioning [i], and face recognition [j]. For rolling bearing or industrial machinery fault 

diagnosis, scholars have provided more attention in the study of CNN architectures. Hoang et al. 

[k], vibration signals directly as input data, the proposed method is an automatic fault diagnosis 

system which does not require any additional feature extraction techniques and achieves very high 

accuracy. However, the above method relies on large quantities of samples that can be used for 

training, which is difficult to obtain in actual engineering. Moreover, in the above-mentioned 

CNN architectures, the issue of dead neuron exists which results in less accuracy. 

Kheira et al. [i], proposed an architecture that mainly inspired by the most recent CNN models 

and introduce several modifications on functions and layers, such as the use of the Leaky-ReLU 

instead of the ReLU activation function for ECG abnormalities classification. In [j], a combination 
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of Leaky-ReLU activation function and three different optimizers are used that produced good 

and stable accuracy in the CRX and CT datasets. 

 

 

Table 1: State of Art 

Ref Proposed Model Accuracy Limitations 

[32] 
The model uses both time domain and frequency domain 
features (TF-WConvLSTM Network) to achieve end-to-
end fault diagnosis 

90%+ 
Less recognition 
accuracy under strong 
noise 

[33] 

A continuous deep belief network (CDBN) is constructed 
based on a series of 
trained continuous restricted Boltzmann machines 
(CRBMs) to model vibration signals as a proposed model 
for rolling bearing fault diagnosis 

91% 

A prognostic system to 
predict the machine 
fault propagation trend 
is going to be developed 
further 

[34] 
A modified health index based hierarchical gated 
recurrent unit network is proposed for rolling bearing 
health prognosis 

85%+ 

Health state division 
and failure threshold 
determination are both 
challenging yet 
meaningful in fault 
prognosis issues 

[37] 

Using vibration signals directly as input data, the 
proposed method is an automatic fault diagnosis system 
which does not require any feature extraction techniques 
and achieves very high accuracy and robustness under 
noisy environments. 

97.74%. 

Selecting appropriate 
hyper-parameters to 
design DL algorithms 
for fault diagnosis is 
still a challenge. 

[35] 

Proposed an architecture that mainly inspired by the most 
recent CNN models and introduce several modifications 
on functions and layers, such as the use of the Leaky-
ReLU instead of the ReLU activation function for ECG 
abnormalities classification. 

96% 

the quality of this model 
can be enhanced by 
merging available 
datasets or creating a 
larger one 

[36] 
A combination of Leaky-ReLU activation function and 
three different optimizers are used that produced good and 
stable accuracy in the CRX and CT datasets. 

97.57% 

This research can be 
developed with a 
different architecture to 
produce 
better accuracy. 

    

 

Considering the advantages and disadvantages of all the above work, CNN and Leaky ReLU are 

combined to build a deep neural network framework CNN-LR to diagnose bearing faults in this 

paper. This paper aims to contribute to fault diagnosis in industrial machinery by developing an 
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advanced and modified Transferable CNN architecture with Explainable Artificial Intelligence. 

The proposed system will provide accurate and interpretable fault diagnosis results, enabling 

timely interventions and improving industrial operations' overall reliability and efficiency [5]. In 

this paper, we have contributed below. 

 Comparison among CNN architectures for machinery fault diagnosis. 

 Modified ResNet18 architecture with activation function (Leaky ReLU) 

 Implemented all three architectures in three different datasets (MFPT, MIMII, and Vehicle 

Engine dataset) 

 We included XAI to improve the understanding of feature extraction in spectrograms for 

fault diagnosis. 
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Chapter 3 

The Proposed CNN-LR Model 

In this paper, a network architecture based on CNN and Leaky ReLU is established for 

industrial machineries fault diagnosis, which we call CNN-LR model. This chapter mainly 

includes the construction of CNN-LR model and industrial machine fault diagnosis based on the 

proposed model. 

3.1 Design of CNN-LR Model 

In this section, the CNN-LR model is designed, of which structure is indicated in Figure 5. The 

model uses transfer learning of the pre-trained ResNet-18 network to extract 2-D image features 

and uses the extracted features to train the model. The activation function of the architecture of 

ResNet-18 is replaced and modified with the Leaky ReLU function to solve the challenge of dead 

neurons and get better accuracy in fault diagnosis. In Fig 5 (a) the existing ResNet-18 architecture 

is shown and in Fig 5 (b), modified ResNet-18 is shown with Leaky ReLU Function. 

In this system, the method of transfer learning in deep learning is used, and the SqueezeNet and 

ResNet-18 network is selected for feature extraction. The structure and parameters of both 

networks are shown in Table 1[17] and Table 2 [22]. Applying the relevant knowledge that has 

been learned in the pre-training network directly to the target field can effectively solve the 

problem of complicated and time-consuming manual construction of CNN and the problem of 

insufficient data samples obtained in actual engineering. 
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Figure 5: Network architecture of Standard ResNet-18 with ReLU activation function (a) and Modified ResNet-18 
with Leaky ReLU Function (b) 

 

 

Table 2: Structure and parameters of standard SqueezeNet 

Layer Name Type Activations Number of Learnable 

Input Image 227 x 227 x 3  
Conv1 2-D Convolution 113 x 113 x 64 1,792 

Fire2/Squeeze 2-D Convolution 56 x 56 x 64 1,040 
Fire2/Expand1x1 2-D Convolution 56 x 56 x 64 1,088 
Fire2/Expand3x3 2-D Convolution 56 x 56 x 64 9,280 

Fire3/Squeeze 2-D Convolution 56 x 56 x 16 2,064 
Fire3/Expand1x1 2-D Convolution 56 x 56 x 64 1,088 
Fire3/Expand3x3 2-D Convolution 56 x 56 x 64 9,280 

Fire4/Squeeze 2-D Convolution 28 x 28 x 32 4,128 
Fire4/Expand1x1 2-D Convolution 28 x 28 x 128 4,224 
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Fire4/Expand3x3 2-D Convolution 56 x 56 x 128 36,992 
Fire5/Squeeze 2-D Convolution 28 x 28 x 32 8,224 

Fire5/Expand1x1 2-D Convolution 28 x 28 x 128 4,224 
Fire5/Expand3x3 2-D Convolution 28 x 28 x 128 36,992 

Fire6/Squeeze 2-D Convolution 14 x 14 x 48 12,336 
Fire6/Expand1x1 2-D Convolution 14 x 14 x 192 9,408 
Fire6/Expand3x3 2-D Convolution 14 x 14 x 192 83,136 

Fire7/Squeeze 2-D Convolution 14 x 14 x 48 18,480 
Fire7/Expand1x1 2-D Convolution 14 x 14 x 192 9,408 
Fire7/Expand3x3 2-D Convolution 14 x 14 x 192 83,136 

Fire8/Squeeze 2-D Convolution 14 x 14 x 64 24,640 
Fire8/Expand1x1 2-D Convolution 14 x 14 x 256 16,640 
Fire8/Expand3x3 2-D Convolution 14 x 14 x 256 147,712 

Fire9/Squeeze 2-D Convolution 14 x 14 x 64 32,832 
Fire9/Expand1x1 2-D Convolution 14 x 14 x 256 16,640 
Fire9/Expand3x3 2-D Convolution 14 x 14 x 256 147,712 

conv10 2-D Convolution 14 x 14 x 1000 513,000 

  

 

Table 3: Structure and parameters of standard ResNet-18 

Layer Name Type Activations Number of Learnable 

Input Image 224 x 224 x 3  
conv1 2-D Convolution 112 x 112 x 64 9,472 

bn_conv1 Batch Normalization 112 x 112 x 64 128 
pool1 2-D Max Pooling 56 x 56 x 64  

ResBlock1-1 Residual Block 56 x 56 x 64  
ResBlock1-2 Residual Block 56 x 56 x 64  
ResBlock2-1 Residual Block 28 x 28 x 128  
ResBlock2-2 Residual Block 28 x 28 x 128  
ResBlock3-1 Residual Block 14 x 14 x 256  
ResBlock3-2 Residual Block 14 x 14 x 256  
ResBlock4-1 Residual Block 7 x 7 x 512  
ResBlock4-2 Residual Block 7 x 7 x 512  

pool5 2-D Global Average Pooling 1 x 1 x 512  
fc1000 Fully Connected 1 x 1 x 1000 513,000 
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3.2 Proposed Method of Industrial Machine Fault Diagnosis 

Industrial machinery is prone to failure or breakdown, resulting in significant company expenses. 

Hence, a rising interest in machine monitoring uses different sensors, including microphones. This 

paper presents a fault detection method for rolling bearings that utilizes CNN-LR that can take 

advantage of the superiority of CNN in data feature obtaining and LR's classification and 

generalization capabilities to solve dead neuron situations. The corresponding flow chart of the 

proposed method is demonstrated as Fig 6, and the steps are as follows: 

 

Step 1: 

Load three distinct experimental datasets (MFPT, MIMII, Real Dataset) 

Gather vibration signals from defective bearings from each dataset 

Step 2: 

Function preprocess_signals(dataset): 

    For each dataset in (MFPT, MIMII, Real Dataset): 

        For each vibration signal in dataset: 

            Divide the vibration signal into smaller sections (A) 

            For each section A: 

                Apply Continuous Wavelet Transform (CWT) to obtain a time-frequency image 

                If network is SqueezeNet: 

                    Resize the image to dimensions 227x227x3 

                Else if architecture is ResNet-18 or ResNet-18 LR: 
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                    Resize the image to dimensions 224x224x3 

                Store the time-frequency image in processed dataset 

                Assign a label to the time-frequency image 

            End For 

        End For 

    End For 

    Return the processed dataset 

 

processed_dataset = preprocess_signals(MFPT) 

processed_dataset += preprocess_signals(MIMII) 

processed_dataset += preprocess_signals(Real Dataset) 

Split processed_dataset into training samples and test samples 

 

Step 3: 

Function load_trained_CNN(network, training_samples): 

    Load the pre-trained CNN model 'network' 

    Input the training_samples into the 'network' 

    Obtain high-level feature representations for the training and test images 

    Return the trained model 
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Trained_Model1 = load_trained_CNN(SqueezeNet, training_samples) 

Trained_Model2 = load_trained_CNN(ResNet-18, training_samples) 

Trained_Model3 = load_trained_CNN(ResNet-18 LR, training_samples) 

Trained_Model4 = load_trained_CNN(ResNet-18 PR, training_samples) 

 

Step 4: 

Function validate_fault_diagnosis(test_samples, models): 

    For each model in models: 

        Input the test_samples into the model 

        Obtain predictions for fault diagnosis 

    Return the predictions from all models 

 

test_samples = preprocess_signals(Test Dataset) 

models = [Trained_Model1, Trained_Model2, Trained_Model3, Trained_Model4] 

results = validate_fault_diagnosis(test_samples, models) 
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Figure 6: The flowchart of experiment 
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Chapter 4  

Experimental Setup 

We must test the flexibility and usefulness of the model we built for diagnosing bearing faults. 

For that, two open-source datasets are used for research in this paper, including Mechanical 

Failure Prevention Technology (MFPT) dataset [9] and Malfunctioning Industrial Machine 

Investigation and Inspection (MIMII) Dataset [23]. Besides the open-source datasets, the 

proposed model experimented with the real dataset of transportation buses of a Bangladeshi 

Transportation company called Saintmartin Travels [24]. 

4.1 MFPT Dataset 

4.1.1 Data Description 

The MFPT Challenge data [9] includes a dataset of bearing faults used for research on bearing 

analysis. The dataset consists of three real-world faults, which include nominal bearing data, an 

outer race fault at various loads, and an inner race fault at various loads. The baseline dataset 

comprises three files, each containing data sampled at 97656 Hz for 6 seconds under a 270-pound 

load. The inner race fault dataset contains seven files, which are respectively obtained by sampling 

at 48828 Hz for 3 seconds under seven load conditions, including 0, 50, 100, 150, 200, 250, and 

300 pounds. The outer race fault dataset contains seven files, which are respectively obtained by 

sampling at 48828 Hz for 3 seconds under seven load conditions, including 25, 50, 100, 150, 200, 

250, and 300 pounds. The data points are from a single-channel radial accelerometer. The 

experiment bearings of the MFPT data set are also deep groove ball bearing with a 31.62 mm 

pitch diameter, a 5.97 mm ball diameter, a 0° contact angle, and an element number of 8. This 

study selects the three sets of bearing vibration data collected at the test rig. 
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4.1.2 Data Processing 

For this experiment, we used all the data points from the three fault data sets and selected a sample 

length 48828. We repeated 24414 data points between adjacent parts to increase the number of 

experimental samples. The baseline set is down sampled to 48828 Hz to match other fault sets. 

The three files in the baseline set are divided into 22 segments, respectively; the seven inner fault 

files are divided into five segments, respectively; and the seven external fault files are divided 

into five segments. Through the CWT [7], a corresponding number of time-frequency images in 

each state can be obtained. By merging the load conditions under the three fault types, 66 time-

frequency images for the baseline set, 35 time-frequency images for the inner race, and 35 time-

frequency images for the outer race are obtained. Finally, a sample set containing 136 time-

frequency images is obtained, as shown in Table 3. According to [5], 80% of each state's images 

are selected randomly for training, while the remaining 20% are reserved for testing. In Fig. 7 (a)-

(c), the time-frequency images of the three health conditions in Table 3 are shown in sequence. 

 

Table 4: The sample description of MFPT dataset 

Class Type Load (lb) Number of 
files 

Input Shaft 
Rate Sample Rate 

Baseline condition 270 3 25 Hz 97,656 sps 

Outer race fault condition 

25, 50, 100, 
150, 200, 250, 
270, 270, 270, 

300 

10 25 Hz 48,828 sps 

Inner race fault condition 0, 50, 100, 150, 
200, 250, 300 7 25 Hz 48,828 sps 
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(a) 

(b) 
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Figure 7: Time-frequency images of three health conditions on MFPT dataset: (a) Baseline; (b) Outer; (c) Inner. 

 

 

4.1.3 Results of the Experiment 

We first train the CNN-LR model using the training samples we constructed for the three bearing 

fault types. The Training time is 12 minutes and 2 seconds which was done on 164 samples. The 

details of the training progress are shown in Fig 8. Upon completion of the training, the model 

must be verified using the test sample. This experiment is implemented in three architectures of 

CNN. With the model SqueezeNet, the fault diagnosis classification accuracy is 94.64%; with 

ResNet-18, the accuracy is 94.42%; and with our proposed model CNN-LR and CNN-PR, the 

fault diagnosis classification accuracy is 96.57% and 97.99% respectively. Table 4 shows the 

values of detailed information of three networks with respective Training Accuracy, Training 

Loss, Validation Accuracy, and Validation Loss for the MFPT dataset.  

(c)  
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Figure 8: Training Progress of CNN_LR model of MFPT Dataset 

 

 

Table 5: Accuracy Comparison between Standard SqueezeNet, Standard ResNet-18, proposed CNN-LR model and 
proposed CNN-PR model 

MFPT Dataset 
Network Name Standard 

SqueezeNet 
Standard 
ResNet18 

Proposed Model  
with LR 

Proposed Model  
with PR 

Status Complete (Max 
epochs completed) 

Complete (Max 
epochs completed) 

Complete (Max 
epochs completed) 

Complete (Max 
epochs completed) 

Progress 
   

 
Elapsed Time 5 min 19 sec 11 min 54 sec 12 min 2 sec 10 min 8 sec 
Training 
Accuracy 91.62% 95.06% 93.72% 95.07% 

Training Loss 0.2238 0.145 0.1723 0.1143 
Validation 
Accuracy 98.57% 99.52% 100.00% 100.00% 

Validation Loss 0.0336 0.0272 0.0214 0.0187 
Fault Detection 
Accuracy for 
Industrial 
Machineries 

94.64% 94.42% 96.57% 97.99% 

 

The confusion matrix [25] of three experimented models is also shown in Fig 9 (a) – (d) which 

are representing the prediction summary in matrix form. It shows how many predictions are 
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correct and incorrect per class. It helps in understanding the classes that are being confused by 

model as other class. 

       

 

 

 

 

Figure 9: Confusion matrix of MFPT dataset for (a) Standard SqueezeNet; (b) Standard ResNet-18 and (c)CNN-LR 
Model (d)CNN-PR Model 

 

 

 

 

 

(a)  (b)  

(c)  (d)  
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4.2 MIMII Dataset 

4.2.1 Data Description 

The MIMII dataset is a collection of sound recordings that can be used to investigate and inspect 

malfunctioning industrial machines [23]. The dataset includes sounds from four types of 

machines: valves, pumps, fans, and slide rails. Each machine type has seven different models*1, 

and for each model, there are recordings of normal sounds (from 5000 seconds to 10000 seconds) 

and anomalous sounds (about 1000 seconds). Normal and anomalous sounds were recorded for 

different types of industrial machines. Also, the background noise recorded in multiple real 

factories was mixed with the machine sounds. The sounds were recorded by an eight-channel 

microphone array with a 16 kHz sampling rate and 16 bits per sample. This dataset contains the 

sound of four different types of machines: valves, pumps, fans, and slide rails. The valves are 

solenoid valves that are repeatedly opened and closed. The pumps are water pumps that drain 

water from a pool and continuously discharge water to the pool. The fans represent industrial fans, 

providing a continuous air flow in factories. The slide rails in this paper represent linear slide 

systems, which consist of a moving platform and a staging base. The list of sound files for each 

machine type is mentioned in Table 5. Each type of machine consists of seven individual 

machines. This dataset contains 26,092 sound segments of normal conditions and 6,065 sound 

segments of anomalous conditions. 
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Table 6: MIMII dataset content details 

Machine type Model ID Segments for  
Normal Condition 

Segments for 
anomalous 
condition 

Valve 

00 991 119 
01 869 120 
02 708 120 
03 963 120 
04 1000 120 
05 999 400 
06 992 120 

Pump 

00 1006 143 
01 1003 116 
02 1005 111 
03 706 113 
04 702 100 
05 1008 248 
06 1036 102 

Fan 

00 1011 407 
01 1034 407 
02 1016 359 
03 1012 358 
04 1033 348 
05 1109 349 
06 1015 361 

Slide rail 

00 1068 356 
01 1068 178 
02 1068 267 
03 1068 178 
04 534 178 
05 534 178 
06 534 89 

Total 26092 6065 
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4.2.2 Data Processing 

We have taken the samples from the segment pump, fan, slider and valve with two classes for the 

MIMII Data processing. The normal sound dataset of the all categories is 2048 Kbps, and the 

abnormal or faulty dataset is 2048 Kbps. First, we processed the audio files through CWT [6] [7] 

to get a corresponding number of time-frequency images for each condition. By merging the load 

conditions under the two class types, 3124 time-frequency images for the normal dataset of each 

category and 3124 time-frequency images for the abnormal dataset of the each category were 

obtained. Finally, a sample set containing 1562 time-frequency images is obtained, as shown in 

Table 6. Among them, 80% of the images in each state are randomly chosen as training samples, 

and the remaining 20% are used as test samples. In Fig. 10 (a)-(b), the time-frequency images of 

the Fan class of MIMII dataset in Table 6 are shown in sequence. 

 

Table 7: Detail data of selected MIMII dataset file 

Class Type Bit rate Number of files File type Duration of each 
file 

Pump_Abnormal 2048 Kbps 30 WAV 10 sec 
Pump_Normal 2048 Kbps 30 WAV 10 sec 
Fan_Abnormal 2048 Kbps 30 WAV 10 sec 
Fan_Normal 2048 Kbps 30 WAV 10 sec 

Slider_Abnormal 2048 Kbps 30 WAV 10 sec 
Slider_Normal 2048 Kbps 30 WAV 10 sec 

Valve_Abnormal 2048 Kbps 30 WAV 10 sec 
Valve_Normal 2048 Kbps 30 WAV 10 sec 
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Figure 10: Time-frequency images of three health conditions on MIMII dataset: (a) Abnormal pump dataset (b) 
Normal pump dataset 

 

 

  

(a)  

(b)  
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4.2.3 Results of the Experiment 

With MIMII dataset, we have followed the same procedures and that is our approached model 

CNN-LR is trained with the samples of two class of pump dataset. Here, we have done the training 

with total 996 samples and the total training time is 117 minutes 50 seconds. The hardware 

specification is Windows 11, 64 bit operating system, Intel(R) Core(TM) i5-8265U CPU @ 

1.60GHz, 1.80 GHz. The details of training progress are shown in Fig 11. The trained model is 

verified by the test sample after completion of training progress. This experiment is also tested 

over three architectures of CNN. With the model SqueezeNet, the fault diagnosis classification 

accuracy is 89.12% 9 (avg), with ResNet-18, the accuracy is 94.56% (avg) and with our proposed 

model CNN-LR and CNN-PR, the fault diagnosis classification accuracy is 95.33% and 96.50% 

(avg). In Table 7, the values of detail information of three networks are shown with respective 

Training Accuracy, Training Loss, Validation Accuracy and Validation Loss for MFPT dataset.  

 

 

Figure 11: Training Progress of CNN_LR model of MIMII Dataset 

 

 



48 
  

100% 100% 100% 100% 

Table 8: Accuracy Comparison between Standard SqueezeNet, Standard ResNet-18 and proposed CNN-LR model 
of MIMII dataset 

MIMII Dataset (on average) 
Network Name Standard 

SqueezeNet Standard ResNet18 Proposed CNN-LR Proposed CNN-LR 

Status Complete (Max 
epochs completed) 

Complete (Max epochs 
completed) 

Complete (Max epochs 
completed) 

Complete (Max epochs 
completed) 

 
Progress 

 

 

 

 
Elapsed Time 44 min 56 sec 117 min 50 sec 109 min 32 sec 102 min 04 sec 
Training 
Accuracy 88.04% 89.08% 89.13% 90.41% 

Training Loss 0.2916 0.2637 0.2596 0.1542 
Validation 
Accuracy 90.08% 91.76% 90.08% 92.16% 

Validation Loss 0.2393 0.2187 0.2333 0.1928 
Fault Detection 
Accuracy for 
Industrial 
Machineries 

89.12% 94.56% 95.33% 96.50% 

 

For the MIMII dataset, at first we have identified the type of machine with the sound type in Fig 

12, and then again run the same approach to identify whether that identified machine is faulty or 

not. Below are the images of Confusion Matrix for identifying the machine type with three 

architectures. 

       

 
(a)  (b)  
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Figure 12 Confusion matrix of MIMII dataset  four types of machine identification for (a) Standard SqueezeNet; (b) 
Standard ResNet-18 and (c) Proposed CNN-LR Model 

 

In Fig 13, the confusion matrix of three experimented models is also shown to have summary in 

matrix form. It clearly represents correct and incorrect prediction per class similarly like MFPT 

dataset [25]. 

       

 (a)  (b)  

(c)  
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Figure 13: Confusion matrix of MIMII dataset for (a) Standard SqueezeNet; (b) Standard ResNet-18; (c) Proposed 
CNN-LR Model and (d) Proposed CNN-PR Model 

 

4.3 Vehicle Engine Dataset 

4.3.1 Data Description 

We have applied our model to a real dataset of vehicle engines for the third dataset. Vehicle engine 

faults refer to significant issues that arise within a vehicle's engine. Due to their intricate structure 

and running conditions, engine faults are responsible for approximately 40 percent of all vehicle 

failures. Here, we have collected the raw audio data of a new transport bus, which is later defined 

as the normal sound of a vehicle engine, and also collected raw audio data of an old transport bus 

with a small number of faulty engines, defined as the abnormal sound of the vehicle engine. The 

sounds were recorded by the Voice Recorder App of the Samsung Note 20 handset. In Table 8, 

the details of the vehicles for both normal and abnormal vehicle engine sound is mentioned. The 

actual data on normal and faulty engines is collected from a transportation company in Bangladesh 

called Saintmartin Travels [24]. The approval for using the data in this research is shared in 

(c)  (d)  
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Appendix 1. The reference images of the bus engines while recording the sound are shared in Fig 

14. 

 

Table 9: Vehicle details from which sample data collected 

Faulty engine transport bus 
Bus Model ISUZU 36 Seater 

Seating Capacity 36+D (2x2 Fix) 
Engine SLTHT6 CRDI TCIC, 3455 cc 
Power 114 HP @ 2600 rpm 
Torque 400 Nm @ 1400-1600 rpm 

Fuel Diesel 
Cylinders 4 

 

 

        

 

        

 

(a)  (b)  

(c)  (d)  



52 
  

                                        

 

Figure 14: Images of Transport Vehicle of Saintmartin Travels; (a) Normal/new sleeper coach, (b) Engine of 
normal/new sleeper coach, (c) Faulty/Old bus, (d) Engine of faulty/old bus, (e) taking sample of engine sound and 

(f) Photo with Director of Saintmartin Travels 

 

4.3.2 Data Processing 

In this experiment, five audio files are collected from each vehicle for both normal engine sound 

and abnormal engine sound. Each data group has been divided into 1562 time-frequency images 

through CWT. Among them, 80% of the images under each class type are randomly chosen as 

training samples, and the remaining 20% are used as test samples [5]. In Fig. 15 (a)-(b), the time-

frequency images of both the vehicle engine in Table 9 are shown in sequence. 

 

Table 10: The sample description of Vehicle Engine dataset 

Class Type Bit rate Number of files File type Duration of 
each file 

Vehicle_Engine_Abnormal 252 kbps 10 WAV 10 sec 

Vehicle_Engine_Normal 252 kbps 10 WAV 10 sec 

 

(e)  (f)  
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Figure 15: Time-frequency images of two classes on Vehicle Engine dataset: (a) Abnormal vehicle engine dataset 
(b) Normal vehicle engine dataset 

 

(a)  

(b)  
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4.3.3 Results of the Experiment 

With the real vehicle engine dataset, we have followed the same procedures as the other two 

datasets. Firstly, CNN-LR is trained with the samples of two classes of vehicle engine datasets. 

Here, we have done the training with a total of 996 samples, and the total training time is 109 

minutes 32 seconds. The hardware specification is the same as other datasets for training. The 

details of the training progress are shown in Fig 16. The test sample verifies the trained model 

after completing the training progress. This experiment is also tested over three architectures of 

CNN. With the model SqueezeNet, the fault diagnosis classification accuracy is 89.12%. With 

ResNet-18, the accuracy is 92.91%, and with our proposed model CNN-LR and CNN-PR, the 

fault diagnosis classification accuracy is 94.56% and 96.21% respectively. In Table 10, the values 

of detail information of three networks are shown with respective Training Accuracy, Training 

Loss, Validation Accuracy, and Validation Loss for real datasets of vehicle engines. 

 

Figure 16: Training Progress of CNN_LR model of Vehicle Engine Dataset 
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100% 100% 100% 100% 

 

 

Table 11: Accuracy Comparison between Standard SqueezeNet, Standard ResNet-18 and proposed CNN-LR model 
of Vehicle Engine dataset 

Vehicle Engine Dataset 
Network Name Standard 

SqueezeNet Standard ResNet18 Proposed CNN-LR  Proposed CNN-PR  

Status Complete (Max 
epochs completed) 

Complete (Max 
epochs completed) 

Complete (Max 
epochs completed) 

Complete (Max 
epochs completed) 

Progress 
 

 

 

 

Elapsed Time 124 min 41 sec 110 min 27 sec 109 min 32 sec 121 min 54 sec 
Training Accuracy 88.04% 88.59% 89.08% 92.17% 
Training Loss 0.2916 0.2659 0.2637 0.2532 
Validation Accuracy 90.08% 91.04% 91.76% 93.19% 
Validation Loss 0.0105 0.2253 0.2187 0.2014 
Fault Detection 
Accuracy for 
Industrial 
Machineries 

89.12% 92.91% 94.56% 96.21% 

 

In Fig 17, the confusion matrix [25] of three experimented models is also shown to have 

summary in matrix form. It clearly represents correct and incorrect prediction per class similarly 

like MFPT dataset and MIMII dataset. 

       

 
(a)  (b)  
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Figure 17: Confusion matrix of Vehicle Engine dataset for (a) Standard SqueezeNet; (b) Standard ResNet-18; (c) 
Proposed CNN-LR Model and (d) Proposed CNN-PR Model 

 

4.4 Explainable Artificial Intelligence (XAI) 

Explainable Artificial Intelligence (XAI) is an essential concept of machine learning that aims to 

explain how machine learning models generate outputs. Incorporating XAI into a machine 

learning model makes the model more dependable since we can monitor the model's inference 

process. There are some already established methods for CNN. 

 

Lime: The model employed by the system is designed for easy comprehension and can learn 

from examples in a specific region. 

Grad-Cam: This tool utilizes counterfactual explanations to modify CNN predictions and can 

explain all layers, including the final hidden layer. 

 

In Fig 18, the comparison of LIME and Grad-Cam is mentioned. Here we have chosen input 

images from every class of our three datasets. For the MFPT dataset, we have taken three input 

(c)  (d)  
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images from the inner race, outer race, and baseline, respectively. Normal and abnormal pump 

spectrogram images are taken for XAI for the MIMII dataset. Moreover, finally, for our real 

dataset, we have taken faulty and normal engine spectrogram images [3]. 

 

   

Figure 18: Comparison of XAI methods on MFPT, MIMII and Vehicle Engine datasets 

 

 

  



58 
  

4.5 Result Analysis 

To prove the better accuracy of the proposed model, we have compared it with standard CNN 

architectures. The inputs of SqueezeNet and ResNet-18 architectures are also the time-frequency 

images. In order to ensure the fairness of the experiment and the reliability of the results, the 

whole test is repeated five times on these two existing architectures by using the MFPT dataset, 

MIMII dataset and Real dataset. The diagnosis accuracy of each method is shown in Fig. 19. The 

diagnosis accuracy and average training time of the three methods are summarized in Table 11. 

 

 

Figure 19: Classification accuracy and comparison of four different CNN models on three different datasets 
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Table 12: Average accuracy and average training time of four CNN models 

Models 
Average  

Accuracy (%) 

Average  

Training Time (s) 

Proposed Architectures (on avg) 95.49 4622.00 

Standard ResNet-18 93.96 4803.67 

Standard SqueezeNet 90.96 3498.67 

 

As we can see, the fault diagnosis accuracy of the proposed method in three different datasets is 

higher than that of the other two standard CNN architectures. The results show that if we use the 

existing CNN network architecture and if we replace the existing ReLU function with Leaky 

ReLU and Parametric ReLU, it provides better accuracy. It is proved that the proposed model can 

effectively solve the difficult situation of Dead Neuron of deep learning network.  

By comparing the results with other methods, it can be easily seen that the proposed method 

achieves a higher diagnosis accuracy, which further shows the effectiveness of the proposed 

method. 
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Chapter 5 

Conclusion and Future Work 

In this study, a new deep neural network model CNN-LR is built for fault diagnosis of industrial 

machinery. First, we use the CWT to construct the time-frequency images of vibration signals. 

Then, the obtained images are input into the proposed model for training. Finally, the diagnosis 

of the fault location and severity of the industrial machinery is completed. The experiments 

indicate that the diagnostic accuracy of this method can reach 96.57% for the MFPT dataset, 

95.33% for the MIMII dataset, and 94.56% for the Vehicle engine dataset, which verifies the 

flexibility and practicability of the constructed model. By comparing with the standard 

SqueezeNet and standard ResNet-18, it is shown that the proposed model can resolve the difficulty 

of deep feature extraction in the traditional method and the dead neuron problem in existing 

architectures. We have deployed XAI functions that can show how the CNN model predicts the 

image class and identifies which parts of the image have the most significant impact on the CNN 

model's final prediction. 

 

However, for relatively noisy data sources, the accuracy of the proposed method still needs to be 

enhanced. Therefore, the structure of the proposed model needs further improvement in the future. 

Moreover, in this paper, only single fault-bearing vibration signals are used for model training, 

and no compound fault samples are created to simulate the actual situation, which is a challenge 

for applying the proposed model in practical engineering. It has also become a research direction 

for us in the future. 
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