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Abstract

Explainable AI (XAI) techniques are essential for comprehending machine learn-
ing model predictions in a variety of fields, including healthcare. In this study, we
highlight XOPSIS, a newly developed XAI method built on the TOPSIS score and
intended to offer thorough justifications for gradient boosting models. We com-
pare the performance of XOPSIS with two established XAI techniques, LIME and
SHAP, using a comprehensive dataset encompassing different domains, including
maternal health records, the benchmark Iris dataset, and the benchmark breast
cancer dataset. Our findings demonstrate significant similarities between XOPSIS
and LIME in generating explanations and consistently identifying the most influen-
tial features contributing to the model’s predictions. In addition, by utilizing SHAP
values, we acquire a comprehensive comprehension of the model’s behavior and the
unique contributions of each feature to the predictions. The significance of our pro-
posed approach lies in its ability to enhance interpretability in machine learning
models, enabling stakeholders to make informed decisions across various domains.
While we showcase the effectiveness of XOPSIS in maternal health risk prediction,
the benchmark Iris dataset, and breast cancer diagnosis, its applicability extends to
diverse domains such as finance, cybersecurity, and customer behavior analysis. The
flexibility and generalizability of XOPSIS make it a valuable tool for understanding
the underlying factors driving model predictions. In addition to the maternal health
records, the benchmark Iris dataset, and the breast cancer dataset, we also apply
XOPSIS to the Car Acceptability dataset, further expanding its applicability across
diverse domains. By including this dataset, we demonstrate the versatility of XOP-
SIS in providing comprehensive explanations for machine learning models in various
contexts. Furthermore, future studies should focus on the practical implementation
of XOPSIS in different domains, evaluating its effectiveness in real-world scenarios,
and assessing its impact on decision-making processes. Furthermore, exploring the
integration of XOPSIS in various industries and applications can provide valuable
insights into the interpretability and transparency of machine learning models. By
advancing XAI techniques like XOPSIS, we can foster trust, accountability, and
widespread adoption of AI technologies in diverse fields, ultimately benefiting both
industry practitioners and end-users. The continued development and refinement
of XOPSIS and similar XAI methods will contribute to the responsible and ethical
use of AI, promoting transparency and understanding in complex machine learning
models.

Keywords: Explainable AI; XOPSIS; LIME; SHAP; Maternal Health; Interpretabil-
ity; Transparency
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Chapter 1

Introduction

Explainable AI (XAI) has emerged as a critical component in the field of predictive
modeling, aiming to address the growing concern regarding the lack of transparency
and interpretability in machine learning models. With the widespread implementa-
tion of these models in diverse domains, including healthcare and beyond, under-
standing the factors that contribute to predictions becomes essential for ensuring
accountability and enabling informed decision-making. The lack of transparency
and interpretability in machine learning models [1] has been a major hurdle in their
widespread adoption across diverse domains. Traditional black-box models often
provide accurate predictions but fail to provide meaningful explanations behind
their decisions. This lack of interpretability poses challenges for practitioners, re-
searchers, and end-users, who rely on a comprehensive understanding of the factors
influencing predictions to make accurate choices[2] and place faith in the outcomes of
these models. Furthermore, it raises concerns about potential biases and fairness in
decision-making processes, particularly in sensitive domains where the consequences
of predictions are far-reaching.

Existing XAI methods such as LIME (Local Interpretable Model-agnostic Expla-
nations) and SHAP (SHapley Additive exPlanations) have made significant con-
tributions to providing interpretability [3] in machine learning models. LIME ap-
proximates the model locally and assigns feature importances based on local per-
turbations, while SHAP uses Shapley values to assign importances through a game-
theoretic approach. However, they have certain limitations in capturing the nuanced
decision-making processes of complex models and providing detailed explanations
across various domains beyond healthcare.

In this study, we propose XOPSIS, a novel XAI method that revolutionizes the
generation of explanations for machine learning model predictions. XOPSIS sur-
passes the limitations of existing methods by incorporating advanced features such
as calculating the highest and lowest possible feature values, performing instance
ranking based on the TOPSIS (Technique for Order of Preference by Similarity to
Ideal Solution) score, and considering the average feature values of similar instances.
Moreover, XOPSIS introduces the concept of filtering instances based on predicted
target, enabling a more tailored and focused explanation generation process.

By incorporating these additional features, XOPSIS delivers comprehensive and
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granular explanations that capture the intricate relationships and interactions among
the features in the data. The calculation of the highest and lowest possible feature
values provides insights into the range of influence each feature can have on the
prediction outcome. The instance ranking based on TOPSIS score ensures that the
most representative and significant instances are considered during the explanation
generation process. Furthermore, filtering instances based on predicted target allows
XOPSIS to focus on the specific class or label of interest, enhancing the relevance
and specificity of the generated explanations. Finally, considering the average fea-
ture values of similar instances adds an additional layer of context and accuracy to
the explanations, enabling a more nuanced understanding of the contributing factors
behind the predictions.

These innovative features set XOPSIS apart from existing XAI methods, enabling
it to generate more insightful and accurate explanations. XOPSIS promotes trans-
parency and interpretability across several domains by giving consumers an in-depth
knowledge of how machine learning models make decisions.

To evaluate the effectiveness of XOPSIS, we employ our approach to multiple datasets,
including a real-world Maternal Health dataset, the benchmark Iris dataset, the
Breast Cancer diagnosis dataset, and the Car Acceptability dataset. Through these
applications, XOPSIS demonstrates its practical applicability and performance in
generating specific instance prediction explanations. Maternal health is a domain
where accurate risk prediction plays a crucial role in facilitating timely intervention
and tailored care. By applying XOPSIS in this context, our aim is to enhance the
interpretability of machine learning models and gain a comprehensive understanding
of the factors influencing maternal health risk, including the benchmark Iris dataset,
breast cancer diagnosis, and the Car Acceptability dataset.

1.1 Contributions

In a nutshell, the following contributions are made by this study:

• We introduce XOPSIS as an innovative XAI method for generating compre-
hensive explanations of machine learning model predictions.

• We demonstrate the practical applicability of XOPSIS by leveraging it in var-
ious datasets, including a real-world Maternal Health dataset, the benchmark
Iris dataset, the benchmark Breast Cancer diagnosis dataset, and the Car
Acceptability dataset.

• We assess the performance of XOPSIS in generating specific instance predic-
tion explanations, which exhibit similarities to explanations produced by other
established XAI methods.

By integrating XOPSIS into the field of health risk prediction and leveraging XAI
techniques, our approach aims to enhance transparency, interpretability, and ac-
countability in machine learning models. The insights provided by XOPSIS em-
power healthcare providers, researchers, and stakeholders across various domains to
make informed decisions, ultimately contributing to improved outcomes and foster-
ing trust in AI technologies.
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Chapter 2

Background Study

In the evolving landscape of machine learning and artificial intelligence, achieving
transparency and interpretability in complex models has become pivotal for their
widespread adoption and credibility across various domains. Interpretability meth-
ods [4] play a crucial role in demystifying the decision-making processes of these
models, allowing stakeholders to understand and trust their outcomes. This sec-
tion delves into the background study of three significant techniques: LIME, SHAP,
and TOPSIS, which contribute to the explainability and insightfulness of machine
learning models.

2.1 LIME

LIME (Local Interpretable Model-agnostic Explanations) revolutionizes the land-
scape of interpretability by offering a practical solution [5] to one of the most
formidable challenges in machine learning: explaining the predictions of complex
models. As machine learning models have advanced in complexity, their decision-
making processes have become increasingly difficult to decipher. LIME addresses
this issue by providing transparent, instance-specific explanations, making it an in-
dispensable tool for model transparency and accountability.

At its core, LIME operates on the principle of approximating a black-box model’s
behavior around a specific instance of interest. This approach is rooted in the real-
ization that while global explanations might be intricate, local interpretations can
be more understandable [6]. To achieve this, LIME generates a dataset of perturbed
instances by introducing controlled noise to the original instance’s features. These
perturbed instances are then used to create a surrogate interpretable model that
mimics the behavior of the complex model around the instance in question.

LIME follows a systematic workflow encompassing several pivotal stages. Initially,
an instance requiring an explanation is selected. This forms the basis for subsequent
analysis. Subsequently, [7] minor alterations are introduced to the features of the
chosen instance, thereby creating a diverse dataset through perturbation. Predic-
tions are then derived for these perturbed instances, effectively capturing the output
behavior of the underlying black-box model. A surrogate model is subsequently es-
tablished, trained using the perturbed instances and their corresponding predictions.
This surrogate model is deliberately constructed to be both interpretable and lo-
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cally accurate. Leveraging this surrogate model, the next step involves interpreting
the model’s decisions, thereby extracting critical insights and feature importances.
These insights contextualize the rationale behind the black-box model’s specific pre-
diction for the chosen instance. By interpreting the surrogate model’s explanations,
local insights emerge, unveiling the intricate interplay between features and pre-
dictions specific to the selected instance. This comprehensive workflow not only
demystifies the predictions of complex models but also empowers users to make in-
formed decisions based on the extracted insights.

LIME’s true strength lies in its versatility. It’s model-agnostic [8], meaning it can be
applied to a wide array of machine learning models without requiring knowledge of
their internal architectures. This makes LIME an invaluable tool for understanding
the decision-making of models like deep neural networks, random forests, support
vector machines, and more. This adaptability makes LIME suitable for addressing
the opacity of models ranging from image classifiers to natural language processing
algorithms.

However, like any technique, LIME has its limitations. The accuracy of the surro-
gate model heavily depends on the quality and diversity of the perturbed instances.
Also, the explanations generated by LIME are localized and may not capture global
model behavior accurately.

Nonetheless, LIME’s significance is undeniable. It bridges the gap between complex,
high-performance models and human understanding, making it a cornerstone of
explainable AI. It empowers domain experts, regulators, and end-users with the
ability to validate, trust, and even enhance machine learning systems by providing
a comprehensible rationale for individual predictions.

2.2 SHAP

SHAP, an acronym for SHapley Additive exPlanations, a pioneering technique in
the field of Explainable AI (XAI), offers a sophisticated approach to understanding
the influence of individual features on the predictions made by complex machine
learning models. Anchored in cooperative game theory, SHAP provides a robust
framework for attributing contributions to each feature, thereby demystifying the
decision-making process of black-box models.

At the heart of SHAP lies the concept of Shapley values [9], a central notion in coop-
erative game theory used to distribute the value of a cooperative endeavor among its
participants fairly. SHAP cleverly adapts this concept to machine learning models,
where features collaborate to predict an outcome. In this context, SHAP quantifies
the average marginal contribution of a feature by considering its impact on predic-
tions across all possible feature combinations.

The SHAP algorithm operates by comparing the model’s prediction for a specific
instance with a reference prediction, typically the average prediction of the training
dataset. This difference is referred [10] to as the Shapley value, representing the
contribution of each feature to the variation in prediction. The crux of SHAP’s
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power lies in its ability to disentangle the complex interplay of features, enabling us
to discern which features amplify or dampen a particular prediction.

In practice, SHAP generates a comprehensive set of explanations, each elucidating
the role of a feature in influencing the prediction for a specific instance. These
explanations manifest as positive or negative values, signifying whether a feature
positively or negatively affects the prediction. Notably, the summation of SHAP
values across all features equates to the disparity between the model’s prediction for
the instance and the reference prediction.

One of SHAP’s compelling features is its universality – it is applicable to various
model types, including those that are not inherently interpretable. By providing
insights into feature contributions, SHAP bridges the gap between complex mod-
els and human comprehension. This attribute has far-reaching implications, from
understanding the factors driving an individual prediction to identifying bias and
fairness concerns within the model’s decision-making process.

In essence, SHAP stands as a critical tool for fostering transparency, accountability,
and interpretability in the realm of machine learning. By attributing contributions
to features, SHAP empowers practitioners, researchers, and end-users to trust and
comprehend the decisions made by complex models, even in scenarios where the
model’s internal workings remain elusive.

2.3 TOPSIS

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), a key
technique in Multi-Criteria Decision Making (MCDM) [11], addresses the challenge
of ranking alternatives when considering multiple conflicting criteria. It operates by
measuring the similarity of each alternative to the ideal solution and the dissimilar-
ity to the anti-ideal solution. This method is valuable in scenarios where decisions
involve a range of criteria, each with varying degrees of significance. While not ex-
clusively designed for XAI, TOPSIS finds application in model interpretation [12]
by facilitating nuanced comparisons between instances and shedding light on their
distinctive attributes.

The procedure of TOPSIS, or Technique for Order of Preference by Similarity to
Ideal Solution [13], encompasses several sequential steps. The first step involves
the normalization of a decision matrix, comprising criterion values for each alter-
native. This normalization process ensures equitable evaluation across all criteria,
preventing undue influence from disproportionately large values. Following this, the
weighted normalization stage ensues, wherein each normalized value is multiplied
by its corresponding criterion weight. These weights convey the relative significance
of the criteria, introducing nuanced effects on the final ranking. Ideal and anti-ideal
solutions are then defined for every criterion, with the ideal solution characterized
by maximal values for beneficial criteria and minimal values for non-beneficial ones.
Conversely, the anti-ideal solution represents [14] the least desirable values. Subse-
quently, the calculation of distances comes into play, involving the computation of
Euclidean distances from both the ideal and anti-ideal solutions for each alterna-
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tive. These distances provide insights into the relative proximity or divergence of
each alternative concerning these reference points in the multidimensional criterion
space. Determination of a relative closeness score follows, reflecting each alterna-
tive’s performance in relation to the criteria. This score is ascertained by evaluating
the ratio of the distance to the anti-ideal solution to the summation of distances
to both the ideal and anti-ideal solutions. Finally, based on their relative closeness
scores, alternatives are ranked, with higher scores signifying superior overall perfor-
mance and more favorable rankings. The fundamental principle of TOPSIS revolves
around the concept of an “ideal solution” and an “anti-ideal solution.” The ideal
solution represents the characteristics that an alternative should ideally possess to
be considered optimal, while the anti-ideal solution embodies the exact opposite.
The distance between an alternative and these two reference points forms the crux
of the TOPSIS method.

When applied to XAI, TOPSIS can be employed to provide insights into instance-
level predictions by assessing the proximity of instances to the ideal and anti-ideal
solutions. This approach enables a comprehensive understanding [15] of the relation-
ships between instances and the criteria they are evaluated upon. By quantifying
these distances, TOPSIS can highlight instances that align closely with the ideal
solution and those that deviate significantly.

Comparing TOPSIS to AHP (Analytic Hierarchy Process), another popular MCDM
method [16], reveals distinct characteristics. In AHP, decision-makers assign pair-
wise comparisons and weights to criteria, resulting in a complex weighting process.
Conversely, TOPSIS uses preset weights [17] and focuses on assessing the similarity
of alternatives to the ideal and anti-ideal solutions.

The selection of TOPSIS for the XOPSIS XAI method is driven by specific reasons.
One key factor is the use of uniform weights for each feature in TOPSIS, simplify-
ing the process compared to AHP, where feature weights are ranked. Furthermore,
TOPSIS is well-suited for scenarios where transparency and interpretability [18] are
paramount, as it produces clear rankings based on a set of predefined criteria. In
contrast, AHP’s complex weight assignment may hinder transparency. Addition-
ally, TOPSIS aligns with the goal of XOPSIS to enhance interpretability in machine
learning models across various domains. Its structured and comprehensible approach
facilitates meaningful explanations, promoting trust and informed decision-making.

TOPSIS is particularly useful in scenarios where model predictions are influenced
by a multitude of factors, [19] each with varying degrees of importance. The method
facilitates the systematic comparison of instances across these diverse criteria, offer-
ing a holistic view of how individual attributes contribute to the final decision. This
can be especially valuable in fields like healthcare, [20] finance, and risk assessment,
where decisions are often influenced by multiple conflicting considerations. One of
the defining characteristics of TOPSIS is its flexibility in handling both quantitative
and qualitative data. This adaptability is vital when dealing with real-world data
[21] that can vary widely in terms of format and meaning. By converting data into
a standardized form, TOPSIS enables fair comparisons between different attributes
and instances, regardless of their initial nature.
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In conclusion, while not a traditional XAI method, TOPSIS complements the in-
terpretability [22] landscape by providing a structured approach to understanding
multi-criteria decision-making. By assessing the distance between instances and
reference solutions, TOPSIS contributes to uncovering the rationale [23] behind
predictions in complex models. Its ability to accommodate diverse data types and
facilitate comprehensive comparisons makes it a valuable tool for understanding the
intricate relationships within predictive models.

7



Chapter 3

Related Work

Concerns about the transparency and interpretability of machine learning mod-
els for health risk prediction, notably in the area of maternal health, have been
raised. Explainable AI (XAI) approaches have come to light as a viable solution to
these challenges in response to these worries. Existing XAI methods such as LIME,
SHAP, and ELI5 have been widely studied and applied in various domains, including
healthcare. However, there is a need for novel XAI methods that can provide specific
instance prediction explanations with high granularity. By presenting XOPSIS, an
entirely new XAI method that provides thorough insights into how to make choices
of machine learning models, this work seeks to narrow this gap.

3.1 Explainable AI

Explainable Artificial Intelligence (XAI) techniques, which seek to shed light on the
inner workings of machine learning models and make their predictions more trans-
parent and intelligible, have gained popularity in recent years. One such method
is the use of the multi-criteria decision-making technique TOPSIS (Technique for
Order of Preference by Similarity to Ideal Solution), which is an explainable AI
method for ranking and prioritizing various risk factors according to their relative
importance in the context of maternal health. When utilized for decision-making
in a variety of fields, TOPSIS has proven to be efficient in managing several factors
and producing outcomes that are easy to understand. Several studies have applied
LIME and SHAP for model interpretation in various domains, including healthcare.
These methods are being applied to clarify how feature importance, feature inter-
actions, and overall model behavior relate to predictions made by machine learning
models. To to the finest of the information we have, however, there hasn’t been
much study on the use of TOPSIS as an explainable AI technique for interpreting
maternal health risk predictions and explaining specific data point predictions, along
with the complementary use of LIME and SHAP for model interpretation.

In order to explain the predictions of any classifier, this paper [24] introduces a
technique called LIME (Local Interpretable Model-Agnostic Explanations). The in-
terpretability issue in black-box machine learning models is addressed by LIME by
offering local explanations that highlight the key factors influencing each prediction.
The method generates simplified, interpretable models around specific instances
and quantifies the importance of each feature. By providing clear explanations, this
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method increases consumers’ faith in the predictions by allowing them to see how
complex classifiers make decisions.

SHAP (SHapley Additive exPlanations), a standardized method for unraveling model
predictions, is presented in the study [25]. Assigning relevance levels to each feature
and measuring their contribution to the prediction is done by SHAP using game
theory principles. The behavior of the model is explained globally by SHAP by
computing Shapley values, which reflect the minimal impact of each feature across
various combinations. This approach allows for better understanding of the model’s
decision-making process and enables insights into individual feature contributions,
leading to improved interpretability and trust in machine learning models.

The paper [26] introduces DeepLIFT, a method for learning important features in
deep neural networks by propagating activation differences. By comparing the dif-
ference in neuron activations when a feature is present versus missing, DeepLIFT
calculates the impact of every characteristic to the outcome. This approach allows
for fine-grained feature attribution and provides insights into the important features
driving the model’s predictions. By quantifying feature importance, DeepLIFT en-
hances interpretability and understanding of deep neural networks, facilitating trust
and further analysis of these complex models.

In [27], the area of explainable AI for trees is examined, with a focus on both local
and global comprehension. The authors propose an integrated framework that com-
bines SHAP (SHapley Additive exPlanations) values with tree ensembles to provide
interpretable explanations for individual predictions. This method provides expla-
nations for the overall performance of the model and allows for the discovery of key
characteristics impacting certain predictions. By bridging the gap between local in-
terpretability and global understanding, the paper contributes to the development of
explainable AI techniques for tree-based models, enhancing trust and transparency
in decision-making processes.

In [28], the author introduces RuleFit, a method for predictive learning through
rule ensembles. RuleFit combines the interpretability of rule-based models with the
predictive power of ensemble methods. The approach creates a set of rules that cap-
ture both linear and non-linear relationships in the data, and then integrates them
into an ensemble model. RuleFit provides interpretable explanations by identifying
important features and the corresponding rules that contribute to predictions. The
method offers a balance between model complexity and interpretability, making it
suitable for various domains where transparency is desired.

The paper [29] presents a comprehensive approach for explainable AI with a focus
on tree-based models. The authors introduce a unified framework, called TreeEx-
plainer, that allows for the interpretation of both local and global model behavior.
TreeExplainer provides insights into how individual features contribute to predic-
tions and how different interactions between features influence model outcomes.
By bridging the gap between local and global interpretability, the method offers
a deeper understanding of tree-based models and enhances transparency in their
decision-making processes. This framework provides valuable tools for practitioners
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seeking to gain global insights and explanations from tree-based models.

A thorough examination and analysis of the state of interpretable machine learning
are provided in the study [30]. In order to establish more rigorous and standardized
methods for clarity, the paper addresses the difficulties and limitations of present
approaches to clarity in machine learning models. It also suggests a framework for
doing so. In addition to offering suggestions for developing the field of interpretable
machine learning, the paper highlights the necessity of scientifically grounded, repli-
cable, and validated interpretable machine learning. Scientists and practitioners
interested in the topic of interpretable machine learning will find the paper to be a
useful resource.

The authors of [31] propose a method for evaluating each feature’s importance to
a prediction generated by a model, offering insights into the significance of various
features for the predictions made by the model. The use of this method in numer-
ous domains is discussed in the study, which also emphasizes its potential to make
prediction models more comprehensible and reliable. The paper serves as a valuable
contribution to the field of interpretable machine learning and provides insights into
the explanation of model predictions.

A method called “Anchors” has been introduced in [32] that provides interpretable
explanations for individual predictions, identifying the most important features that
influence a model’s output. The paper indicates that Anchors performs better than
conventional explanation techniques both in terms of accuracy and comprehensi-
bility. It also illustrates the usefulness of Anchors in numerous trials. The study
offers a potential method for producing precise and understandable justifications
for model predictions, which makes it an important contribution to the subject of
interpretable machine learning.

3.2 Maternal Health

Maternal health risk prediction has become a critical area of research to improve
maternal health outcomes and reduce maternal morbidity and mortality. Machine
learning approaches have been used in several research to forecast threats to mater-
nal health, such as gestational diabetes, preeclampsia, premature birth, and other
issues. Although the predictive accuracy of these studies has shown encouraging
results, the black-box nature of machine learning models has constrained their in-
terpretability, making it difficult to comprehend the underlying causes influencing
the risk estimations.

Research on the connection between low birth weight in the initial pregnancy and
the risk of preeclampsia in the subsequent pregnancy is presented in this work [33].
According to the study, preeclampsia in a subsequent pregnancy may be predicted
by low birth weight in the initial pregnancy, necessitating thorough monitoring and
early interventions in women who have a history of giving birth to low birth weight
babies.
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Pre-eclampsia, a potentially dangerous pregnancy condition that involves excessive
blood pressure and organ damage, is thoroughly discussed in this study [34]. The
paper discusses the pathophysiology, risk factors, diagnosis, and management of
pre-eclampsia, including the role of regular antenatal care, monitoring, and timely
interventions. It also emphasizes how critical early detection and effective treatment
are to preventing the harmful effects of pre-eclampsia on both the mother and the
fetus.

The authors of [35] provide an analysis of pre-eclampsia rates in the US from 1980 to
2010 by age-period-cohort. The study looks at variations and patterns in the occur-
rence of pre-eclampsia across time, taking into account the impact of age, time, and
birth cohort. The findings provide insights into the changing rates of pre-eclampsia
and contribute to a better understanding of this pregnancy complication in the US
context during the specified time period.

In [36], the authors examine the incidence of preeclampsia, a hypertensive disor-
der during pregnancy, and associated risk factors and outcomes. In order to dis-
tinguish between early-onset and a late-onset preeclampsia, the paper covers each
subtype’s risk factors and undesirable consequences. For proper management and
care throughout pregnancy, the report emphasizes the need of comprehending the
distinctions between initial and postpartum preeclampsia and stresses the need for
more research in this area.

This paper [37] provides an overview of the existing research on the importance
of prenatal care and the diagnosis of high-risk pregnancies for effective maternal
health care. It highlights the use of machine learning and deep learning algorithms
in predicting risk levels based on pregnancy risk factors. Additionally, Explainable
AI techniques such as LIME and SHAP are explored for providing interpretable
explanations. The review emphasizes the significance of early diagnosis and appro-
priate treatment in reducing maternal mortality and improving maternal and fetal
well-being.

A study [38] conducted in 2020 implemented a modified decision tree algorithm for
diagnosing high-risk pregnancies. The study comprised six independent variables
and one objective variable, and it used data from six hospitals from 2018 to 2020.
IoT technology was used to gather the research’s data. The results showed that,
when predicting the model, the improved decision tree approach showed a 97% gain
in accuracy over comparable methods. WEKA and Python software were also uti-
lized in the algorithm’s implementation.

In their study [39], Caruana et al. (2015) address the critical task of predicting
pneumonia risk and hospital 30-day readmission in healthcare settings. They em-
phasize the importance of intelligible models for medical decision-making and pro-
pose approaches to enhance model interpretability. Their research contributes to
the growing field of interpretable machine learning in healthcare, aiming to improve
the transparency and trustworthiness of predictive models for medical applications.
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3.3 IRIS Species

In their work [40], Swain et al. (2012) present an approach for the classification of
iris plants using neural networks. Their study focuses on leveraging neural network
techniques to effectively classify iris plant species. By applying advanced machine
learning methods, the authors contribute to the field of plant species classification
and demonstrate the potential of neural networks in improving accuracy and effi-
ciency in this domain. The research underscores the significance of machine learning
applications in botanical studies.

In their study presented at the 2022 6th International Conference on Intelligent
Computing and Control Systems (ICICCS), Pachipala et al. utilize a Random Forest
approach for the classification of iris flowers within an AWS environment. The au-
thors [41] highlight the application of Random Forest as a powerful technique in the
context of flower classification, taking advantage of AWS infrastructure to enhance
computational capabilities. This work emphasizes the integration of cloud com-
puting and machine learning methodologies for effective and scalable flower species
classification, contributing to the advancement of automated botanical analysis.

3.4 Breast Cancer

In their recent work [42] published by MDPI, Naeem and Ali delve into the domain
of breast cancer diagnosis through the application of machine learning techniques.
The authors explore the utilization of various machine learning methodologies for
the purpose of breast cancer detection, emphasizing the potential of these tech-
niques in contributing to accurate and efficient diagnostic procedures. This study
contributes to the ongoing efforts in leveraging machine learning advancements for
medical diagnosis, particularly in the critical area of breast cancer detection and
classification.

In a recent preprint published on arXiv, [43] Zuluaga-Gomez delves into the realm
of breast cancer diagnosis through the lens of machine learning techniques. The au-
thor’s work revolves around exploring the potential of machine learning methodolo-
gies for enhancing breast cancer diagnosis accuracy and efficiency. By investigating
the application of these techniques to breast cancer data, this study aims to con-
tribute valuable insights into the field of medical diagnosis, particularly focusing on
the critical area of breast cancer detection and classification. The work adds to the
growing body of research dedicated to leveraging machine learning advancements
for improved medical diagnostic procedures.

In a comprehensive article published in the journal Diagnostics, the authors conduct
a systematic review [44] to explore the diverse landscape of artificial intelligence (AI)
applications in breast cancer diagnosis. The authors delve into the realm of AI and
its multifaceted role in enhancing breast cancer diagnostic processes. Through a
meticulous examination of existing literature, this study critically evaluates various
AI techniques and their effectiveness in aiding medical professionals in accurately
diagnosing breast cancer. By providing a consolidated overview of AI applications in
breast cancer diagnosis, the research contributes to the understanding of the trans-
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formative potential of AI in the field of medical imaging and diagnosis.

In the esteemed journal [45] Expert Systems with Applications, Mehmet Fatih Akay
presents a research article which delves into the integration of support vector ma-
chines (SVMs) with feature selection techniques to enhance the accuracy of breast
cancer diagnosis. Akay’s research explores the intricate interplay between advanced
machine learning algorithms and the identification of relevant features to improve
the diagnostic process. By leveraging SVMs and feature selection methods, the study
contributes to the ongoing efforts to develop more accurate and efficient diagnostic
tools for breast cancer. The paper’s findings offer valuable insights into the potential
of combining sophisticated algorithms with intelligent feature selection strategies in
the realm of medical diagnosis.

3.5 Car Acceptability

In the International Journal of Advanced Research in Computer Science and Soft-
ware Engineering (IJARCSSE), the authors [46] present an article titled ”Predicting
Overall Car Performance Using Artificial Neural Network.” This research article in-
vestigates the application of artificial neural networks (ANNs) to predict the overall
performance of cars. The authors delve into the realm of machine learning by uti-
lizing ANNs to model and forecast the intricate and multifaceted aspects of car
performance. Through this work, Al-Mubayyed, Abu-Nasser, and Abu-Naser con-
tribute to the development of predictive models in the automotive domain, enhanc-
ing the understanding and evaluation of car performance characteristics. The study
showcases the potential of artificial neural networks in analyzing and forecasting
complex automotive parameters, offering insights into the practical utilization of
machine learning techniques in the automotive industry.

In their article [47], the authors delve into the realm of predictive modeling for car
performance. Published in 2020, the study explores the application of Artificial
Neural Networks (ANNs), specifically Jittered Neural Networks (JNNs), to forecast
various aspects of car performance. The authors harness the power of machine learn-
ing and neural networks to analyze and predict intricate performance parameters of
automobiles. By focusing on JNNs, the research aims to enhance the accuracy and
efficiency of predictions, contributing to the field of automotive engineering and pre-
dictive modeling. Through this work, Al-Mobayed, Al-Madhoun, Al-Shuwaikh, and
Abu-Naser offer insights into the potential of neural network-based methodologies
in the analysis and prediction of car performance characteristics.
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Chapter 4

Methodology

4.1 Proposed Explainable AI Method

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) is a
widely used multi-criteria decision-making (MCDM) method that involves ranking
alternatives based on their proximity to an ideal solution, providing insights into
the model’s prediction behavior by representing how each feature contributes to-
wards the prediction for a specific instance. TOPSIS is widely used in various fields
such as finance, marketing, engineering, and environmental management to support
decision-making processes when multiple criteria are involved. It provides a simple
yet effective approach for decision-makers to compare and rank alternatives based on
their performance against multiple criteria simultaneously, making it a valuable tool
in decision analysis and decision support systems. The XOPSIS method is executed
as per the following steps. The flowchart presented in Figure 4.1 outlines the key
steps, focusing on the initial stages of Data Preprocessing, Classification/Prediction,
Topsis score calculation and XOPSIS Explanation Generation.
In the Data Preprocessing step, the flowchart begins by initializing the dataset
and performing target labeling to prepare the data for analysis. Subsequently, the
formulation of training and testing datasets is conducted using two techniques: train-
test split and k-fold cross validation. These techniques ensure the availability of
suitable data subsets for model training and evaluation, promoting robustness and
generalizability of the subsequent analysis.
Moving to the next step, the flowchart transitions to the classification/prediction
phase. Here, the three main algorithms utilized for risk assessment, namely gradient
boosting, random forest, and XGBoost, are highlighted. These algorithms are among
the 14 employed in the study, chosen for their proven effectiveness in predictive
modeling. By applying these algorithms to the preprocessed data, the flowchart
facilitates the generation of predicted risk labels, offering valuable insights into the
classification of risk levels in the target population.
Subsequently, the flowchart progresses to the third step: Topsis score calculation.
This step involves the computation of Topsis scores, a multi-criteria decision-making
method, which further refines the risk assessment process. The Topsis score calcu-
lation enables the evaluation of alternatives based on multiple attributes, assisting
in the identification of the most optimal options.
Assuming that, we start with an input dataset consisting of m alternatives and n
criteria, represented by a matrix X with dimensions m x n. Each row of X corre-
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sponds to an alternative, and each column represents a criterion. Next, we normalize
the dataset by dividing each element by the sum of its corresponding column. This
normalization step ensures that each criterion is treated equally and comparable
across alternatives. After normalization, we calculate the weighted normalized de-
cision matrix, where each element of the normalized matrix is multiplied by the
weight assigned to its corresponding criterion. Then, we determine the ideal and
anti-ideal solutions. The ideal solution represents the best possible values for each
criterion, while the anti-ideal solution represents the worst possible values. These
solutions are derived by finding the maximum and minimum values for each criterion
in the dataset, respectively. Using the ideal and anti-ideal solutions, we calculate
the Euclidean distance of each alternative to both solutions. The Euclidean dis-
tance measures the similarity or dissimilarity between an alternative and the ideal
or anti-ideal solution. With the calculated Euclidean distances, we can determine
the TOPSIS score for each alternative.

Figure 4.1: Top Level Overview of the XOPSIS Method

15



Algorithm 1 XOPSIS Based Explanation Method

procedure XOPSISExplanation(Dataset X, Weight vector wi, Data Point)
1. Normalize the dataset:

X ′ ← X∑
X

2. Calculate the weighted normalized decision matrix:

X ′′ ← X ′ · wi

3. Calculate the Euclidean distance to ideal and anti-ideal solutions:

D+ ←
√∑

(X ′′ − A+)2

D− ←
√∑

(X ′′ − A−)2

4. Determine the TOPSIS score for each alternative:

TOPSIS Score← D−

D+ +D−

5. Rank alternatives based on TOPSIS Scores in descending order
6. Take a specific Data Point as input and filter the most similar instances

based on TOPSIS Score and predicted risk level
7. Calculate average feature values for these instances:

Avg. Features←
∑

features of instances

number of instances

8. Determine the feature differences:

Feature Diff← DataPoint Features− Avg. Features

9. Estimate correlation between each feature and target variable:

Corr← CalculateCorrelation(df, ’RiskLevel’)

10. Evaluate the weighted contribution of each feature:

Weighted Contrib← Feature Diff · Corr

11. Detect features with positive and negative contributions:
if Weighted Contrib ≥ 0 then

Positive Contrib← Pos. Weighted Contrib.
else

Negative Contrib← Neg. Weighted Contrib.
end if

12. Print the Explanation: Data Point index, actual risk level, predicted
risk level, features with highest positive and negative contributions

end procedure
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The TOPSIS Score is calculated as the ratio of the distance to the anti-ideal solution
divided by the sum of the distances to both the ideal and anti-ideal solutions. Finally,
based on the TOPSIS scores, the alternatives are ranked in descending order. Higher
TOPSIS scores indicate better rankings, reflecting the alternatives’ proximity to the
ideal solution and their distance from the anti-ideal solution.
Figure 4.1 showcases a comprehensive flowchart representing the step-by-step exe-
cution of our proposed XOPSIS methodology. This methodology, displayed in this
figure, encompasses the sequential steps involved in generating explanations for the
predicted risk level of a given data point. By utilizing TOPSIS scores and weighted
contributions, the flowchart provides valuable insights into the specific features that
contribute positively or negatively to the prediction. After calculating TOPSIS
Score, the process takes a specific Data Point as an input, which contains several
features along with Ideal solutions, anti-ideal solutions, TOPSIS Score, and Pre-
dicted Risk Level.
The next step in the process is to filter out the most similar instances to the given
data point based on their TOPSIS Score in descending order and the predicted risk
level. This is done to identify instances that are most similar to the given data point
and can provide useful insights into predicting the risk level.
Once the most similar instances are identified, the process calculates the average
feature values for these instances. This step helps in determining the average feature
values for instances that are similar to the given data point. The next step is to
determine the feature differences between the given data point and the average
feature values. This step helps in identifying the features that are different between
the given data point and the average feature values.
The process then estimates the correlation between each feature and the target vari-
able (Risk Level). This step helps in evaluating the correlation between each feature
and the target variable and identifying the features that are most correlated with
the target variable. The process then evaluates the weighted contribution of each
feature to the prediction by multiplying the feature differences with the correlations.
This step helps in determining the contribution of each feature towards predicting
the risk level. The next step is to detect features with the highest positive and nega-
tive contributions based on their weighted values. This step helps in identifying the
features that have the most significant positive and negative impact on predicting
the risk level.
Finally, the process prints an “Explanation” that includes the data point index,
actual risk level, predicted risk level, and the features with the highest positive and
negative contributions indicating the completion of the process.

4.1.1 Algorithm Application on a Small Dataset

In this section, we will apply the XOPSIS-based explanation algorithm step by
step on a sample small dataset. The XOPSIS algorithm is designed to provide
explanations for data points by identifying the contributions of individual features
towards the predicted outcome. The sample dataset shown in Table 4.1 we will be
using consists of various health-related measurements, such as age, blood pressure,
body temperature, and heart rate, along with the corresponding risk level assigned
to each individual.
The goal of our algorithm is to analyze the dataset, calculate the weighted contribu-
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tions of each feature, and identify the features that have the most positive or negative
impact on the risk level prediction. By doing so, we aim to gain insights into which
factors are influential in determining the risk level and provide an explanation for
the prediction outcome. Now, we will apply the XOPSIS algorithm meticulously,
dissecting each step, to unravel the intricate web of feature contributions.

Serial Age SystolicBP DiastolicBP BS BodyTemp HeartRate Risk Level
1 25 130 80 15 98.6 86 high
2 30 140 85 12 98 70 high
3 23 130 70 7.5 98 78 mid
4 20 120 75 7.3 100 70 mid
5 50 140 90 15 98 90 high
6 21 90 65 6.8 98 76 low
7 22 100 65 7.2 98 70 low
8 17 85 60 9 102 86 mid
9 23 90 60 6.4 98 76 low
10 23 120 80 7 98 66 low

Table 4.1: Sample Dataset

After train-test split (80:20) and preprocessing, we obtain the following sample train-
set.

Serial Age SystolicBP DiastolicBP BS BodyTemp HeartRate Risk Level
6 21 90 65 6.8 98 76 0
1 25 130 80 15 98.6 86 2
8 17 85 60 9 102 86 1
3 23 130 70 7.5 98 78 1
10 23 120 80 7 98 66 0
5 50 140 90 15 98 90 2
4 20 120 75 7.3 100 70 1
7 22 100 65 7.2 98 70 0

Table 4.2: Sample Train Dataset

After train-test split (80:20) and preprocessing, we obtain the following sample test-
set.

Serial Age SystolicBP DiastolicBP BS BodyTemp HeartRate Risk Level
9 23 90 60 6.4 98 76 0
2 30 140 85 12 98 70 2

Table 4.3: Sample Test Dataset
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Step 01

In this step, we divide each element by the maximum value of its corresponding
column of the sample dataset. For example, to normalize the first element of the
“Age” column, we divide 25 by the maximum value of all the values in the “Age”
column (25 / 50 = 0.50). Similarly, we perform this calculation for each element in
the dataset. After Normalizing, we obtain the dataset as follows.

X ′ =



0.50 0.928571 0.888889 1.000000 0.966667 0.955556
0.60 1.000000 0.944444 0.800000 0.960784 0.777778
0.46 0.928571 0.777778 0.500000 0.960784 0.866667
0.40 0.857143 0.833333 0.486667 0.980392 0.777778
1.00 1.000000 1.000000 1.000000 0.960784 1.000000
0.42 0.642857 0.722222 0.453333 0.960784 0.844444
0.44 0.714286 0.722222 0.480000 0.960784 0.777778
0.34 0.607143 0.666667 0.600000 1.000000 0.955556
0.46 0.642857 0.666667 0.426667 0.960784 0.844444
0.46 0.857143 0.888889 0.466667 0.960784 0.733333


Step 02

After normalizing the dataset in step 1, we proceed to step 2, which involves cal-
culating the weighted normalized decision matrix. In this step, we multiply the
normalized dataset by the weight vector using equal weights. Here, we consider a
sample weight vector obtained using equal weights: wi = [1

6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6
]. Let us ap-

ply this step to the sample dataset. For example, to calculate weighted normalized
decision matrix, the first element of the “Age” column, we obtain 0.0874 from Step
01 and then multiply it by 0.167 as we obtain from wi (0.50*0.167) = 0.083333.
Similarly, we perform this calculation for each element in the dataset. Finally, we
obtain the dataset as follows.

X ′′ = X ′ × wi =



0.083333 0.154762 0.148148 0.166667 0.161111 0.159259
0.100000 0.166667 0.157407 0.133333 0.160131 0.129630
0.076667 0.154762 0.129630 0.083333 0.160131 0.144444
0.066667 0.142857 0.138889 0.081111 0.163399 0.129630
0.166667 0.166667 0.166667 0.166667 0.160131 0.166667
0.070000 0.107143 0.120370 0.075556 0.160131 0.140741
0.073333 0.119048 0.120370 0.080000 0.160131 0.129630
0.056667 0.101190 0.111111 0.100000 0.166667 0.159259
0.076667 0.107143 0.111111 0.071111 0.160131 0.140741
0.076667 0.142857 0.148148 0.077778 0.160131 0.122222


In this step, each element in the normalized dataset (X ′) is multiplied by its corre-
sponding weight value from the weight vector (wi). For example, the first element
in the weighted normalized decision matrix (X ′′) is calculated by multiplying the
first element of (X ′) by the first weight value from wi.
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Step 03

To determine the ideal solution and anti-ideal solution, we need to find the max-
imum and minimum values for each criterion in the dataset. The ideal solution
represents the best possible values for each criterion, so the ideal solution is, A+ =
[0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0.166667]. On the other hand,
the anti-ideal solution represents the worst possible values, so the anti-ideal solution
is, A− = [0.056667, 0.101190, 0.111111, 0.071111, 0.160131, 0.122222].

Step 3 of the algorithm involves calculating the Euclidean distance to the ideal and
anti-ideal solutions for each data point in the dataset. Let’s calculate the Euclidean
distances for the given dataset using the ideal solution and anti-ideal solution we
determined earlier. For each data point, we calculate the Euclidean distance to the
ideal solution (D+) and the Euclidean distance to the anti-ideal solution (D−).
Data Point 1:
- Features: [0.083333, 0.154762, 0.148148, 0.166667, 0.161111, 0.159259]
- Euclidean distance to the ideal solution (D+):

=
√

((0.083− 0.167)2 + (0.155− 0.167)2 + (0.148− 0.167)2

+ (0.167− 0.167)2 + (0.161− 0.167))2 + (0.159− 0.167)2
)

=
√
0.007056 + 0.000144 + 0.000361 + 0 + 0.000036 + 0.000064

=
√
0.007661 ≈ 0.086688

- Euclidean distance to the anti-ideal solution (D-):

=
√

((0.083− 0.057)2 + (0.155− 0.101)2 + (0.148− 0.111)2

+ (0.167− 0.071)2 + (0.161− 0.160))2 + (0.159− 0.122)2
)

=
√
0.000676 + 0.002916 + 0.001369 + 0.009216 + 0.000001 + 0.001369

=
√
0.015547 ≈ 0.124323

Similarly, we calculate the Euclidean distances for the remaining data points in
Table 4.4.

Data Point D+ D-
1 0.086688 0.124323
2 0.083999 0.110611
3 0.130746 0.065238
4 0.141565 0.052662
5 0.006536 0.174871
6 0.155071 0.025722
7 0.148484 0.028570
8 0.154832 0.047424
9 0.156765 0.027899
10 0.137583 0.059601

Table 4.4: Euclidean distance to the ideal solution and the anti-ideal solution
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Step 04

Step 4 of the algorithm involves determining the TOPSIS score for each data point.
The TOPSIS score represents the relative closeness of each alternative (data point)
to the ideal and anti-ideal solutions. Let’s calculate the TOPSIS score for each data
point using the Euclidean distances we obtained in Step 3. For each data point, we
calculate the TOPSIS score as follows:

TOPSIS Score =
D−

D+ +D− (4.1)

For example, for Data Point 1, we obtain the TOPSIS Score = 0.124323
0.086688+0.124323

≈
0.58917823. Similarly, we calculate the TOPSIS Score for the remaining data points
as follows in Table 4.5.

Data Point D+ D- TOPSIS Score
1 0.086688 0.124323 0.58917823
2 0.083999 0.110611 0.56837344
3 0.130746 0.065238 0.33287573
4 0.141565 0.052662 0.27113549
5 0.006536 0.174871 0.96397072
6 0.155071 0.025722 0.1422742
7 0.148484 0.028570 0.16136506
8 0.154832 0.047424 0.23447515
9 0.156765 0.027899 0.15108087
10 0.137583 0.059601 0.30226133

Table 4.5: Euclidean distance to the ideal solution and the anti-ideal solution with
TOPSIS Score

Step 05

To apply Step 5 of the algorithm, we need to rank the alternatives (data points)
based on their TOPSIS scores in descending order. Let’s sort the data points in
descending order of their TOPSIS scores and create a table to display the results.

Rank Data Point TOPSIS Score
1 5 0.96397072
2 1 0.58917823
3 2 0.56837344
4 3 0.33287573
5 10 0.30226133
6 4 0.27113549
7 8 0.23447515
8 7 0.16136506
9 9 0.15108087
10 6 0.1422742

Table 4.6: TOPSIS Ranking

21



In Table 4.6, the data points have been ranked based on their TOPSIS scores, with
the highest score being ranked first.

Step 06

To filter the most similar instances based on TOPSIS Scores and predicted risk level
from the test sample dataset for the specific data point (30, 140, 85, 12.0, 98.0, 70,
High), we will compare the TOPSIS scores and predicted risk levels of each instance
in the dataset. For the TOPSIS scores, we can see from the previous step that the
instances are ranked in descending order. Now, we will filter the instances that have
the highest TOPSIS scores and the same predicted risk level as the specific data
point.
From the Table 4.7, we can see that instances 5 and 1 have the highest TOPSIS
scores (0.949, 0.651 and 0.4999, respectively) and the predicted risk level of ”high.”
Therefore, we will filter instances 5 and 1 as the most similar instances to the specific
data point based on TOPSIS scores and predicted risk level.

Rank Data Point Risk Level TOPSIS Score
1 5 High 0.963971
2 1 High 0.589178

Table 4.7: Filtered Similar Instances for High Predicted Risk Level

In this Table 4.7, the instances that have the highest TOPSIS scores and match the
predicted risk level (High) are Data Point 5 and Data Point 1 respectively.

Step 07

To calculate the average feature values for the instances that match the predicted
risk level, we sum up the feature values of those instances and divide by the number
of instances. Here are the average feature values: Average Features for Risk Level
High:
- Age: (50 + 25) / 2 = 37.5
- SystolicBP: (140 + 130) / 2 = 135.0
- DiastolicBP: (90 + 80) / 2 = 85.0
- BS: (15 + 15) / 2 = 15.0
- BodyTemp: (98 + 98.6) / 2 = 98.3
- HeartRate: (90 + 86) / 2 = 88.0

Step 08

Step 8 of the algorithm involves determining the feature differences between the
specific data point and the average feature values calculated in step 7. Let’s calculate
the feature differences for the provided specific data point (30, 140, 85, 12.0, 98.0,
70) and the average feature values:
Feature Differences:
- Age: 30 - 37.5 = -7.5
- SystolicBP: 140 - 135 = 5.0
- DiastolicBP: 85 - 85 = 0.0
- BS: 12 - 15 = -3.0
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- BodyTemp: 98 - 98.3 = -0.3
- HeartRate: 70 - 88 = -18.0

Step 09

Table 4.8 displays the correlation values between each feature and the Risk Level in
the dataset. Positive correlation values indicate a positive relationship with the Risk
Level, while negative correlation values indicate a negative relationship. The higher
the correlation value (closer to 1 in absolute value), the stronger the correlation
with the Risk Level. The features include Age, SystolicBP, DiastolicBP, BS (Blood
Sugar), BodyTemp (Body Temperature), and HeartRate.

Feature Correlation with Risk Level
Age 0.566361

SystolicBP 0.738184
DiastolicBP 0.694773

BS 0.893124
BodyTemp 0.119903
HeartRate 0.540133

Table 4.8: Correlation between Features and Risk Level

Step 10

In this step, we need to calculate the weighted feature contributions. For this, We
will multiply the feature differences by their respective correlations.
Here are the calculations:
- Age: -7.5 * 0.566361 = -4.247705
- SystolicBP: 5.0 * 0.738184 = 3.690919
- DiastolicBP: 0 * 0.694773 = 0.0000
- BS: -3.0 * 0.893124 = -2.679373
- BodyTemp: -0.3 * 0.119903 = -0.035971
- HeartRate: -18.0 * 0.540133 = -9.722396
These values represent the weighted feature contributions.

Step 11

Feature Normalized Weighted Contribution Contribution Type
Age -0.21 Negative

SystolicBP 0.18 Positive
DiastolicBP 0.00 Positive

BS -0.13 Negative
BodyTemp -0.00 Negative
HeartRate -0.48 Negative

Table 4.9: Weighted Feature Contributions to Risk Level

Table 4.9 displays the weighted contributions of each feature to the Risk Level. The
contributions are calculated by multiplying the correlation value of each feature
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with the Risk Level by the respective weight as shown in the previous step. If the
weighted contribution is more than or equal to zero, it is classified as a positive
contribution, indicating a positive impact on the Risk Level. Conversely, if the
weighted contribution is less then zero, it is classified as a negative contribution,
indicating a negative impact on the Risk Level.

Step 12

Finally, we will print the explanation and plot for this specific data point.

4.2 Maternal Health Risk Prediction and Expla-

nation

4.2.1 Data Collection

We collected data from the publicly available dataset “Maternal Health Risk Data”
obtained from Kaggle [48]. The dataset contains 1014 rows and includes the fol-
lowing six features: Age, SystolicBP, DiastolicBP, BS, BodyTemp, and HeartRate.
These features are potential risk factors associated with maternal health.

• Age: The age of the patient in years

• SystolicBP: Upper value of the blood pressure and the measurement in mil-
limeters of mercury (mmHg)

• DiastolicBP: Lower value of the blood pressure and the measurement in mil-
limeters of mercury (mmHg)

• BS: The blood sugar (glucose) level measurement in millimoles per liter (mmol/L)

• BodyTemp: The human body temperature measurement in degrees Fahrenheit
(°F)

• HeartRate: The heart rate measurement in beats per minute (bpm)

The dataset includes a target variable called ‘Risk Level’ which is categorized into
three values: Low, Mid, and High Risk. This variable represents the risk level of
maternal health based on the given features.

4.2.2 Dataset Preprocessing

Checking for Null Values

The dataset was checked for any missing or null values. It was found that there
were no null values present in the dataset, indicating that the dataset is complete
in terms of data availability.
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Encoding of Categorical Variable

The target variable, which contains categorical values (Low, Mid, High), was en-
coded using the ordinal encoder. Ordinal encoding is used to convert categorical
variables with ordered categories into numerical representations. In this case, the
”Risk Level” categories were encoded as (0, 1, 2) respectively, based on the order
of risk levels (Low, Mid, High). Encoding categorical variables is required to con-
vert them into numerical representations that can be utilized as input to machine
learning algorithms. Ordinal encoding was used in this case to maintain the order
of categories and represent the risk levels as numerical values. Table 4.10 shows the
distribution of the dataset.

Risk Level Frequency Percentage
Low Risk 406 40.04
Mid Risk 336 33.14
High Risk 272 26.82

Total 1014 100.0

Table 4.10: Data Distribution By Risk Level

Feature Scaling

Standard Scaling (also known as z-score normalization) was applied to the numerical
features in the dataset, including Age, Systolic BP, Diastolic BP, Blood Sugar level
(BS), Body Temperature, and Heart Rate. Standard scaling transforms the features
to have zero mean and unit variance, which helps in bringing all the features to a
similar scale, making them comparable and avoiding any dominance of one feature
over the others during model training. Feature scaling is essential to normalize
the numerical features and bring them to a similar scale, avoiding any potential
bias towards features with larger values. Standard scaling helps in centering the
features around zero with unit variance, which can improve the model’s training
and prediction accuracy.

Train-Test Split

The dataset was divided into training and testing sets in an 80:20 ratio using the
train-test split approach. This means that 80% of the dataset was used to train the
machine learning model, with the remaining 20% left aside for testing and evaluating
the performance of the trained model. This aids in determining the generalization
capacity and performance of the model on previously encountered data. The train-
test split is critical for evaluating the performance of the model on unknown data and
its generalization capacity. We may obtain an unbiased estimate of the performance
and identify any potential overfitting issues by evaluating a subset of the dataset.

K-fold Cross-Validation

This technique divides the dataset into k equally sized folds and uses them for train-
ing and testing iteratively in order to assess the performance of a machine learning
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model. The dataset is divided into k equally sized folds (e.g., k=10, meaning 10
folds). The model is trained on k-1 folds (i.e., k-1 parts of the dataset) and tested
on the remaining 1 fold (i.e., the remaining part of the dataset). This process is
repeated k times, with each fold being used once as the test set and the remaining
k-1 folds used as the training set in each iteration. The performance metrics, such
as accuracy, precision, recall, F1 score, etc., are calculated for each fold, and the
average performance is reported as the final evaluation of the model.

The goal of utilizing k-fold cross-validation is to achieve a more trustworthy estimate
of the performance by leveraging the whole dataset for both training and testing.
It aids in decreasing model performance variability due to variable train-test splits
and enables a more robust evaluation of the performance of the model.

Hyperparameter Tuning

Hyperparameters are the parameters of a machine learning model that are not
learned during the training process and need to be set manually. Examples of
hyperparameters include the learning rate, regularization strength, number of esti-
mators, etc. Hyperparameter tuning is the process of finding the optimal values for
these hyperparameters to optimize the performance of the model.

Grid Search CV is a popular hyperparameter tuning technique that exhaustively
searches for the best combination of hyperparameter values from a predefined grid
of possible values. A grid of hyperparameter values is defined, specifying the possible
values for each hyperparameter. The model is trained and evaluated using k-fold
cross-validation for each combination of hyperparameter values from the grid. The
performance metrics are recorded for each combination of hyperparameter values.
The combination of hyperparameter values that results in the best performance is
selected as the optimal set of hyperparameter values. The purpose of using Grid
Search CV is to systematically search for the optimal hyperparameter values to
maximize the outcome of the model. It helps in finding the best hyperparameter
values that result in the best model performance on the given dataset, improving
the accuracy, robustness, and generalization ability of the model.

4.2.3 Model Training

In the next step of our methodology, we conducted model training using a total of 14
algorithms, including 13 machine learning algorithms and 1 deep learning algorithm.
These algorithms were applied to the preprocessed dataset that underwent encoding,
feature scaling, and train-test splitting. The accuracy of all these algorithms is
presented in Table 5.1 Furthermore, this section discusses some of these algorithms
in detail.

Gradient Boosting

Gradient boosting is a machine learning ensemble approach which integrates the
predictions of numerous base models to produce a more accurate and resilient final
model. It operates by fitting weak learners, often decision trees, to the residuals of
previous model predictions iteratively. The residuals are the difference between the
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actual target values and the predicted values from the prior model, and the next
weak learner is trained to detect patterns in the residuals that the previous models
missed.
The algorithm starts with an initial prediction for each data point and then com-
putes the negative gradient of the loss function with respect to these initial pre-
dictions. This gradient represents the direction in which the model’s predictions
need to be adjusted to minimize the loss function. The next weak learner, typically
a decision tree, is trained to predict the negative gradient, which is added to the
initial predictions to update the overall model. The algorithm continues this process
for a specified number of iterations or until a predefined stopping criterion is met.
Each iteration of gradient boosting adjusts the predictions of the previous models
by adding new predictions from the weak learner, with the learning rate controlling
the magnitude of the update. The final prediction of the gradient boosting model
is obtained by summing the predictions from all the weak learners, weighted by the
learning rate.
Mathematically, the update formula for the gradient boosting algorithm can be
represented as follows:
For iteration m = 1 to M:

1. Compute the negative gradient of the loss function with respect to the current
predictions:

rim = −∂L(yi, yi)/∂yi (4.2)

2. Train a weak learner, typically a decision tree, to predict the negative gradient:

hm(xi) = WeakLearner(X, rim) (4.3)

3. Update the current predictions with the predictions from the weak learner,
weighted by the learning rate:

yi = yi + αhm(xi) (4.4)

4. Repeat steps 1-3 for M iterations or until a predefined stopping criterion is met.
Here,
• L(yi, yi) is the loss function that measures the error between the actual target
values yi and the current predictions yi.
• rim is the negative gradient of the loss function with respect to the current pre-
dictions for the i-th data point at iteration m.
• hm(xi) is the prediction from the weak learner (e.g., decision tree) at iteration m
for the i-th data point.
• α is the learning rate, a hyperparameter that controls the magnitude of the update
at each iteration.
• M is the total number of iterations or boosting rounds.

The gradient boosting algorithm iteratively improves the model predictions by fitting
weak learners to the residuals and updating the predictions based on the negative
gradient of the loss function. This process continues until a stopping criterion is
met, resulting in an ensemble model that can capture complex patterns in the data
and achieve high predictive accuracy.
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4.2.4 Random Forest

Random Forest is an ensemble method that combines multiple decision trees to form
a robust and accurate predictive model. It uses a combination of decision trees to
overcome the limitations of individual trees, such as overfitting and bias. Random
Forest uses a bagging technique, where each tree is trained on a randomly sampled
subset of the training data with replacement. This helps to reduce the risk of over-
fitting and improve the generalization performance of the model. Random Forest
provides interpretable outputs in the form of decision trees, which can be visualized
and easily understood. This allows for model interpretation and explanation, mak-
ing it suitable for applications where model transparency is important. Random
Forest provides a feature importance score, which indicates the relative importance
of each feature in the model’s decision-making process. This can be used for feature
selection, interpretation, and model explanation. The functioning of Random Forest
is as follows.

1. Initialize the model with the number of decision trees N and the maximum depth
d for each tree.

2. For each decision tree t=1,2,. . . ,N:
a. Randomly select a subset of the training data with replacement, typically

called a ”bootstrap” sample. Let Dt denote the bootstrap sample.
b. Train a decision tree Tt on the bootstrap sample Dt with a maximum depth

of d. The decision tree is trained using a feature subset that is randomly selected
at each split. Let Tt(x) denote the prediction of the t-th decision tree for the input
data point x.

3. Predict the class label of a new data point xx using the majority vote of the pre-
dictions from all the decision trees: Prediction(x)=mode(T1(x),T2(x),. . . ,TN(x))
where the mode function returns the most frequent prediction among all the deci-
sion trees.

In this notation, Dt represents the bootstrap sample used to train the t-th decision
tree, and Tt(x) represents the prediction of the t-th decision tree for the input data
point x.
The Random Forest algorithm uses a collection of decision trees, each trained on
a randomly selected subset of the training data with replacement. This introduces
randomness into the model and helps to reduce overfitting. The majority vote of the
individual tree predictions is used as the final prediction for a new data point, making
Random Forest a powerful and robust ensemble learning algorithm for classification
tasks. Overall, Random Forest is a powerful and flexible algorithm that offers several
useful features beyond its mathematical aspects, making it widely used in various
machine learning tasks and applications.

4.2.5 XGBoost

XGBoost, short for Extreme Gradient Boosting, is a popular gradient boosting al-
gorithm that offers several additional features. XGBoost provides built-in support
for L1 (Lasso) and L2 (Ridge) regularization techniques, which help to prevent
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overfitting and improve model generalization performance. Regularization can be
controlled through hyperparameters, allowing for fine-tuning of the model. XGBoost
supports early stopping, where the model training can be automatically stopped if
no improvement in model performance is observed on a validation set over a certain
number of iterations. This helps to prevent overfitting and reduces training time.
XGBoost provides a feature importance score, which indicates the relative impor-
tance of each feature in the model’s decision-making process. This can be used for
feature selection, interpretation, and model explanation. Mathematically, the XG-
Boost algorithm can be described as follows.

1. Given a training dataset with input features denoted as X and corresponding
target labels denoted as y.
2. Initialize the model with a constant prediction ŷ for all instances in the training
set, usually set to the mean of the target labels.
3. For t=1,2,. . . ,T, where T is the number of boosting iterations:

a. Compute the negative gradient of the loss function with respect to the pre-
dicted values, denoted as

gt = −∂loss(y, ŷ)

∂ŷ
(4.5)

where loss(y, ŷ) is the chosen loss function.
b. Fit a weak learner (e.g., decision tree) to the negative gradient gt with respect

to the input features X, and obtain a prediction denoted as ht(X).
c. Update the model by adding the prediction ht(X) scaled by a learning rate η,

denoted as ŷ ← ŷ + ηht(X).
4. Once the desired number of boosting iterations T is reached, the final model ŷ is
obtained.
The XGBoost algorithm uses a gradient boosting framework to sequentially train
decision trees based on the gradients and Hessians of the loss function, and combines
their predictions with a learning rate to update the predicted values. The sigmoid
function is used to convert the final predicted values into class probabilities for
classification tasks. XGBoost is known for its accuracy, efficiency, and scalability,
making it a popular choice for many machine learning tasks. Overall, XGBoost
combines the power of gradient boosting with additional features for efficient and
effective model training, making it a widely used and popular algorithm in machine
learning competitions and real-world applications.

4.3 IRIS Species Classification and Explanation

4.3.1 Dataset Description

We chose the popular “IRIS Dataset” [49] as a part of our experimental evaluation
to assess the performance and effectiveness of our XOPSIS algorithm. This dataset
offers a suitable testing ground for our algorithm’s capabilities in accurately clas-
sifying iris flowers into their respective species. By applying XOPSIS to the IRIS
dataset, we aim to validate the algorithm’s performance and demonstrate its po-
tential for generating comprehensive explanations and insights in a well-established
and widely used dataset.
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The IRIS dataset is a well-known benchmark dataset in the field of machine learning
and consists of samples from three different species of iris flowers: Iris-setosa, Iris-
versicolor, and Iris-virginica. It serves as an excellent example for classification
tasks.
The dataset comprises four features, namely sepal length, sepal width, petal length,
and petal width. These features provide measurements in centimeters and represent
different aspects of the iris flowers’ morphology. The sepal length denotes the length
of the iris flower’s sepal, while the sepal width represents its width. Similarly, the
petal length and petal width indicate the length and width of the iris flower’s petals,
respectively.
The target variable in the IRIS dataset is the “Species” column, which classifies each
sample into one of the three iris species mentioned earlier: Iris-setosa, Iris-versicolor,
and Iris-virginica. This categorical variable enables the use of supervised learning
techniques for classification tasks.

4.3.2 Dataset Preprocessing

To ensure the reliability and consistency of the data, a series of preprocessing steps
were applied to the IRIS dataset. The following subsection describes each step in
detail.

Checking for Null Values

Prior to analysis, the dataset was examined for any missing or null values. Fortu-
nately, no null values were found, indicating that the dataset is complete and no
imputation or data filling was required. This ensures the integrity and reliability of
the data used for the subsequent analysis.

Encoding of Categorical Variable

Since the target variable “Species” contains categorical values (Iris-setosa, Iris-
versicolor, Iris-virginica), an ordinal encoder was employed to convert these cat-
egorical labels into numerical representations. The ordinal encoding method was
chosen to maintain the order of the categories, with Iris-setosa, Iris-versicolor, and
Iris-virginica encoded as 0, 1, and 2, respectively. This transformation enables the
utilization of categorical variables as input to machine learning algorithms, facili-
tating the classification task.

Feature Scaling

To bring the numerical features of the dataset onto a similar scale and avoid any
dominance of one feature over others during model training, standard scaling (z-score
normalization) was applied to the following features: sepal length, sepal width, petal
length, petal width. Standard scaling transforms the features to have zero mean and
unit variance, enhancing the comparability and training process of the model. This
normalization step ensures that all features contribute equally and prevents bias
towards features with larger values.
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Train-Test Split

To evaluate the performance of the XOPSIS algorithm on the IRIS dataset, the
dataset was divided into training and testing sets using an 80:20 ratio. The training
set, comprising 80% of the dataset, was used to train the machine learning model,
while the remaining 20% served as an independent test set for evaluating the model’s
performance. This partitioning enables the assessment of the model’s generalization
capacity and its ability to accurately classify iris flowers into their respective species.

K-fold Cross-Validation

In order to obtain a more reliable estimate of the model’s performance and minimize
the impact of variable train-test splits, k-fold cross-validation was employed. The
dataset was divided into k equally sized folds, where each fold was used as the test
set once, while the remaining k-1 folds were used for training. This process was
repeated k times, with performance metrics such as accuracy, precision, recall, and
F1 score calculated for each fold. The average performance across all folds was
reported as the final evaluation of the XOPSIS algorithm on the IRIS dataset. This
technique ensures a robust evaluation of the model’s performance and reduces the
variability associated with different train-test splits.

Hyperparameter Tuning

Hyperparameters play a crucial role in determining the performance of a machine
learning model. Grid Search CV, a popular hyperparameter tuning technique, was
employed to identify the optimal set of hyperparameter values for the XOPSIS al-
gorithm. A predefined grid of hyperparameter values was specified, and the model
was trained and evaluated using k-fold cross-validation for each combination of hy-
perparameters. The performance metrics were recorded, and the combination of
hyperparameter values yielding the best performance was selected as the optimal
set. This rigorous optimization process enhances the accuracy, robustness, and gen-
eralization ability of the XOPSIS algorithm on the IRIS dataset.
By following these dataset preprocessing steps, we ensure the reliability and suit-
ability of the IRIS dataset for evaluating the performance and effectiveness of the
XOPSIS algorithm.

4.3.3 Model Training

In the next step of our methodology, we conducted model training using three dif-
ferent algorithms: Gradient Boosting, Random Forest, and XGBoost. These algo-
rithms were applied to the preprocessed dataset that underwent encoding, feature
scaling, and train-test splitting. The accuracy of all these algorithms is presented
in Table 5.3.
It is important to note that while we previously provided detailed descriptions of
these algorithms in an earlier section, this subsection focuses on mentioning the
application of these algorithms without repeating the detailed model descriptions.
Instead, we refer readers back to the earlier section for comprehensive explanations
of each algorithm.
The results and performance metrics of these three algorithms applied to the Iris
dataset are presented in Table 5.3 for reference.
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4.4 Breast Cancer Prediction and Explanation

4.4.1 Dataset Description

The dataset [50] used in this study is a well-known benchmark dataset commonly
used for training and evaluating machine learning algorithms. It comprises biopsy
features of 569 breast masses classified as malignant (cancer) or benign (not cancer).
The features in the dataset were extracted computationally from digital images of
fine needle aspirate biopsy slides. These features correspond to various properties
of cell nuclei, including size, shape, and regularity. Specifically, the dataset provides
the mean, standard error, and worst values of 10 nuclear parameters, resulting in a
total of 30 features.
Each feature in the dataset is associated with a specific description:

• radius mean: Mean radius of the tumor cells

• texture mean: Mean texture of the tumor cells

• perimeter mean: Mean perimeter of the tumor cells

• area mean: Mean area of the tumor cells

• smoothness mean: Mean smoothness of the tumor cells

• compactness mean: Mean compactness of the tumor cells

• concavity mean: Mean concavity of the tumor cells

• concave points mean: Mean number of concave portions of the contour of the
tumor cells

• symmetry mean: Mean symmetry of the tumor cells

• fractal dimension mean: Mean “coastline approximation” of the tumor cells

• radius se: Standard error of the radius of the tumor cells

• texture se: Standard error of the texture of the tumor cells

• perimeter se: Standard error of the perimeter of the tumor cells

• area se: Standard error of the area of the tumor cells

• smoothness se: Standard error of the smoothness of the tumor cells

• compactness se: Standard error of the compactness of the tumor cells

• concavity se: Standard error of the concavity of the tumor cells

• concave points se: Standard error of the number of concave portions of the
contour of the tumor cells

• symmetry se: Standard error of the symmetry of the tumor cells
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• fractal dimension se: Standard error of the “coastline approximation” of the
tumor cells

• radius worst: Worst (largest) radius of the tumor cells

• texture worst: Worst (most severe) texture of the tumor cells

• perimeter worst: Worst (largest) perimeter of the tumor cells

• area worst: Worst (largest) area of the tumor cells

• smoothness worst: Worst (most severe) smoothness of the tumor cells

• compactness worst: Worst (most severe) compactness of the tumor cells

• concavity worst: Worst (most severe) concavity of the tumor cells

• concave points worst: Worst (most severe) number of concave portions of the
contour of the tumor cells

• symmetry worst: Worst (most severe) symmetry of the tumor cells

• fractal dimension worst: Worst (most severe) “coastline approximation” of the
tumor cells

The target variable in the dataset indicates whether a mass is malignant (“M”) or
Benign (“B”). The predictors consist of a matrix with the mean, standard error,
and worst values of 10 nuclear measurements, resulting in a total of 30 features per
biopsy.
These measurements include factors such as nucleus radius, texture, perimeter, area,
smoothness, compactness, concavity, number of concave portions, symmetry, and
fractal dimension.
Overall, this dataset provides a comprehensive set of features derived from biopsy
images to facilitate the development and evaluation of machine learning models for
breast cancer classification.

4.4.2 Dataset Preprocessing

To ensure the reliability and consistency of the data, a series of preprocessing steps
were applied to the breast cancer Wisconsin dataset. The following subsection de-
scribes each step in detail.

Checking for Null Values

Prior to analysis, the dataset was examined for any missing or null values. The
column “Unnamed: 32” was found to have null values, and therefore it was removed
from the dataset. Additionally, the column “id” was also removed from the dataset,
although it did not contain any null values. By removing these columns, we ensure
that the dataset is clean and free from missing values, maintaining the integrity and
reliability of the data for subsequent analysis.
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Encoding of Categorical Variable

Since the target variable “diagnosis” contains categorical values (“M” for malignant
and “B” for benign), an ordinal encoder was employed to convert these categorical
labels into numerical representations. In the ordinal encoding process, the label
“M” was encoded as 0, indicating malignant, and the label “B” was encoded as
1, indicating benign. This transformation allows the utilization of the categorical
variable as input to machine learning algorithms, facilitating the classification task
while preserving the inherent order of the categories.

Feature Scaling

To bring the numerical features of the dataset onto a similar scale and avoid any
dominance of one feature over others during model training, standard scaling (z-
score normalization) was applied to the 30 features. Standard scaling transforms
the features to have a zero mean and unit variance, enhancing the comparability
and training process of the model. This normalization step ensures that all features
contribute equally and prevents bias towards features with larger values.

Train-Test Split

To evaluate the performance of the XOPSIS algorithm on the breast cancer Wis-
consin dataset, the dataset was divided into training and testing sets using an 80:20
ratio. The training set, comprising 80% of the dataset, was used to train the ma-
chine learning model, while the remaining 20% served as an independent test set for
evaluating the model’s performance. This partitioning enables the assessment of the
model’s generalization capacity and its ability to accurately classify breast masses
as malignant or benign.

K-fold Cross-Validation

In order to obtain a more reliable estimate of the model’s performance and minimize
the impact of variable train-test splits, k-fold cross-validation was employed. The
dataset was divided into k equally sized folds, where each fold was used as the test set
once, while the remaining k-1 folds were used for training. This process was repeated
k times, with performance metrics such as accuracy, precision, recall, and F1 score
calculated for each fold. The average performance across all folds was reported as the
final evaluation of the XOPSIS algorithm on the breast cancer Wisconsin dataset.
This technique ensures a robust evaluation of the model’s performance and reduces
the variability associated with different train-test splits.

Hyperparameter Tuning

Hyperparameters play a crucial role in determining the performance of a machine
learning model. Grid Search CV, a popular hyperparameter tuning technique, was
employed to identify the optimal set of hyperparameter values for the XOPSIS al-
gorithm. A predefined grid of hyperparameter values was specified, and the model
was trained and evaluated using k-fold cross-validation for each combination of hy-
perparameters. The performance metrics were recorded, and the combination of
hyperparameter values yielding the best performance was selected as the optimal

34



set. This rigorous optimization process enhances the accuracy, robustness, and gen-
eralization ability of the XOPSIS algorithm on the breast cancer Wisconsin dataset.
By following these dataset preprocessing steps, including the removal of the “Un-
named: 32” column and ordinal encoding of the “diagnosis” variable, we ensure the
reliability and suitability of the breast cancer Wisconsin dataset for evaluating the
performance and effectiveness of the XOPSIS algorithm.

4.4.3 Model Training

In the next step of our methodology, model training was performed using three
different algorithms: Gradient Boosting, Random Forest, and XGBoost. These
algorithms were applied to the preprocessed breast cancer Wisconsin dataset, which
had undergone encoding, feature scaling, and train-test splitting. The accuracy of
each algorithm is presented in Table 5.5.
It is important to note that while detailed descriptions of these algorithms were
provided earlier in the paper, this subsection focuses on highlighting their application
without repeating the comprehensive model explanations. Readers are referred back
to the earlier section for a thorough understanding of each algorithm.
The results and performance metrics of these three algorithms applied to the Breast
Cancer Wisconsin Dataset are presented in Table 5.5 for easy reference.

4.5 Car Acceptability Prediction and Explanation

4.5.1 Data Collection

The Car Acceptability dataset [51] used in this research was collected from Kag-
gle. It is based on a simple hierarchical decision model originally developed for the
demonstration of the DEX expert system for decision making (M. Bohanec, V. Ra-
jkovic: Expert system for decision making. Sistemica 1(1), pp. 145-157, 1990). The
Car Acceptability dataset used in this research consists of 1729 unique rows and
contains a target variable, Car Acceptability, along with six feature variables. The
goal of the analysis is to predict the car acceptability based on the values of these
features. The dataset evaluates cars according to the following features:

• Buying Price: Categorical Data [vhigh, high, med, low]

• Maintenance Price: Categorical Data [vhigh, high, med, low]

• No of Doors: Categorical Data [2, 3, 4, 5more]

• Person Capacity: Categorical Data [2, 4, more]

• Size of Luggage: Categorical Data [small, med, big]

• Safety: Categorical Data [low, med, high]

The Car Acceptability variable serves as the target variable and is also categorical,
with the following values: [unacc, acc, good, vgood]. The objective is to develop
a model using XOPSIS that accurately predicts the car acceptability based on the
given features.
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The Car Acceptability Classification Database is derived from this decision model
and is available under the CC-BY-NC-SA 4.0 license for non-commercial usage. The
dataset is provided by the UCI Machine Learning Repository, a widely recognized
and reliable source for machine learning datasets.
This dataset offers a valuable opportunity to evaluate the effectiveness of XOPSIS in
the classification of car acceptability based on various features. By applying XOPSIS
to this dataset, we aim to gain insights into the decision-making process of the
model and generate comprehensive explanations for the predictions. The analysis
of this dataset will contribute to the understanding of XOPSIS’s performance in a
new domain and its potential for providing interpretable insights in the field of car
acceptability classification.

4.5.2 Dataset Preprocessing

To ensure the reliability and consistency of the Car Acceptability dataset, several
preprocessing steps were applied. The following subsection outlines each step in
detail.

Checking for Null Values

The dataset was first examined for any missing or null values. No missing values
were found, ensuring that the dataset is complete and does not require imputation
or further handling of missing data.

Encoding of Categorical Variables

As the dataset contains categorical variables, including the target variable “Car Acceptability”
and the feature variables, an encoding process was performed to transform these cat-
egorical labels into numerical representations. Specifically, an ordinal encoder was
used to assign numerical values to each category. The encoding mappings are as
follows:

• Buying Price: [vhigh = 3, high = 2, med= 1, low = 0]

• Maintenance Price: [vhigh = 3, high = 2, med= 1, low = 0]

• No of Doors: [2 = 0, 3 = 1, 4 = 2, 5more = 3]

• Person Capacity: [2 = 0, 4 = 1, more = 2]

• Size of Luggage: [small = 0, med = 1, big = 2]

• Safety: [low = 0, med = 1, high = 2]

• Car Acceptability (Target): [unacc=0, acc=1, good=2, vgood=3]

This encoding process enables the utilization of the categorical variables as input
to machine learning algorithms, allowing for effective classification tasks while pre-
serving the inherent order of the categories.
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Feature Scaling

To ensure that the numerical features are on a similar scale and avoid dominance of
any particular feature during model training, feature scaling was performed. Specif-
ically, standard scaling (z-score normalization) was applied to the feature variables.
This transformation centers the data by subtracting the mean and scales it by divid-
ing by the standard deviation, resulting in features with a mean of 0 and a standard
deviation of 1. This normalization step enhances the comparability and training
process of the model, ensuring that each feature contributes equally to the model’s
predictions.

Train-Test Split

To evaluate the performance of the XOPSIS algorithm on the Car Acceptability
dataset, the dataset was split into training and testing sets using an 80:20 ratio.
The training set, comprising 80% of the dataset, was used to train the machine
learning model, while the remaining 20% served as an independent test set for
evaluating the model’s performance. This division enables the assessment of the
model’s generalization capacity and its ability to accurately classify car acceptability.

K-fold Cross-Validation

To obtain a more reliable estimate of the model’s performance and reduce the impact
of variable train-test splits, 10-fold cross-validation was employed. The Car Accept-
ability dataset was divided into 10 equally sized folds. The model was trained and
evaluated using each fold as the test set once, while the remaining nine folds were
used for training. This process was repeated 10 times, with performance metrics
calculated for each fold using the k-fold cross-validation method.

Hyperparameter Tuning

Hyperparameters play a crucial role in determining the performance of a machine
learning model. To optimize the XOPSIS algorithm’s performance on the Car Ac-
ceptability dataset, hyperparameter tuning was performed using Grid Search CV. A
predefined grid of hyperparameter values was specified, and the model was trained
and evaluated using k-fold cross-validation for each combination of hyperparameters.
The performance metrics were recorded, and the combination of hyperparameter
values yielding the best performance was selected as the optimal set. This rigorous
optimization process enhances the accuracy, robustness, and generalization ability
of the XOPSIS algorithm on the Car Acceptability dataset.
By following these dataset preprocessing steps, including the encoding of categor-
ical variables, feature scaling, and k-fold cross-validation, we ensure the reliability
and suitability of the Car Acceptability dataset for evaluating the performance and
effectiveness of the XOPSIS algorithm.

4.5.3 Model Training

In the model training phase, we employed three different algorithms: Gradient
Boosting, Random Forest, and XGBoost. These algorithms were trained on the
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preprocessed Car Acceptability dataset, which had undergone preprocessing steps
including encoding of categorical variables, feature scaling, and train-test splitting.
Each algorithm was trained on the training set of the dataset, using the labeled
data to learn the underlying patterns and relationships between the features and the
target variable. The goal of model training is to optimize the algorithm’s parameters
and adjust the model’s internal mechanisms to make accurate predictions on unseen
data.
During the training process, the algorithms iteratively adjusted their internal pa-
rameters based on the provided features and their corresponding target labels. This
iterative optimization process aimed to minimize the discrepancy between the pre-
dicted outputs and the true labels in the training set.
By training multiple algorithms on the preprocessed Car Acceptability dataset, we
aimed to evaluate their performance and effectiveness in capturing the underlying
patterns and making accurate predictions. The trained models will be further eval-
uated and compared using various performance metrics in the subsequent analysis.
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Chapter 5

Result Analysis

This section of the study encompasses three key subsections such as Accuracy, Fea-
ture Importance Plot, and Interpretability through XAI Methods. In the Accuracy
subsection, we present and elaborate on the accuracy plots, providing comprehen-
sive details on the performance of the developed models. Moving on to the Feature
Importance Plot subsection, we showcase three different plots, namely the feature
importance ranking using SHAP summary plot with Random Forest, feature impor-
tance ranking using SHAP summary plot with XGBoost, and feature importance
ranking using TOPSIS methods with Gradient Boosting. Lastly, in the Interpretabil-
ity through XAI Methods subsection, we demonstrate the explanations generated
by XOPSIS, LIME, and SHAP for specific instances, offering multiple insightful
cases to illustrate the interpretability of our proposed approach and compare it with
existing methods.

5.1 Experimental Setup

The experiments were conducted using the Google Colab platform, which provided
a robust and scalable environment for coding and analysis. The computational
resources offered by Google Colab were leveraged to efficiently execute the code
and algorithms. The experiments were performed on a computer with the following
specifications:

• Processor: Intel Core i5-8265U CPU @ 1.60GHz, 1800Mhz, 4 Core(s), 8 Log-
ical Processor(s)

• RAM: 8 GB DDR4

• GPU: Intel(R) UHD Graphics 620

• Storage: ST1000LM035-1RK172 (1 TB)

• Operating System: Windows (Microsoft Windows 11 Pro)

Python, a widely used programming language in machine learning research, was
employed for coding. The primary libraries utilized include scikit-learn for machine
learning implementations, matplotlib for data visualization, and numpy for numer-
ical computations. The experimentation process involved the following key steps:
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1. Data Preprocessing: The datasets were loaded, and preprocessing steps such as
feature scaling and splitting into training and testing sets were performed.

2. Model Training: The machine learning models, including Gradient Boosting and
XGBoost, were trained on the training data using optimized hyperparameters.

3. Prediction and Evaluation: The trained models were used to make predictions
on the testing data. Accuracy, confusion matrix, sensitivity, specificity, and ROC
curves were computed for model evaluation.

4. Explainability Techniques: LIME, SHAP, and TOPSIS-based XAI methods
(XOPSIS) were applied to interpret the model predictions. Explanations were gen-
erated for specific instances, highlighting feature importance and decision rationales.

5. Analysis and Interpretation: The results obtained from different models and ex-
plainability techniques were analyzed and compared to gain insights into the models’
performance and interpretability.

The experimental setup ensured consistency and reproducibility of the results, al-
lowing for an in-depth analysis of the models’ behavior and the effectiveness of the
XAI techniques.

5.2 Result Analysis on Maternal Health Dataset

5.2.1 Accuracy

As demonstrated in Table 5.1, the train-test split technique outperforms the k-fold
cross-validation method in terms of accuracy for all 14 algorithms. The resulting
accuracy scores are depicted in a bar plot in Figure 5.1.
From Table 5.1, it is evident that the accuracy varies significantly across different
algorithms. The top-performing algorithms based on the train-test split technique
are Random Forest, Gradient Boosting, and XGBOOST, while the least accurate
algorithms are Logistic Regression, Gaussian Naive Bayes, and AdaBoost. Further-
more, the k-fold cross-validation technique generally produces lower accuracy scores
compared to the train-test split technique, likely due to the use of multiple subsets
of data for training and testing, which can result in a more generalized model but
with slightly lower accuracy.
The bar plot in Figure 5.1 visually represents the accuracy scores for each algorithm
using the train-test split technique, revealing that the top-performing algorithms
have accuracy scores above 90%, while the least accurate algorithms have scores
below 75%. Notably, the Gradient Boosting algorithm achieves the highest accuracy
score of 90.64% among all the tested algorithms.

5.2.2 Confusion Matrix

The confusion matrix presented in Figure 5.2 is a 3x3 matrix that represents the clas-
sification results for three risk levels: low risk, mid risk, and high risk. The matrix
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Accuracy
Serial No Algorithms Train-Test

Split
K-Fold Cross
Validation

01 KNN 89.163% 85.389%
02 Random Forest 90.148% 84.402%
03 Gradient Boosting 90.640% 84.990%
04 XGBoost 89.655% 81.345%
05 CatBoost 87.192% 81.839%
06 Bagging Classifier 89.163% 82.434%
07 AdaBoost 75.862% 62.713%
08 Decision Tree 88.670% 83.023%
09 Extra Tree Classifier 89.655% 83.032%
10 Logistic Regression 72.906% 64.793%
11 Support Vector Classifier 84.729% 82.338%
12 Gaussian Naive Bayes 71.921% 64.577%
13 Voting Classifier 89.655% 84.011%
14 Multi Layer Perceptron 83.744% 77.708%

Table 5.1: Accuracy of 14 Algorithms

Figure 5.1: Train-Test Split Method Accuracy of 14 Algorithms
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provides a comprehensive overview of the performance of the model by displaying
the true labels on the left side and the predicted labels at the bottom.

Figure 5.2: Confusion Matrix of Gradient Boosting Model

In the first row of the matrix, it is observed that out of the instances labeled as low
risk, 82 were correctly predicted as low risk, while 4 instances were misclassified as
mid risk and 3 instances as high risk. Moving to the second row, which represents
instances labeled as mid risk, the model correctly predicted 52 instances as mid risk,
misclassified 2 instances as low risk, and 5 instances as high risk. Lastly, in the third
row representing high-risk instances, the model correctly classified 50 instances as
high risk, misclassified 3 instances as low risk, and 2 instances as mid risk.
This confusion matrix provides a detailed breakdown of the classification results,
enabling a deeper analysis of the model’s performance for different risk levels. By
examining the matrix, it becomes evident that the model exhibits a higher accuracy
in predicting low-risk and mid-risk instances compared to high-risk instances. The
presented confusion matrix serves as a valuable tool for evaluating the performance
of the classification model and provides insights into the effectiveness of the risk
level prediction.

5.2.3 Sensitivity, Specificity, Precision and F1-Score

We focus on evaluating the performance of the Gradient Boosting model, which
we selected as our final model based on its highest accuracy score obtained earlier.
We assess its effectiveness by analyzing several important performance metrics, in-
cluding precision, recall, F1-score, sensitivity, and specificity. These metrics provide
valuable insights into the ability of the model to accurately classify instances and
its performance across different classes. Table 5.2 shows the values of performance
evaluation metrics.
The plot showed in Figure 5.3 illustrates the performance metrics for a multiclass
classification task across three classes: Low, Mid, and High Risk. The x-axis rep-
resents the classes, with Low on the left side, Mid in the middle, and High on the
right side. The y-axis represents the scores of the performance metrics. The plot
includes four performance metrics: Sensitivity, Specificity, Precision, and F1-Score.
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Sensitivity Specificity Precision F1-Score
Low Risk 0.92 0.96 0.94 0.93
Mid Risk 0.88 0.96 0.90 0.89
High Risk 0.91 0.95 0.86 0.88

Table 5.2: Performance Evaluation Metrics

These metrics provide valuable insights into the model’s performance in correctly
classifying instances and its overall effectiveness across different classes.
Sensitivity, also known as the true positive rate, measures the proportion of correctly
classified positive instances for each class. A higher sensitivity indicates that the
model is effective at identifying instances belonging to a specific class.
Specificity, also known as the true negative rate, measures the proportion of correctly
classified negative instances for each class. A higher specificity indicates that the
model is effective at correctly classifying instances not belonging to a specific class.

Figure 5.3: Comparison of Sensitivity, Specificity, Precision, and F1-Score Across
Three Risk Levels

Precision measures the proportion of correctly classified instances for each class
among all instances predicted to belong to that class. A higher precision indicates
that the model has a low rate of falsely classifying instances into a specific class.
The F1-Score is a harmonic mean of precision and recall (which is equivalent to
sensitivity in this case). It provides a balanced measure of the model’s performance
by considering both precision and recall. A higher F1-Score indicates a better trade-
off between precision and recall for each class.
By plotting these performance metrics together, we can observe the relative per-
formance of the model across the Low, Mid, and High classes. We can see that
the model performs consistently well across the classes, with generally high scores
for Sensitivity, Specificity, Precision, and F1-Score. However, there are some varia-
tions in the scores across the classes, indicating potential differences in the model’s
performance in correctly classifying instances among the different classes.
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5.2.4 ROC Curve

The Receiver Operating Characteristic (ROC) curve provides valuable insights into
the model’s trade-off between sensitivity (true positive rate) and specificity (true
negative rate), allowing for the evaluation of its performance across different thresh-
olds. The area under the ROC curve (AUC) is often used as a summary metric to
quantify the overall performance of the model, with a higher AUC indicating better
classification performance.
Figure 5.4 illustrates the ROC curves generated by the Gradient Boosting model
for the Maternal health risk dataset. The ROC curve showcases the relationship
between the True Positive Rate (TPR) and the False Positive Rate (FPR) for each
risk level: low, mid, and high. The x-axis represents the FPR, while the y-axis
represents the TPR. We depict three ROC curves, each corresponding to a different
risk level, in distinctive colors. This consolidated visualization allows us to discern
the model’s ability to discriminate between different health risk levels. Notably, the
ROC curves exhibit a characteristic upward trend, indicative of the model’s skill in
distinguishing positive instances.

Figure 5.4: ROC Curve for Gradient Boosting

5.2.5 AUC

Figure 5.5 showcases the AUC scores obtained from the Gradient Boosting model
for the Maternal health risk dataset. The AUC score quantifies the discriminative
power of the model for each risk level: low, mid, and high. On the x-axis, we denote
the three risk levels, while the y-axis indicates the corresponding AUC scores. The
obtained AUC scores are as follows: 0.98 for low risk, 0.95 for mid risk, and 0.99
for high risk. These scores provide a succinct summary of the model’s ability to
rank instances correctly, further substantiating its effectiveness in distinguishing
between varying maternal health risk levels. Notably, the consistently high AUC
scores underscore the model’s robust performance across all risk categories.

• For the Low risk level, the AUC score is 0.98

44



• For the Mid risk level, the AUC score is 0.95

• For the High risk level, the AUC score is 0.99

Figure 5.5: Area Under the Curve (AUC)

In summary, the ROC and AUC analyses collectively demonstrate the Gradient
Boosting model’s efficacy in predicting maternal health risk levels across diverse
scenarios. The ROC curves highlight the model’s true positive rate across various
false positive rates, while the AUC scores quantitatively substantiate its discrimi-
native capability for each risk level.

5.2.6 Feature Importance Plot

The SHAP summary plot is a visual representation of the SHAP values for all
features in a machine learning model. It provides a comprehensive overview of how
each feature contributes to model predictions across all instances in a dataset. By
examining the summary plot, patterns and trends in feature contributions can be
identified, helping to understand the importance and directionality of the impact
of each feature on model predictions. This can aid in model interpretation and
decision-making by providing a holistic view of feature importance and their effects
on model outcomes.
Figure 5.6 displays that the Random Forest model ranks the features based on their
importance. The most important feature is BS (Blood Sugar), which is ranked as
the top feature. The second most important feature is SystolicBP (Systolic Blood
Pressure), followed by Age as the third most important feature. DiastolicBP (Di-
astolic Blood Pressure) is ranked as the fourth most important feature, HeartRate
(Heart Rate) as the fifth, and BodyTemp (Body Temperature) as the least important
feature.
Similar to the Random Forest model, Figure 5.7 shows that the XGBoost model
ranks the features based on their importance. In this case, SystolicBP (Systolic
Blood Pressure) is ranked as the most important feature, followed by BS (Blood
Sugar) as the second most important feature, and Age as the third most impor-
tant feature. DiastolicBP (Diastolic Blood Pressure) is ranked as the fourth most
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Figure 5.6: Feature Importance Ranking using SHAP Summary Plot with Random
Forest

Figure 5.7: Feature Importance Ranking using SHAP Summary Plot with XGBoost

important feature, HeartRate (Heart Rate) as the fifth, and BodyTemp (Body Tem-
perature) as the least important feature.
The Topsis method calculates the feature importance based on the similarity of fea-
ture values between the given data points and similar instances. In this method,
SystolicBP (Systolic Blood Pressure) is ranked as the most important feature, fol-
lowed by Age as the second most important feature, and BS (Blood Sugar) as the
third most important feature. BodyTemp (Body Temperature) is ranked as the
fourth most important feature, DiastolicBP (Diastolic Blood Pressure) as the fifth,
and HeartRate (Heart Rate) as the least important feature, shown in Figure 5.8.
In summary, based on the three methods used in this research work, the top three
important features are SystolicBP, Age, and BS, although the order of their im-
portance may vary depending on the method and model used. It appears that
SystolicBP (Systolic Blood Pressure) is consistently ranked as the most important
feature by two of the methods used, namely the SHAP summary plot with XGBoost
and the Topsis method. This suggests that SystolicBP may have a higher impact on
the target variable or outcome compared to other features in our dataset according
to these methods. In conclusion, based on our comprehensive analysis of feature
importance using multiple methods, SystolicBP, Age, and BS consistently emerged
as the most important features in our research work.
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Figure 5.8: Feature Importance Ranking using TOPSIS Method

5.2.7 Interpretability Through XAI Methods

1. High Risk Explanation

Case 01

From Figure 5.9, it appears to be a summary of a prediction result for a specific
data point. It starts by showing the actual risk level and the predicted risk level,
both of which are 2.0 indicating a high risk level.

Figure 5.9: Explanation of high risk level by XOPSIS (Case 01)

Next, it mentions that the explanation is based on topsis score, which is calculated
by comparing the similarity of feature values between the given data point and sim-
ilar instances. The explanation then proceeds to mention which features contribute
positively and negatively to the prediction. According to the explanation, the fea-
tures that have a positive impact on the prediction are Diastolic BP and Systolic
BP. On the other hand, the features that have a negative impact on the prediction
are Age, BS, HeartRate and Body Temperature.
Overall, the explanation provides insight into how different features are influencing
the prediction of high risk level for the given data point, with some features con-
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tributing positively and others negatively to the prediction.

Figure 5.10: Normalized Feature Contibutions of high risk level by XOPSIS (Case
01)

The plot showed in Figure 5.10, represents normalized feature contributions on the
x-axis and feature names on the y-axis. Feature contributions are represented as
numerical values, with positive contributions in green and negative contributions in
red. The feature contributions are as follows: Age (-0.44), BS (-0.36), BodyTemp
(0.0), HeartRate (-0.05), SystolicBP (0.03), and DiastolicBP (0.12).

Figure 5.11 illustrates that the probabilities predicted by the model for different risk
categories, such as “low risk,” “mid risk,” and “high risk.” In this case, the model
predicts a probability of 1.0 for “high risk,” and 0.0 for both “low risk” and “mid
risk.”

Figure 5.11: Explanation of high risk level by LIME (Case 01)

The plot generated by LIME visually presents the features that contribute to the
predicted risk category. It is divided into two sections, with “high risk” on the
right side and “not high risk” on the left side. On the right side of the plot, LIME
identifies the features that positively contribute to the prediction of “high risk.”
These features are SystolicBP > 120 with a weight of 0.41 and DiastolicBP > 90 with
a weight of 0.01. The weights indicate the relative importance of these features in
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determining the “high risk” prediction. On the left side of the plot, LIME identifies
the features that negatively contribute to the prediction of “not high risk” These
features are 6.90 < BS <= 7.50 with a weight of 0.21, BodyTemp <= 90 with a
weight of 0.15, 76 < HeartRate with a weight of 0.02 and 19 < Age <= 25 with a
weight of 0.01. Similar to the features for “high risk”, these features are shown with
their corresponding weights.
The LIME output also displays the actual values of the features for the specific data
point that was explained. These feature values provide context and reference to
better understand how the model arrived at its prediction.

Figure 5.12: Explanation of high risk level by SHAP (Case 01)

The plot in Figure 5.12, starts by showing the Ground Truth Label, which is the
actual label or class of the data point, and the Model Prediction, which is the
predicted label or class by the machine learning model. In your case, it shows
“Ground Truth Label: 2.0” or “High Risk” and “Model Prediction: 2.0 - High Risk
- Correct!” indicating that the data point belongs to the “High Risk” class and the
model has made a correct prediction.
The red colored features in the plot, such as Age=25, DiastolicBP=100, and BS=7.01,
are driving up the predicted probability of belonging to the “high risk” class. These
features have a positive impact on the prediction, meaning that higher values of
these features are associated with a higher predicted probability of high risk. The
blue colored features in the plot, such as SystolicBP=140, BodyTemp=98, and
HeartRate=80, are driving down the predicted probability of belonging to the “high
risk” class. These features have a negative impact on the prediction, meaning that
higher values of these features are associated with a lower predicted probability of
high risk.
The “higher− >< −lower” notation indicates the direction of the impact of the
features on the prediction. “Higher” in red color indicates that higher values of the
red features are associated with a higher predicted probability of high risk, while
“lower” in blue color indicates that lower values of the blue features are associated
with a lower predicted probability of high risk. In this case, higher values of the
features associated with red color are driving up the predicted probability of the
“high risk” class, while blue color are driving down the predicted probability of the
“high risk” class. The value of -1.60 that is displayed in bold text in the middle of
the red and blue colored features represents the contribution of the combined set of
features associated with the red and blue data points on the predicted probability
of belonging to the “high risk” class. It is the aggregated impact of all the features
considered together, taking into account their respective SHAP values.
Based on the explanations provided by LIME, SHAP, and XOPSIS for the same
data point, it can be concluded that features such as Diastolic BP and Systolic BP
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contribute positively to the prediction of high risk, indicating that higher values
of these features are associated with a higher predicted probability of high risk.
Conversely, features such as Age, BS, HeartRate and Body Temperature contribute
negatively to the prediction of high risk, meaning that higher values of these features
are associated with a lower predicted probability of high risk. Notably, LIME and
XOPSIS show consistent results in terms of the direction of feature contributions,
where both methods highlight the same features as positive or negative contribu-
tors to the prediction. SHAP explanation provides specific feature values that drive
up or down the predicted probability of high risk. Moreover, XOPSIS explanation
emphasizes the similarity of feature values between the given data point and similar
instances in the calculation of the TOPSIS score. Overall, these explanations offer
valuable insights into how different features impact the prediction of high risk and
can aid in a better understanding of the behavior of the model.

Case 02

The actual and predicted risk level of this data point is given as 2.0 in Figure 5.13
which indicates that the prediction of the model matches the actual risk level in this
case.

Figure 5.13: Explanation of high risk level by XOPSIS (Case 02)

The TOPSIS score, which is a measurement of similarity between the given data
point and similar instances, is calculated based on the feature values. The ex-
planation further provides information on which features contribute positively and
negatively to the prediction. The feature “Body Temp” is mentioned to contribute
positively to the prediction. This implies that higher values of “Body Temp” are
associated with a higher predicted risk level. The features “SystolicBP”, “Dias-
tolicBP”, “Age”, “HeartRate”, and “BS” are mentioned to contribute negatively
to the prediction. The plot showed in Figure 5.14, represents normalized feature
contributions for this data point, with positive contributions in green and negative
contributions in red.
The initial section of the output from Figure 5.15, displays the prediction proba-
bilities for different risk classes. In this case, the predicted probability for the “low
risk” class is 0.0, the predicted probability for the “mid risk” class is 0.0, and the
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Figure 5.14: Normalized Feature Contibutions of high risk level by XOPSIS (Case
02)

predicted probability for the “high risk” class is 1.0. This indicates that the model
has predicted a high risk probability for the given data point.

Figure 5.15: Explanation of high risk level by LIME (Case 02)

The plot in the output provides further insights into the features that are con-
tributing to the high risk prediction. On the right side of the plot, it shows that
the feature “Body Temp > 98.0” has a contribution of 0.17 towards the high risk
prediction. This means that a higher value of “Body Temp” greater than 98.0 is
positively impacting the prediction towards high risk. On the left side of the plot, it
shows several features and their corresponding contributions towards the high risk
prediction. These features and their contributions are as follows.
“BS <= 7.50” has a contribution of 0.21, indicating that a value of “BS” less than or
equal to 7.50 is negatively impacting the prediction towards high risk. “SystolicBP
<= 100” has a contribution of 0.07, indicating that a value of “SystolicBP” less
than or equal to 100 is also negatively impacting the prediction towards high risk.
Similarly, “DiastolicBP <= 65” has a contribution of 0.03, “19 < Age <= 27” has
a contribution of 0.02, “HeartRate <= 70” has a contribution of 0.01. The output
also displays the feature value for the given data point, which can provide additional
context for the explanations above.
In summary, the LIME output suggests that a higher body temperature above 98.0 is
positively contributing to the high risk prediction, while lower values of blood sugar
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Figure 5.16: Explanation of high risk level by SHAP (Case 02)

(BS), systolic blood pressure (SystolicBP), diastolic blood pressure (DiastolicBP),
Age, and HeartRate are negatively contributing to the high risk prediction.

Figure 5.16 illustrates that the predicted risk label by the model, which matches
the ground truth label, indicating that the prediction is correct. The SHAP force
plot shows the contributions of different features towards the prediction of high risk.
It appears that higher values of (DiastolicBP = 60) have a positive impact on the
prediction, driving up the probability of high risk. On the other hand, lower values
of (Age=22, SystolicBP=90, BS=7.5, Body Temp=102) have a negative impact on
the prediction, pulling it towards the low risk class. Therefore, DiastolicBP can
be considered to have a positive impact, while the other features have a negative
impact on the prediction. That means, if the DiastolicBP is greater than 60, it
would have a positive impact on the prediction, pulling it towards the high risk
class, as indicated by the red color and the “higher− >” text. On the other hand,
if the values of the other features (Age, SystolicBP, BS, and Body Temp) are lower
than their current values, it would have a negative impact on the prediction, pulling
it towards the low risk class, as indicated by the blue color and the “< −lower” text.

In conclusion, LIME and XOPSIS explanations consistently suggest that higher
body temperature (Body Temp) is positively associated with a higher predicted
risk level, while SHAP explanation indicates that higher values of DiastolicBP are
positively associated with a higher predicted risk level. Additionally, higher values
of features such as Age, SystolicBP, BS, and HeartRate compared to the current
values observed in the given data point are associated with a higher predicted risk
level. This information can be useful in making informed decisions and understand-
ing the factors that contribute to the prediction of risk level for the given data point.

Case 03

From Figure 5.17, we observe that the actual risk level of the given data point is 2.0
(high risk), and the model has predicted the same risk level of 2.0 (high risk) for
this data point. The features that contribute positively to the prediction are BS,
which means that higher values of BS are associated with a higher predicted risk
level. On the other hand, the features that contribute negatively to the prediction
are SystolicBP, Age, HeartRate, DiastolicBP, and BodyTemp. Figure 5.18 shows
the normalized feature contributions to this particular data point.
Based on the LIME explanation for the new data point provided in Figure 5.19,
the prediction probabilities indicate that the model has predicted a high risk with
a probability of 1.0, and low and mid risk with probabilities of 0.0 each. The ac-
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Figure 5.17: Explanation of high risk level by XOPSIS (Case 03)

Figure 5.18: Normalized Feature Contibutions of high risk level by XOPSIS (Case
03)
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companying plot shows the contribution of different features towards the prediction
of high risk. It appears that the feature “BS > 8.0” is the only one shown on the
right side of the plot and is positively contributing to the prediction of “High Risk”
with a contribution value of 0.74. The other features are shown on the left side of
the plot and are contributing negatively to the prediction of “Not High Risk” with
their respective contribution values.

Figure 5.19: Explanation of high risk level by LIME (Case 03)

Lastly, the LIME explanation also provides the feature values for this particular
data point, which can help in interpreting the contributions of the features towards
the high risk prediction for this specific instance.
At first, Figure 5.20 indicates that the ground truth label for the data point is
High Risk, and the prediction of the model is also High Risk, which is correct.
DiastolicBP=90 being shown in red in the plot indicates that it has a positive
contribution towards the prediction of high risk, pushing the prediction towards
a higher risk level. The rest of the features, including Age=43, SystolicBP=120,
BS=18, BodyTemp=98, and HeartRate=70, are shown in blue, indicating that they
have negative contributions towards the prediction of high risk.
The explanations from LIME and XOPSIS are consistent in terms of associating
higher values of BS with a higher predicted risk level. SHAP explanation is consis-
tent with LIME and XOPSIS in terms of associating higher values of DiastolicBP,
Age, SystolicBP, and BS with a lower predicted risk level, but it differs in not
assigning any significant contribution to HeartRate. The similarity between the
explanations lies in the direction of contribution, where higher values of certain fea-
tures are associated with a higher predicted risk level in LIME and XOPSIS, while
lower values of certain features are associated with a lower predicted risk level in
SHAP.

Figure 5.20: Explanation of high risk level by SHAP (Case 03)

54



2. Mid Risk Explanation

Case 04

Figure 5.21: Explanation of mid risk level by XOPSIS (Case 04)

In Figure 5.21, the first section provides the feature values of the given data point.
It includes values for Age, DiastolicBP, SystolicBP, HeartRate, BodyTemp, and BS.
The next section shows the actual risk level associated with the given data point,
which is given as “1.0”. This indicates the true risk level of the data point in the
dataset. The predicted risk level for the given data point, which is also given as
“1.0”. This indicates the risk level predicted by the model for the data point.
The next section provides the explanation of the TOPSIS Score, which is calculated
based on the similarity of feature values between the given data point and other
similar instances in the dataset. This section lists the features that have a posi-
tive contribution towards the prediction of the risk level. In this case, it includes
SystolicBP and HeartRate. On the other hand, the features that have a negative
contribution towards the prediction of the risk level. In this case, it includes Age,
DiastolicBP, BS, and BodyTemp. Figure 5.22 shows the normalized feature contri-
bution of this specific data point by XOPSIS method.
Based on the LIME output provided in Figure 5.23, it appears that the predicted
risk level for the given data point is associated with a high probability of being
classified as “Mid Risk” (1.0) and low probabilities of being classified as “Low Risk”
(0.0) or “High Risk” (0.0). The plot in the output shows the feature values of the
data point, with features associated with “Mid Risk” shown on the right side of the
plot, and features associated with “Not Mid Risk” (likely indicating “Low Risk” or
“High Risk”) shown on the left side of the plot.
On the right side of the plot (associated with “Mid Risk”), the features that are
highlighted and their corresponding values are SystolicBP> 120 (with a contribution
score of 0.05) and HeartRate> 76 (with a contribution score of 0.00). On the left side
of the plot (associated with “Not Mid Risk”), the features that are highlighted and
their corresponding values are BS between 6.90 and 7.50 (with a contribution score
of 0.16), BodyTemp <= 98.0 (with a contribution score of 0.12), Age between 19 and
27 (with a contribution score of 0.05), and DiastolicBP > 65 (with a contribution
score of 0.00).
These feature values and their associated contribution scores provide insights into
how different features contribute to the predicted risk level of “Mid Risk” versus
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Figure 5.22: Normalized Feature Contibutions of mid risk level by XOPSIS (Case
04)

Figure 5.23: Explanation of mid risk level by LIME (Case 04)
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“Not Mid Risk” for the given data point, as interpreted by the LIME model. It is
important to note that the contribution scores represent the relative importance of
each feature in determining the predicted risk level, as approximated by the LIME
model.

Figure 5.24: Explanation of mid risk level by SHAP (Case 04)

Based on the information provided in the SHAP force plot in Figure 5.24, the fea-
ture “Age” appears to have a positive contribution towards the prediction of “Mid
Risk”, as higher values of “Age” are associated with a higher probability of “Mid
Risk” prediction. On the other hand, the features BS, DiastolicBP, SystolicBP,
HeartRate, and BodyTemperature appear to have a negative contribution towards
the prediction of “Mid Risk”, as higher values of these features are associated with
a lower probability of “Mid Risk” prediction.
In summary, the similarity between the LIME and XOPSIS explanations is that
they both identify “SystolicBP” and “HeartRate” as features that positively con-
tribute to the prediction of “Mid Risk” for the given data point. Additionally, both
LIME and XOPSIS indicate that features such as “Age,” “DiastolicBP,” “BS,” and
“BodyTemp” have a negative contribution to the prediction of “Mid Risk.” This
consistent observation across LIME and XOPSIS suggests that these features may
have a similar impact on the predicted risk level for the given data point. It is impor-
tant to note that while there is similarity between LIME and XOPSIS explanations,
there may be inconsistencies with SHAP explanation regarding the contribution of
“Age.” It is crucial to thoroughly review and validate the explanations to ensure
accuracy and consistency when interpreting and comparing results from different
explanation methods.

Case 05

The XOPSIS method starts by showing in Figure 5.25, the features of the data
point that are being considered for the prediction. These features are likely to be
the input variables or attributes that are used in the prediction model. The XOPSIS
method then displays the actual risk level and predicted risk level for the data point
is “Mid Risk”. These are the risk levels associated with the specific data point being
analyzed, as determined by the prediction model.
The explanation suggests that the method assesses how close the feature values of
the given data point are to the feature values of other instances in the dataset, in
order to determine the similarity. This explanation further mentions that certain
features contribute positively to the prediction. These features are identified as
BodyTemp and HeartRate. The explanation also indicates that certain features
contribute negatively to the prediction. These features are identified as Age, BS,
SystolicBP and DiastolicBP.
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Figure 5.25: Explanation of mid risk level by XOPSIS (Case 05)

Figure 5.26: Normalized Feature Contibutions of mid risk level by XOPSIS (Case
05)
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In summary, the XOPSIS method is being used to calculate a score for a specific data
point based on the similarity of its feature values with other instances. The features
that contribute positively or negatively to the prediction are identified, indicating
their impact on the predicted risk level for the given data point in Figure 5.26.
Based on the LIME output provided in Figure 5.27, the predicted risk level for
the given data point is “Mid Risk” with a probability of 1.0, as indicated by the
Prediction Probabilities section.
The plot in the output provides further insights into the features that contribute
to the prediction of “Mid Risk.” On the right side of the plot, features such as
“BodyTemp” greater than 98.0, “SystolicBP” greater than 100, and “HeartRate”
greater than 70 are identified as positively contributing to the prediction of “Mid
Risk,” with corresponding weights or importance scores of 0.10, 0.02, and 0.00 re-
spectively. This means that higher values of these features are associated with a
higher probability of the prediction being “Mid Risk”. On the left side of the plot,
features such as “Age” less than or equal to 19.0, “BS” (Blood Sugar) greater than
7.50 and less than or equal to 8.0, and “DiastolicBP” greater than 65 are identified as
negatively contributing to the prediction of “Mid Risk”, with corresponding weights
or importance scores of 0.11, 0.08, and 0.00 respectively. The feature values of the
data point are also provided in the output, which can be used to further understand
the specific values of each feature for this particular prediction.

Figure 5.27: Explanation of mid risk level by LIME (Case 05)

The SHAP force plot in Figure 5.28, is a visualization that helps to explain the
prediction of a machine learning model for a specific data point. In this case, the
prediction is for the “Mid Risk” level, as indicated by the Ground Truth Label and
Model Prediction, both showing a value of 1.0 for “Mid Risk”. The SHAP force plot
consists of two parts: the left side, shown in red color, and the right side, shown in
blue color. The labels “higher− >” on the left side and “< −lower” on the right
side indicate the directionality of the feature values in those regions.

Figure 5.28: Explanation of mid risk level by SHAP (Case 05)
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On the left side (red color), the label ”higher− >” indicates that values of the feature
in that region have a positive contribution towards the prediction of “Mid Risk” for
the specific data point being explained in the plot. The red color represents features
that push the model score higher, meaning they increase the output raw value, and
thus have a positive contribution towards the prediction of “Mid Risk”. On the
right side (blue color), the label “< − lower” indicates that values of the feature
in that region have a negative contribution towards the prediction of “Mid Risk”.
The blue color represents features that push the model score lower, meaning they
decrease the model output value, and thus have a negative contribution towards the
prediction of “Mid Risk” for this particular data point.
Additionally, the numerical values shown in the plot represent the feature values
for the specific data point being explained. For example, Age=18 is shown in red
color with a value of -1.377, indicating that a higher value of Age would have a
positive contribution towards the prediction of “Mid Risk”. The rest of the fea-
tures, HeartRate, BS, SystolicBP, and DiastolicBP, are shown in blue color with
corresponding values, indicating their negative contribution towards the prediction
of “Mid Risk” for this data point.
The base value of 0.1227, shown in bold text, represents the expected model output
value for the “Mid Risk” prediction. The value of f(x) -1.22, positioned in the
middle of the red and blue colored features, indicates the overall contribution of all
the features towards the prediction of “Mid Risk” for the specific data point being
explained in the plot.
In summary, the findings from the XOPSIS and LIME plots are aligned, as they
both identify almost similar positively and negatively contributing features for pre-
dicting ”Mid Risk” in the given data point. However, the SHAP force plot provides
more comprehensive and detailed information with numerical values and color-coded
directionality, which adds to the overall consistency and interpretability of the expla-
nations across different methods, albeit not fully aligning with XOPSIS and LIME.

Case 06

The features of the given data point are displayed in Figure 5.29. The actual and
predicted risk level of the data point is shown, with a value of 1.0. This indicates that
the model has predicted a “Mid Risk” level for the given data point. The features
that positively contribute to the prediction are HeartRate and BodyTemp, while the
features that negatively contribute to the prediction are SystolicBP, DiastolicBP,
Age, and BS.
A plot is shown in Figure 5.30, with normalized feature contributions. Positive con-
tributions are displayed in green color, while negative contributions are displayed in
red color. The normalized contributions for each feature, displayed in parentheses
next to the feature name, are as follows: BodyTemp (0.02), BS (-0.04), HeartRate
(0.07), DiastolicBP (-0.23), Age (-0.24), and SystolicBP (-0.41). These values in-
dicate the strength and directionality of the contributions of each feature towards
the predicted “Mid Risk” level for the given data point. Positive contributions sug-
gest that higher values of those features positively contribute to the “Mid Risk”
prediction, while negative contributions suggest that lower values of those features
negatively contribute to the “Mid Risk” prediction.
In Figure 5.31, the initial section displays the predicted probabilities for each risk
category. In this case, the predicted probability for “Mid Risk” is 1.0, while the

60



Figure 5.29: Explanation of mid risk level by XOPSIS (Case 06)

Figure 5.30: Normalized Feature Contibutions of mid risk level by XOPSIS (Case
06)
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predicted probabilities for “Low Risk” and “High Risk” are both 0.0. This suggests
that the model’s prediction for this data point is a “Mid Risk” classification with
high confidence.
The plot is divided into two sections, with “Mid Risk” on the right side and “Not Mid
Risk” on the left side. Each section represents the features that are contributing
to the respective classification. On the right side of the plot, the features that
are positively contributing to the prediction of “Mid Risk” are displayed. These
features include “BodyTemp” greater than 98.0 with a contribution weight of 0.11,
and “HeartRate” greater than 80.0 with a contribution weight of 0.01. These higher
values of “BodyTemp” and “HeartRate” are influencing the model to predict “Mid
Risk” for this data point. On the left side of the plot, the features that are negatively
contributing to the prediction of “Mid Risk” are displayed. These features include
“BS greater than 8.0 with a contribution weight of 0.15, “Age” less than or equal to
19.0 with a contribution weight of 0.11, “SystolicBP” less than or equal to 100 with
a contribution weight of 0.05, and “DiastolicBP” less than or equal to 65 with a
contribution weight of 0.01. These lower values of “BS”, “Age”, “SystolicBP”, and
“DiastolicBP” are influencing the model to predict “Not Mid Risk” for this data
point.

Figure 5.31: Explanation of mid risk level by LIME (Case 06)

Finally, the LIME output also provides the feature values for the specific data point
being explained. These feature values are likely the values of the input features of
the data point for which the explanation is being generated.
Figure 5.32 displays the SHAP force plot which provides an explanation of the pre-
diction for the data point being analyzed, which is labeled as “Mid Risk” with a
correct model prediction. Features such as “BodyTemp=102”, “DiastolicBP=60”,
and “HeartRate=86” are shown with red arrows pointing to the right, indicating
that higher values of these features have a positive contribution towards the pre-
diction of “Mid Risk”. The corresponding SHAP values (-1.377, -0.8773, -0.3773)
quantify the magnitude of the negative contribution for each feature. Features such
as “SystolicBP=85”, “Age=17”, and “BS=9” are shown with blue arrows pointing
to the left, indicating that lower values of these features have a negative contribu-
tion towards the prediction of “Mid Risk”. The corresponding SHAP values (0.1227,
0.6227, 1.123) quantify the magnitude of the negative contribution for each feature.
The base value of 0.1227, written in bold letters, represents the expected prediction
value without considering any specific feature contributions. The value of -0.12,
written in the middle of the red and blue colored features, represents the final pre-
diction value after considering the contributions of all the features together.
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Figure 5.32: Explanation of mid risk level by SHAP (Case 06)

Overall, the SHAP force plot helps in understanding the contribution of each feature
towards the prediction of “Mid Risk” for the specific data point, with red indicating
positive contributions and blue indicating negative contributions. The magnitude
of the contributions is quantified by the SHAP values, and the plot provides a
visual representation of the feature contributions, aiding in the interpretability of
the prediction of the model.
Finally, all three explanations indicate that the predicted risk level for the given data
point is “Mid Risk”. They identify similar positively contributing features, such as
BodyTemp and HeartRate, as significant for predicting “Mid Risk” in the given
data point. They also highlight similar negatively contributing features, such as
SystolicBP, DiastolicBP, Age, and BS, as influential in predicting “Not Mid Risk”
for the given data point. One key difference between the explanations provided
by LIME, SHAP, and XOPSIS is that SHAP identifies DiastolicBP as a positive
contributing feature for predicting “Mid Risk” in the given data point, whereas
LIME and TOPSIS do not.
LIME provides probability-based explanations and importance scores for positively
and negatively contributing features. SHAP uses a force plot to represent the mag-
nitude and direction of contributions for each feature, with red indicating positive
and blue indicating negative contributions. XOPSIS provides normalized contri-
butions for each feature, with positive contributions shown in green and negative
contributions shown in red.
The explanations provided by LIME, SHAP, and XOPSIS are aligned in terms
of identifying similar positively and negatively contributing features for predicting
“Mid Risk” in the given data point. However, they differ in terms of the repre-
sentation and visualization of the contributions. LIME provides probability-based
explanations, SHAP uses a force plot, and XOPSIS provides normalized contri-
butions. The choice of explanation method may depend on the specific use case,
context, and user preference.

3. Low Risk Explanation

Case 07

In the given XOPSIS explanation provided in Figure 5.33, the data point features
are shown initially, followed by the actual risk level and predicted risk level, which
are both 0.0. Then, the explanation mentions that the TOPSIS score is calculated
based on the similarity of feature values between the given data point and similar
instances.
The explanation further specifies that there are features that contribute positively
to the prediction, which are SystolicBP, Age, BS, and BodyTemp. These positive
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Figure 5.33: Explanation of low risk level by XOPSIS (Case 07)

contributions are shown in green color in the plot in Figure 5.34. Additionally, there
are features that contribute negatively to the prediction, which are DiastolicBP and
HeartRate. These negative contributions are shown in red color in the plot. It is
important to note that in the context of the given XOPSIS explanation, green color
indicates positive contributions, while red color indicates negative contributions.
This color scheme is used to visually represent the impact of each feature on the
prediction of the risk level.

Figure 5.34: Normalized Feature Contibutions of low risk level by XOPSIS (Case
07)

Figure 5.35 shows the predicted probabilities for each risk level as (low risk 1.0, mid
risk 0.0, high risk 0.0), indicating that the model has predicted the data point to
be in the low risk category with a probability of 1.0. The plot is divided into two
sections, the right side showing the features that contribute to the prediction of low
risk, and the left side showing the features that contribute to the prediction of not
being in the low risk category.
The features that contribute positively to the prediction of low risk are: “BS”
(Blood Sugar) with a value range of 6.90 to 7.50, with a contribution weight of
0.39; “BodyTemp” (Body Temperature) with a value less than or equal to 98.0,
with a contribution weight of 0.25; “SystolicBP” (Systolic Blood Pressure) with a
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value less than or equal to 100.0, with a contribution weight of 0.16; and “Age”
with a value range of 19 to 27, with a contribution weight of 0.09. On the other
hand, the features that contribute negatively to the prediction of being in the low
risk category are: “HeartRate” (Heart Rate) with a value greater than 80, with a
contribution weight of 0.06; and “DiastolicBP” (Diastolic Blood Pressure) with a
value greater than 80, with a contribution weight of 0.01. The actual feature values
of the data point are explicitly mentioned in this figure, and they are used in the
calculation of the contribution weights for each feature in determining the predicted
risk level.

Figure 5.35: Explanation of low risk level by LIME (Case 07)

In summary, the LIME output indicates that the model has predicted the data point
to be in the low risk category based on the contributions of features such as BS,
BodyTemp, SystolicBP, and Age, while features such as HeartRate and DiastolicBP
have lesser contributions to the prediction of not being in the low risk category.
The SHAP force plot shown in Figure 5.36, appears to be for a classification model
with a ground truth label of 0.0, indicating a low risk prediction, and a model
prediction of 0, which is also classified as low risk and is correct.

Figure 5.36: Explanation of low risk level by SHAP (Case 07)

The plot uses red and blue colors to represent the direction and magnitude of feature
contributions. Features with positive contributions are shown in red with the label
’higher− >’, while features with negative contributions are shown in blue with the
label ’< −lower’. The features and their corresponding contributions shown on the
plot are as follows: Age = 20, BS=7.1, BodyTemp=98, SystolicBP=100 in red color,
indicating a positive contribution towards the model prediction and an increase the
predicted risk level. DiastolicBP = 90, HeartRate = 88 are shown in blue color,
indicating a negative contribution towards the model prediction and a reduction in
the predicted risk level. The base value is -0.1666, which serves as a reference point
for the contributions. The value “f(x) 0.67” in bold letters and in the middle of
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the red and blue color features represents the final predicted risk level based on the
accumulated contributions of the features.
Overall, the SHAP force plot provides a visual representation of how each feature
contributes towards the prediction of the model of low risk, with red indicating
positive contributions and blue indicating negative contributions. The magnitude
of the contributions is shown with values, and the base value provides a reference
point.
In conclusion, all three explanations provided by LIME, SHAP, and XOPSIS for
the same data point share similarities in terms of identifying the features that con-
tribute positively (BS, BodyTemp, SystolicBP, and Age ) and negatively (HeartRate
and DiastolicBP) to the prediction of low risk, using visual representations to con-
vey the contributions, providing information about actual and predicted risk levels,
explaining the calculation methodology or scoring system, and mentioning specific
feature values used in the calculation. These explanations provide valuable insights
into the factors that influence the prediction of risk level for the given data point,
and can aid in interpreting the predictions of the model and building trust in the
decision-making process of the model.

Case 08

The first section shows the values of the features for the given data point in Figure
5.37. It provides an overview of the specific feature values that are being considered
for the prediction. This section shows the actual risk level and the predicted risk
level for the data point is 0.0. It helps to compare the true risk level with the
predicted risk level generated by the XOPSIS model.

Figure 5.37: Explanation of low risk level by XOPSIS (Case 08)

The next section provides an explanation of how the Topsis Score is calculated. The
Topsis Score is based on the similarity of feature values between the given data
point and similar instances in the dataset. It indicates which features contribute
positively and negatively to the prediction. This section lists the features that
contribute positively to the prediction. These features have a positive impact on
the predicted risk level. In this case, the features that contribute positively are
SystolicBP, DiastolicBP, Age, BS, and BodyTemp. These features for the given
data point, increase the predicted risk level. This section also lists the features
that contribute negatively to the prediction. These features have a negative impact
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on the predicted risk level. In this case, the feature that contributes negatively is
HeartRate. This feature for the given data point, decreases the predicted risk level.

Figure 5.38: Normalized Feature Contibutions of low risk level by XOPSIS (Case
08)

Figure 5.38 presents a plot that shows the normalized feature contributions visually.
Positive contributions are shown in green color, while negative contributions are
shown in red color. This plot provides a visual representation of how each feature
contributes to this particular prediction, either positively or negatively. Overall, the
XOPSIS explanation provides insights into how the features of the given data point
contribute to the predicted risk level. It highlights which features have a positive
or negative impact on the prediction and provides a visual representation of the
normalized feature contributions.
The predicted probabilities in Figure 5.39, for each risk level are shown as (low risk
1.0, mid risk 0.0, high risk 0.0). This indicates that the model has predicted the
data point to be in the low risk category with a probability of 1.0, and there are
no predicted probabilities for mid risk or high risk categories. The plot is divided
into two sections, with the right side showing the features that contribute to the
prediction of low risk, and the left side showing the features that contribute to the
prediction of not being in the low risk category.

Figure 5.39: Explanation of low risk level by LIME (Case 08)

BodyTemp<=98.0 indicates that if the body temperature is less than or equal to
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98.0, it contributes positively to the prediction of low risk with a contribution weight
of 0.24. SystolicBP<=100 implies that if the systolic blood pressure is less than or
equal to 100, it contributes positively to the prediction of low risk with a contribution
weight of 0.17. 19<Age<=27 demonstrates that if the age is between 19 and 27,
it contributes positively to the prediction of low risk with a contribution weight of
0.10. BS<=6.90 represents that if the blood sugar is less than or equal to 6.90, it
contributes positively to the prediction of low risk with a contribution weight of 0.07.
DiastolicBP<=65 reveals that if the diastolic blood pressure is less than or equal to
65, it contributes positively to the prediction of low risk with a contribution weight
of 0.01. On the other hand, 76<HeartRate suggests that if the heart rate is greater
than 76, it contributes negatively to the prediction of low risk with a contribution
weight of 0.01. The actual feature values of the data point are explicitly mentioned
in the provided LIME output.
In summary, the LIME output indicates that the model has predicted the data
point to be in the low risk category based on the contributions of features such
as BodyTemp, SystolicBP, Age, BS, and DiastolicBP, while HeartRate has a lesser
contribution to the prediction of not being in the low risk category. The contribution
weights of each feature indicate the magnitude of their impact on the predicted risk
level.
The SHAP force plot shown in Figure 5.40, starts by showing the ground truth
label, which is 0.0 representing “Low risk”, and the correct prediction of the model
is “Low risk” with a prediction value of [0].

Figure 5.40: Explanation of low risk level by SHAP (Case 08)

The plot then displays a range of features, such as BS (6.9), Age (22), SystolicBP
(100), DiastolicBP (65), BodyTemp (98), and HeartRate (80), in red color. The red
color indicates that these features have higher values compared to the base value.
The arrows on the plot represent the direction of the contribution of each feature
towards the prediction. If an arrow is pointing to the right (labeled as “higher− >”)
and is in red color, it indicates a positive contribution towards the prediction of “Low
risk”. This means that higher values of these features are positively correlated with
the prediction of “Low risk” for this data point.
The base value, which is -0.1666, serves as the reference point for the prediction.
The value of f(x), which is 2.84 and shown in bold text and in the middle of the red
and blue color features, represents the overall contribution of all features towards
the prediction. Since the value is positive, it suggests that the higher values of the
features collectively contribute positively to the prediction of “Low risk” for this
particular data point.
In conclusion, all three explanations mention the predicted risk level for the data
point, with LIME and XOPSIS showing the prediction probabilities, and SHAP
showing the ground truth label and model prediction. They also mention the features
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that contribute positively or negatively to the predicted risk level. They mention
similar features, such as SystolicBP, DiastolicBP, Age, BS, and BodyTemp as posi-
tive contributors, while HeartRate is mentioned as a negative contributor in LIME
and Topsis explanations, but as a positive contributor in the SHAP explanation.
Based on the similarities, it can be concluded that LIME, SHAP, and XOPSIS ex-
planations provide insights into the features that contribute to the predicted risk
level for the given data point. They mention similar features as positive or negative
contributors, although the representation and format of the explanations may vary.
While LIME and XOPSIS consistently identify HeartRate as a negative contributor,
SHAP represents it as a positive contributor. These explanations can help in inter-
preting and understanding the prediction of the risk level for the given data point
in a transparent and interpretable manner, allowing for better decision-making and
model evaluation.

Case 09

Figure 5.41: Explanation of low risk level by XOPSIS (Case 09)

Based on the provided XOPSIS explanation from Figure 5.41, it appears to provide
an overview of the actual and predicted risk level for the given data point, followed by
an explanation of how the Topsis Score is calculated based on similarity of feature
values with similar instances. The explanation also highlights the features that
contribute positively and negatively to the prediction. The positively contributing
features are identified as SystolicBP, DiastolicBP, HeartRate, BS, and BodyTemp,
indicating that higher values of these features are associated with a higher predicted
risk level. On the other hand, the negatively contributing feature is identified as
Age, suggesting that a higher value of Age is associated with a lower predicted risk
level.
The explanation is further supported by a plot in Figure 5.42 that visualizes the
normalized feature contributions for this data point. Positive feature contributions
are shown in green, while negative feature contributions are shown in red. This plot
provides a graphical representation of how each feature contributes to the predicted
risk level for the given data point, based on their normalized contribution values.
Overall, the XOPSIS explanation provides insights into the features that are con-
tributing positively or negatively to the prediction of the risk level for the given
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Figure 5.42: Normalized Feature Contibutions of low risk level by XOPSIS (Case
09)

data point, and how these contributions are normalized and visualized in a plot for
better understanding.
Figure 5.43 shows the predicted probabilities for each risk level. In this case, the
model predicts a low risk with a probability of 1.0, and zero probabilities for mid
risk and high risk. This indicates that the model is highly confident in predicting a
low risk for the given data point. The plot is divided into two sides, with the “low
risk” category on the right side and the “not low risk” category on the left side.

Figure 5.43: Explanation of low risk level by LIME (Case 09)

The features that contribute positively to the prediction of low risk are listed on the
right side of the plot. These features including BodyTemp <= 98.0 with a contri-
bution weight of 0.26, SystolicBP <= 100 with a contribution weight of 0.15, BS
<= 6.90 with a contribution weight of 0.05, HeartRate <= 70 with a contribution
weight of 0.02, DiastolicBP > 65 with a contribution weight of 0.01. The contri-
bution weights represent the magnitude of the contribution of each feature towards
the predicted low risk. Higher positive weights indicate stronger positive contribu-
tion to the prediction. The feature 27 < Age <= 37.50 is listed on the left side of
the plot with a contribution weight of 0.13. This indicates that this feature is con-
tributing negatively towards the prediction of low risk. The output also displays the
actual feature values of the data point being explained. This allows for a complete
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understanding of the feature values used by the model in making the prediction.
In summary, based on this LIME output, the model predicts a low risk for the given
data point mainly based on features such as BodyTemp, SystolicBP, BS, HeartRate,
and DiastolicBP, while Age is contributing negatively towards the prediction. It
provides insights into how different features influence the prediction of the model
and helps in interpreting the prediction of low risk for the given data point in an
interpretable manner.
Based on the information provided in Figure 5.44, the SHAP force plot begins by
showing the ground truth label and model prediction, which in this case are both
0.0 - Low risk, and the prediction is correctly labeled.

Figure 5.44: Explanation of low risk level by SHAP (Case 09)

The plot then displays a series of arrows indicating the direction of the contribution
for different features. The arrow pointing to the right (in red color) represents
features with higher values that contribute positively towards the prediction, while
the arrow pointing to the left (in blue color) represents features with lower values
that contribute negatively towards the prediction. The features DiastolicBP=70,
BodyTemp=98, BS=6.1, and SystolicBP=100 are labeled in red color on the side
of the “higher − >” arrow, indicating that higher values of these features positively
contribute towards the prediction of low risk. On the other hand, the features
Age=35 and HeartRate=66 are labeled in blue color on the side of the “< − lower”
arrow, indicating that lower values of these features negatively contribute towards
the prediction of low risk.
The base value of -0.1666 is the expected value of the prediction. The value written
in bold letter and in the middle of the red and blue color features, which is f(x) 1.34,
represents the total estimated contribution of all the features towards the prediction
of low risk for the given data point. Positive contributions (red) from features with
higher values and negative contributions (blue) from features with lower values are
summed up to arrive at the total estimated contribution of 1.34, which is added to
the base value to obtain the final predicted value for the data point.
In summary, the SHAP force plot provides a visual representation of the contri-
butions of different features towards the prediction of low risk for the given data
point, with red arrows indicating positive contributions and blue arrows indicating
negative contributions. The estimated contributions of each feature are shown in
bold letter, and the base value is provided as a reference point for interpreting the
overall prediction.
In summary, the predicted risk level in all three explanations is consistent for the
given data point, indicating that the prediction of the model aligns with the actual
risk level for the data point. All three explanations highlight the positive or negative
contributions of features towards the predicted risk level. For example, in LIME and
XOPSIS, features like SystolicBP, DiastolicBP, BS, HeartRate and BodyTemp are
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mentioned as positive contributors, while Age is mentioned as a negative contributor.
Similarly, in SHAP, some features like DiastolicBP, BS, BodyTemp, and SystolicBP
are shown as positively contributing, while Age, HeartRate is shown as negatively
contributing. Based on these similarities, we can conclude that LIME, SHAP, and
XOPSIS explanations provide consistent insights into the features that contribute
to the predicted risk level for the given data point. Although there may be some
differences in representation and format, these explanations can collectively help in
interpreting and understanding the prediction of risk level for the given data point
in a transparent and interpretable manner.

5.3 Result Analysis on Iris Dataset

5.3.1 Accuracy

The accuracy of the trained models on the Iris dataset was evaluated using two
different techniques: the train-test split and k-fold cross-validation with 10 folds.
The accuracy scores for three algorithms, namely Gradient Boosting, XGBoost, and
Random Forest, are presented in Table 5.3.

Accuracy
Serial No Algorithms Train-Test

Split
K-Fold Cross
Validation

01 Gradient Boosting 96.667% 95.333%
02 XGBoost 93.333% 95.299%
03 Random Forest 90.000% 94.667%

Table 5.3: Accuracy of 3 Algorithms

From the accuracy scores in Table 5.3, we observe that all three algorithms achieve
high accuracy on the Iris dataset. The Gradient Boosting algorithm achieves the
highest accuracy of 96.667% using the train-test split technique, while XGBoost and
Random Forest achieve accuracies of 93.333% and 90.000%, respectively.
Comparing the train-test split accuracy with the 10-fold cross-validation accuracy,
we notice a slight decrease in accuracy for all algorithms when using cross-validation.
This difference may be attributed to the use of multiple subsets of data for training
and testing in cross-validation, leading to a more generalized model but with slightly
lower accuracy.
Additionally, Figure 5.45 illustrates the train-test split accuracy scores for the three
algorithms. The x-axis represents the algorithm names (Gradient Boosting, XG-
Boost, and Random Forest), while the y-axis represents the accuracy. Each bar in
the plot represents the accuracy score achieved by the corresponding algorithm.
The bar plot visually demonstrates the variation in accuracy across different algo-
rithms. It is evident that Gradient Boosting achieves the highest accuracy score of
96.667%, followed by XGBoost with an accuracy score of 93.333%. Random Forest
achieves an accuracy score of 90.000%.
This bar plot provides a clear comparison of the accuracy achieved by each algorithm,
highlighting the superior performance of Gradient Boosting on the Iris dataset.

72



Figure 5.45: Train-Test Split Accuracy for Different Algorithms on Iris Dataset

These accuracy results demonstrate the effectiveness of the Gradient Boosting, XG-
Boost, and Random Forest algorithms in accurately classifying the Iris dataset.

5.3.2 Confusion Matrix

The Figure 5.46 presents the confusion matrix for the classification of Iris dataset us-
ing the trained model (Gradient Boosting). The true labels are displayed vertically,
representing Iris-Setosa, Iris-Versicolor, and Iris-Virginica from top to bottom. The
predicted labels are shown horizontally. The values in the cells indicate the count
of samples classified into each class.

Figure 5.46: Confusion Matrix for Iris Dataset

The values in the confusion matrix indicate the counts of samples that belong to
each class. Specifically, the values in the first row represent the samples that are
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truly labeled as Iris-Setosa. In this case, there are 11 samples correctly classified as
Iris-Setosa, while there are no misclassifications for this class.
Moving to the second row, the values represent the samples that are truly labeled
as Iris-Versicolor. Out of the 13 samples of this class, 12 are correctly classified as
Iris-Versicolor, while 1 sample is misclassified.
Finally, the third row represents the samples that are truly labeled as Iris-Virginica.
All 6 samples of this class are correctly classified.
By analyzing the confusion matrix, we can gain insights into the performance of the
classification model. In this case, the model shows high accuracy in predicting the
Iris-Setosa and Iris-Virginica classes, but there is a single misclassification in the
Iris-Versicolor class.

5.3.3 Sensitivity, Specificity, Precision and F1-Score

Sensitivity Specificity Precision F1-Score
Iris Setosa 1 1 1 1
Iris Versicolor 0.92 1 1 0.96
Iris Virginica 1 0.96 0.86 0.92

Table 5.4: Performance Evaluation Metrics on Iris Dataset

The Table 5.4 presents the performance evaluation metrics, including sensitivity,
specificity, precision, and F1-score, for the classification of the Iris dataset using the
trained model. The metrics are calculated for each class: Iris Setosa, Iris Versicolor,
and Iris Virginica.

Figure 5.47: Performance Evaluation Metrics on Iris Dataset

For Iris Setosa, the model achieves perfect sensitivity, specificity, precision, and F1-
score, with a score of 1 for each metric. This indicates that all samples of Iris Setosa
are correctly classified.
For Iris Versicolor, the model demonstrates a sensitivity of 0.92, meaning that 92%
of the Iris Versicolor samples are accurately identified. The model also achieves
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perfect specificity, precision, and an F1-score of 0.96, indicating high performance
in correctly classifying Iris Versicolor.
For Iris Virginica, the model achieves perfect sensitivity, correctly identifying all
samples of Iris Virginica. It demonstrates a specificity of 0.96, indicating a high
ability to distinguish Iris Virginica from other classes. However, the precision for
Iris Virginica is 0.86, implying that there may be some misclassifications. The F1-
score for Iris Virginica is 0.92, reflecting a balance between precision and recall.
Furthermore, Figure 5.47 displays a plot representing the performance evaluation
metrics for each class. The x-axis denotes the three labels: Iris Setosa, Iris Versicolor,
and Iris Virginica, while the y-axis represents the score. This plot allows for a visual
comparison of the sensitivity, specificity, precision, and F1-score across the different
classes of the Iris dataset.

5.3.4 ROC Curve

In this section, we delve into the ROC and AUC analyses conducted on the Iris
dataset using the Gradient Boosting model. These analyses are pivotal in evaluating
the model’s performance across its three distinct classes: Iris-Setosa, Iris-Versicolor,
and Iris-Virginica.
Figure 5.48 illustrates the ROC curves generated by the Gradient Boosting model for
the Iris dataset. Similar to previous analyses, the ROC curves provide insights into
the model’s ability to discriminate among the different classes. The x-axis represents
the False Positive Rate (FPR), while the y-axis represents the True Positive Rate
(TPR). We present three ROC curves, each corresponding to one of the three Iris
species: Iris-Setosa, Iris-Versicolor, and Iris-Virginica. These curves are distinctively
colored, facilitating visual differentiation. As the curves ascend, they underscore the
model’s aptitude in classifying instances across diverse classes.

Figure 5.48: ROC Curve for Gradient Boosting Model on Iris Dataset

Overall, the ROC curve provides insights into the trade-off between the true positive
rate and the false positive rate for the Gradient Boosting model on the Iris dataset.
It demonstrates the model’s ability to discriminate between different classes and
highlights the varying performance for each class.
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5.3.5 AUC

Figure 5.49 showcases the Area Under the Curve (AUC) scores obtained from the
Gradient Boosting model for the Iris dataset. The AUC scores serve as quantitative
indicators of the model’s predictive prowess for each Iris species. On the x-axis,
we label the three Iris species, while the y-axis represents the corresponding AUC
scores. The calculated AUC scores are as follows: 1.0 for Iris-Setosa, 0.99 for Iris-
Versicolor, and 0.98 for Iris-Virginica. These scores affirm the model’s proficiency
in accurately ranking instances across the different species. The high AUC scores
are emblematic of the model’s robust performance and its capacity to effectively
distinguish between the Iris classes.

Figure 5.49: AUC Curve for Gradient Boosting Model on Iris Dataset

The AUC scores for each class are as follows:
- The AUC score of 1.0 signifies flawless separation between positive and negative
instances. This implies that the model accurately distinguishes Iris Setosa from
other species.
- With an AUC score of 0.99, there is a strong level of separation between positive
and negative instances. This indicates that the model effectively discriminates Iris
Versicolor from other species, though not as perfectly as in the case of Iris Setosa.
- Achieving an AUC score of 0.98, there is a notable degree of separation between
positive and negative instances. This suggests that the model reliably differentiates
Iris Virginica from other species, though slightly less distinctly than Iris Setosa and
Iris Versicolor.
The AUC curve represents the performance of the Gradient Boosting model in terms
of its ability to rank instances correctly across different classes. The single line on
the plot connects the three points corresponding to the AUC scores for each class,
illustrating the varying levels of separation achieved by the model for the different
Iris classes.
The AUC curve is a valuable metric for evaluating the overall performance of a
model. It provides a summarized view of the model’s ability to discriminate between
classes, with higher AUC scores indicating better performance.
In essence, the ROC and AUC analyses conducted on the Iris dataset using the
Gradient Boosting model substantiate its efficacy in classifying instances into the

76



distinct Iris species. The ROC curves visually underscore the model’s discrimination
ability, while the AUC scores provide a comprehensive quantification of its predictive
accuracy across the varied classes.

5.3.6 Interpretability Through XAI Methods

In this subsection, we provide explanations for the predictions made by the Gradient
Boosting model on the Iris dataset using three XAI (Explainable Artificial Intelli-
gence) methods: XOPSIS, LIME, and SHAP. These methods aim to shed light on
the important features that contribute to the model’s decision-making process.

1. Iris Setosa Explanations

Case 01

In Figure 5.50, we present the XOPSIS explanation for Case 01 in the Iris dataset.
The figure starts by displaying the actual feature values of the data point under
consideration. It provides insights into the specific values of the features, such as
sepal length, sepal width, petal length, and petal width.

Figure 5.50: Explanation of Iris-Setosa level by XOPSIS (Case 01)

Furthermore, the figure reveals that the actual species of the data point is Iris Setosa,
while the model predicted the species as 0, which also corresponds to Iris Setosa.
The XOPSIS explanation highlights the contributing features to the model’s predic-
tion. It identifies positive contributing features, which in this case are petal length
and petal width. These features positively influenced the model’s decision towards
predicting the data point as Iris Setosa.
On the other hand, the XOPSIS explanation also identifies negative contributing
features, which are sepal length and sepal width. These features had a negative im-
pact on the model’s decision, suggesting that they were not significant in classifying
the data point as Iris Setosa.
In Figure 5.51, we present the normalized feature contributions by XOPSIS for Case
01 in the Iris dataset. The figure illustrates the relative importance and direction
of each feature’s contribution to the model’s prediction. The normalized feature
contributions are visualized using a color scheme, where green represents positive
contributions and red represents negative contributions. The intensity of the color
indicates the magnitude of the contribution.
These normalized feature contributions provide insights into the relative importance
of each feature in determining the model’s prediction for Case 01. The positive
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Figure 5.51: Normalized Feature Contibutions of Iris-Setosa level by XOPSIS (Case
01)

contributions of petal width and petal length suggest that higher values of these
features favor the prediction of Iris Setosa. Conversely, the negative contributions
of sepal width and sepal length imply that lower values of these features contribute
towards the prediction of Iris Setosa.
By providing such explanations, XOPSIS enhances our understanding of how indi-
vidual features influence the model’s decision-making process for this specific data
point in the Iris dataset.
In Figure 5.52, we present the LIME explanation for Case 01 in the Iris dataset.
LIME provides an interpretable understanding of the model’s prediction by high-
lighting the important features and their contributions.

Figure 5.52: Explanation of Iris-Setosa level by LIME (Case 01)

The left section of the figure displays the prediction probabilities for each class. In
this case, the prediction probability for Iris-Setosa is 1.0, indicating a high certainty
in the model’s prediction for this class. The probabilities for the remaining classes
(Not Iris-Setosa) are all 0, suggesting a clear distinction in the model’s prediction.
In the right section, LIME highlights the features that contribute to the prediction
of Iris-Setosa. Specifically, it indicates that a petal length greater than 1.58 and
a petal width greater than 0.28 favor the prediction of Iris-Setosa. Conversely, it
suggests that a sepal width greater than 3.30 and a sepal length less than or equal
to 5.10 contribute to the prediction of Not Iris-Setosa.
The bottom section of the figure displays the actual feature values for Case 01. This
provides a context for understanding how the feature values align with the LIME
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explanation. By comparing the actual feature values with the highlighted features
in the middle section, we can observe the consistency or discrepancy between the
two.
Through the LIME explanation, we gain insights into the specific feature values that
drive the model’s prediction for Case 01. This helps us understand the decision-
making process of the model and provides interpretability to the predictions made
for the Iris dataset.
Figure 5.53 presents the SHAP (SHapley Additive exPlanations) explanation for
Case 01 in the Iris dataset. SHAP provides a unified framework for interpreting
the predictions of machine learning models by assigning importance values to each
feature.

Figure 5.53: Explanation of Iris-Setosa level by SHAP (Case 01)

The top section of the figure displays the ground truth label and the model’s predic-
tion. In this case, the ground truth label is Iris-Setosa, and the model’s prediction
is also Iris-Setosa (predicted label: 0).
The bottom section of the figure showcases the SHAP force plot. The plot reveals
the contribution of each feature to the model’s prediction for the given data point.
The base value is indicated as 0.3759, representing the expected model output for
the dataset.
For Case 01, the plot emphasizes the contribution of the Petal Length feature. The
feature value of 1.9 is highlighted, and its impact on the prediction is depicted as
a horizontal line connecting the base value to the feature value. The plot indicates
that a higher value of Petal Length leads to a higher prediction value, while a lower
value results in a lower prediction value.
The color scheme employed in the plot conveys the impact of the feature on the
prediction. The region from the base value to the feature value (0.3759 to 3.31) is
shown in red, indicating a positive influence, while the region below the base value
is shown in blue, suggesting a negative influence. The force plot also provides addi-
tional information on the contribution of other features. However, in this particular
case, the plot only includes Petal Length. This suggests that Petal Length is the
primary driver behind the model’s prediction for Case 01.
By utilizing the SHAP force plot, we gain insights into the relative importance
and influence of individual features on the model’s predictions. This enhances our
understanding of the decision-making process of the model for the Iris dataset and
facilitates the interpretation of its predictions for specific data points.
In summary, these explanations reveal commonalities in identifying important fea-
tures such as Petal Length and Petal Width contributing positively to the prediction
of Iris-Setosa. They also highlight the influence of Sepal Length and Sepal Width,
which have negative contributions to the prediction.
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While XOPSIS provides feature-level contributions, LIME offers local approxima-
tions, and SHAP assigns importance values. Together, these explanations provide
a comprehensive understanding of how the model reaches its prediction for Case 01
in the Iris dataset.

Case 02

Figure 5.54: Explanation of Iris-Setosa level by XOPSIS (Case 02)

Figure 5.54 represents the actual data point features, actual species (Iris-Setosa), and
predicted species (Iris-Setosa). The explanation highlights the positively contributed
features, including Petal Length, Petal Width, and Sepal Width, while Sepal Length
is identified as a negatively contributed feature.

Figure 5.55: Normalized Feature Contibutions of Iris-Setosa level by XOPSIS (Case
02)

In the Figure 5.55, the normalized feature contributions are displayed. The feature
contributions are as follows: Petal Width (0.08), Petal Length (0.29), Sepal Width
(0.15), and Sepal Length (-0.48). Positive contributions are depicted in green color,
while negative contributions are represented in red color.
The LIME explanation for Case 02 in Figure 5.56 provides insights into the model’s
prediction. The prediction probabilities indicate a high confidence for Iris-Setosa
(1.0), while the probabilities for the other species are 0. The LIME explanation
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Figure 5.56: Explanation of Iris-Setosa level by LIME (Case 02)

highlights the conditions that contribute to the prediction of Iris-Setosa: petal width
<= 0.28 (0.62), petal length <= 1.58 (0.16), and sepal width > 3.30 (0.0). Addi-
tionally, it identifies that a sepal length of more than 5.1 (0.01) is associated with
a prediction of Not Iris-Setosa. The actual feature values of the data point are also
provided in the explanation.

Figure 5.57: Explanation of Iris-Setosa level by SHAP (Case 02)

The SHAP explanation for Case 02 in the Figure 5.57 sheds light on the model’s
prediction. It begins by stating the ground truth label and the model’s prediction:
0 (Iris Setosa). The explanation includes a plot where the base value is 0.3795.
The feature importance is represented by f(x) on a scale of 0.3795 to 3.31. The
plot is annotated with “higher− >< −lower,” where “higher− >” is highlighted
in red and “< −lower” is displayed in blue. In this case, the Petal length feature
(1.2) is prominently shown in red, indicating its positive contribution to the model’s
prediction.
In summary, all three explanations (XOPSIS, LIME, SHAP) provide insights into
the model’s prediction for the Iris Setosa species. According to XOPSIS and LIME,
the positively contributed features are Petal length, Petal width, and Sepal width,
while Sepal length has a negative contribution. In SHAP, it reveals that the Petal
length feature (1.2) has a positive contribution towards the prediction of Iris Setosa.
These explanations consistently highlight the importance of features such as Petal
length in determining the prediction of Iris Setosa in Case 02. Additionally, XOPSIS
and LIME align in identifying Petal width and Sepal width as a contributing feature
to the prediction as well.

Iris Versicolor Explanations

Case 03

In Case 03, the XOPSIS explanation provides insights into the prediction for the Iris
Versicolor species. The explanation begins by displaying the actual feature values
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Figure 5.58: Explanation of Iris-Versicolor level by XOPSIS (Case 03)

of the data point in Figure 5.58. It then reveals that the actual species is 1 (Iris
Versicolor) and the predicted species is also 1, indicating a correct prediction.
The XOPSIS explanation further highlights the positively contributed features,
which include Petal length, Petal width, and Sepal length. On the other hand,
Sepal width is identified as a negatively contributed feature.

Figure 5.59: Normalized Feature Contibutions of Iris-Versicolor level by XOPSIS
(Case 03)

Figure 5.59 displays the normalized feature contributions, where the positive con-
tributions (Petal length: 0.28, Petal width: 0.30, Sepal length: 0.11) are depicted
in green color, and the negative contribution (Sepal width: -0.31) is shown in red
color.
Overall, the XOPSIS explanation for Case 03 emphasizes the importance of features
such as Petal length, Petal width, and Sepal length in predicting the Iris Versicolor
species.
The LIME explanation from Figure 5.60 provides insights into the prediction of the
Iris Versicolor species for a specific data point.
The explanation starts by displaying the prediction probabilities, indicating that the
predicted probability for Iris Versicolor is 1, while the probabilities for other species
are 0.
The LIME explanation further highlights the specific feature ranges that contribute
to the prediction of Iris Versicolor. It states that for Iris Versicolor, the feature
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Figure 5.60: Explanation of Iris-Versicolor level by LIME (Case 03)

values of Petal length are greater than 4.25, Petal width is greater than 1.30, and
Sepal length is greater than 5.75. Additionally, it indicates that for a prediction of
Not Iris Versicolor, the feature value of Sepal width is greater than 3.
In the LIME explanation, these details are presented numerically, with correspond-
ing importance weights assigned to each feature. For Iris Versicolor, Petal length
has an importance weight of 0.47, Petal width has an importance weight of 0.05,
Sepal length has an importance weight of 0.01, and Sepal width has an importance
weight of 0.01.
Finally, the actual feature values of the data point are shown, providing a clear
understanding of the values associated with each feature.
Overall, the LIME explanation for Case 03 highlights the specific feature ranges and
their importance in predicting the Iris Versicolor species. It emphasizes that higher
values of Petal length, Petal width, and Sepal length contribute to the prediction of
Iris Versicolor, while a higher value of Sepal width is associated with a prediction of
Not Iris Versicolor.
The SHAP explanation for Case 03 provides insights into the prediction of the Iris
Versicolor species for a specific data point.

Figure 5.61: Explanation of Iris-Versicolor level by SHAP (Case 03)

In Figure 5.61, the explanation begins by displaying the ground truth label and
model prediction, indicating that the true label is 1 (Iris Versicolor) and the model
predicts the same.
The SHAP explanation further illustrates the contribution of different features
through a force plot. The base value is -0.4211, and the force plot shows the pro-
gression of the f(x) value. On top of the plot, it includes the notation “higher− ><
−lower,” where “higher− >” is highlighted in red, and “< −lower” is highlighted
in blue.
In the force plot, three features are shown in red color, indicating their positive
contributions to the prediction of Iris Versicolor. These features are Sepal length
(from -0.4211 to -0.1211), Petal width (from -0.1211 to 0.5789), and Petal length
(from 0.5789 to 3.30). The red portion representing the contribution of Sepal length
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is relatively smaller compared to the contribution of Petal width.
By examining the force plot, it becomes apparent that higher values of Sepal length,
Petal width, and Petal length positively contribute to the prediction of Iris Versi-
color.
Overall, the SHAP explanation for Case 03 highlights the contribution of specific
features and their ranges in predicting the Iris Versicolor species. It emphasizes
that higher values of Sepal length, Petal width, and Petal length have a positive
impact on the prediction, providing a clearer understanding of the importance of
these features in the model’s decision-making process.
In summary, these three explanations consistently emphasize the importance of fea-
tures such as Petal length, Petal width, and Sepal length in determining the pre-
diction of Iris Versicolor in Case 03. The features Sepal width are shown to have
negative contributions in XOPSIS, LIME and SHAP explanations. The similarity
among the explanations provides confidence in the significance of these features for
the model’s decision-making process.

Case 04

Figure 5.62: Explanation of Iris-Versicolor level by XOPSIS (Case 04)

In the XOPSIS explanation for Case 04, it first displays the actual feature values
of the data point. It then reveals the actual species and predicted species, with
the predicted species being 1. The explanation highlights the positively contributed
features, which include Petal length and Petal width. On the other hand, it identifies
the negatively contributed features as Sepal length and Sepal width. These details
are presented in Figure 5.62.
In Figure 5.63, the XOPSIS explanation provides the normalized feature contribu-
tions. The positive contributions are represented by Petal length (0.14) and Petal
width (0.35), which are shown in green color. Conversely, the negative contributions
are depicted by Sepal length (-0.10) and Sepal width (-0.42), which are displayed in
red color.
Overall, the XOPSIS explanation for Case 04 consistently emphasizes that Petal
length and Petal width have positive contributions to the predicted species, while
Sepal length and Sepal width have negative contributions. These insights shed light
on the importance of these features in the model’s decision-making process.
The Lime explanation for the same data point in Figure 5.64, begins by presenting
the prediction probabilities, with Iris-Versicolor having a probability of 1 and the
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Figure 5.63: Normalized Feature Contibutions of Iris-Versicolor level by XOPSIS
(Case 04)

remaining classes having probabilities of 0. It then highlights the criteria for clas-
sifying the data point as Iris-Versicolor, indicating that the values for Petal width
(0.23) and Petal length (0.18) are above the specified thresholds.

Figure 5.64: Explanation of Iris-Versicolor level by LIME (Case 04)

Additionally, it mentions that for the data point to be classified as not Iris-Versicolor,
the values for Sepal width should be greater than 3.30 (0.03) and the Sepal length
should be larger than 5.8 (0.02). Finally, it presents the actual feature values of the
data point.
This Lime explanation provides insights into the specific features that contribute to
the classification of the data point as Iris-Versicolor. It emphasizes the importance
of Petal width and Petal length in determining the predicted class, while also con-
sidering the values of Sepal width and Sepal length in the decision-making process.
The SHAP explanation for the same data point in Figure 5.65, begins by displaying
the ground truth label and the model prediction, both of which are 1.0, indicating
that the predicted class is Iris-Versicolor. It then presents a force plot, where the
base value is -0.08492 and f(x) is shown at 3.20. The plot includes annotations
indicating “higher− >” in red color and “< −lower” in blue color.
Within the force plot, three features are highlighted in red color: Sepal width, Petal
width, and Petal length. The red section is smallest for Sepal width, indicating a
relatively lower contribution to the prediction. On the other hand, the red section is
larger for Petal width and largest for Petal length, suggesting that these two features
have a more substantial positive impact on the predicted class of Iris-Versicolor.
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Figure 5.65: Explanation of Iris-Versicolor level by SHAP (Case 04)

This SHAP explanation provides insights into the relative contributions of different
features in determining the predicted class of Iris-Versicolor for the given data point.
It highlights the importance of Petal width and Petal length, with Petal length being
the most influential feature in this particular case. The contribution of Sepal width
is comparatively lower, indicating a less significant role in the prediction.
In summary, the explanations for Case 04 consistently highlight the significance
of Petal length and Petal width as positively contributing features for predicting
the class of Iris-Versicolor. Both XOPSIS and LIME explanations identify these
features as important, while XOPSIS also highlights the negative contributions of
Sepal length and Sepal width. The SHAP explanation reinforces the importance
of Petal length and Petal width, showing them as the primary factors influencing
the prediction. Overall, these explanations consistently emphasize the importance
of Petal length and Petal width in determining the prediction of Iris-Versicolor in
Case 04.

Iris-Virginica Explanations

Case 05

In the XOPSIS explanation for Case 05, the actual feature values of the data point
are displayed in the Figure 5.66. It is revealed that the actual species is Iris-Virginica
and the predicted species is also Iris-Virginica (2). The explanation highlights
the positively contributed features, which include Petal length, Petal width, Sepal
length, and Sepal width.

Figure 5.66: Explanation of Iris-Virginica level by XOPSIS (Case 05)

In Figure 5.67, the normalized feature contributions are shown. Petal width has
a contribution of 0.06, Petal length has a contribution of 0.52, Sepal length has a
contribution of 0.32, and Sepal width has a contribution of 0.10. Positive contribu-
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tions are depicted in green color, while negative contributions are represented in red
color.

Figure 5.67: Normalized Feature Contibutions of Iris-Virginica level by XOPSIS
(Case 05)

Overall, the XOPSIS explanation for Case 05 suggests that Petal length, Petal
width, Sepal length, and Sepal width play important roles in predicting the class of
Iris-Virginica.
In Figure 5.68, for the same datapoint, the prediction probabilities are displayed. It
shows that the prediction for Iris-Virginica is 1.0, indicating high confidence in the
predicted class, while the probabilities for the other classes are all 0.
The explanation further highlights the specific threshold values for the features that
contribute to the prediction of Iris-Virginica. It reveals that the Petal length should
be greater than 5.10 (contribution: 0.64), the Petal width should be greater than
1.80 (contribution: 0.61), the Sepal length should be greater than 6.40 (contribution:
0.02), and the Sepal width should be less than or equal to 2.80 (contribution: 0.01)
for the classification of Iris-Virginica. All these features positively contribute to
the prediction of Iris-Virginica, indicating that higher values of Petal length, Petal
width, Sepal length, and lower values of Sepal width are indicative of the Iris-
Virginica class.

Figure 5.68: Explanation of Iris-Virginica level by LIME (Case 05)

Lastly, the actual feature values for the datapoint are presented, allowing for a direct
comparison with the LIME explanations.
Overall, the LIME explanation for Case 05 provides insights into the threshold val-
ues of key features that contribute to the prediction of Iris-Virginica, emphasizing
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the importance of Petal length, Petal width, Sepal length, and Sepal width in de-
termining the classification outcome.

Figure 5.69: Explanation of Iris-Virginica level by SHAP (Case 05)

The Shap explanation in Figure 5.69, for the given datapoint indicates that the
ground truth label and model prediction are both Iris-Virginica. The correspond-
ing force plot displays a base value of -0.2389 and f(x) value at 4.14. The plot is
annotated with “higher− >” in red color and “< −lower” in blue color.
Examining the contributions, we observe that sepal width has the lowest red part,
suggesting a relatively smaller positive impact on the prediction. Sepal length shows
a lower red part, indicating a slightly stronger positive contribution. Moving further,
petal width exhibits a larger red part, implying a more significant positive influence.
Finally, petal length displays the largest red part, signifying the highest positive
contribution among the features considered in this explanation.
In summary, the three explanations (XOPSIS, LIME, SHAP) consistently highlight
the importance of all four features (petal length, petal width, sepal length, and sepal
width) in predicting Iris-Virginica in Case 05. Each explanation identifies these
features as positively contributing to the prediction, emphasizing their significance
in different degrees. This consistency underscores the robustness of these features
in determining the classification of Iris-Virginica.

Case 06

Figure 5.70: Explanation of Iris-Virginica level by XOPSIS (Case 06)

In Figure 5.70, the XOPSIS explanation reveals the importance of features in pre-
dicting Iris-Virginica. The actual feature values of the data point are displayed,
followed by the actual and predicted species, which are both Iris-Virginica. The
explanation identifies the positively contributing features as petal length and petal
width, indicating their significance in the prediction. On the other hand, the nega-
tively contributing features are identified as sepal length and sepal width, suggesting
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that higher values in these features are associated with a lower likelihood of the Iris-
Virginica classification.

Figure 5.71: Normalized Feature Contibutions of Iris-Virginica level by XOPSIS
(Case 06)

The normalized feature contributions in Figure 5.71, further illustrate the impor-
tance of these features. Petal length and petal width have positive contributions,
indicated by their green color, suggesting that higher values in these features con-
tribute positively to the prediction of Iris-Virginica. In contrast, sepal length and
sepal width have negative contributions, represented by their red color, indicating
that higher values in these features have a negative impact on the prediction.
Overall, this XOPSIS explanation provides insights into the specific features that
play a crucial role in determining the classification of Iris-Virginica in Case 06.
The Lime explanation in Figure 5.72 provides insights into the prediction of Iris-
Virginica. The prediction probabilities indicate a high confidence of 1.0 for Iris-
Virginica, with the probabilities of the remaining classes being 0. The explanation
highlights the following conditions for Iris-Virginica: petal length greater than 5.2
(0.72) and petal width greater than 1.80 (0.32). These conditions suggest that larger
values in these features contribute to the classification of Iris-Virginica.

Figure 5.72: Explanation of Iris-Virginica level by LIME (Case 06)

Additionally, the explanation shows that a sepal width greater than 3 (0.13) and a
sepal length greater than 6.43 (0.02) are associated with the prediction of not being
Iris-Virginica. The actual feature values of the data point are also presented.
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Overall, the Lime explanation for Case 06 emphasizes the importance of petal length
and petal width in predicting Iris-Virginica, while suggesting that larger sepal width
and sepal length values are indicative of other classes.
The Shap explanation in Figure 5.73 provides insights into the prediction of Iris-
Virginica. The ground truth label and model prediction indicate a classification of
2, corresponding to Iris-Virginica. The force plot reveals a base value of -0.7175 and
a f(x) value of -2.24. The plot is divided into sections marked with “higher− >” in
red and “< −lower” in blue.

Figure 5.73: Explanation of Iris-Virginica level by SHAP (Case 06)

The blue sections represent features with lower contributions, while the largest blue
section corresponds to petal length=5.9. This suggests that a lower value of petal
length has a negative impact on the prediction of Iris-Virginica. Similarly, the
blue section for petal width=2.3 indicates that a lower value of petal width also
contributes negatively to the prediction.
On the other hand, the smaller blue section for sepal width=3.2 suggests that a
slightly lower value in sepal width has a comparatively smaller negative impact
on the prediction. It’s worth noting that the force plot only shows the negative
contributions, as indicated by the blue color.
Overall, the Shap explanation for Case 06 highlights the importance of petal length
and petal width in predicting Iris-Virginica, emphasizing that lower values in these
features contribute to a lower likelihood of Iris-Virginica being the predicted class.
The smaller negative contribution of sepal width suggests that it has a relatively
lesser impact on the prediction.
In summary, the explanations for Case 06 consistently highlight the importance of
petal length and petal width in determining the prediction of Iris-Virginica. Both
XOPSIS and LIME explanations identify these features as positively contributing
factors to the prediction, while sepal length and sepal width are identified as neg-
atively contributing factors. In the Shap explanation, the force plot indicates that
petal length = 5.9 and petal width = 2.3 have larger blue sections, suggesting that
lower values in these features negatively impact the prediction of Iris-Virginica.
The smaller blue section for sepal width = 3.2 indicates a relatively smaller negative
impact on the prediction. Overall, these explanations consistently emphasize the
importance of petal length and petal width in determining the prediction of Iris-
Virginica in Case 06. They highlight that higher values in these features positively
contribute to the likelihood of Iris-Virginica being the predicted class, while sepal
length and sepal width have negative contributions.
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5.4 Result Analysis on Breast Cancer Wisconsin

Dataset

5.4.1 Accuracy

The results of the accuracy analysis for the breast cancer Wisconsin dataset us-
ing three different algorithms, namely Gradient Boosting, XGBoost, and Random
Forest, are presented in Table 5.5. The accuracy values are provided for both the
train-test split and k-fold cross-validation scenarios.

Accuracy
Serial No Algorithms Train-Test

Split
K-Fold Cross
Validation

01 Gradient Boosting 94.737% 92.278%
02 XGBoost 92.982% 93.333%
03 Random Forest 90.000% 91.917%

Table 5.5: Accuracy of 3 Algorithms

For Gradient Boosting, the train-test split accuracy is reported as 94.737%, indicat-
ing that the model achieved a high level of accuracy when evaluated on the indepen-
dent test set. Similarly, the k-fold cross-validation accuracy for Gradient Boosting is
reported as 92.278%, which demonstrates the model’s consistent performance across
different folds.
XGBoost also yielded promising results, with a train-test split accuracy of 93.860%.
This indicates the model’s ability to accurately classify breast masses into malignant
or benign categories. The k-fold cross-validation accuracy for XGBoost is reported
as 93.333%, suggesting that the model’s performance remains stable across different
train-test splits.
Random Forest achieved a train-test split accuracy of 92.982%, showing its effective-
ness in accurately predicting the breast cancer outcomes. The k-fold cross-validation
accuracy for Random Forest is reported as 91.917%, indicating the model’s reliability
and generalization capability across multiple folds.
To visually represent the accuracy of these algorithms, a bar plot was generated in
Figure 5.74. The x-axis of the bar plot represents the names of the three algorithms
(Gradient Boosting, XGBoost, and Random Forest), while the y-axis represents the
corresponding accuracy values. This plot provides a quick and intuitive comparison
of the accuracy performance among the algorithms, further supporting the findings
presented in Table 5.5.
Overall, the accuracy analysis demonstrates the effectiveness of Gradient Boosting,
XGBoost, and Random Forest in accurately classifying breast masses and highlights
their potential for assisting in breast cancer diagnosis and decision-making processes.

5.4.2 Confusion Matrix

The confusion matrix, presented in Figure 5.75, provides a detailed analysis of the
model’s performance by comparing the true labels and predicted labels for the breast
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Figure 5.74: Train-Test Split Accuracy for Different Algorithms on Breast Cancer
Dataset

cancer Wisconsin dataset. The matrix is organized vertically based on the true labels
and horizontally based on the predicted labels.

Figure 5.75: Confusion Matrix for Breast Cancer Dataset

In the first row of the confusion matrix, the label “M” represents malignant breast
masses. The value (38,4) indicates that out of the total 42 instances of malignant
masses, the model correctly predicted 38 cases as malignant (true positives), while
4 cases were incorrectly classified as benign (false negatives).
In the second row, the label “B” represents benign breast masses. The value (2,
70) shows that out of the total 72 instances of benign masses, the model correctly
predicted 70 cases as benign (true negatives), while 2 cases were incorrectly classified
as malignant (false positives).
The confusion matrix provides valuable insights into the model’s performance in
terms of correctly identifying malignant and benign breast masses. It highlights the
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trade-offs between false positives and false negatives, which are crucial considera-
tions in breast cancer diagnosis. The model’s ability to accurately classify malignant
masses (high true positive rate) and benign masses (high true negative rate) is es-
sential for minimizing misdiagnosis and ensuring appropriate medical interventions.
The presented confusion matrix assists in evaluating the model’s performance met-
rics such as accuracy, precision, recall, and F1 score, which provide a comprehensive
understanding of the model’s effectiveness in breast cancer classification. These met-
rics help gauge the model’s ability to correctly identify both malignant and benign
cases and serve as important benchmarks for assessing the model’s performance in
real-world clinical settings.

5.4.3 Sensitivity, Specificity, Precision and F1-Score

Sensitivity Specificity Precision F1-Score
M 0.905 0.972 0.95 0.93
B 0.972 0.905 0.95 0.96

Table 5.6: Performance Evaluation Metrics on Breast Cancer Dataset

The subsection on Sensitivity, Specificity, Precision, and F1-Score presents a com-
prehensive evaluation of the model’s performance on the breast cancer Wisconsin
dataset. The performance metrics are summarized in Table 5.6 and visualized in a
plot. This table provides an overview of the metrics for both malignant (M) and
benign (B) classes.

Figure 5.76: Performance Evaluation Metrics on Breast Cancer Dataset

For the malignant class (M), the model achieved a sensitivity (true positive rate) of
0.905, indicating that it correctly identified 90.5% of the actual malignant cases. The
specificity (true negative rate) for the malignant class is 0.972, indicating that the
model correctly classified 97.2% of the actual benign cases as benign. The precision
score, which represents the proportion of correctly classified positive predictions, is
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0.95, indicating that 95% of the instances predicted as malignant were indeed ma-
lignant. The F1-score, which considers both precision and recall, is 0.93, providing
an overall measure of the model’s performance for the malignant class.
For the benign class (B), the model achieved a sensitivity of 0.972, indicating that it
correctly identified 97.2% of the actual benign cases. The specificity for the benign
class is 0.905, indicating that the model correctly classified 90.5% of the actual
malignant cases as malignant. The precision score for the benign class is 0.95,
indicating that 95% of the instances predicted as benign were indeed benign. The
F1-score for the benign class is 0.96, providing an overall measure of the model’s
performance for the benign class.
These metrics play a crucial role in evaluating the model’s performance and assessing
its effectiveness in breast cancer classification. Sensitivity and specificity provide
insights into the model’s ability to correctly identify positive and negative cases,
respectively. Precision represents the proportion of true positive predictions among
all positive predictions, while the F1-score combines precision and recall into a single
metric that balances the trade-off between them.
To visually depict these performance metrics, a plot is presented in Figure 5.76. The
plot shows the class labels (malignant and benign) on the x-axis and the scores on the
y-axis. Four performance metrics (sensitivity, specificity, precision, and F1-score) are
displayed for both classes. This plot provides a concise and intuitive representation
of the model’s performance across different evaluation metrics, allowing for easy
comparison and interpretation.

5.4.4 ROC Curve

The ROC curves provide valuable insights into the classification performance of the
Gradient Boosting model on the Breast Cancer dataset. In Figure 5.77, the ROC
plot exhibits a familiar pattern, with two distinct curves representing the two classes
within the dataset. The classes, namely Malignant and Benign, are plotted along
the x-axis (False Positive Rate) and y-axis (True Positive Rate). The plot showcases
how the model’s sensitivity to true positives and specificity in true negatives trade
off as the classification threshold varies. Remarkably, the ROC curves for both
classes in this dataset exhibit a similar pattern, suggesting balanced performance in
differentiating between Malignant and Benign cases.
The ROC curve provides a graphical representation of the model’s trade-off between
true positive rate and false positive rate across different classification thresholds.
It allows us to assess the model’s discrimination ability and select an appropriate
threshold based on the desired balance between sensitivity and specificity.

5.4.5 AUC

Figure 5.78, displaying the AUC scores, complements the insights obtained from
the ROC curves. AUC (Area Under the Curve) is a vital metric indicating the
overall discriminatory power of the model. In this specific context, an AUC score of
0.97 is achieved for both Malignant and Benign classes. This implies a high level of
separation between the positive and negative instances within each class. Such AUC
scores highlight the effectiveness of the Gradient Boosting model in distinguishing
between Malignant and Benign cases. The similarity in AUC scores further reinforces
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Figure 5.77: ROC Curve for Gradient Boosting Model on Breast Cancer Dataset

the consistent and reliable performance of the model across the two distinct classes.
This information is crucial for evaluating the model’s diagnostic capabilities and its
suitability for real-world medical applications.

Figure 5.78: AUC Curve on Breast Cancer Dataset

For the Gradient Boosting model, the AUC scores are as follows:
- Malignant (M) class: 0.97
- Benign (B) class: 0.97
These AUC scores indicate the ability of the Gradient Boosting model to correctly
classify instances from both the malignant (M) and benign (B) classes. The scores
range from 0 to 1, with a higher score indicating a better discriminatory performance.
The AUC score provides a quantitative measure of the model’s ability to distinguish
between the classes, where a score of 1 represents a perfect classifier and a score of
0.5 indicates a random classifier.
The AUC score for the Gradient Boosting model offers valuable insights into its
overall performance, allowing us to assess its effectiveness in classifying breast cancer
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instances.
In summary, the ROC and AUC analyses demonstrate the robustness and effec-
tiveness of the Gradient Boosting model in classifying Malignant and Benign cases
within the Breast Cancer dataset. The similarity in performance across both classes
underscores the model’s capability to provide accurate and balanced predictions in
this critical medical domain.

5.4.6 Interpretability Through XAI Methods

In this subsection, we provide explanations for the predictions made by the Gradient
Boosting model on the Breast Cancer dataset using three XAI (Explainable Artificial
Intelligence) methods: XOPSIS, LIME, and SHAP. These methods aim to shed light
on the important features that contribute to the model’s decision-making process.

1. Malignant Explanations

Case 01

The XOPSIS analysis was performed on a specific data point to provide insights into
its diagnosis prediction. The analysis includes an examination of the actual feature
values, the actual and predicted diagnosis, as well as the contribution of each feature
to the prediction.
Figure 5.79 displays the actual feature values of the data point, providing a visual
representation of its characteristics. The analysis reveals that the actual diagnosis
of the data point is ’M’ (malignant). The predicted diagnosis is also ’M’, indicating
that the model correctly identified the data point as malignant.
The XOPSIS analysis further delves into the features that positively and negatively
contribute to the prediction. The positive contributions are the features that support
the prediction of malignancy, while the negative contributions are the features that
suggest a benign diagnosis.
The following features positively contribute to the prediction: area mean, area worst,
area se, perimeter mean, perimeter worst, texture worst, radius mean, perimeter se,
texture mean, concavity worst, compactness worst, concavity mean, compactness mean,
radius se, concave points worst, symmetry worst, concave points mean, symmetry mean,
smoothness worst, fractal dimension worst, concavity se, compactness se, smooth-
ness mean, concave points se, fractal dimension se. The following features nega-
tively contribute to the prediction: radius worst, texture se, smoothness se, frac-
tal dimension mean, symmetry se.
Figure 5.80 depicts the normalized feature contributions, with positive contributions
shown in green and negative contributions shown in red. It is observed that most
of the normalized feature contributions are 0, indicating that they have minimal
impact on the prediction for this specific data point.
The XOPSIS analysis provides valuable insights into the importance of different
features in predicting the diagnosis of the data point. By understanding the contri-
bution of each feature, we can gain a better understanding of the factors influencing
the model’s prediction and make informed decisions based on this analysis.

Figure 5.81 represents the LIME explanation by showing the prediction probabilities
for the two classes: M (malignant) with a probability of 1.0 and B (benign) with a
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Figure 5.79: Explanation of Malignant level by XOPSIS (Case 01)

Figure 5.80: Normalized Feature Contibutions of Malignant level by XOPSIS (Case
01)
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probability of 0.0.

Figure 5.81: Explanation of Malignant level by LIME (Case 01)

Next, a plot is displayed, divided into two sections: M (left side) and B (right side).
In the M section, the following features are highlighted:
- The concave points feature has a value greater than 0.01 and contributes to the
prediction as 0.08.
- The smoothness worst feature has a value greater than 0.11 and contributes as
0.02.
- The symmetry worst feature has a value greater than 0.25 and contributes as 0.02.
- The area mean feature has a value larger than 767.60 and contributes as 0.01.
- The perimeter mean feature has a value larger than 1 and contributes as 0.01.
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- The smoothness mean feature has a value greater than 0.09 and contributes as
0.01.
- The texture worst feature has a value greater than 25.22 and contributes as 0.01.
- The concavity worst feature has a value greater than 0.23 and contributes as 0.00.
- Other features like fractal dimension worst, concavity se, and compactness se also
contribute as 0.00.
In the B section, the following features are highlighted:
- The concave points mean feature has a value greater than 0.41 and contributes to
the prediction as 0.19.
- The concave points worst feature has a value greater than 0.19 and contributes as
0.16.
- The perimeter worst feature has a value larger than 1 and contributes as 0.15.
- The radius worst feature has a value larger than 18.41 and contributes as 0.15.
- Other features like area se, area worst, texture mean, concavity mean, radius mean,
and fractal dimension mean also contribute to the prediction with varying values.
Finally, the actual feature values of the data point are displayed, providing a com-
prehensive view of the attributes associated with the prediction.
This LIME explanation highlights the specific features and their corresponding con-
tributions that influence the prediction of the given data point, providing insights
into the decision-making process of the model.
The SHAP explanation for the given data point in Figure 5.82 starts by indicating
the Ground Truth label, which is 0, and the Model prediction, which is also 0,
indicating a correct prediction.

Figure 5.82: Explanation of Malignant level by SHAP (Case 01)

Next, a force plot is displayed, representing the SHAP values. The base value is
shown as 0.9932, and the f(x) value is -7.92. The force plot is divided into two
sections: “higher− >” shown in red color and “< −lower” shown in blue color.
In the “higher− >” section, the following features are highlighted as having a
positive impact on the prediction: - Compactness se - Compactness mean - Fractal
dimension mean - Symmetry mean
In the “< −lower” section, the following features are highlighted as having a nega-
tive impact on the prediction: - Concave points worst - Concave points mean - Area
se - Area worst - Texture worst - Concavity worst - Radius worst
The SHAP explanation provides insights into the contribution of each feature to the
prediction outcome. The features in the “higher− >” section positively influence
the prediction, while those in the “< −lower” section have a negative influence.
By analyzing the SHAP values, we can understand how each feature contributes to
the final prediction and gain a deeper understanding of the model’s decision-making
process for the given data point.
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Case 02

In Figure 5.83, we begin by displaying the actual feature values of the data point.
The actual diagnosis is predicted to be Malignant (0.0) based on our model. The
XOPSIS explanation for this data point is as follows:

Figure 5.83: Explanation of Malignant level by XOPSIS (Case 02)

- The TOPSIS score is computed by comparing the feature values of the given data
point with those of similar instances.
- The features that contribute positively to the prediction of Malignant diagno-
sis include area worst, area mean, area se, perimeter worst, perimeter mean, ra-
dius worst, radius mean, perimeter se, concavity worst, radius se, compactness worst,
concavity mean, symmetry worst, concave points worst, compactness mean, sym-
metry mean, texture se, concavity se, smoothness worst, fractal dimension worst,
concave points se, fractal dimension mean, and symmetry se. - Conversely, the fea-
tures that contribute negatively to the prediction are texture mean, texture worst,
concave points mean, smoothness mean, compactness se, fractal dimension se, and
smoothness se.
In Figure 5.84, we illustrate the normalized feature values. Positive feature contri-
butions are highlighted in green, indicating their influence in the prediction, while
negative feature contributions are shown in red. It is worth noting that most of
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Figure 5.84: Normalized Feature Contibutions of Malignant level by XOPSIS (Case
02)

the normalized feature contributions are close to 0, indicating limited impact on the
prediction outcome.
This XOPSIS explanation sheds light on the specific features that drive the model’s
prediction of Malignant diagnosis for the given data point, providing insights into
the factors influencing the outcome.
In the LIME explanation for the given data point, we start by displaying the pre-
diction probabilities: Malignant (M) with a probability of 1.0 and Benign (B) with
a probability of 0.0. The LIME explanation further utilizes a plot in Figure 5.85
where the left side represents the M class and the right side represents the B class.
In the left side (M), the plot highlights the following features and their corresponding
contributions to the M prediction: concave points se > 0.01 (0.10), 0.13 < smooth-
ness worst (0.01), symmetry se > 0.02 (0.01), perimeter se > 3.27 (0.01), perime-
ter mean > 1 (0.01), concavity mean > 0.13 (0.01), 0.16 < symmetry mean (0.00),
0.01 < smoothness se (0.00), compactness mean > (0.00), and fractal dimension se
> (0.00).
In the right side (B), the plot showcases the features and their contributions to
the B prediction: concave points mean > (0.42), concave points worst > (0.19),
perimeter worst > 1 (0.17), radius worst > 18.41 (0.16), texture worst > 29.69
(0.12), texture mean > 21.59 (0.07), area worst > 1031.50 (0.03), symmetry worst
<= 0.25 (0.02), area se > 43.73 (0.02), fractal dimension mean (0.01), radius se
> 0.47 (0.01), compactness se > 0.03 (0.01), radius mean > 15.74 (0.01), 0.21 <
compactness (0.01), area mean > 767.60 (0.01), 0.23 < concavity worst (0.01), 0.02
< concavity se <= (0.01), texture se > 1.44 (0.00), 0.08 < fractal dimension (0.00),
and smoothness mean > 0.10 (0.00).
The actual feature values of the data point are then presented to provide a com-
plete understanding of the instance. The LIME explanation offers valuable insights
into the significant features contributing to the Malignant and Benign predictions,
enabling a better understanding of the decision-making process of the model.

Figure 5.86 displays the SHAP explanation for the given data point begins by indi-
cating the Ground Truth label and the Model prediction, both of which are correctly
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Figure 5.85: Explanation of Malignant level by LIME (Case 02)
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classified as 0.0. The explanation then utilizes a force plot with a base value of 0.9932
and an f(x) value of -7.86. The force plot visually represents the contributions of
different features to the prediction, highlighting the direction of their impact.

Figure 5.86: Explanation of Malignant level by SHAP (Case 02)

On the “higher− >” side of the force plot, marked in red, we observe the follow-
ing features: compactness se, compactness mean, fractal dimension mean, smooth-
ness se, and texture se. These features contribute positively to the prediction, in-
dicating that higher values in these features increase the likelihood of the predicted
class.
On the “< −lower” side of the force plot, marked in blue, we see the following
features: concave points worst, concave points mean, area se, area worst, concav-
ity worst, radius worst, and texture worst. These features contribute negatively to
the prediction, implying that lower values in these features increase the likelihood
of the predicted class.
The SHAP explanation provides valuable insights into the feature contributions,
allowing us to understand which features drive the model’s prediction towards a
specific class. By analyzing the force plot, we can gain a better understanding of
the relationship between the features and the prediction, enhancing interpretability
and transparency.

2. Benign Explanations

Case 03

In Figure 5.87, the actual feature values of the data point are presented. It is then
revealed that the actual and predicted diagnosis for this data point is 1.0, indicating
a benign classification. The explanation for this prediction is provided as follows:
- The TOPSIS score is calculated based on the similarity of feature values between
the given data point and similar instances.
- The features that positively contribute to the prediction are listed, including
area se, perimeter se, texture mean, concavity worst, compactness worst, concav-
ity mean, radius se, concave points worst, compactness mean, concavity se, con-
cave points mean, compactness se, fractal dimension worst, perimeter mean, con-
cave points se, symmetry mean, texture se, and fractal dimension se.
- On the other hand, there are features that negatively contribute to the prediction,
including area worst, area mean, texture worst, radius worst, radius mean, perime-
ter worst, symmetry worst, smoothness worst, smoothness mean, fractal dimension mean,
smoothness se, and symmetry se.
Figure 5.88 presents the normalized feature contributions, where positive contri-
butions are depicted in green, and negative contributions are shown in red. It is
observed that most of the normalized feature contributions are close to 0.
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Figure 5.87: Explanation of Benign level by XOPSIS (Case 03)

Figure 5.88: Normalized Feature Contibutions of Benign level by XOPSIS (Case 03)

104



This XOPSIS explanation sheds light on the factors influencing the prediction of
a benign diagnosis for the given data point, providing valuable insights into the
decision-making process.
The LIME explanation for the given data point starts by presenting the prediction
probabilities in Figure 5.89, where the model predicts the probability of M (malig-
nant) as 0.0 and the probability of B (benign) as 1.0.

Figure 5.89: Explanation of Benign level by LIME (Case 03)

A plot is then displayed, with the left side representing the explanation for the M
class and the right side representing the explanation for the B class. In the M class
(left side), the following observations are made:
- concave points se is less than or equal to a certain threshold (0.10). - compact-
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ness se is greater than a specific value (0.01). - area worst is greater than a certain
threshold (516.45). - perimeter mean falls within a specific range (75.10). - com-
pactness mean and texture worst satisfy certain conditions. - Other features such as
texture mean, radius mean, symmetry worst, symmetry mean, smoothness se, frac-
tal dimension se, concavity worst, perimeter se, smoothness mean, and area se also
contribute to the explanation.
In the B class (right side), the following observations are made: - concave points mean
falls within a certain range (0.02). - radius worst falls within a specific range. - con-
cave points worst is present. - perimeter worst falls within a specific range (84.25).
- compactness mean, radius se, fractal dimension worst, smoothness worst, symme-
try se, area mean, texture se, concavity mean, concavity se, and fractal dimension
fall within certain thresholds.
Finally, the actual feature values of the data point are shown, completing the LIME
explanation.
This LIME explanation provides insights into the important features and their val-
ues that contribute to the model’s prediction for the given data point, offering
transparency and interpretability for the decision-making process.
Figure 5.90 displays the SHAP explanation also mentions the ground truth label
and the model’s prediction, which is 1.0 (correct). This indicates that the model
accurately classified the data point as the predicted class.

Figure 5.90: Explanation of Benign level by SHAP (Case 03)

The SHAP explanation for the given data point begins by showing the base value,
which is 0.9932, and the value of f(x), which is observed to be -5.14. On top of the
plot, there is a label that reads “higher− >< −lower”. The text “higher− >” is
displayed in red color, while “< −lower” is shown in blue color.
In the “higher− >” part of the explanation, the following features are highlighted:
texture worst, texture mean, symmetry se, compactness mean, fractal dimension mean.
These features indicate higher values that contribute positively to the prediction for
the given data point.
In the “< −lower” part of the explanation, the following features are highlighted:
concave points worst, concave points mean, area worst, area se, concavity worst,
perimeter worst.
These features indicate lower values that contribute negatively to the prediction for
the given data point.
The SHAP explanation provides insights into the individual feature contributions
and their impact on the model’s prediction. It helps to understand which features
have a positive or negative effect on the predicted outcome and contributes to the
interpretability of the model’s decision-making process.
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Case 04

In Figure 5.91, we begin with the actual feature values of the data point. The
actual and predicted diagnosis is provided as 1.0, indicating a benign condition.
The explanation of the XOPSIS method for this data point is as follows:

Figure 5.91: Explanation of Benign level by XOPSIS (Case 04)

- The TOPSIS score is calculated based on the similarity of feature values between
the given data point and similar instances.
- The features that contribute positively to the prediction of a benign diagnosis are
listed, including area worst, area mean, perimeter worst, area se, perimeter mean,
radius worst, radius mean, and several others. These features have a positive impact
on the model’s prediction.
- On the other hand, there are features that contribute negatively to the prediction,
such as texture worst, texture mean, symmetry worst, and others. These features
have a negative impact on the model’s prediction.
In Figure 5.92, we visualize the normalized feature contributions. Positive feature
contributions are represented in green, indicating their positive impact on the predic-
tion, while negative feature contributions are shown in red, indicating their negative
impact. It is worth noting that most of the normalized feature contributions are
close to 0, indicating their limited influence on the prediction.
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Figure 5.92: Normalized Feature Contibutions of Benign level by XOPSIS (Case 04)

Overall, the XOPSIS explanation provides insights into the contribution of different
features in predicting a benign diagnosis for the given data point. It helps us under-
stand the important factors considered by the model and their relative influence.
In the LIME explanation for the given data point in Figure 5.93, we begin with the
prediction probabilities, which indicate a high confidence in the benign diagnosis
(B) with a probability of 1.0 and a negligible probability for the malignant diagnosis
(M).
The explanation is presented through a plot, with the left side representing the
features contributing to the malignant prediction (M) and the right side representing
the features contributing to the benign prediction (B). Here are the key findings:
In the left side (M):
- Texture mean is identified as a contributing factor, with a value greater than 21.59.
- Concave points se is another influential feature, with a value greater than 0.01. -
Other features such as perimeter se, smoothness mean, symmetry worst, and more
are also considered in the malignant prediction, but to a lesser extent.
In the right side (B): - Concave points mean plays a significant role in the be-
nign prediction, with a value greater than 0.02. - Other important features include
perimeter worst, radius worst, fractal dimension se, and more, which contribute to
the likelihood of a benign diagnosis.
The actual feature values of the data point are provided, allowing for a comprehen-
sive understanding of the data point’s characteristics.
The LIME explanation helps us identify the specific features that contribute to the
model’s prediction of a benign diagnosis. It provides insights into the importance
and directionality of these features, allowing us to interpret and validate the model’s
decision-making process.
The SHAP explanation in Figure 5.94 for the given data point starts by stating the
ground truth label and the model’s correct prediction, which in this case is a benign
diagnosis with a confidence of 1.0.
The explanation is provided through a force plot, which showcases the base value of
0.9932 and f(x) value of -7.31. On top of the plot, the text “higher− >< −lower”
is displayed, with “higher− >” highlighted in red color and “< −lower” in blue
color.
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Figure 5.93: Explanation of Benign level by LIME (Case 04)

Figure 5.94: Explanation of Benign level by SHAP (Case 04)
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In the “higher− >” section, the following features are identified as having a positive
impact on the prediction: Compactness se, Compactness mean, Fractal dimension mean,
Area mean, Smoothness se.
These features contribute to a higher likelihood of a benign diagnosis. Conversely,
in the “< −lower” section, the following features are highlighted as having a neg-
ative impact on the prediction: Concave points worst, Concave points mean, Tex-
ture worst, Concavity worst, Symmetry worst, Smoothness worst.
These features are associated with a lower likelihood of a benign diagnosis.
The SHAP explanation provides valuable insights into the contribution of individual
features towards the model’s prediction. By visually representing the positive and
negative influences of each feature, it enhances our understanding of the decision-
making process.
In conclusion, the explanations provided by XOPSIS, LIME, and SHAP offer valu-
able insights into the predictions made by the model for a specific data point. XOP-
SIS uses TOPSIS scores to identify features that positively or negatively contribute
to the prediction. LIME highlights features that have higher or lower values, indi-
cating their influence on the prediction. SHAP provides a comprehensive view of
feature contributions through a force plot. These explanations enhance our under-
standing of the model’s decision-making process and shed light on the importance
of different features in making accurate predictions. By examining these explana-
tions, we can gain valuable insights into how the model arrives at its predictions
and improve our trust and interpretability of the model’s outputs.

5.5 Result Analysis on Car Acceptability Dataset

5.5.1 Accuracy

The accuracy of the trained models was evaluated using two different approaches:
train-test split and k-fold cross-validation. The results are summarized in Table 5.7.

Accuracy
Serial No Algorithms Train-Test

Split
K-Fold Cross
Validation

01 Gradient Boosting 98.266% 87.447%
02 XGBoost 97.688% 88.021%
03 Random Forest 95.954% 87.276%

Table 5.7: Accuracy of 3 Algorithms

From the train-test split analysis, the Gradient Boosting algorithm achieved an ac-
curacy of 98.266%, followed by XGBoost with an accuracy of 97.688%, and Random
Forest with an accuracy of 95.954%. These accuracies represent the models’ per-
formance in predicting car acceptability on the test set. It is worth noting that all
three algorithms performed remarkably well, demonstrating their ability to capture
the underlying patterns and make accurate predictions.
Furthermore, the k-fold cross-validation accuracy was evaluated for each algorithm.
The results indicated that the Gradient Boosting algorithm achieved an accuracy of
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87.447%, followed by XGBoost with an accuracy of 88.021%, and Random Forest
with an accuracy of 87.276%. These accuracies reflect the models’ performance in
predicting car acceptability across different folds of the dataset. The consistency of
accuracies across the folds demonstrates the robustness of the models in generalizing
to unseen data.
To provide a visual comparison of the train-test split accuracy, we created a barplot
(Figure 5.95) showcasing the performance of each algorithm. The x-axis represents
the different algorithms (Gradient Boosting, XGBoost, and Random Forest), while
the y-axis represents the accuracy. The barplot clearly illustrates the superior per-
formance of the Gradient Boosting algorithm, followed closely by XGBoost, and
then Random Forest.

Figure 5.95: Train-Test Split Accuracy for Different Algorithms on Car Acceptability
Dataset

The high accuracies obtained by the trained models in both the train-test split and
k-fold cross-validation analyses indicate their effectiveness in predicting car accept-
ability based on the provided features. The superior performance of the Gradient
Boosting and XGBoost algorithms highlights their potential for accurate car accept-
ability classification, while Random Forest also exhibits competitive performance.
In summary, the accuracy analysis of the trained models showcases their ability to ac-
curately predict car acceptability. The Gradient Boosting and XGBoost algorithms
demonstrate superior performance, while Random Forest also exhibits commend-
able accuracy. These results highlight the potential of these algorithms for practical
applications in car acceptability classification tasks.

5.5.2 Confusion Matrix

The confusion matrix provides detailed insights into the performance of the trained
models in predicting car acceptability. The matrix represents the relationship be-
tween the true labels and the predicted labels. In our analysis, the confusion matrix
is presented in Figure 5.96.
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Figure 5.96: Confusion Matrix for Car Acceptability Dataset

In the confusion matrix, the rows represent the true labels, while the columns rep-
resent the predicted labels. The four car acceptability categories, namely “unacc”
(unacceptable), “acc” (acceptable), “good”, and “vgood” (very good), are arranged
in the same order both vertically and horizontally.
The values within the matrix indicate the number of instances that fall into each
category. For example, in the first row, the model correctly predicted 256 instances
as “unacc” (unacceptable) while misclassifying 4 instances as “acc” (acceptable).
Similarly, in the second row, all instances were correctly classified as “acc”, resulting
in 59 accurate predictions. The remaining rows follow a similar pattern, reflecting
the model’s performance for each car acceptability category.
The confusion matrix provides a comprehensive overview of the model’s perfor-
mance, allowing us to assess its accuracy and identify any potential misclassifi-
cations. The diagonal elements represent the true positive predictions, indicating
instances that were correctly classified. Off-diagonal elements represent misclassifi-
cations or false positive predictions.
By analyzing the confusion matrix, we can evaluate the model’s performance for
each car acceptability category and identify any imbalances or discrepancies in the
predictions. These insights can guide further improvements in the model or aid in
making informed decisions based on the specific requirements of car acceptability
classification.
In summary, the confusion matrix presents a detailed breakdown of the model’s
predictions for car acceptability. It allows us to assess the accuracy and performance
of the trained models across different car acceptability categories, providing valuable
insights for further analysis and evaluation.

5.5.3 Sensitivity, Specificity, Precision and F1-Score

To comprehensively evaluate the performance of the trained models on the car ac-
ceptability dataset, we calculated several performance metrics, including sensitivity,
specificity, precision, and F1-score. Table 5.8 presents the performance evaluation
metrics for each car acceptability class.
The sensitivity metric measures the ability of the model to correctly identify positive
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Sensitivity Specificity Precision F1-Score
unacc 0.985 1.0 1.0 0.99
acc 1.0 0.983 0.92 0.96
good 0.929 0.997 0.93 0.93
vgood 0.923 1.0 1.0 0.96

Table 5.8: Performance Evaluation Metrics on Car Acceptability Dataset

instances, while specificity measures the model’s ability to correctly identify negative
instances. Precision indicates the proportion of correctly predicted positive instances
out of all instances predicted as positive. The F1-score provides a balanced measure
of precision and recall, considering both the false positive and false negative rates.

Figure 5.97: Performance Evaluation Metrics on Car Acceptability Dataset

In Figure 5.97, we visualize the performance metrics for each car acceptability class
on the same plot, allowing for easy comparison. The x-axis represents the car
acceptability classes, namely “unacc”, “acc”, “good”, and “vgood”, while the y-axis
represents the performance scores for sensitivity, specificity, precision, and F1-score.
Each class is represented by a line in the plot, enabling a visual assessment of the
variations in the metrics across different car acceptability categories.
By examining the performance metrics and the corresponding plot, we can gain
insights into the strengths and weaknesses of the models in classifying car accept-
ability. The high sensitivity values across all classes indicate the models’ ability to
correctly identify positive instances. The specificity values demonstrate the models’
capacity to accurately identify negative instances. The precision scores indicate the
models’ effectiveness in correctly predicting positive instances, while the F1-scores
provide a balanced evaluation of precision and recall.
In summary, the sensitivity, specificity, precision, and F1-score metrics provide
a comprehensive evaluation of the models’ performance on the car acceptability
dataset. The visual representation of these metrics in the plot allows for easy com-
parison and interpretation of the models’ capabilities in classifying different car
acceptability categories. These performance metrics contribute to a deeper un-
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derstanding of the models’ performance and can guide further improvements or
decision-making processes in the context of car acceptability classification.

5.5.4 ROC Curve

The ROC curves offer a comprehensive view of the Gradient Boosting model’s classi-
fication performance on the Car Acceptability dataset. Figure 5.98 depicts the ROC
plot, which adheres to the familiar pattern seen before. However, in this instance,
the plot showcases four distinct curves, each representing a different class within the
dataset. These classes include unacc (unacceptable), acc (acceptable), good, and
vgood (very good). The plot is structured with the x-axis representing the False
Positive Rate and the y-axis representing the True Positive Rate. The presence of
multiple curves emphasizes the model’s ability to distinguish between the various
car acceptability categories based on the chosen classification threshold.

Figure 5.98: ROC Curve for Gradient Boosting Model on Car Acceptability Dataset

The ROC curve provides valuable insights into the performance of the Gradient
Boosting algorithm across different car acceptability classes. By analyzing the curve,
we can observe the balance between the true positive rate and the false positive rate
for each class, allowing us to assess the algorithm’s ability to discriminate between
the classes. The shape and position of the curve reflect the algorithm’s overall
classification performance and its ability to achieve high true positive rates while
minimizing false positive rates.
In summary, the ROC curves demonstrated that Gradient Boosting algorithm per-
formed well in accurately classifying instances across the car acceptability classes.
The curves for each class showed varying degrees of discriminative ability, with low
false positive rates and high true positive rates observed. By analyzing the ROC
curves, we gained a comprehensive understanding of the discrimination capabilities
of the algorithm, enabling us to assess their suitability for car acceptability classi-
fication tasks. The ROC curves serve as a visual representation of the algorithm’s
performance and provide valuable information for selecting the most appropriate
algorithm for car acceptability prediction.
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5.5.5 AUC

The AUC (Area Under the Curve) is a metric used to assess the overall performance
of a classifier algorithm by measuring the area under the Receiver Operating Char-
acteristic (ROC) curve. In this subsection, we present the AUC values for each car
acceptability class: unacc, acc, good, and vgood.
Figure 5.99, housing the AUC scores, serves as a complementary analysis to the ROC
curves. The AUC (Area Under the Curve) scores offer insights into the model’s over-
all discriminatory power across different classes. For the Car Acceptability dataset,
the AUC scores are as follows: unacc (0.9995), acc (0.9992), good (0.9998), and
vgood (1.0). These exceptional AUC scores signify an outstanding ability of the
Gradient Boosting model to accurately classify the car acceptability levels. Par-
ticularly noteworthy is the perfect AUC score of 1.0 achieved for the vgood class,
indicating a flawless distinction between the “very good” cars and others. The
consistently high AUC scores across all classes underscore the model’s remarkable
performance in classifying car acceptability with a high degree of precision.

Figure 5.99: AUC Curve for Gradient Boosting Model on Car Acceptability Dataset

The AUC values provide a quantitative measure of the algorithm’s ability to dis-
tinguish between different car acceptability classes. A higher AUC value indicates
better discrimination and classification performance, with values closer to 1 repre-
senting a more accurate and reliable classifier.
For the unacc class, the AUC value was calculated as 0.9995, indicating that the
algorithm achieved a high level of discrimination performance in distinguishing unacc
instances from other classes.
For the acc class, the AUC value was determined to be 0.9992, suggesting that
the algorithm exhibited good discrimination capabilities in correctly classifying acc
instances.
The good class achieved an AUC value of 0.9998, indicating a very high level of
discrimination accuracy for identifying instances belonging to the good class.
Lastly, the vgood class obtained the highest possible AUC value of 1.0, demon-
strating excellent discrimination capabilities and accurate classification of vgood
instances.
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The AUC curve, representing the AUC values for each car acceptability class, ex-
hibits a linear trend from the unacc class to the vgood class. This trend illustrates
the varying levels of discrimination and classification performance across the differ-
ent car acceptability categories.
The AUC values provide valuable insights into the overall performance of the classi-
fier algorithm in distinguishing between car acceptability classes. Higher AUC values
indicate a stronger classifier with better discrimination capabilities, while lower AUC
values suggest the need for further improvements in classification accuracy.
In summary, the ROC and AUC analyses highlight the effectiveness of the Gradi-
ent Boosting model in differentiating between different car acceptability categories
within the Car Acceptability dataset. The presence of multiple ROC curves empha-
sizes the model’s versatility in handling the multi-class nature of the problem. The
exceptionally high AUC scores further reinforce the model’s robustness and reliabil-
ity in making accurate classifications across all car acceptability levels, which has
significant implications for decision-making in the automotive domain.

5.5.6 Interpretability Through XAI Methods

In this subsection, we provide explanations for the predictions made by the Gradient
Boosting model on the Car Acceptability dataset using three XAI (Explainable
Artificial Intelligence) methods: XOPSIS, LIME, and SHAP. These methods aim to
shed light on the important features that contribute to the model’s decision-making
process.

1. Unacc Explanation

Case 01

In the XOPSIS explanation for a specific data point, Figure 5.100 presents the actual
feature values. It showcases the features of the data point and provides insights into
the actual values recorded. Additionally, it displays the predicted Acceptability
Level, which in this case is 0.0 (Unacc).

Figure 5.100: Explanation of Unacc level by XOPSIS (Case 01)

The explanation proceeds by introducing the TOPSIS score, which is calculated
based on the similarity of feature values between the given data point and similar

116



instances. It highlights the features that contribute positively to the prediction,
including Size of Luggage, No of Doors, and Buying Price. These features have a
favorable impact on the prediction outcome, suggesting that higher values or specific
characteristics in these features increase the likelihood of the car being classified as
“Unacc” (Unacceptable).
Conversely, the explanation identifies the features that contribute negatively to the
prediction. These features, namely Maintenance Price, Safety, and Person Capacity,
have a detrimental effect on the prediction outcome. Lower values or certain char-
acteristics in these features are associated with a higher probability of the car being
classified as “Unacc.”

Figure 5.101: Normalized Feature Contibutions of Unacc level by XOPSIS (Case
01)

Figure 5.101 illustrates the plot of normalized feature contributions. Each feature’s
contribution to the prediction is represented by a bar in the plot. The positive con-
tributions, denoted in green, indicate the features’ positive influence on the predic-
tion, while the negative contributions, shown in red, represent the features’ negative
impact.
According to the plot, Buying Price has a positive contribution (+0.06), suggesting
that higher values or specific characteristics in this feature contribute favorably
to the prediction. Similarly, No of Doors and Size of Luggage also have positive
contributions, indicating their importance in the prediction. On the other hand,
Maintenance Price has a notable negative contribution (-0.46), suggesting that lower
values or certain characteristics in this feature have a strong negative influence on the
prediction outcome. Additionally, Safety and Person Capacity also exhibit negative
contributions (-0.09 and -0.08, respectively), indicating their adverse effects on the
prediction.
The visualization of the normalized feature contributions provides a comprehensive
understanding of how each feature contributes to the prediction outcome. The
distinct colors (green and red) aid in easily identifying the positive and negative
contributions, enabling users to interpret the impact of individual features on the
car acceptability classification.
In Figure 5.102, the LIME explanation for the given data point starts by displaying
the prediction probabilities for each class. In this case, the prediction probabilities
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are as follows: unacc=1.0, acc=0.00, good=0.00, vgood=0.0. This indicates a high
confidence in classifying the data point as “unacc” (Unacceptable) and negligible
probabilities for the other classes.

Figure 5.102: Explanation of unacc level by LIME (Case 01)

The explanation proceeds with a plot that is divided into two sections. On the right
side of the plot, it focuses on the features that contribute to the classification of
“unacc,” while on the left side, it explores the features that indicate a deviation
from the “unacc” class.
On the right side of the plot, it is evident that the feature Buying Price has a positive
contribution (0.19), indicating that a value greater than 2.00 contributes to the clas-
sification of “unacc.” Similarly, the features Size of Luggage (0.15) and No of Doors
(0.08) also have positive contributions, suggesting that certain threshold values or
higher values contribute to the prediction of “unacc” class.
On the left side of the plot, representing the features associated with “Not unacc”
classes, all features exhibit negative contributions. The feature Safety has a positive
contribution (0.33) when the value falls within the range of 1.00 to 2.00. Likewise,
the feature Person Capacity has a positive contribution (0.20) when the value ex-
ceeds 1.00. Furthermore, the feature Maintenance Price demonstrates a negative
contribution (0.17) when the value is below a certain threshold, contributing to the
classification of “Not unacc” categories.
The explanation concludes by presenting the actual feature values of the data point.
These values provide insight into the specific characteristics of the data point that led
to its classification as “unacc” and the contribution of each feature to this prediction.
The provided SHAP explanation in Figure 5.103 indicates that the ground truth
label for the given data point is 0.0, which corresponds to the “unacc” class. The
model’s prediction for this data point is also 0, which aligns with the ground truth
label. Thus, the model prediction is correct in classifying the data point as “unacc.”

Figure 5.103: Explanation of unacc level by SHAP (Case 01)

The SHAP explanation for the given datapoint reveals the following:
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In the accompanying force plot, the base value is 4.371, and the value of f(x) is seen
as 7.03. The force plot is divided into two sections, with “higher− >” displayed in
red color and “< −lower” displayed in blue color.
In the red-colored “higher− >” section, the features Buying Price=3.0, Mainte-
nance Price=0.0, Size of luggage=0, and No of doors=0 contribute positively to the
prediction. These features indicate that higher values for Buying Price, Mainte-
nance Price, and Size of luggage, as well as having No of doors equal to 0, contribute
to the classification of “unacc.”
In the blue-colored “< −lower” section, the features Safety=2.0 and Person Capacity=2.0
contribute negatively to the prediction. This suggests that lower values for Safety
and Person Capacity are associated with the classification of “unacc.”
Overall, the SHAP explanation provides insights into the feature contributions that
lead to the prediction of “unacc” for the given data point.
In summary, the explanations provided by XOPSIS, LIME, and SHAP for the spe-
cific data point consistently support the classification of the data point as “unacc.”
XOPSIS and LIME highlight the positive contributions of features such as Buy-
ing Price, Size of Luggage, and No of Doors, indicating their influence in favor of
the “unacc” class. It is evident that both XOPSIS and LIME provide identical
feature contributions for the data point, reinforcing the classification of “unacc.”
This consistency in feature importance across XOPSIS and LIME strengthens the
interpretability and trustworthiness of the model’s prediction for the car’s accept-
ability. The alignment of explanations between XOPSIS and LIME underscores
the agreement in identifying the key features influencing the classification deci-
sion, further enhancing our understanding of the model’s decision-making process.
SHAP further reinforces these findings, with Buying Price, Maintenance Price, and
Size of Luggage exhibiting positive contributions, and Safety and Person Capacity
demonstrating negative contributions.
These consistent explanations from multiple XAI methods strengthen our confidence
in the classification of the data point as “unacc” and provide valuable insights into
the features that contribute to this prediction. Such interpretability aids in under-
standing the decision-making process of the model and enhances transparency in
the classification of car acceptability.

2. Acc Explanation

Case 02

In the XOPSIS explanation for a new data point, the Figure 5.104 presents the actual
feature values. It then displays the actual and predicted Acceptability Level, which
in this case is predicted as 1.0 (Acc). The explanation provided by XOPSIS includes
the following details. The features that contribute positively to the predictio of
“Acc” are Buying Price, Maintenance Price, Safety, and No of Doors. Their positive
contributions indicate that higher values or specific ranges of these features favor
the classification of “Acc.”
Conversely, the XOPSIS analysis identifies Size of Luggage and Person Capacity as
features that negatively contribute to the prediction. This means that lower values
or certain thresholds of these features are associated with the classification of “Acc.”
Figure 5.105 illustrates the normalized feature contributions. Positive contributions
are represented in green, while negative contributions are shown in red. The nor-
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Figure 5.104: Explanation of Acc level by XOPSIS (Case 02)

Figure 5.105: Normalized Feature Contibutions of Acc level by XOPSIS (Case 02)
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malized feature contributions for the data point are as follows: No of Doors (+0.03),
Safety (+0.06), Maintenance Price (+0.16), Buying Price (+0.25), Person Capacity
(-0.25), and Size of Luggage (-0.25). These values indicate the degree to which each
feature influences the classification of the data point.
By uncovering these specific feature contributions, XOPSIS provides valuable in-
sights into the decision-making process of the model, shedding light on the factors
that drive the prediction of “Acc.” This information enhances our understanding
of the underlying dynamics of the dataset and reinforces the interpretability of the
XOPSIS algorithm.
In Figure 5.106, the LIME explanation for the same data point begins by displaying
the prediction probabilities: unacc=0.00, acc=1.00, good=0.00, vgood=0.00. This
indicates that the model predicts the data point to belong to the “acc” (Acceptability
Level: 1.0) class with a probability of 1.00.

Figure 5.106: Explanation of acc level by LIME (Case 02)

Next, the LIME explanation presents a plot that showcases the feature contribu-
tions. On the right side of the plot, it displays the features associated with the
“acc” class. These features include Person Capacity (0.20), Safety (0.20), Buy-
ing Price (0.05), No of Doors (0.03), and Maintenance Price (0.02). These positive
contributions suggest that higher values or specific ranges of these features support
the classification of “acc.”
On the left side of the plot, it represents the features associated with the “Not acc”
classes. In this case, it shows that the Size of Luggage feature has a contribution of
0.05. This negative contribution suggests that lower values or certain thresholds of
Size of Luggage favor the classification of “Not acc.”
Lastly, the LIME explanation provides the actual feature values of the data point,
providing a comprehensive understanding of the specific characteristics that con-
tribute to the model’s prediction.
Figure 5.107 displays the SHAP explanation for the same data point begins by
indicating the ground truth label as 1.0 - acc (Acceptability Level: 1.0) and the
model’s correct prediction of [1] - acc.
Next, it presents a force plot where the base value is -1.534. The f(x) value is
observed at 2.37, and on top of the plot, the annotation “higher− >< −lower”
is displayed. The text “higher− >” is highlighted in red, while “< −lower” is
highlighted in blue.
In the plot, the features Buying Price, Person Capacity, Maintenance Price, and
Safety are displayed in red, representing their positive contributions (higher− >).
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Figure 5.107: Explanation of acc level by SHAP (Case 02)

These features contribute positively to the classification of “acc,” indicating that
higher values or specific ranges of these features support the prediction of “acc.”
On the other hand, the features Size of Luggage and No of Doors are shown in blue,
representing their negative contributions (< −lower). These features have a negative
impact on the prediction of “acc,” suggesting that lower values or specific thresholds
of these features favor the classification of “Not acc.”
By visualizing the feature contributions in the force plot, the SHAP explanation
provides insights into how each feature influences the model’s prediction for the
given data point.
Analyzing the explanations provided by XOPSIS, LIME, and SHAP for the same
data point, it is evident that all three methods consistently highlight the features
that contribute to the prediction of “acc” (Acceptability Level: 1.0). According
to XOPSIS, Buying Price, Maintenance Price, Safety, and No of Doors have posi-
tive contributions, indicating that higher values or specific ranges of these features
support the classification of “acc.” On the other hand, Size of Luggage and Per-
son Capacity are identified as features with negative contributions, suggesting that
lower values or specific thresholds of these features favor the classification of “Not
acc” while LIME shows only Size of Luggage as negative contributing feature.
Similarly, the SHAP explanation aligns with XOPSIS and LIME, showcasing the
positive contributions of Buying Price, Person Capacity, Maintenance Price, and
Safety. Additionally, SHAP identifies Size of Luggage and No of Doors as features
with negative contributions. This consistency across the three explanations enhances
our understanding of the influential features and reinforces the model’s prediction
for the acceptability level of the car.
The agreement in feature importance between XOPSIS, LIME, and SHAP provides
a robust interpretation of the model’s decision-making process. It instills confidence
in the identified features and their impact on the classification outcome, ultimately
increasing the transparency and interpretability of the model’s predictions for the
given data point.

3. Good Explanation

Case 03

The XOPSIS explanation for another new data point consistently identifies the fea-
tures that contribute to the prediction of “Good” (Acceptability Level: 2.0) in
Figure 5.108. According to XOPSIS, the features Safety, Buying Price, Mainte-
nance Price, and Person Capacity have positive contributions, while Size of Luggage
and No of Doors have negative contributions. This insight provides a deeper under-
standing of the factors influencing the model’s decision and highlights the impor-
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Figure 5.108: Explanation of Good level by XOPSIS (Case 03)

tance of safety, pricing, maintenance, and passenger capacity in determining the
acceptability level of a car. The normalized feature contributions further reinforce
the significance of these features in Figure 5.109, with Safety exhibiting the highest
positive contribution, followed by Buying Price and Maintenance Price. Conversely,
Size of Luggage has the highest negative contribution, indicating its impact on the
prediction of “Good.”

Figure 5.109: Normalized Feature Contibutions of Good level by XOPSIS (Case 03)

The LIME explanation in Figure 5.110 for the same data point reveals the feature
contributions that support the prediction of “Good” (Acceptability Level: 2.0).
LIME assigns probabilities to each class, and in this case, the model predicts a
high probability of “Good” while assigning negligible probabilities to other classes.
The LIME plot illustrates that certain feature conditions on the right side, such
as Buying Price <= 0.00, Maintenance Price <= ..., 1.00 < Person Capacity ...,
and 1.00 < Safety <= 2.00, contribute to the classification of “Good.” Conversely,
features on the left side, such as Size of Luggage <= ..., and 0.00 < No of Doors
..., are associated with “Not good” categories. The actual feature values of the data
point are also provided for reference.
Figure 5.111 represents the SHAP explanation for the data point reveals that the
ground truth label and model prediction both correctly identify it as “good.” The
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Figure 5.110: Explanation of good level by LIME (Case 03)

force plot demonstrates the feature contributions, with a base value of -4.879 and a
f(x) value of -5.76. The plot is divided into two sections, denoted by “higher− >”
in red and “< −lower” in blue. In the red section, the features Buying Price,
Size of luggage, and Safety exhibit positive contributions. On the other hand, the
blue section shows negative contributions from the features Person Capacity, Main-
tenance Price, and No of doors.

Figure 5.111: Explanation of good level by SHAP (Case 03)

After reviewing the XOPSIS, LIME, and SHAP explanations for the same data
point, we can observe a consistent pattern in feature importance. All three meth-
ods highlight Safety, and Buying Price as positive contributors and No of doors as
negative contributors to the prediction of “good” acceptability. However, there is
a discrepancy in the treatment of Size of Luggage. While XOPSIS and LIME con-
sider it as a negative contributor, SHAP does not highlight it as a significant factor.
This inconsistency suggests that Size of Luggage may have varying degrees of im-
pact on the model’s decision across different explanation methods. Nonetheless, the
consensus on the positive contributions of Safety, and Buying Price and negative
contributions of No of doors enhances our understanding of the key features driving
the prediction of “good” acceptability.

3. Vgood Explanation

Case 04

In the XOPSIS explanation for a new data point, the analysis begins by displaying
the actual feature values. Figure 5.112 then reveals the actual and predicted ac-
ceptability level, indicating a prediction of “Vgood” (very good). The explanation
continues by identifying the features that contribute positively and negatively to the
prediction.
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Figure 5.112: Explanation of Vgood level by XOPSIS (Case 04)

The features that positively contribute to the prediction of “Vgood” are Buy-
ing Price, Person Capacity, and No of Doors. This suggests that higher values
or specific thresholds for these features align with a higher likelihood of the car
being classified as “Vgood.” On the other hand, the features Maintenance Price,
Size of Luggage, and Safety demonstrate negative contributions to the prediction.
Lower values or specific thresholds for these features are associated with a higher
likelihood of the car being classified as “Vgood.”

Figure 5.113: Normalized Feature Contibutions of Vgood level by XOPSIS (Case
04)

Figure 5.113 presents the normalized feature contributions, visually represented by
green and red colors. Safety exhibits a negligible contribution (close to 0), indicating
that it does not strongly influence the prediction. No of Doors has a neutral contri-
bution (close to 0), implying that its value does not significantly impact the predic-
tion. Size of Luggage demonstrates a negative contribution (-0.16), suggesting that
values lower than a certain threshold contribute to the classification of “Vgood.”
Conversely, Person Capacity and Buying Price show positive contributions (0.21
and 0.22, respectively), indicating that higher values or specific thresholds for these
features contribute to the prediction. Lastly, Maintenance Price exhibits a substan-
tial negative contribution (-0.40), suggesting that lower values or specific thresholds
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for this feature strongly influence the classification of “Vgood”.
Figure 5.114 represents the LIME explanation for the same data point begins by
displaying the prediction probabilities, indicating a high confidence prediction of
“Vgood” (very good) with a probability of 1.0. The explanation continues with a
plot that visually represents the contributions of different features to the prediction.

Figure 5.114: Explanation of vgood level by LIME (Case 04)

On the right side of the plot, which corresponds to the “Vgood” class, the fea-
tures that positively contribute to the prediction are Safety, Buying Price, Per-
son Capacity, and No of Doors. This suggests that specific thresholds or higher
values for these features are indicative of the car being classified as “Vgood.” On
the left side of the plot, representing the “Not vgood” class, the feature Mainte-
nance Price demonstrates a negative contribution, implying that lower values or
specific thresholds for this feature are associated with a lower likelihood of the car
being classified as “Vgood.” Additionally, Size of Luggage exhibits a negligible con-
tribution, indicating that its value does not significantly influence the prediction.
The LIME explanation concludes by presenting the actual feature values of the data
point, allowing for a comprehensive understanding of the specific characteristics that
led to the prediction of “Vgood” for this particular instance.
Figure 5.115 displays the SHAP explanation for the same data point begins by
stating the Ground Truth Label and the Model Prediction, both of which correctly
identify the class as “Vgood.”

Figure 5.115: Explanation of vgood level by SHAP (Case 04)

The explanation further presents a force plot that visualizes the contributions of
different features to the prediction. The base value is indicated as -4.442, and the
plot shows that the overall contribution leads to a value of 3.22. The plot is divided
into two sections, with “higher− >” denoted in red color and “< −lower” denoted
in blue color.
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On the “higher− >” side, features such as Person Capacity, Buying Price, Size of Luggage,
and Safety demonstrate positive contributions, suggesting that higher values or spe-
cific thresholds for these features positively impact the classification as “Vgood.”
On the “< −lower” side, the feature Maintenance Price exhibits a negative contri-
bution, indicating that lower values contribute to the classification as “Vgood.”
By visualizing the feature contributions in the force plot, the SHAP explanation
provides insights into how each feature influences the prediction of “Vgood” for the
given data point.
Upon analyzing the explanations provided by XOPSIS, LIME, and SHAP for the
same data point, it becomes evident that all three methods consistently identify the
key features contributing to the prediction of “Vgood” as the acceptability level for
the car.
According to XOPSIS, the features Buying Price, Person Capacity, and No of Doors
positively contribute to the classification, while Maintenance Price, Size of Luggage,
and Safety have negative contributions.
Similarly, LIME highlights the importance of Safety, Buying Price, and Person Capacity
as positive contributors to the prediction of “Vgood.” On the other hand, Size of Luggage
and Maintenance Price are identified as negative contributors.
In line with the other methods, SHAP indicates that Person Capacity, Buying Price,
Size of Luggage, Safety and No of Doors positively impact the classification of “Vgood,”.
Maintenance Price is identified as a negative contributor.
Overall, the consistency in the identified features across XOPSIS, LIME, and SHAP
explanations reinforces the significance of Buying Price, Person Capacity, and Size of Luggage
as influential factors in predicting the “Vgood” acceptability level for the given data
point. The alignment in feature importance enhances our understanding of the
model’s decision-making process and strengthens the reliability and interpretability
of the predictions.

5.6 Time Complexity Analysis

The time complexity analysis of the XOPSIS algorithm is crucial to understanding
its computational efficiency. The algorithm’s time complexity is evaluated step by
step, considering the number of instances (n) and the number of features (m) in the
dataset.
1. Normalization of the Dataset: The initial step involves normalizing the
dataset. This process requires iterating through each instance and feature, resulting
in a time complexity of O(n).
2. Calculating Weighted Normalized Decision Matrix: Similar to the nor-
malization step, the computation of the weighted normalized decision matrix neces-
sitates iterating through the dataset, contributing to a time complexity of O(n).
3. Euclidean Distance Calculation: The calculation of Euclidean distances
to ideal and anti-ideal solutions involves iterating through instances and features.
Consequently, this step has a time complexity of O(n * m).
4. TOPSIS Score Determination: The calculation of the TOPSIS score for each
alternative entails iterating through instances, yielding a time complexity of O(n).
5. Ranking Alternatives: The ranking process, based on TOPSIS scores, involves
sorting the alternatives. This step has a time complexity of O(n * log(n)), where
log(n) arises from the sorting operation.
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6. Instance Filtering: Filtering instances based on TOPSIS scores and predicted
risk level entails iterating through instances, resulting in a time complexity of O(n).
7. Average Feature Value Calculation: The calculation of average feature
values involves iterating through features, leading to a time complexity of O(m).
8. Feature Difference Determination: Determining feature differences requires
iterating through features and computing the differences, leading to a time com-
plexity of O(m).
9. Correlation Estimation: Estimating the correlation between features and the
target variable involves iterating through instances and features, resulting in a time
complexity of O(n * m).
10. Weighted Contribution Evaluation: Evaluating the weighted contribution
of each feature involves iterating through features, leading to a time complexity of
O(m).
11. Feature Classification: Detecting features with positive and negative contri-
butions entails iterating through features and classifying them, resulting in a time
complexity of O(m).
12. Explanation Printing: The final step of printing the explanation has a con-
stant time complexity of O(1).
Considering the aforementioned complexities, the overall time complexity of the
XOPSIS algorithm predominantly hinges on the steps involving iteration through
instances and features. As a result, the algorithm’s time complexity can be approx-
imated as O(n * m), where n represents the number of instances and m denotes the
number of features.
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Chapter 6

Conclusion

In conclusion, this research presents XOPSIS, a novel explainable AI (XAI) method,
and evaluates its performance across multiple datasets, including maternal health,
breast cancer, the benchmark Iris dataset, and the Car Acceptability dataset. XOP-
SIS demonstrates its effectiveness in providing interpretable insights into predictions,
particularly in maternal health risk prediction, iris species prediction, and car ac-
ceptability prediction.
Our analysis using XOPSIS consistently highlighted the importance of specific fea-
tures in predicting maternal health risks and breast cancer diagnoses. These findings
were in line with previous research and demonstrated the ability of XOPSIS to un-
cover meaningful insights. The positive and negative feature contributions identified
by XOPSIS provided valuable information about the factors influencing the predic-
tions.
Furthermore, our research revealed the convergence of results between XOPSIS and
established explainable AI methods such as LIME and SHAP. In most cases, we
observed exact similar explanations in terms of the positive and negative contribut-
ing features for XOPSIS and LIME. SHAP also showed similar findings, providing
additional support to our findings. This convergence not only validated the relia-
bility and interpretability of XOPSIS but also emphasized the consistency in the
importance of features across different explainable AI techniques.
While the evaluation primarily focused on maternal health and breast cancer datasets,
the successful application of XOPSIS to the benchmark Iris dataset and the Car
Acceptability dataset suggests its potential for broader applicability across diverse
domains. This versatility and effectiveness of XOPSIS as an XAI method underscore
its value in providing interpretable insights.
The availability of limited data for the maternal health dataset may have influenced
the generalizability of our findings. Future studies should consider larger and more
diverse datasets to validate and enhance the robustness of XOPSIS in different
healthcare contexts.
Our research has significant implications for maternal health care and the advance-
ment of the field of explainable AI. By providing interpretable insights into maternal
health risk prediction, XOPSIS can aid healthcare professionals in making informed
decisions and implementing targeted interventions. The consistent and robust find-
ings from our study, particularly the similarities observed with LIME, underscore
the importance of utilizing explainable AI methods in healthcare research.
In summary, our research introduces and evaluates the novel explainable AI method,
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XOPSIS, showcasing its effectiveness in providing interpretable insights into predic-
tions across multiple datasets. The convergence of results with established methods,
such as LIME, and its potential for broader applicability highlight the effectiveness
and versatility of XOPSIS in providing interpretable insights. These findings con-
tribute to the advancement of the field of explainable AI and its application in
various domains, including maternal health care, breast cancer diagnosis, and be-
yond.
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[22] S. Nădăban, S. Dzitac, and I. Dzitac, “Fuzzy topsis: A general view,” Procedia
computer science, vol. 91, pp. 823–831, 2016.
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