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Abstract 

Antimicrobial resistance (AMR) has now become one of the significant global health 

challenges and are not limited to natural antibiotics but also for synthetic antibiotics. 

Therefore, it is crucial to search for more effective antibiotics and develop novel chemical 

entities with new mechanisms of action. But the process is challenging and expensive. 

Antibiotics adjuvants gives us hope in combat with AMR. This prosperous and successful 

strategy in combating antibiotic resistance will be the focus of this review. Genotypic 

antibiotic resistance or intrinsic resistance occurs predominantly by three mechanisms (i) 

inactivation of the antibiotic (i.a) enzymatic modification (i.b) enzymatic breakdown, (ii) 

decreased antibiotic uptake or accumulation within the bacterial cell by increased efflux, 

(iii) modification of the antibiotic target site resulting reduced affinity. Therefore, proteins 

or enzymes involved in these resistance mechanisms are potential targets for developing 

adjuvant drugs. Another approach is enhancing host cell responses using therapeutic for 

pathogen eradication. Current research with broad-spectrum antibiotic adjuvants and 

hybrids approach for antibiotic-adjuvant also being studied. However, there is a race 

between humans and microorganisms for developing new drugs with antibiotic activity 

versus acquiring resistance mechanisms. In the current study, several approaches to 

adjuvants have been discussed, from the well-known and clinically validated approach of 

inhibiting β-lactamase enzymes and efflux pumps to more indirect approaches, such as 

inhibiting bacterial signaling and response systems that mediate AMR. Adjuvants that act 

by increasing cellular uptake of antibiotics, adjuvants that inhibit modification of the 

antibiotic or its target, and finally, the identification of adjuvants that act upon less obvious 

targets, such as non-essential steps in bacterial cell wall synthesis, are also discussed. 
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Antimicrobial resistance (AMR) has now become one of the significant Global Health 

challenges (Berendonk et al., 2015), and the view of AMR is no longer being addressed by 

studying the problem, but it is high time to find solutions. However, long before humans 

started mass-producing antibiotics, many bacteria evolved to tolerate them and prevent the 

treatment of infectious diseases (Bhullar et al., 2012; D’Costa et al., 2011). An important 

driver of AMR development is likely to be the competition for resources among 

microorganisms(Allen et al., 2010; Davies & Davies, 2010). These resources include the 

natural production of secondary metabolites similar to many commercial antibiotics. 

 

“An antibiotic is a chemical substance, produced by microorganisms, which can inhibit the 

growth of and even destroy bacteria and other microorganisms,” the definition provided by 

S.A. Waksman (Waksman, 1947). While today, “antibiotic” is not limited to a chemical 

substance produced by microorganisms but a synthetic or natural substance that inhibits or 

kills bacteria. But the introduction of antibiotics as clinical agents dramatically changed the 

evolution and spread of AMR by providing unprecedented selection pressures (Alcock et 

al., 2020). Therefore, scientists need to improve antibiotics regularly. The improvement of 

antibiotics is mainly based on their mode of action and targets. For example, antibiotics 

inhibit or kill bacteria by preventing (i) cell-wall biosynthesis; (ii) protein synthesis; (iii) 

DNA replication and repair; (iv) folic acid metabolism; and/ or disrupting membrane 

structure (González-Bello, 2017). But the recent emergence of multi-drug resistant (MDR) 

bacteria demands the expedited process of antibiotic improvement. However, a critical 

point limiting capacity is the flagging investment in research and development of novel 

antibiotics, mainly due to the low-profit margin. 

 

However, it is crucial to search for more effective antibiotics and develop novel chemical 

entities with new mechanisms of action. An in-depth investigation of the essential 

biological and biochemical processes in bacteria and the development of novel scaffolds 

that target them gives us hope. The availability of genomic data has significantly 

contributed to this progress (Kostyanev et al., 2016). Similarly, a great success in 

minimizing the AMR by using an ‘antibiotic adjuvant’. These are also known as ‘resistance 

breakers’ or ‘antibiotic potentiators’ (Bush, 2015a; Gill et al., 2015). Antibiotic adjuvants 

have no or little antibiotic activity. So their mood of action is either by blocking the primary 

bacterial resistance or by enhancing the antimicrobial action of the drug. Therefore, from 

the drug discovery point of view, this combined drug therapy has the advantage, and it is 
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unnecessary to go for new target identifications that are challenging and expensive 

(González-Bello, 2017). This prosperous and successful strategy in combating antibiotic 

resistance will be the focus of this review. 
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Antimicrobial resistance (AMR) 
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The possible causes of AMR are excessive use of antibiotics in animals and humans, easy 

access to antibiotics, increased international travel, and due to poor sanitation release of 

non-metabolized antibiotics residues into the environment through manure/faeces (Aslam 

et al., 2018). A remarkable amount of antimicrobial consumption increases in livestock 

feed, and it is estimated that the use will increase to 67% in 2030 (Tiseo et al., 2020). This 

uncontrolled use of antimicrobials in livestock for infection prevention and growth 

promotion significantly contributes to the development of AMR (Pokharel et al., 2020). 

However, there might be several physiological and biochemical mechanisms in developing 

resistance. But, little has been known about these complex mechanisms of emergence and 

distribution of the resistance (Baker et al., 2018; Lesho & Laguio-Vila, 2019). After 

analyzing the available bacterial genome data, more than 20,000 potential resistance genes 

were identified; however, the functional resistance determinants are fewer (Ebmeyer et al., 

2021). 

 

AMR was first detected in the early 1960s, among enteric bacteria Escherichia coli, 

Shigella, and Salmonella. Until then, these resistant strains caused substantial health-

economic burdens, mainly in developing countries with common health problems with 

enteric microbes. But after a decade, it became a global concern when ampicillin-resistant 

Neisseria gonorrhoeae and Haemophilus influenzae were identified and later reported to 

resist tetracycline and chloramphenicol as well (Aslam et al., 2018; Talebi Bezmin Abadi 

et al., 2019). Currently, numerous important organizations, like the World Health 

Organization (WHO), World Economic Forum and Centers for Disease Control and 

Prevention (CDC) have declared antibiotic resistance as a ‘global public health concern’ 

(Hoffman et al., 2015; Spellberg et al., 2016). Since then, several social action plans have 

been announced, including national and international prize announcements to tackle 

antibiotic resistance (Landers & Kavanagh, 2016; Payne et al., 2015). In contrast, there are 

no signs of declining global AMR. 

 

Global economy and AMR 
Proper estimation of the exact economic impact of AMR is still challenging. It requires 

measuring the disease distribution associated with AMR. However, several studies try to 

illustrate the burden due to AMR. In the USA, approximately 100,000 deaths have been 

recorded yearly due to antibiotic-resistant pathogen-associated hospital-acquired infections 
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(Umscheid et al., 2011; Zimlichman et al., 2013). In 2006, about 50,000 US citizens died 

due to sepsis and pneumonia, costing about $8 billion (America, 2011). Patients need to 

stay long in case of AMR pathogen infections, causing an additional 8 million hospital days 

annually in the US. This extended stay in the hospital costs up to $29,000 per patient treated 

with an antibiotic-resistant bacterial infection (Ventola, 2015). Another study estimated the 

global economic burden would be about $120 trillion and about 444 million people would 

succumb to infections (Ahmad & Khan, 2019). 

 

Causes of antibiotic resistance 
Most of the antibiotics are natural and produced by microbes. Others are semi-synthetic, 

and few are fully synthetic but have structural similarities to natural antibiotics (Wright, 

2014). Therefore, Various organisms have evolved with defensive mechanisms against 

them by producing an enzyme that can degrade the antimicrobials, changing the target site 

and inhibiting drug entry or distribution (Holmes et al., 2016). Extensive diversity in 

genetic determinants for antibiotic resistance has been revealed by the functional 

metagenomic analysis (McGarvey et al., 2012; Nielsen et al., 2022). Saprophytic bacteria 

produce various antimicrobial molecules that inhibit the growth of other organisms in that 

environment. But the previous study suggested that antimicrobial substances present in low 

concentrations in the soil; and sublethal concentrations significantly impact microbial 

physiology and evolution that may act as effective signalling molecules to induce gene 

expression (Andersson & Hughes, 2014). However, the emergence of AMR is not 

happening for natural antimicrobials only but also against synthetic antimicrobials. 

 

Many factors are involved in developing antibiotic resistance; overuse is the principal 

cause. In 30%–50% of the cases, doctors choose inappropriate antibiotics and therapy 

duration (Durkin et al., 2018; Schmidt et al., 2021). On the other hand, 80% of antibiotics 

are used in the USA as growth supplements and infection control in animals. In humans, 

the estimated global antibiotic consumption rate was 14.3 defined daily doses per 1000 

populations in 2018, a 46% increase from 2000 (Klein et al., 2021). Another important 

drivers of antibiotic resistance include sanitation and water hygiene systems that allow the 

release of antibiotic residuals in the environment. In the environment, genetic mutation and 

the exchange of genes between organisms play an important role in the spread of resistance 

(Holmes et al., 2016). Plasmid transmission is the most important way to transfer resistance 
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genes into the host cell (Munita & Arias, 2016). In humans, especially at the community 

level, resistant pathogens of the family Enterobacteriaceae may transmit through feco–oral 

route (Wellington et al., 2013). Community-acquired MRSA is an excellent example of 

human-to-human resistance transmission due to prolonged hospital stays or unhygienic 

hospital settings. However, resistance can be transmitted by sexual route too, where drug-

resistant N. gonorrhoeae and HIV are examples (Lewis, 2013; Rahman et al., 2022). From 

animals, mobile genetic elements and resistant bacteria may transmit to humans in different 

ways (Hernando-Amado et al., 2019); environmental transmission is also well-documented 

through pharmaceutical industry pollution, sewage systems, and waste management 

procedures (Wellington et al., 2013).  

 

Recently β-lactamases production increased acquired MDR infections leading to third-

generation carbapenem and cephalosporin resistance (Blair et al., 2015). The important 

genes responsible for MDR E. coli and Salmonella are AmpC, bla-CTXM-15, bla-TEM-1, 

floR, VIM-1, tetG, NDM-1, and mcr-1 (He et al., 2020; Pazda et al., 2019). These genes 

can be transferred to other microorganisms using a vector. Normally bacteria use two 

mechanisms for resistance; (a) intrinsic resistance and (b) acquired resistance (Figure 

1)(Lynch III et al., 2013). Intrinsic resistance is known if a bacterium resists a specific 

antibiotic due to inherent structural or functional properties. Pseudomonas has no 

susceptible target site for a particular antibiotic and therefore shows an intrinsic resistance 

mechanism to a broad-spectrum biocide, triclosan (Zhu et al., 2010). Another example is 

lipopeptide daptomycin, an active drug against Gram-positive while useless against Gram-

negative bacteria due to intrinsic variation in the cytoplasmic membrane composition 

(Randall et al., 2013). 

 

Additionally, some antibacterial compounds cannot cross the outer membrane, which is 

also considered a way of intrinsic resistance. Here an example is a vancomycin which 

inhibits peptidoglycan crosslinking by targeting d-Ala-dAla peptides in Gram-positive; 

while it cannot pass through the outer membrane of Gram-negative bacteria (Blake & 

O'Neill, 2013). In case of acquired antibiotic resistance, bacteria use various mechanisms, 

including antibiotic efflux or poor drug penetration, modification of the antibiotic target 

site due to genetic mutation or posttranslational target modification, and inactivation of the 

antibiotic by metabolic modification or hydrolysis (Girlich et al., 2020; MacLean & San 
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Millan, 2019; McInnes et al., 2020). An example of this mechanism is plasmid coding 

colistin-resistant (mcr-1 dependent) genes in E. coli. 

 

  

 

Figure 1: Antibiotic resistance mechanisms (a) intrinsic resistance: (i) inactivation of the antibiotic (i.a) 

enzymatic modification (i.b) enzymatic breakdown, (ii) decreased antibiotic uptake or accumulation 

within the bacterial cell as a result of increased efflux, (iii) modification of the antibiotic target site 

resulting reduced affinity; and (b) acquired resistance 
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Antibiotic adjuvants; a way forward 
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Due to the current emergency of AMR, there is a need to develop alternative approaches to 

combat resistance; antibiotic adjuvants are receiving increasing attention (Sharma et al., 

2021). The antibiotic adjuvants approach involves the combination of an adjuvant, a non-

microbicidal compound, with an antibiotic to increase the antimicrobial activity. However, 

adjuvants typically do not have antimicrobial potential when administered alone, 

contrasting synergistic antibiotic combinations (Roemer & Boone, 2013). Combination 

therapies are challenging for dose optimizing, possibly allowing the continued use of 

clinically approved antibiotics that may lead to bacterial resistance. 

 

Genotypic antibiotic resistance or intrinsic resistance occurs predominantly by three 

mechanisms (Walsh, 2000); (i) inactivation of the antibiotic (i.a) enzymatic modification 

(i.b) enzymatic breakdown, (ii) decreased antibiotic uptake or accumulation within the 

bacterial cell by increased efflux, (iii) modification of the antibiotic target site resulting 

reduced affinity (Figure 1). Therefore, proteins or enzymes involved in these resistance 

mechanisms are potential targets for developing adjuvant drugs.  

 

Inhibition of antibiotic-modifying enzymes 
Antibiotic modifying enzyme production can reduce antibiotic activity, a common 

mechanism by which bacteria evade the action of these drugs. The modification frequently 

used by bacteria is hydrolysis; for example, β-lactamase enzymes can hydrolyze the lactam 

bond of β-lactam antibiotics; macrolide esterases hydrolyze the lactone bond of macrolides 

(Wright, 2005). Also, bacteria can modify antibiotics by adding a group to the antibiotics; 

examples are adding an adenyl, phosphoryl or acetyl group to aminoglycosides by the 

aminoglycoside-modifying enzymes (AMEs) (Ramirez & Tolmasky, 2010). Other 

antibiotic-modifying enzymes include macrolide glycosyltransferases and chloramphenicol 

acetyltransferases (Wright, 2005). Redox reactions can also inactivate antibiotics by 

oxidation of tigecycline by the monooxygenase TetX (Volkers et al., 2011). 

 

β-lactamase inhibitors are classic examples of adjuvants that inhibit modification of the 

antibiotic (Jovetic et al., 2010). This class of adjuvants are listed in Figure 2(Bush, 2015b; 

Papp-Wallace & Bonomo, 2016). Augmentin is a combination of amoxicillin and 

clavulanic acid that inhibits β-lactamase and cell wall synthesis (Ball, 2007). β-lactamase 

inhibitors sulbactam and tazobactam are specific for class A β-lactamases but not against 
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class C. Therefore, recently non-β-lactam-derived β-lactam inhibitors adjuvants of the di-

aza-bi-cyclo-octanes (DBO) class are in focus. They are active against the class C β-

lactamases (Shlaes, 2013). Avibactam was approved in 2015; a member of this class which 

is susceptible to hydrolysis upon binding to the β-lactamase, as the de-acylation 

mechanism, releases the intact inhibitor (Ehmann et al., 2012). Another member of the 

DBO class of β-lactamase inhibitors is Relebactam (MK-7665) in combination with 

imipenem/cilastatin. Other member of this class includes the 6-methylidene-penem 

compound BLI-489 and Tri-cyclic-carbapenem LK-157 (Bassetti et al., 2011; Paukner et 

al., 2009). 

 

Another class of adjuvants is the boronic acid class of β-lactamase inhibitors, including 

Vaborbactam; in combination with biapenem, Vaborbactam can inhibit class A and C β-

lactamases (Livermore & Mushtaq, 2013). Vaborbactam can also be used with meropenem 

against carbapenemases-producing Enterobacteriaceae(Griffith et al., 2016; Lapuebla et 

al., 2015). β-Lactamase inhibitors that are active against metallo-β-lactamases include the 

fumarate derivative ME1071 which significantly enhances the activity of biapenem against 

Pseudomonas aeruginosa(Bassetti et al., 2011). The triple combination of Clavulanic acid, 

bridged monobactam BAL29880 and siderophore monobactam BAL19764 is also used to 

inhibit metalo- β-lactamase producing Enterobacteriaceae(Page et al., 2011). Also, the 

bisthiazolidine class of compounds used to inhibit metalo- β-lactamase-producing 

Escherichia coli(Hinchliffe et al., 2016). In 2014, Aspergillomarasmine A used as an 

inhibitor of the mammalian metalloenzymes angiotensin-converting enzyme and 

endothelin-converting enzyme, which acts as promising adjuvants against metalo- β-

lactamase-producing bacteria (King et al., 2014) (Figure 2). 
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Although, the development of adjuvants that inhibit modification of other antibiotics 

classes have also been investigated (Melander & Melander, 2017) (Figure 3). AMEs are 

mainly responsible for aminoglycoside antibiotic resistance by adding a functional group 

that interrupts the interaction of the antibiotic with the rRNA target. Nucleotidyl-

tranferases, phosphor-transferases, and acetyl-transferases are three AMEs that modify 

both hydroxyl and amine groups (Ramirez & Tolmasky, 2010). Inhibitors of these three 

enzymes are prospective adjuvants for treating infections caused by Gram-negative bacteria 

(Labby & Garneau-Tsodikova, 2013). Aminoglycoside 6-N-acetyl-transferases can 

transfer an acetyl group from acetyl-coenzyme A to the amino group at the 6 positions of 

the aminoglycoside. Aminoglycoside 6-N-acetyl-transferases inhibitor acted 

synergistically with Kanamycin against Enterococcus faecium(Gao et al., 2006). The zinc 

pyrithione complex also suppressed amikacin resistance E. coli that can produce 

aminoglycoside 6-N-acetyl-transferases (Lin et al., 2014). It was also effective against 

amikacin and tobramycin resistance Gram-negative bacterial species, including 

Enterobacter cloacae and K. pneumoniae(Y. Li et al., 2015). Similarly, a copper pyrithione 

complex can suppress amikacin resistance in K. pneumoniae(Chiem et al., 2015). 

 

A study identified 14 bacterial kinases involved in antibiotic resistance, where flavonol 

quercetin can inhibit 12 of them, including all amino-glycoside-phospho-transferases. This 

 

Figure 2:β-lactamases inhibiting adjuvants 
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adjuvant significantly increased aminoglycoside antibiotics activity on amino-glycoside-

phospho-transferases producing E. coli(Shakya et al., 2011). Another adjuvant, aranorosin 

has been reported to active against methicillin-resistant Staphylococcus aureus (MRSA) 

(Suga et al., 2012). Mycobacterium species use mycothiol to maintain an intracellular 

reducing environment and detoxify xenobiotics (Hernick, 2013). Dequalinium is an 

inhibitor of mycothiol biosynthetic enzyme MshC (Gutierrez-Lugo et al., 2009), and can 

enhance spectinomycin's antimicrobial activity against Mycobacterium smegmatis(Ramón-

García et al., 2011). 

 

 

Inhibition of target alteration 
Bacteria may also alter the target of the antibiotic. But only a few adjuvants successfully 

targeted this resistance mechanism (Melander & Melander, 2017). The ErmC methyl-

transferase enzymes catalyze adenine methylation in bacterial 23S rRNA and develop 

resistance against macrolide-lincosamide-streptogramin-B (MLS) classes of antibiotics 

(Pieren & Tigges, 2012). ErmC inhibitor exhibited synergistic activity with azithromycin 

against Enterococcus faecalis and S. aureus and erythromycin against E. coli strains 

expressing ErmC methyl-transferase enzymes (Feder et al., 2008). 

 

 

Figure 3:Adjuvants that inhibit antibiotic-modifying enzymes other than β-lactamases 
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Inhibition of efflux 
Membrane-bound efflux proteins pump toxic agents; therefore, bacteria also use these 

efflux proteins to pump out antibiotics. These pumps are specific for one substrate or class. 

However, these can also be effective for multiple antibiotics classes (Table 1), including 

clinically relevant Mex and AcrAB-TolC pumps. Additionally, efflux pumps can 

synergistically act with other resistance mechanisms, such as Gram-negative bacteria's 

outer membrane permeability barrier, exacerbating resistance (X.-Z. Li et al., 2015).  

 

Table 1: Examples efflux pumps and resistance phenotype in bacteria. 

Efflux 

Pumps  
Bacteria  Antibiotic Resistance  

References 

AcrAB-

TolC  

Salmonella enterica Quinolones, 

Chloramphenicolflorfenicol, 

Tetracyclines 

(Pan et al., 2016) 

AcrAB  Shigella flexneri, 

Escherichia coli  

Fluroquinolone (Adabi et al., 2015) 

LpeAB  Legionella pneumophila  Macrolides (Massip et al., 2017) 

MexAB-

OprM  

Pseudomonas 

aeruginosa  

Carbapenem, Fluroquinolones (Adabi et al., 2015; Pan 

et al., 2016) 

MexEF-

OprN  

Pseudomonas 

aeruginosa  

Quinolones, Chloramphenicol, 

Trimethoprim, Imipenem 

(Ko¨ hler et al., 1997) 

MdfA  Escherichia coli  Aminoglycosides, Neomycin, 

Kanamycin 

(Putman et al., 2000) 

MtrCDE  Neisseria gonorrhoeae  Penicillin (Poole, 2007) 

NorA  Staphylococcus aureus  Fluroquinolones (Schmitz et al., 1998) 
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S. aureus can express more than 15 efflux pumps; some are chromosomally encoded and 

some from plasmid (Jang, 2016). NorA efflux pump plays a role in fluoroquinolone 

antibiotics resistance and also for at least 10% antibacterial resistance in MRSA strains 

(Abreu et al., 2012). The plant alkaloid reserpine (Figure 4) can inhibit NorA-mediated 

drug efflux; additionally, reserpine increases the effect of ciprofloxacin and bactericidal 

activity on S. aureus. Due to the neurotoxicity effect, reserpine can not be used in a clinical 

setting. Other phytochemicals, including carnosol and carnosic acid, also inhibit several 

efflux pumps of S. aureus; i.e. TetA and MsrA efflux pumps involved in tetracycline and 

erythromycin resistance (Abreu et al., 2012). Abietanes ferruginol, 5-epipisiferol, 

chlorophyll metabolite pheophorbide A, polyphenol hydnocarpin D,  and flavonoid 

baicalein (Figure 4) are also studied as NorA inhibitors (Melander & Melander, 2017). 

 

Celecoxib is a NorA inhibitor that can suppresses drug resistance in the cancer cell with 

multiple antibiotic classes, including ampicillin, chloramphenicol, kanamycin, and 

ciprofloxacin (Kalle & Rizvi, 2011). Thioridazine has modest antimicrobial activity and 

can inhibit both, efflux-mediated and non-mediated resistance mechanisms (Kaatz et al., 

2003). MdeA efflux pump is responsible for resistance to several antibiotics, including 

mupirocin and novobiocins; alkaloid piperine can inhibit MdeA and NorA in S. 

aureus(Jang, 2016).  

 

Figure 4:Inhibitors of efflux pumps in Gram-negative bacteria 
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Different efflux pumps have been described in other Gram-negative bacteria, such as 

MexEF-OprN, MexAB-OprM, MexCD-OprJ, and MexXY-OprM pumps of P. aeruginosa. 

Phe-Arg-β-naphthylamide (PAβN) is an inhibitor of these four efflux pumps (Pagès & 

Amaral, 2009). Another multi-drug resistance efflux pump in Enterobacteriaceae is 

AcrAB-TolC, which is regulated by the transcriptional activator RamA encoded by a gene 

of the same name, ramA (Bailey et al., 2008; Bohnert et al., 2016). PAβN upregulates ramA 

gene and interrupts AcrAB-TolC production, while thioridazine, phenothiazine, 

trimethoprim, and epinephrine chlorpromazine inhibit the AcrAB-TolC efflux system and 

increase susceptibility to several antibiotics, including norfloxacin, nalidixic acid, 

chloramphenicol, tetracycline, and ciprofloxacin. However, phenothiazines affect efflux-

related gene expression and suppress resistance (Bailey et al., 2008; Piddock et al., 2010). 

Another adjuvant piperazine arylideneimidazolone can inhibit efflux by overexpressing 

acrAB in E. coli and increase susceptibility to clarithromycin, levofloxacin, linezolid, and 

oxacillin (Bohnert et al., 2016). 

 

Enhancement of antibiotic uptake 
Several antibiotic targets are located within the cytoplasm; therefore, they must cross 

bacterial cell walls. The Gram-positive cell wall is relatively permeable than Gram-

negative. Several compounds can destabilize the Gram-negative outer membrane and 

increase antibiotic uptake. Polymyxin B nonapeptide (PMBN) (Figure 5), increases the 

susceptibility of Gram-negative bacteria, including P. aeruginosa and K. pneumoniae to 

novobiocin, fusidic acid and erythromycin (Viljanen & Vaara, 1984). However, due to 

renal toxicity, PMBN is not used in the clinical sector; it requires developing second-

 

Figure 5:Adjuvants that enhance the uptake of antibiotics 
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generation analogs with reduced toxicity (Zabawa et al., 2016). Adjuvant loperamide can 

increase tetracycline uptake in Gram-negative bacteria, including E. coli, A. baumannii, P. 

aeruginosa, Salmonella enterica, and K. pneumoniae(Ejim et al., 2011). Pathogenic 

bacteria use siderophore-specific receptors for iron entry into the cell. Siderophore-

aminopenicillin conjugates allow antibiotic uptake using the iron channel and are active 

against carbapenem-resistant isolates of S. maltophilia and P. aeruginosa(Möllmann et al., 

2009). 

 

Interfering with signaling systems 
Interfering with the ability of the bacteria to “switch on” resistance machinery is an 

alternative method against AMR. Bacteria use various pathways to sense antibiotics and 

activate or upregulate the production of the proteins required for resistance. For example, 

MRSA can detect β-lactam antibiotics by the MecR1 and BlaR1 sensor systems and then 

subsequently initiate the encoding of β-lactamase and penicillin-binding protein 2a 

(PBP2a) to get resistance. Mammalian serine/threonine kinase inhibitors (Figure 6) reduce 

the phosphorylation of BlaR1 in the presence of penicillin (Boudreau et al., 2015). 

 

A prominent signalling and regulatory system is the two-component system (TCS), which 

controls the response to external stimuli and stresses. TCS can control sporulation, biofilm 

formation, competence, pathogenesis, and antibiotic resistance across multiple bacterial 

species (Gotoh et al., 2010; Méjean, 2016). TCS depends on histidine kinase and can 

control gene expression in response to environmental change by phosphatases and 

dephosphorylate activity (Gotoh et al., 2010). VraRS system in MRSA is a good example 

of TCS that allow antibiotic resistance (Belcheva & Golemi-Kotra, 2008). VraRS senses 

cell wall damage and coordinates a response involving numerous genes activation for cell 

wall synthesis. Multiple TCSs are responsible for the variation in β-lactam resistance in 

MRSA, which can be inhibited by 2-aminoimidazole compounds derived from marine 

 

Figure 6:Inhibitors of bacterial signaling systems involved in antibiotic resistance 
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natural products (Yeagley et al., 2013). Aminobenzothiazole and thiophene (Figure 6) 

exhibited moderate antibiotic activity against E. coli and Bacillus subtilis by inactivating 

histidine kinases (Wilke et al., 2015). 

 

Targeting non-essential steps in cell wall synthesis 
There are several proteins and enzymes involved in bacterial cell wall synthesis. In S. 

aureus, deletion of some peptidoglycan synthesis genes does not affect cell growth or 

morphology but increases susceptibility to cell wall-acting antibiotics (Reed et al., 2015). 

These types of non-essential genes are ideal targets for adjuvants. In the Gram-positive cell 

wall, glycophosphate polymer wall teichoic acid (WTA) has no function for survival; 

however, inactivation or alteration of WTA in MRSA increases susceptibility to β-lactam 

antibiotics (Wang et al., 2013). TarO gene-encoded enzyme involved in the early stages of 

WTA synthesis. A natural product, tunicamycin (Figure 7), inhibits the TarO, and 

peptidoglycan synthesis enzyme MraY makes S. aureus susceptible to β-lactam antibiotics 

(Campbell et al., 2011). However, due to toxicity, tunicamycin cannot be used clinically. 

Intoxic ticlopidine and benzimidazole tarocin B are used with cefuroxime against wild-type 

MRSA (Mann et al., 2013). 

 

The highly conserved cytoskeletal protein FtsZ plays an essential role in cell division 

(Hurley et al., 2016). Inhibition of FtsZ using thiazolo-pyridine PC190723, enhances the 

 

Figure 7:Adjuvants that target cell wall synthesis 
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activity of cell-wall-acting antibiotics at sub-microbicidal concentrations (Tan et al., 2012) 

Another FtsZ inhibitor is quinuclidine (Chan et al., 2015), used with ceftriaxone against 

Gram-negative pathogens, including P. aeruginosa, K. pneumonia,E. coli, and A. 

baumannii (Nair et al., 2015). Nva-FMDP (Figure 7) is an inhibitor of the enzyme encoded 

by GlmS gene, which is involved in the synthesis of the peptidoglycan precursor (Lee et 

al., 2011).  

 

Enhancing host defense 
Most recently, scientists are not only focusing on the conventional direct pathogen-target 

approach. The human innate immune system is the best defense against MDR bacterial 

infections. Thus enhancing host cell responses for pathogen eradication is a new 

approach. An example of ‘host defense targeted’ therapeutic is using immunomodulatory 

peptides such as LL-37. LL-37 upregulate neutrophil and downregulate pro-inflammatory 

cytokines and IFN-c, thus enhance the antibacterial activity of the innate immune system 

(Mansour et al., 2014). Also, most recently, lactoferritin derivative hLF1-11, displayed 

antibacterial activity in a rabbit osteomyelitis infection model (Morici et al., 2017). 

Interestingly, some molecules possess immunomodulatory properties and direct 

antibacterial activity. For example, non-peptide-based amphiphilic tobramycin analogs 

can boost the immune response by recruiting neutrophils required to resolve bacterial 

pathogens. Moreover, amphiphilic tobramycin analogs can selectively control 

inflammatory responses (Guchhait et al., 2015). 
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Broad-spectrum antibiotic adjuvants 
Broad-spectrum antibiotics have disadvantages, such as triggering hyper-inflammatory 

responses, disrupting the beneficial microbiome, and developing AMR. Therefore we need 

to select pathogen-specific antibiotics (Brown & Wright, 2016). But in the clinical sector, 

specific pathogen identification and antibiotic susceptibility test may not be possible due 

to medical emergencies. In this case, broad-spectrum antibiotic adjuvants could be a 

possible solution, hanse they have little or no antibiotic activity and might have no 

evolutionary pressure for AMR development. However, most antibiotic adjuvants are 

species-specific due to their mode of action. This strategy requires further investigations 

with a greater understanding of bacteria's universal resistance and adjuvant mechanism. 

 

Hybrids approach for antibiotic-adjuvant 
Although many adjuvants showed an effective result in in-vitro but failed in in-vivo 

treatment, mainly due to different pharmacological properties, such as tissue distribution 

and penetration. The hybrid approach for antibiotic-adjuvant offers an alternative to avoid 

this challenge. An example of such strategies is using amino-glycoside-tri-cosan analog 

combinations to enhance antibacterial activity against neomycin-resistant P. 

aeruginosa(Findlay et al., 2012). Notably, antibiotic-adjuvant conjugates may also 

encounter pharmacokinetic (PK) problems of their molecular size for tissue uptake and 

distribution. Recently, tobramycin-based hybrids have been systematically reviewed 

(Domalaon et al., 2018). However, further study on molecular complexity and intractable 

chemical synthesis is required to establish the benefit of the hybrids approach. 
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There is a race between humans and microorganisms for developing new drugs with 

antibiotic activity versus acquiring resistance mechanisms. The causes of AMR are 

complex and involve not only the selective pressure exerted by the overuse of antibiotics 

but also by environmental pollution with disinfectants, pollutants, and heavy metals; as 

well as intrinsic factors natural to microorganisms, such as horizontal gene transfers. 

Understanding the molecular pathways involved in drug uptake is important for developing 

and discovering new antibiotic adjuvants against pathogens. The use of antibiotic adjuvants 

is an important strategy to restore and preserve the activity of available antibiotics. Also, 

developing adjuvants is more cost-effective than developing or discovering new broad-

spectram antibiotics. This study reviewed the literature on different ways to develop AMR 

and prospective adjuvants with the mode of action and their antibiotic combination. 

Furthermore, several approaches to adjuvants have been discussed, from the well-known 

and clinically validated approach of inhibiting β-lactamase enzymes and efflux pumps to 

more indirect approaches, such as inhibiting bacterial signaling and response systems that 

mediate AMR. Adjuvants that act by increasing cellular uptake of antibiotics, adjuvants 

that inhibit modification of the antibiotic or its target, and finally, the identification of 

adjuvants that act upon less obvious targets, such as non-essential steps in bacterial cell 

wall synthesis, are also discussed. 
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