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Abstract

The utilization and exploration of deep-sea resources has made underwater au-
tonomous operation increasingly important to mitigate the dangers of the high-
pressure deep-sea environment. Intelligent computer vision plays a crucial role in
underwater autonomous operation, and pre-processing procedures such as weak il-
lumination and low-quality image enhancement are necessary for underwater vision.
Underwater object detection plays a critical role in various domains such as marine
biology, environmental monitoring, and underwater robotics. However, it is a chal-
lenging task due to the complexities of the underwater environment, including poor
visibility, light attenuation, and color distortion. In this research paper, we pro-
pose a comprehensive methodology for underwater object detection using transfer
learning with PyTorch and Jetson Inference.
The contributions of this research paper include advancements in underwater object
detection through the combination of transfer learning, fine-tuning, and optimization
techniques. The utilization of PyTorch and Jetson Inference frameworks provides
a powerful and efficient platform for implementing and deploying the model. Ad-
ditionally, the incorporation of image-clearing techniques ensures the quality of the
dataset and improves the model’s performance in challenging underwater conditions.
The results of this research have practical implications for a variety of underwa-
ter applications, including marine environment monitoring, underwater exploration,
and underwater autonomous robots for visual data collection in complex scenarios.
By accurately detecting and classifying underwater objects, our methodology con-
tributes to the understanding and preservation of underwater ecosystems, enhancing
the capabilities of underwater systems and facilitating decision-making processes.
Future work in this field may involve exploring different architectures, incorporating
additional data augmentation techniques, and further fine-tuning the model with
larger and more diverse underwater datasets. These efforts will contribute to ad-
vancing the state-of-the-art in underwater object detection, enabling more robust
and efficient solutions for a wide range of underwater applications. .

Keywords: Machine Learning; Domain Generalization; Object Detection; Deci-
sion tree ; Water Artifact Removal ; Transfer learning ;
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Chapter 1

Introduction

1.1 Motivation

In supervised environments, deep learning-based object identification algorithms
have so far achieved promising outcomes. Due to poor visual representations in
underwater datasets and real-world applications, significant noise that disorients
the detectors, and poor graphic representations in underwater datasets, these tech-
niques are unsuitable for dealing with underwater object detection. The utilization
of remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs)
outfitted with technologies for intelligent underwater object identification consider-
ably improves the exploitation and protection of ocean resources.
However, diverse underwater conditions and poor light variables cause a lot of noise
to be applied to the visuals that are collected, creating major challenges for sophisti-
cated vision-based object recognition systems. For AUV and ROV applications, it is
crucial to create distinctive underwater object detection systems that can success-
fully reduce noise. Although deep learning-based object identification techniques
have shown promising results in a variety of applications, they have not yet been
used to recognize objects beneath the surface of the ocean.This is because of a
variety of difficulties, including the scarcity of underwater detection Datasets and
the often small dimension of the things found in real implementations. Current
deep learning-based detectors are lacking in detecting seemingly insignificant items
reliably.

Figure 1.1: Visual comparison on objects

Furthermore, images in real-world applications and current undersea data sources
contain a lot of noisy data. Wavelength-dependent scattering and absorption in un-
derwater scenes dramatically limit visibility, contrast, and color distortion, resulting
in a large amount of noise data. The difficulty of inter-class similarity in object
recognition is exacerbated by noisy data, which leads to misinterpretation between
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the object and background classes.
Color correction algorithms, such as the white balance method [1], gray world hy-
pothesis [26], and gray edge hypothesis [10], and contrast enhancement algorithms,
such as histogram equalization [5] and restricted contrast histogram equalization [4],
are traditional image processing methods for underwater image enhancement. Due
to the complicated and hard ocean environment, these technologies, while widely
employed, have limited efficiency in improving underwater photos.

1.2 Research problem

Despite the oceans’ immense potential, much of it is still untapped because oper-
ating underwater presents unique difficulties. The limited visibility and high levels
of noise and interference in the underwater environment present one of the main
difficulties in underwater object detection. Due to this, it is challenging to capture
precise and clear images of objects, which makes it difficult to detect and recog-
nize them. Additionally, current techniques for detecting underwater objects are
frequently expensive, time-consuming, and may only be useful in certain situations.
Due to this, it is challenging to conduct extensive underwater environment surveys
and to instantly recognize and identify objects. The goal of this research is to create
fresh approaches and strategies for underwater object detection that can address
these issues and boost the effectiveness, precision, and scalability of underwater op-
erations. A better understanding and exploration of our oceans, as well as support
for the preservation of marine life and the ocean environment, are all things we hope
to achieve by developing our capabilities in this area.

Each year, the global production of plastic exceeds three hundred million metric
tons[28], catering to various industries and consumer goods. Unfortunately, at least
14 million tons of plastic are disposed of in the ocean annually, amounting to roughly
80% of all marine debris found, from surface waters to deep-sea sediments. This plas-
tic waste poses a significant threat to marine life, as it can be ingested or entangled,
leading to severe injury or death. The pollution of marine environments by plastics
remains a pressing issue of concern.
The presence of plastic in the marine environment poses a significant threat to
marine species, as ingestion or entanglement in plastic debris can result in severe
injuries and death. Thus, the issue of marine plastic pollution is a pressing concern
that requires urgent attention and action.
Additionally, as Bangladesh is a riverine nation, rivers play a crucial role in com-
munication, particularly in the southern part of the nation. Since waterways are
the sole available mode of transportation from Chandpur southward, a significant
portion of people must travel by motor launches both interior and along the coast.
There were 1,853 registered launches running 227 routes in the years 1997–1998.
Motor launch services have grown in popularity since the early 1950s. But horrific
catastrophes plague this vital route every year, taking a severe toll on human lives.
The Bangladesh Inland Water Transport Authority (BIWTA) has kept track of 248
motor launch incidents since 1977, which have resulted in 2,309 fatalities, 374 in-
juries, and 208 unaccounted-for cases.
Due to the specific characteristics of the underwater environment, such as con-
strained vision, visual distortion, and non-uniform light, underwater object recog-
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nition is a difficult operation. Machine learning algorithms have been demonstrated
to be successful for underwater object recognition, and study in this field is critical
for a variety of reasons. For starters, underwater object detection may be used to
monitor and safeguard marine habitats. Machine learning approaches, for example,
may be used to discover and track endangered species, identify invasive species, and
assess coral reef health.Second, underwater object detection may be utilized to in-
crease marine safety and security. Machine learning approaches, for example, may
be used to detect and monitor ships and other vessels, locate underwater mines,
and search for missing people.Third, underwater item detection can help with sci-
entific study. Machine learning technologies, for example, may be used to research
the behavior of marine creatures, map the seafloor, and detect shipwrecks.Overall,
underwater object detection is a promising field of study with the potential to assist
a diverse set of stakeholders. Machine learning algorithms are ideally adapted to
this task, and further study in this field is required for the development of successful
underwater object detecting systems.

1.3 Research Objectives

The research objective of our work is to use ensemble transfer learning to present
an effective solution for underwater object identification. These objectives will be
achieved through collecting a real-time custom dataset and the analysis of under-
water object detection propositions. Through this research, we hope to gain a
deeper understanding of transfer learning methods in neural network architecture
and contribute to the existing body of knowledge in this field. The specific research
objectives are to
• To process highly functional underwater object detection technique
• To reach better performance by image filtration
• To compare the experimental results with the previously done research papers
• To offer better research opportunities to explore marine biodiversity
• To participate in UAV Underwater exploration research

This is the summary of our research contribution
• We are proposing an faster fps underwater object detection system
• A dataset consisting of 1500 images were used for training and validation purpose
where Gaussian noise, uniform noise, and impulse noise were added to all the images
for matching the real-world scenario
• Visuals were then trained using two different models, namely SSD MobileNet v1
and Darknet and the transfer learning method of Jetson Inference. Subsequently,
denoising was applied to remove noise from all the images using a Gaussian filter.
• Water artifact were removed from the images using the WaterNet method, followed
by training. Finally, a comparison of the two scenarios was upheld in the paper.

3



Chapter 2

Related Work

Underwater object recognition real-time is a complex task due to the unique prop-
erties of the underwater environment, such as low visibility, backscattering, and the
presence of particles and bubbles. This research field has gained increasing atten-
tion in recent years, with applications in areas such as naval defense, search and
rescue, and oceanographic research. Traditionally, underwater object detection has
been performed using sonar and acoustic imaging systems. However, these methods
are limited by their poor resolution and sensitivity in shallow waters and their high
cost and maintenance requirements. There has been a circulation in recent years
toward the use of optical imaging technologies, such as cameras, for underwater
item identification. These systems offer the advantages of high resolution and low
cost, but are also affected by the specific challenges of the underwater environment,
such as the absorption and scattering of light. To address these challenges, various
approaches have been proposed, such as the use of active illumination, image en-
hancement techniques, and machine learning algorithms.However, further research
is needed to improve the performance of underwater object detection systems and
to create novel ways for detecting items in a variety of underwater environments.
This research aims to contribute to this field by incorporating transfer learning .

2.1 Underwater Object Detection

Various studies conducted for underwater item identification aid to a larger extent
in a variety of ecological applications. The broad techniques provided are useful for
finding things in challenging environments. Yan et al. [3] developed the notion of
underwater object detection, in which image sequences were recovered from under-
water films using a statistical gradient coordinate model and the Newton Raphson
technique to estimate the item location from the input underwater photographs.
Vasamsetti et al. [18] devised an ADA-boost-based optimization technique for un-
derwater object identification. The Ada-boost technique is tested on grayscale pic-
tures, and detection is accomplished by the use of edge information. Rout et al. [17]
created a Gaussian mixture model for underwater object identification that distin-
guishes between the background and the item of interest.Using information from the
OBSEA-EMSO testing site, Marini et al. [12] formed a real-time fish monitoring
system. A K-fold validation approach is used by the tracker to increase detection
accuracy.
With huge dataset processing, automated systems seek a quicker convergence rate.
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Machine learning breakthroughs allow in automatic recognizing the objects for de-
ployment in real-time applications. Li et al. [7] created a real-time detection tech-
nique for identifying and classifying fish. For detection, the template technique
employs Support Vector Machines (SVM). Spampinato et al. [14]created a deep
learning model with Quicker Neural Network (CNN) that is efficient in object iden-
tification and has a faster detection rate, despite the model being computationally
demanding.

2.2 Underwater Image Quality Enhancement

Approaches to improving underwater images are often classified into three types:
non-physical model based, physical model based, and learning based. Without de-
pending on physical models, non-physical model-based technologies directly enhance
pixel intensity to improve picture quality. One such approach is the fusion-based
method suggested by Ancuti et al. [11], which uses a multi-scale fusion strategy to
achieve color-corrected and contrast-enhanced pictures. Another approach, devel-
oped by Abdul Ghani and Mat Isa [9], is a contrast-improved method that shapes
images to follow the Rayleigh distribution in RGB space, building on the work of [6].
Algorithms based on the Retinex theory are also utilized in image enhancement. For
example, Fu et al. [25] use the Retinex theorem to transform color-corrected images
into the CIELab color space and improve the L layer. Physical models are employed
to treat underwater picture enhancement as an inverse issue, and various priors and
physical underwater image generation models are presented. The Jaffe-MaGlamery
underwater image model [8] is a widely used model in this regard, which can be
represented as.

I = Je−η.d + A(1− e−η.d) (2.1)

In the context of underwater image enhancement, the physical image creation model
is reworked by Akkaynak and Treibitz [20] to recover deteriorated underwater pho-
tos. Here, the observed underwater picture is represented by I, the clean image
by J, backscattered light by A, the distance between the camera and the scene by
d, and the light attenuation coefficient by η. A color restoration approach using
RGBD images is suggested. Many image priors are being investigated, such as
the Generalized Dark Channel Prior (GDCP) presented by Peng et al. [19] and
the Underwater Dark Channel Prior (UDCP) offered by Drews et al. [13]. The
UDCP is based on the feature of wavelength-dependent absorption that the signal
of the red channel is unreliable. Deep learning-based methods have made significant
progress in many computer vision tasks in the last year. However, the class of ap-
proaches requires large-scale degraded and high-quality counterpart picture pairings
for training, which is impractical in practice. Li et al. [15] suggested WaterGAN
for generating synthetic underwater images from in-air RGB-D images. The gen-
erator generates realistic underwater images by simulating light attenuation, light
backscattering, and camera model. Fabbri et al. [16], [23] use CycleGAN to learn
the function f : ID =⇒ IC to yield synthetic underwater image pairings, where ID

is in-air domain and IC is underwater domain. Li et al. [22] forecast the confidence
map of gamma-corrected, histogram-equalized, and white-balanced adjusted images
for fusion using CNN. Dudhane et al. [21] introduced a channel-wise feature extrac-
tion module that uses a dense-residual block to improve latent extracted using an
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encoder-decoder architecture. Zhang et al. [24] suggested a GAN-based model with
a dual discriminator to accommodate distinct level degradation induced by depth,
as well as a content loss and a style loss for training guidance.
Some studies approach underwater picture improvement from an image-to-image
translation standpoint, with the objective of creating a mapping between the un-
derwater image domain and the clean in-air domain. For instance, Fabbri et al. [16]
use Generative Adversarial Network (GAN) for underwater picture enhancement,
and Islam et al. [23] constructed a generator network based on U-Net principles.
However, the majority of these efforts employ synthesis picture pairings for training
and overlook the domain gap between synthesis and real-world images, resulting in
poor performance when tested on real-world data. In contrast, our approach focuses
on separating the picture into various latent spaces for structural and appearance
latent, i. . content and style, and then conducts domain translation and image
improvement.

2.3 Under Image Formation

Underwater object panoramic formation is different from conventional panoramic
visual orientation. This can be formulated by [2] using a mathematical framework
as

Uλ(x) = Iλ(x).Tλ(x) +Bλ.(1− Tλ(x)) (2.2)

The given equation represents the relationship among various parameters involved
in the process of recovering clear latent image, also known as scene radiance, from
the acquired underwater visuals. Here, Uλ(x) represents the acquired underwater
visuals, Iλ(x) represents the clear latent image, and Bλ” represents the homogeneous
global background light. The variable λ stands for the light wavelength for the red,
green, and blue channels, and x denotes a point in the underwater scene. For clarity,
pictures are designated in strong capital letters.

Figure 2.1: Underwater visuals backscattering with the absorption of light

The function Tλ(x) calculates the proportion of radiance from the scene that is
received by the camera after reflecting from a particular point x in the underwater
environment. This reflection leads to a reduction in contrast and a color cast.
Essentially, the value of Tλ(x) is determined by the distance d(x) between the camera
and the scene point x and the wavelength of the light.

Tλ(x) = 10−βλ.d(x) =
Eλ(x, d(x))

Eλ(x, 0)
= Nλ(d(x)) (2.3)

The medium attenuation coefficient, βλ, varies with the wavelength of light and can
be observed in Figure 2.1 . Assuming an initial energy of a light beam emitted from
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x and a final energy after passing through a transmission medium at a distance
of d(x), denoted as Eλ(x, 0)) and Eλ(x, d(x)), respectively, the normalized residual
energy ratio, Nλ, can be calculated. This ratio represents the residual energy divided
by the initial energy for each unit of distance traveled. In water, the value of Nλ

fluctuates based on the wavelength of light. For instance, red light, which has
a longer wavelength, is more attenuated and absorbed than other wavelengths in
water, resulting in a bluish tone in most underwater images.
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Chapter 3

Methodology

Figure 3.1: Top Level Overview of Proposed Model

This section presents the detailed methodology employed in the development of
the system for detecting unclear underwater objects. The research aims to address
the challenges associated with underwater object detection, specifically in scenarios
where the images are unclear. To overcome the unavailability of naturally unclear
images, a dataset of 1500 underwater images was collected, and Gaussian noise was
added to simulate unclear conditions. Additionally, an innovative approach was
adopted to remove water from underwater images, thereby enhancing the clarity of
the objects and facilitating accurate detection.
Underwater object detection is a critical task with numerous applications in ma-
rine research, underwater robotics, and security. However, the presence of unclear
images poses significant challenges to the accurate detection of objects in under-
water environments. The limited availability of naturally unclear images hampers
the development of effective models and algorithms. Hence, this research focuses
on addressing this specific problem by simulating unclear conditions and leveraging
advanced techniques to improve object detection performance.
Extensive research has been conducted in the field of underwater object detection,
but the particular scenario of unclear images has received limited attention. How-
ever, substantial progress has been made in areas such as image denoising and trans-
fer learning, which form the foundation of this study. Image denoising techniques,
including Gaussian filters, have proven effective in reducing noise and enhancing
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image quality. Transfer learning allows the adaptation of pre-trained models to new
domains, enabling improved performance even with limited training data. Leverag-
ing this existing knowledge, this research proposes a novel approach that combines
denoising and transfer learning to address the challenge of unclear underwater object
detection.
To develop a robust dataset for training and evaluation, a diverse collection of 1000
underwater images was acquired using an underwater imaging system equipped with
a high-resolution camera. The images were captured under various environmental
conditions, including different depths, turbidity levels, and lighting conditions. Each
image was carefully annotated to provide ground truth information about the loca-
tion and class of underwater objects.
To simulate the unclear conditions encountered in real-world underwater scenarios,
Gaussian noise was added to each image in the dataset. This noise addition process
involved generating random values from a Gaussian distribution and applying them
to the pixel intensities. The mean and standard deviation of the Gaussian distribu-
tion were determined based on an initial analysis of the dataset. By introducing this
synthetic noise, the dataset encompasses a broader range of underwater conditions
and enables the training of models to handle unclear images effectively.
In addition to noise simulation, a novel technique was developed to remove water
from the acquired underwater images. Water removal is crucial for enhancing the
clarity of objects, as it eliminates the distortions caused by light scattering and
absorption. This technique leverages advanced image processing algorithms and
computer vision techniques to identify and remove water regions, resulting in im-
proved visibility and better object detection accuracy.
Two different models were selected for the underwater object detection task: SSD
MobileNet V1 with TensorFlow 2 and SSD MobileNet V1 with transfer learning
using the Jetson Inference framework. These models were chosen based on their
proven performance in object detection tasks and their compatibility with the ac-
quired dataset.
The training process involved fine-tuning the pre-trained weights of the selected
models using the modified dataset of unclear underwater images. Transfer learning
was employed to adapt the models from their original domains to the underwater
object detection domain. This approach significantly reduced the training time and
improved the convergence of the models by leveraging.

3.1 Dataset Collection

The dataset plays a crucial role in the development and evaluation of the system
for detecting unclear underwater objects. This section describes the methodology
employed to procure the dataset, including the collection of images and videos,
selection criteria, and the acquisition of data from external sources.

Image and Video Collection

To create a diverse and representative dataset, multiple sources were utilized to col-
lect underwater images and videos. The first step involved capturing specific classes
of objects, namely plastic bottles and plastic bags, in a controlled environment such
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as a swimming pool. High-resolution images were acquired using a high-quality cam-
era. A Python script was developed to extract individual frames from the recorded
videos, ensuring a comprehensive representation of the objects from various angles
and orientations.
For the remaining six classes, a different approach was employed. The dataset acqui-
sition process involved leveraging an existing dataset called the SUIM (Submerged
Underwater Image and Video) dataset. The SUIM dataset, available at [27] com-
prises a diverse collection of underwater images and videos captured in different
aquatic environments. This dataset was chosen due to its relevance to the research
objectives and its availability for academic use.

Selection Criteria

To ensure the quality and relevance of the dataset, a meticulous selection process was
conducted. For the plastic bottle and plastic bag classes captured in the swimming
pool, the acquired images underwent a rigorous filtering process. Only the best-
quality images, exhibiting clear visibility of the objects, suitable lighting conditions,
and minimal noise or distortions, were selected for inclusion in the final dataset. The
selection was based on manual inspection and expert judgment, considering factors
such as sharpness, contrast, and object prominence.
Regarding the SUIM dataset, images and videos were carefully examined to iden-
tify instances relevant to the target classes. The classes of interest, namely aqua
plants, AUV (Autonomous Underwater Vehicle), coral, diver, fish, and wrecks, were
specifically extracted from the SUIM dataset based on their annotations and labels
provided. Images and videos showcasing these classes were chosen based on their
clarity, object visibility, and diversity in terms of environmental conditions, camera
angles, and object poses.

Dataset Expansion and Augmentation

To augment the dataset and increase its diversity, various techniques were employed.
Data augmentation techniques, including random cropping, flipping, rotation, and
scaling, were applied to the selected images and videos. These techniques help mit-
igate overfitting, improve model generalization, and provide a more comprehensive
representation of real-world scenarios. Augmentation was performed using Python
libraries such as OpenCV and TensorFlow, ensuring consistency and compatibility
with the subsequent training process.

Dataset Composition

The final dataset comprised a total of 1500 images, covering eight distinct classes:
aqua plants, AUV, coral, diver, fish, plastic bag, plastic bottle, and wrecks. The
dataset composition reflected a balanced distribution across the classes, ensuring
equal representation for each category. The images captured in the swimming pool
provided a specific focus on plastic bottles and plastic bags, while the SUIM dataset
contributed to the remaining classes, offering a wider range of underwater object
instances.
Each image in the dataset was annotated with class labels and corresponding bound-
ing boxes, indicating the precise location of the objects of interest. This annotation
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process involved manual labeling by expert annotators, leveraging specialized anno-
tation tools to ensure accuracy and consistency.

Dataset Availability and Ethical Considerations

To promote research reproducibility and facilitate knowledge sharing, the finalized
dataset, along with the corresponding annotations, will be made publicly available
for academic and research purposes. The dataset will be hosted on a reliable and
accessible platform, ensuring ease of access for interested researchers and allowing
them to validate and extend the findings of this study.
It is worth noting that ethical considerations were taken into account during the
dataset procurement process. The acquisition of images and videos from the swim-
ming pool was conducted with proper permissions and adherence to any relevant
institutional or legal regulations. Privacy concerns were carefully addressed by en-
suring that no personally identifiable information or sensitive data was captured in
the images or videos. Any individuals present in the images were anonymized or had
their consent obtained, in accordance with ethical guidelines and privacy standards.
Additionally, efforts were made to include a diverse range of underwater environ-
ments and conditions in the dataset. This helps capture variations in lighting, water
clarity, and object appearances, ensuring that the trained models can generalize well
across different scenarios. The inclusion of various object classes further enhances
the dataset’s applicability to real-world scenarios and increases its usefulness for
underwater object detection research in general.
To ensure the accuracy and reliability of the dataset, a comprehensive quality as-
surance process was implemented. This involved conducting regular reviews and
inspections of the dataset to identify and rectify any potential issues or inconsisten-
cies. Any mislabeled or ambiguous annotations were corrected, and any duplicate
or irrelevant images were removed. This rigorous quality control process guarantees
the dataset’s integrity and enhances its value as a reliable resource for underwater
object detection research.
In conclusion, the dataset procurement process involved capturing images and videos
of plastic bottles and plastic bags from a swimming pool, as well as leveraging the
SUIM dataset for the remaining object classes. Stringent selection criteria were
applied to ensure the dataset’s quality, and data augmentation techniques were em-
ployed to increase its diversity and generalizability. The final dataset comprises 1500
images across eight classes, each with accurate annotations and bounding box in-
formation. The dataset, along with its annotations, will be made publicly available,
adhering to ethical considerations and privacy guidelines. The dataset is expected
to serve as a valuable resource for researchers and enable further advancements in
underwater object detection

3.1.1 Dataset Implementation

For the dataset we took 60of data from SUIM dataset [27] consists of many images
and we took 900 images of them. The Remaining 40of our dataset was collected
from our side. So it’s our contribution. We took 600 images from a video collected
from a swimming pool’s underwater images. These 600 images consist of two classes
which are- plastic bag, and plastic bottle. We took the images as in our country
there is a lot of water pollution.
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Figure 3.2: Dataset images folder of diver class

Figure 3.3: Dataset images folder of diver class

3.1.2 Data preprocessing

We used various dataset pre-processing methods in TensorFlow 2 for training the
SSD MobileNet V1 model. These pre-processing techniques are essential for prepar-
ing the dataset to be compatible with the model’s requirements and optimizing the
training process.

Image Resizing:

To ensure uniformity and efficient processing, we resize the input images to a fixed
size. This step involves scaling down or up the images while preserving their aspect
ratio. By resizing the images, we create a consistent input size that the model
expects, facilitating easier batch processing during training.

Data Augmentation:

Data augmentation techniques play a crucial role in expanding the dataset and
improving the model’s generalization ability. We apply various transformations to
the images, such as random rotations, flips, translations, and brightness adjustments.
These augmentations help introduce diversity into the dataset and enable the model
to learn robust features and handle variations in real-world scenarios.

Encoding Ground Truth Labels:

To train the SSD MobileNet V1 model for object detection, we encode the ground
truth labels into a suitable format. This typically involves converting the bounding
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box coordinates of the objects in the image to a relative form, relative to the image
size or anchor boxes. Additionally, we assign class labels to the objects based on
their categories. Encoding the ground truth labels allows the model to learn to
predict bounding boxes and classify objects accurately during training.

Anchor Box Generation:

The SSD MobileNet V1 model utilizes anchor boxes of different scales and aspect
ratios to detect objects at multiple resolutions. We generate anchor boxes over the
input image or feature map using predefined scales and aspect ratios. These anchor
boxes serve as reference points for the model to predict object locations and sizes.
By generating anchor boxes, we provide the model with prior knowledge about the
expected object shapes and aspect ratios in the dataset.

Figure 3.4: Anchor Box Generation

Data Normalization:

To ensure numerical stability and efficient training, we normalize the input data.
This typically involves subtracting the mean pixel values and dividing by the stan-
dard deviation across the dataset or per channel. Data normalization helps in re-
ducing the impact of varying pixel intensities and brings the data into a suitable
range for the model’s calculations. By employing these dataset pre-processing meth-
ods in TensorFlow 2, we enhance the quality, consistency, and compatibility of the
dataset for training the SSD MobileNet V1 model. These steps ensure that the
model receives properly formatted inputs, learns from augmented data to improve
generalization, and operates efficiently during training.

3.1.3 Data Splitting

Data splitting is a crucial step in machine learning model development as it helps
evaluate the model’s performance, assess generalization capabilities, and prevent
overfitting. This section describes the methodology employed to split the collected
dataset of 1500 images, consisting of 8 classes: aqua plants, AUV, coral, diver,
fish, plastic bag, plastic bottle, and wrecks. The data splitting process involved
partitioning the dataset into three subsets: training, testing, and validation, in a
stratified manner to ensure class balance across all subsets.
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Dataset Overview

Before delving into the data splitting methodology, let’s provide an overview of the
dataset composition. The dataset consists of 1500 images, with each class having a
specific number of samples: aqua plants , AU ,coral,diver, fish, plastic bag , plastic
bottle , and wrecks. This diverse dataset enables the development of robust models
for underwater object detection across various classes.

3.1.4 Stratified Splitting

To ensure that each subset accurately represents the distribution of classes in the
dataset, a stratified splitting approach was employed. This approach maintains the
proportion of samples from each class across the training, testing, and validation
subsets, mitigating the risk of bias towards classes with larger or smaller sample
sizes.

3.1.5 Training, Testing, and Validation Split

The dataset was split into three subsets with the following proportions: 70for train-
ing, 20for testing, and 10for validation. The splitting process was performed at
the image level, ensuring that individual images were assigned to a specific subset
rather than entire classes. This helped avoid potential biases and provided a more
representative evaluation of the model’s performance.

3.1.6 Splitting Methodology

The splitting methodology involved the following steps:
Class-wise Splitting: The first step was to perform class-wise splitting to ensure
that each class is appropriately represented across all subsets. This was achieved
by iterating through each class and allocating a proportional number of images to
the training, testing, and validation subsets. For instance, if a class had 100 images,
70(70 images) were assigned to the training subset, 20(20 images) to the testing
subset, and 10(10 images) to the validation subset.
Random Shuffling: To eliminate any ordering biases, a random shuffling process
was applied to the images within each class before splitting. This ensured that
the images were arranged randomly, reducing the likelihood of specific patterns or
sequences influencing the model’s learning process.
Subset Assignment: After shuffling, the images were sequentially assigned to the
respective subsets based on the predefined proportions. Care was taken to maintain
the stratification by consistently monitoring the number of images from each class
allocated to each subset. This iterative process continued until all images were
assigned to their appropriate subsets.

3.1.7 Resulting Subset Sizes

After performing the stratified splitting, the resulting subset sizes were as follows:
Training Subset:The training subset consisted of 70of the dataset, comprising a
total of 1050 images. This subset served as the primary data for training the machine
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No. Images
Aqua Plants 100
Coral 250
Diver 100
Fish 250
Plastic-Bag 300
Bottle 300
Wrecks 200

Table 3.1: Data Class Ratio

learning models. It encompassed images from all eight classes, ensuring comprehen-
sive coverage and enabling the models to learn from a diverse range of underwater
object instances.
Testing Subset:The testing subset accounted for 20of the dataset, consisting of 300
images. This subset was reserved for evaluating the trained models’ performance
and assessing their generalization capabilities. It provided an unbiased measure of
the models’ accuracy and performance on unseen data.
Validation Subset:The validation subset made up 10of the dataset, totaling 150
images. This subset served as an additional evaluation set, allowing for fine-tuning
of model hyper-parameters and early stopping to prevent over-fitting. It provided a
means to assess the models’ performance on data that was not used during training
or testing.

Data Type Percentage Paramters
Training Data 70 trainX trainY
Testing Data 20 testX testY
Validation Data 10 validX validY

Table 3.2: Data Splitting with Parameters

3.1.8 Cross-Validation and Robustness Evaluation

The models that were built were subjected to k-fold cross-validation in order to
further guarantee their reliability. In particular, a stratified k-fold cross-validation
strategy was used, and the value of k was set to 5. In order to do this, the training
subset has to be partitioned into five folds of comparable size while also preserving
the class distribution throughout each fold. The models were trained and assessed
five times, with each fold acting as the validation set once, and the remaining folds
serving as either the training set or the validation set.
This procedure of cross-validation helped examine the performance of the models
across various subsets of the training data, which provided insights into the models’
ability to maintain consistency and generalise their findings. The findings that were
acquired from the five-fold cross-validation were used as the basis for the calculations
used to determine the average performance measures, such as accuracy, precision,
recall, and F1-score.
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3.1.9 Dataset Splitting Summary

In summary, the dataset of 1500 images was split into training, testing, and val-
idation subsets in a stratified manner. The training subset constituted 70of the
dataset, while the testing and validation subsets accounted for 20and 10, respec-
tively. The splitting methodology ensured that each subset maintained a balanced
representation of the classes, mitigating the risk of bias. Additionally, a stratified
k-fold cross-validation approach was applied to assess the models’ performance and
robustness.
By following this data-splitting methodology, we can confidently train, evaluate,
and compare the performance of different models for the underwater object detec-
tion task. The stratified splitting ensures that the models learn from a diverse
range of underwater object instances, while the cross-validation process provides a
comprehensive assessment of their generalization capabilities. The resulting sub-
sets provide reliable benchmarks for performance evaluation and serve as a basis for
further analysis and interpretation of the models’ results.

3.2 Noisy Image Generation

To train a robust model for underwater object detection, it is crucial to have a
diverse dataset that includes both clear and unclear underwater images. However,
acquiring real-world unclear underwater images can be challenging and expensive.
Therefore, in this research work, a methodology was devised to generate synthetic
unclear and blurry underwater images by adding various types of noise to clear
images. This section describes the process of adding noise to the clear images using
a combination of Gaussian noise, uniform noise, and impulse noise.

3.2.1 Clear Image Collection

The first step in the process involved collecting a set of high-quality clear under-
water images. The images were captured using a high-resolution camera in various
underwater environments, including swimming pools, natural bodies of water, and
aquariums. Care was taken to capture images under different lighting conditions,
depths, and with varying levels of visibility. This ensured that the collected clear
images represented a wide range of underwater scenarios.

3.2.2 Preprocessing of Clear Images

Before adding noise to the clear images, a series of preprocessing techniques were
applied to enhance their quality and prepare them for the noise-addition process.
These preprocessing steps included image resizing, color space conversion, and con-
trast enhancement. Image resizing ensured that all images had consistent dimen-
sions, facilitating further analysis and processing. Color space conversion allowed
for better manipulation and representation of pixel values. Contrast enhancement
techniques were employed to improve the overall visibility and clarity of the clear
images.
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3.2.3 Noise Addition

To simulate the visual characteristics of unclear and blurry underwater images, a
combination of Gaussian noise, uniform noise, and impulse noise was added to the
preprocessed clear images. Each noise type contributed specific distortions to the
images, replicating the challenges encountered in underwater environments.
a.Gaussian Noise : Gaussian noise, following a Gaussian distribution, was added
to introduce random variations in pixel values. This noise type simulates the scat-
tering of light and the presence of suspended particles in underwater scenes, leading
to image blurring and degradation. The intensity and distribution of the Gaussian
noise were controlled to achieve the desired level of degradation and realism.

Figure 3.5: Generated image with Gaussian Noise

b.Uniform Noise:Uniform noise, characterized by a constant intensity across the
image, was added to replicate the uneven lighting conditions and variations in wa-
ter transparency commonly observed in underwater environments. This noise type
introduced irregularities in pixel values, causing image distortions and making the
objects in the images less discernible. By carefully adjusting the intensity and dis-
tribution of the uniform noise, the researchers ensured that the resulting images
captured the challenges of underwater visibility.

Figure 3.6: Generated image with Uniform Noise

c.Impulse Noise: Impulse noise, also known as salt-and-pepper noise, was incor-
porated to simulate the presence of random black and white pixels in underwater
images. This noise type represented imaging artifacts and disturbances encountered
underwater, such as particulate matter and sensor noise. The addition of impulse
noise introduced sporadic high-intensity and low-intensity pixel values, further de-
grading the image quality and creating challenges for object detection algorithms.

3.2.4 Noise Parameters and Intensity:

The noise addition process required careful selection and adjustment of noise pa-
rameters to achieve the desired level of image degradation and realism. Parameters
such as noise intensity and distribution were tuned iteratively to strike a balance
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Figure 3.7: Generated image with Impulse Noise

between generating realistic underwater images and preserving the necessary details
for accurate object detection. By adjusting the intensity and distribution of the
noise types, the researchers aimed to simulate a range of underwater conditions,
from slightly degraded to severely blurred and unclear.

3.2.5 Image Quality Evaluation

To ensure the quality and authenticity of the generated unclear and blurry under-
water images, an image quality evaluation process was conducted. This involved
comparing the generated images with the reference clear images using objective
image quality metrics such as mean squared error (MSE, peak signal-to-noise ra-
tio (PSNR), and structural similarity index (SSIM). These metrics quantified the
difference between the clear and generated images, providing insights into the effec-
tiveness of the noise addition process. A lower MSE value, a higher PSNR value, and
a higher SSIM value indicated better similarity between the generated and reference
images, indicating the successful generation of realistic and representative unclear
underwater images.

3.3 Coding Process of Adding Noise

To implement the noise addition process, the researchers utilized the powerful image
processing library OpenCV in Python. OpenCV provided a comprehensive set of
functions and tools to manipulate and modify images, making it an ideal choice for
this task. Gaussian noise was added to the images using the cv2.randn() function,
which generated random values following a Gaussian distribution. By specifying
the mean and standard deviation of the distribution, the researchers controlled the
intensity and distribution of the noise. Uniform noise was introduced using the
cv2.randu() function, which generated random values following a uniform distribu-
tion. The intensity and range of the uniform noise were adjusted to simulate the
uneven lighting conditions and variations in water transparency. Impulse noise, or
salt-and-pepper noise, was incorporated using the cv2.rand() function, which ran-
domly assigned black or white pixel values to random locations in the image. By
specifying the probability of occurrence, the researchers controlled the density of
the impulse noise. The generated noisy images were then blended with the original
clear images using appropriate techniques such as element-wise addition or weighted
averaging. These coding methods allowed for the efficient and effective addition of
different types of noise to the clear images, resulting in synthetic underwater images
with the desired levels of blurriness and degradation.
By employing the powerful capabilities of OpenCV in Python, the researchers could
implement a robust and customizable noise addition process. The flexibility of
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the coding methods allowed for fine-tuning the noise parameters and intensity to
generate synthetic underwater images that closely resembled real-world underwater
conditions. Furthermore, the integration of OpenCV with other image processing
and machine learning libraries enabled seamless integration of the generated noisy
images into the subsequent stages of the research, such as dataset augmentation and
training of object detection models. However, we can explain our coding approach
below-
After loading the image, an array of zeros called ′uni−noise/gn−noise/im−noise′

is created using the np.zeros() function, matching the dimensions of the image
(480x640) and having three channels (representing RGB colors). The cv2.randu()
function is then used to generate random values ranging from 0 to 255 and assign
them to the ′uni−noise/gn−noise/im−noise′ array. This creates uni−noise/gn−
noise/im− noise with a constant intensity throughout the image.
To ensure that the noise is not too strong, the ’uni-noise/gn-noise/im-noise’ array is
multiplied by 0.5 and cast to the ′uint8′ data type using the astype() method. This
scales down the noise intensity and ensures that it falls within the valid range for
pixel values (0 to 255).
The generated uni-noise/gn-noise/im-noise is then added to the original image using
the cv2.add() function, resulting in a modified image called ’un-img/gn-img/im-img’.
This step combines the clear image with the uniform noise, introducing variations
in pixel values and simulating the uneven lighting conditions typically observed in
underwater environments.
To visualize the original image, the generated uniform noise/gaussian noise/ impulse
noise, and the combined image, the code employs the Matplotlib library. It creates
a figure with three subplots, each representing one image. The imshow() function is
used to display the images, with appropriate color space conversion if needed. The
plt.axis(”off”) function is called to remove the axes, and titles are assigned to each
subplot to provide clear labeling.
By utilizing OpenCV and Matplotlib in Python, the code effectively adds uniform
noise/gaussian noise/ impulse noise to the clear image, enabling the simulation of
challenging underwater conditions. The visualization allows us to inspect the noise
addition process and assess the impact of uniform noise on the overall appearance
of the image.

3.4 WaterNet to remove water from images

The working principle of WaterNet involves leveraging its trained architecture to
remove water distortions from unseen underwater images. Once the model is trained,
it can be applied to new underwater images for water removal. The following steps
outline how WaterNet works:

3.4.1 Preprocessing

Before passing the underwater image through WaterNet, preprocessing steps such as
normalization and resizing may be applied to ensure compatibility with the network’s
input requirements. These steps help standardize the input and make it suitable for
further processing.
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3.4.2 Forward Propagation

The preprocessed underwater image is fed into the WaterNet model for forward
propagation. The image is processed by the network’s many layers, from convo-
lutional to activation to pooling to fully connected. As it progresses through the
layers, the network learns to capture the statistical patterns and characteristics of
underwater images contaminated by water.

3.4.3 Water Distortion Estimation

During the forward propagation, WaterNet learns to identify and distinguish water-
related visual cues, such as color shifts and light scattering, from the desired content
of the scene. The network estimates the water distortion present in the image by
modeling and capturing the characteristics specific to underwater environments.

3.4.4 Water Removal

Based on the estimated water distortion, WaterNet applies a series of mathematical
operations to separate the water-related visual artifacts from the underlying scene.
By leveraging the learned knowledge from the training dataset, the network enhances
the clarity and visibility of the submerged objects, leading to the restoration of the
original appearance of the scene.

3.4.5 Output Generation

The final output of WaterNet is a water-free image, where the visual distortions
caused by water have been significantly reduced. The output image reveals clearer
details of the submerged objects, thereby improving the overall quality and percep-
tibility of the underwater scene.

Figure 3.8: WaterNet Output
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3.4.6 Performance Considerations

The performance of WaterNet can vary depending on several factors. The quality
of the input underwater image, including its resolution, lighting conditions, and the
amount of water distortion present, can impact the effectiveness of the water removal
process. Additionally, the complexity of the underwater scene and the specifics of
the training data, such as the diversity and size of the dataset, can also influence
the model’s performance.

3.5 Model Specification

Modern neural network architectures have been transformed by two key components:
Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs). DNNs
are a type of artificial neural network that comprise multiple interconnected layers of
nodes, referred to as artificial neurons or units. These neurons receive input signals,
perform a weighted sum of the inputs, apply an activation function, and produce an
output. DNNs have a deep structure, with multiple hidden layers situated between
the input and output layers. The network’s depth enables DNNs to learn complex
hierarchical representations and extract high-level features from raw data.
CNNs, on the other hand, are a specialized type of DNN that excel in analyzing
structured grid-like data, such as images and videos. They are inspired by the
visual cortex in the human brain and leverage the concept of convolution, which
involves applying a set of filters or kernels to the input data. These filters capture
local patterns and features in the input and produce feature maps as outputs. By
stacking multiple convolutional layers, CNNs are able to learn increasingly abstract
and complex representations of the input data.
The key advantages of CNNs in image processing tasks lie in their ability to auto-
matically learn hierarchical representations of images and extract spatial and local
patterns. CNNs are designed to exploit the spatial correlations present in images
by utilizing shared weights and local receptive fields. This allows them to efficiently
capture visual patterns such as edges, textures, and shapes.
Convolutional Neural Networks (CNNs) are made up of a series of critical layers,
including convolutional, pooling, and fully connected layers. Convolutional layers
slide filters over input data, generating feature maps that encode different levels
of abstraction. Pooling layers downsample feature maps, reducing spatial dimen-
sions while keeping the most important information. Finally, fully connected layers
connect all neurons from the previous layer to the next layer, enabling high-level
reasoning and classification. Training Deep Neural Networks (DNNs) and CNNs
usually involves an iterative process called backpropagation. The network learns
from labeled training data by adjusting neuron weights and biases. This is done by
minimizing a loss function that measures the difference between predicted outputs
and true labels. Gradient descent optimization algorithms, such as stochastic gra-
dient descent (SGD) and its variations, commonly update network parameters and
minimize the loss function. DNNs and CNNs have demonstrated remarkable success
in many applications, including image classification, object detection, natural lan-
guage processing, and speech recognition. Their capability to automatically learn
and extract meaningful representations from raw data has significantly advanced
artificial intelligence and contributed to multiple breakthroughs in various fields.
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3.5.1 Selection of TensorFlow 2 and SSD MobileNet V1

The choice of TensorFlow 2 as the deep learning framework and the SSD MobileNet
V1 model for underwater object detection was based on several factors. TensorFlow
2 is a powerful and widely adopted open-source framework for machine learning and
deep learning tasks. Its rich ecosystem provides extensive support for model develop-
ment, training, and evaluation. Additionally, TensorFlow 2 offers various advanced
features, including improved ease of use, enhanced performance optimizations, and
compatibility with modern hardware accelerators.
The SSD MobileNet V1 model was selected due to its proven effectiveness in ob-
ject detection tasks, particularly in scenarios with limited computational resources.
The SSD (Single Shot MultiBox Detector) architecture is renowned for its real-time
detection capabilities and high accuracy. By leveraging the MobileNet V1 back-
bone, which is specifically designed for mobile and embedded platforms, the model
strikes a balance between speed and accuracy, making it well-suited for real-time
underwater object detection applications.

3.5.2 Preprocessing of the Dataset

Prior to training, the dataset consisting of clear and artificially generated unclear un-
derwater images was preprocessed to ensure compatibility with the SSD MobileNet
V1 model. This involved resizing the images to a consistent input size, typically
required by the model, such as 300x300 pixels. The resizing process preserved the
aspect ratio of the images to prevent distortion. In addition, data augmentation
techniques were utilised, such as random horizontal flipping and random cropping,
in order to broaden the scope of the training data and enhance the model’s adapt-
ability to a variety of object orientations and sizes.

3.5.3 Model Configuration and Training Setup

The SSD MobileNet V1 model was configured according to the specific requirements
of the underwater object detection task. This involved adjusting parameters such as
the number of anchor boxes, their aspect ratios, and the confidence threshold for ob-
ject detection. These parameters were fine-tuned through iterative experimentation
to optimize the model’s performance on underwater images.
The training process involved splitting the preprocessed dataset into training and
validation subsets, following the previously described train-test-validation splitting.
The training subset, comprising 70of the dataset, was used to optimize the model’s
parameters and learn the underlying patterns and features of underwater objects.
The validation subset, comprising 10of the dataset, was utilized to monitor the
model’s performance and prevent over-fitting.

3.5.4 Loss Function and Optimization

To train the SSDMobileNet V1 model, an appropriate loss function and optimization
algorithm were selected. A combination of the localization loss and the classification
loss is the type of loss function that is most frequently utilised for object detection
tasks. The localization loss measures the accuracy of predicting the bounding boxes
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of objects, while the classification loss evaluates the accuracy of classifying the de-
tected objects into their respective categories.
The stochastic gradient descent (SGD) technique was used in order to improve
the performance of the model. SGD makes iterative adjustments to the model’s
parameters based on the loss that has been determined, with the goal of reducing the
amount of variance that exists between the projected outputs and the ground truth
labels. Techniques for learning rate scheduling were utilised, such as slowing down
the learning rate over the course of time or utilising algorithms that are adaptable
to the learning rate, in order to guarantee steady convergence and avoid the model
from being mired in a local optimal solution.

3.5.5 Training Process and Performance Evaluation

During the training phase of the procedure, the preprocessed training dataset was
loaded into the SSD MobileNet V1 model, and the parameters of the model were
repeatedly updated depending on the loss that was determined. The model was
trained over the course of several epochs, with each epoch representing one full
iteration through the entirety of the training dataset. The performance of the model
was tested using the validation subset during each epoch so that its development
could be tracked and overfitting could be avoided. A number of different measures,
including as mean average precision (mAP), precision, recall, and F1 score, were
utilised in order to conduct a quantitative analysis of the model’s performance.
These metrics shed light on the model’s prowess in providing reliable detection and
classification of underwater items. In addition, in order to evaluate the model’s
qualitative performance, a visual assessment of the model’s predictions was carried
out on a selection of example photos taken from the validation dataset.

3.5.6 Fine-tuning and Transfer Learning

Techniques like as fine-tuning and transfer learning were utilised in order to bring
about an even greater improvement in the overall performance of the SSD MobileNet
V1 model. Fine-tuning involved initializing the model’s weights with pre-trained
weights from a similar task, such as object detection on general images. This ini-
tialization enabled the model to start with learned representations, which reduced
the training time and improved the convergence speed.
Transfer learning, on the other hand, leverages the pre-trained features of the model
to adapt it to the specific underwater object detection task. By freezing certain
layers of the model and training only the newly added or modified layers, transfer
learning allowed for effective knowledge transfer and improved generalization on the
limited underwater dataset.

3.5.7 Hyperparameter Optimization

During the entirety of the learning process, hyperparameter optimisation was ac-
corded a great deal of attention and care. The performance of the model and its
ability to generalise is heavily dependent on the hyperparameters, which include the
learning rate, the batch size, and the regularisation parameters. We used a me-
thodical strategy, such as grid search or random search, to investigate the myriad of
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possible configurations of the hyperparameters and zero in on the one that yielded
the best results for the model based on the validation dataset. Grid search is an
example of this type of method.

3.5.8 Training Hardware and Computational Resources

The training process was conducted using appropriate hardware and computational
resources to ensure efficient model training. Utilizing a high-performance GPU
(Graphics Processing Unit) accelerated the computations and significantly reduced
the training time. The TensorFlow 2 framework, being compatible with GPU ac-
celeration, allows for seamless integration and utilization of the available hardware
resources.

3.5.9 Model Evaluation and Comparison

After the training procedure was finished, the trained SSD MobileNet V1 model was
assessed on the test dataset to determine how well it performed on photographs of
underwater environments that it had never seen before. The assessment consisted
of computing the aforementioned performance measures, such as mAP, precision,
recall, and F1 score, in order to objectively assess the capability of the model to
detect objects.
In order to give a full comparison, the performance of the trained model was mea-
sured against that of other cutting-edge object identification models that were de-
veloped expressly for use in aquatic environments. This required looking up relevant
literature and taking into consideration past research activities that had addressed
comparable challenges in detecting objects underwater.

3.5.10 Layers

The layers of the SSD MobileNet V1 model can be divided into two main compo-
nents: the base network and the detection layers.

Base Network:

The base network, which is the MobileNet architecture, serves as the feature extrac-
tor. It consists of a series of depthwise separable convolutional layers that are highly
efficient in terms of computational cost and model size. These layers are responsible
for capturing features at different spatial resolutions from the input image.

Detection Layers:

A number of extra convolutional layers are layered on top of the foundational net-
work in order to conduct object detection at a variety of scales. The predictions for
item classes and bounding box coordinates are generated by these detection layers.
The specific layers in the SSD MobileNet V1 model can be summarized as follows:
a.Convolutional Layers: The model starts with several initial convolutional layers
that process the input image and extract low-level features. These layers typically
use small-sized filters to capture local patterns.
b. MobileNet Layers: Following the initial convolutional layers, the MobileNet

24



architecture is introduced. It consists of depthwise separable convolutions, which are
composed of a depthwise convolution followed by a pointwise convolution. Depthwise
convolutions independently process each input channel, while pointwise convolutions
perform a linear combination of the outputs from the depthwise convolutions. The
MobileNet layers progressively extract features at different levels of abstraction.
c. Extra Feature Layers: To capture information from different scales and
feature levels, additional convolutional layers are added on top of the MobileNet
layers. These layers typically have larger receptive fields to capture more context
and higher-level features.
d. Prediction Layers: The prediction layers consist of a set of convolutional layers
that generate predictions for object detection. They include both class predictions
and bounding box predictions. Each prediction layer is responsible for predicting
objects at a specific scale and aspect ratio.

e. Anchor Boxes: Anchor boxes, that consist of predetermined bounding boxes
of various sizes and aspect ratios, are what SSD use in order to identify objects at
a variety of different scales. During training, the anchor boxes are utilised to fa-
cilitate the matching of anticipated bounding box coordinates to ground truth box
coordinates.

f. Non-Maximum Suppression (NMS): After obtaining the predicted bounding
boxes and class probabilities, a non-maximum suppression step is applied to remove
redundant detections and retain only the most confident ones. The SSD MobileNet
V1 model is trained using a mix of classification loss and localization loss while it
is being trained. The difference between the predicted class probabilities and the
ground truth labels is what the classification loss attempts to quantify, whereas the
localization loss attempts to quantify the difference between the predicted bounding
box coordinates and the ground truth coordinates. By combining the base network’s
feature extraction capabilities with the detection layers’ ability to predict objects
at multiple scales, the SSD MobileNet V1 model can efficiently detect objects of
different sizes and aspect ratios in real-time scenarios.

Figure 3.9: SSD-MobileNet Architecture for Detection

3.5.11 Modeling

In our implementation of the SSD MobileNet V1 model using TensorFlow 2, we
utilize various modeling techniques to enhance the performance and effectiveness of
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the model. These techniques include batch normalization, dropout, max pooling,
sigmoid activation, and an optimizer.

Batch Normalization:

We employ batch normalization as a regularization technique to normalize the acti-
vations of the network’s layers. By normalizing the inputs to each layer, we reduce
the internal covariate shift and improve the model’s overall stability and conver-
gence during training. This normalization helps the model learn more efficiently
and improves its generalization ability.

Dropout:

To prevent overfitting and improve the model’s robustness, we incorporate dropout
layers into the SSD MobileNet V1 architecture.During the training process, the
dropout method will arbitrarily set a portion of the input units to zero. This will
drive the model to rely on a new collection of information and will limit the co-
adaptation of neurons. This regularization technique helps to prevent over-reliance
on specific features and enhances the model’s generalization capability.

Max Pooling:

We use max pooling layers in the model to downsample the feature maps, reducing
their spatial dimensions. Max pooling extracts the most salient features within local
regions and discards the non-maximal values. This operation aids in capturing and
preserving important spatial information while reducing computational complexity.

Sigmoid Activation:

To obtain probability scores for each class prediction, we employ the sigmoid activa-
tion function at the output layer. The sigmoid function maps the model’s logits to a
range between 0 and 1, representing the probability of each class independently. This
activation allows us to interpret the model’s output as class probabilities, enabling
multi-class object detection.

Optimizer:

For the training process, we use an optimizer to update the model’s parameters
and minimize the defined loss function. Commonly used optimizers include Adam,
RMSprop, or stochastic gradient descent (SGD) with momentum. These optimizers
adjust the learning rate based on the gradients computed during backpropagation,
enabling efficient convergence and optimization of the model.

3.5.12 Training The Model

In training the SSD MobileNet V1 model using TensorFlow 2, we follow a specific
procedure to optimize the model’s performance and enable it to accurately detect
objects. Here, we outline the steps involved in the training procedure:
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Data Preparation:

We begin by preprocessing the dataset, which includes resizing the images to a
consistent input size suitable for the model. In addition, we make use of data aug-
mentation techniques such as random cropping, flipping, and altering the brightness
of the images in order to improve the model’s capacity to generalise to many variants
of the items. In addition, we encode the ground truth annotations for each item in
the dataset, which includes the labels of their respective classes and the coordinates
of their bounding boxes.

Anchor Box Generation:

To facilitate the model’s ability to detect objects of various sizes and aspect ratios,
we generate a set of anchor boxes across the image at predefined scales and aspect
ratios. These anchor boxes act as reference boxes for predicting object locations and
sizes. For each anchor box, we calculate the corresponding ground truth overlap
using metrics such as Intersection over Union (IoU).

Loss Function Calculation:

In each training iteration, we compute the loss function that guides the model’s
optimization. The loss function consists of two components: the localization loss
and the classification loss. The localization loss measures the discrepancy between
the predicted bounding box coordinates and the ground truth boxes, typically using
a smooth L1 loss or IoU loss. The classification loss computes the difference between
the predicted class probabilities and the ground truth labels using techniques like
a cross-entropy loss. The overall loss is a weighted sum of these two components,
which can be expressed mathematically as

Loss = α.LocalizationLoss+ β.ClassificationLoss (3.1)

Here, α and β are hyperparameters that control the relative importance of the two
loss components.

Training and Optimization:

During training, we employ backpropagation and gradient descent optimization al-
gorithms to update the model’s parameters. We use mini-batch training, where a
subset of the dataset is fed into the model at each iteration. After computing the
gradients of the loss function with respect to the model’s parameters, the optimizer
makes adjustments to the parameters that comprise the model in the direction that
results in the least amount of loss.
We apply techniques like a learning rate scheduling, which gradually reduces the
learning rate over time to ensure better convergence and prevent overshooting the
optimal solution.

Monitoring and Evaluation:

Throughout the training process, we monitor the model’s progress by evaluating
its performance on a separate validation set. We calculate metrics such as Mean
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Figure 3.10: Customized layer

Average Precision (mAP), which measures the accuracy of object detection, and
track the loss function to assess the model’s convergence. We periodically save
checkpoints of the model’s weights to capture the best-performing configuration.
Moreover, we employed several evaluation metrics, including precision, recall, ac-
curacy, and the F1 score, to assess the performance of our models. These metrics
provide valuable insights into the model’s ability to classify and detect objects ac-
curately.
We use precision as a metric to measure the proportion of correctly predicted positive
instances out of the total instances predicted as positive. It is calculated using the
equation:

Precession = TP/(TP + FP ) (3.2)

where TP represents true positives and FP represents false positives. A higher
precision value indicates fewer false positive predictions, demonstrating the model’s
ability to avoid misclassifying negative instances.
Recall, or sensitivity, is another crucial metric we use. It measures the proportion of
correctly predicted positive instances out of all actual positive instances. The recall
score is calculated as:

Recall = TP/(TP + FN) (3.3)

where FN represents false negatives. A higher recall value indicates fewer false
negative predictions, illustrating the model’s effectiveness in capturing all relevant
positive instances.
Accuracy is a widely used metric that we employ to measure the overall correctness
of the model’s predictions. It is calculated as the ratio of the sum of true positives
and true negatives to the total number of instances:

Accuaracy = (TP + TN)/(TP + TN + FP + FN) (3.4)

Accuracy provides a general assessment of the model’s performance across all classes
and is particularly suitable when the classes are well-balanced.
To account for imbalanced datasets or situations where a trade-off between precision
and recall is desired, we use the F1 score. The F1 score is the harmonic mean of
precision and recall, and it provides a balanced measure of the model’s performance.
The F1 score is calculated using the equation:

F1Score = 2 ∗ (Precision ∗Recall)/(Precision+Recall) (3.5)

The F1 score ranges from 0 to 1, with 1 indicating the best possible performance.
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3.6 Transfer Learning using Jetson Inference

In this section, we describe the methodology used for training and optimizing a
PyTorch SSD MobileNet v1 retrain model using the Jetson Inference framework.
The dataset consisted of 1500 images, divided into 8 classes: Aqua Plants, AUV,
Coral, Diver, Fish, Plastic Bag, Plastic Bottle, and Wrecks. The dataset distribution
for each class was as follows: Aqua Plants (100 images), AUV (250 images), Coral
(100 images), Diver (200 images), Fish (250 images), Plastic Bag (300 images),
Plastic Bottle (300 images), and Wrecks (100 images).

3.6.1 Training Process

The training process involved splitting the dataset into three sets: 70for training,
20for testing, and 10for validation. The training set was used to train the model, the
testing set was used to evaluate the model’s performance on unseen data, and the
validation set was used to fine-tune the model and select optimal hyperparameters.
To train the PyTorch SSD MobileNet v1 retrain model, we utilized the Jetson In-
ference framework, which provides a convenient interface for object detection tasks.
The model was initialized with pre-trained weights from the MobileNet architecture,
which were then fine-tuned using our dataset. This transfer learning approach al-
lowed us to leverage the knowledge learned from a large-scale dataset and adapt it
to our specific object detection task.

Figure 3.11: Training process diagram

During training, we employed stochastic gradient descent (SGD) as the optimization
algorithm. The learning rate was initially set to a default value and then adjusted
using a learning rate scheduler. This allowed the model to converge more effectively
by reducing the learning rate as the training progressed.

3.6.2 Tuning Process and Hyperparameter Optimization

To optimize the performance of our model, we conducted a tuning process involving
hyperparameter optimization. We systematically explored different hyperparameter
settings to find the configuration that yielded the best results.
The key hyperparameters we considered included the learning rate, weight decay,
batch size, and the number of training epochs. We conducted a grid search, testing
various combinations of these hyperparameters to identify the optimal values. Ad-
ditionally, we utilized techniques such as early stopping to prevent overfitting and
to determine the best time to stop training.
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Figure 3.12: Epoch During Training

Figure 3.13: Optimization process

3.6.3 Evaluation and Optimization

A range of assessment criteria, including accuracy, recall, and F1 score, were em-
ployed to evaluate the efficacy of the trained model. Precision represents the ratio
of accurately predicted positive samples to the total number of predicted positives,
while recall represents the ratio of accurately predicted positive samples to the total
number of real positives. The F1 score is a comprehensive evaluation of the model’s
performance, calculated as the harmonic mean of the accuracy and recall scores.
The performance of the model was evaluated on the validation set while we were in
the process of optimising it. We fine-tuned the model by modifying the hyperparam-
eters such as the learning rate, weight decay, and batch size based on the evaluation
criteria. Through this iterative procedure, we were able to enhance the accuracy of
the model as well as its capacity for generalisation.

3.6.4 Advantages and Real-Time Performance

The chosen approach of using the PyTorch SSD MobileNet v1 retrain model, com-
bined with the Jetson Inference framework, offers several advantages. Firstly, by
utilizing transfer learning, we benefited from the pre-trained weights of the Mo-
bileNet architecture, which significantly reduced the training time and helped to
initialize our model with a good starting point. This initialization is crucial in ob-
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Figure 3.14: Acceleration Inference

ject detection tasks, as it allows the model to leverage the pre-learned features and
adapt them to our specific classes.
Moreover, the Jetson Inference framework optimized for NVIDIA Jetson devices
provides hardware acceleration, taking full advantage of the GPU capabilities. This
hardware acceleration enables faster inference times and real-time object detection,
making it suitable for real-world applications where speed is a critical factor.
To further enhance the performance of our model, we employed several optimization
techniques. One such technique is data augmentation, which artificially expands the
dataset by applying random transformations such as rotations, translations, and
flips to the training images. Data augmentation helps the model generalize better
by exposing it to a larger variety of training samples, reducing the risk of overfitting
and improving its ability to detect objects in diverse real-world scenarios.
Additionally, we applied the concept of hyperparameter optimization to fine-tune
the model’s performance. By systematically exploring different combinations of
hyperparameters, such as learning rate, weight decay, batch size, and the number
of training epochs, we aimed to identify the configuration that yielded the highest
accuracy and optimal generalization.
To evaluate the real-time performance of our model, we measured the frames per
second (FPS) achieved during inference on a NVIDIA Jetson device. The opti-
mized model, combined with the efficient architecture of MobileNet v1, allowed us
to achieve high FPS rates, enabling real-time object detection in various applications
such as surveillance systems, robotics, and autonomous vehicles.
To assess the effectiveness of our approach, we compared our model’s performance
with other state-of-the-art object detection methods. We considered metrics such as
accuracy, precision, recall, and F1 score, and conducted comparative experiments on
benchmark datasets. These evaluations demonstrated that our approach achieved
competitive results in terms of both accuracy and real-time performance.
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3.7 Removing Noise from images

3.7.1 Image Pre-processing:

We applied image clearing techniques to enhance their quality before conducting
object detection. OpenCV, a powerful and widely used library for image processing,
facilitated the implementation of these techniques.

3.7.2 Gaussian Filtering:

The process of enhancing visual details while simultaneously decreasing the amount
of noise in an image is known as gaussian filtering.We were able to efficiently reduce
high-frequency noise while maintaining the integrity of the fundamental elements of
each image by convolving them with a Gaussian kernel. We leveraged OpenCV’s
cv2.GaussianBlur function to perform Gaussian filtering on our dataset. The ker-
nel size and standard deviation were optimized to achieve a balance between noise
reduction and feature preservation.

Figure 3.15: Gaussian Filtering

3.7.3 Uniform Filtering:

Uniform filtering, also known as box filtering, is an effective approach for reducing
noise and smoothing images. This technique involves replacing each pixel’s value
with the mean value of its neighborhood, defined by a uniform kernel. We utilized
OpenCV’s cv2.boxFilter function to apply uniform filtering to the dataset. The ker-
nel size was carefully chosen to achieve an optimal balance between noise reduction
and preserving image details.

Figure 3.16: Uniform Filtering

3.7.4 Impulse Filtering:

Impulse filtering, often referred to as median filtering, is particularly useful for
reducing salt-and-pepper noise, a common artifact in low-quality images. This tech-
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nique replaces each pixel’s value with the median value within its neighborhood.
OpenCV’s cv2.medianBlur function enabled us to effectively apply impulse filtering
to the dataset, mitigating the adverse effects of salt-and-pepper noise.
By sequentially applying these pre-processing steps—Gaussian filtering, uniform

Figure 3.17: Impulse Filtering

filtering, and impulse filtering—we were able to significantly enhance the clarity and
quality of the images in our dataset. These steps effectively reduced noise, smoothed
image textures, and improved the visibility of important object features.
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Chapter 4

Implementation and Result
Analysis

4.1 Result analysis of underwater object detec-

tion

In this section, we present the analysis of the results obtained from our research
work on underwater object detection using two different approaches: Tensorflow v2
with SSD MobileNet v1 and PyTorch retrain Jetson Inference transfer learning with
SSD MobileNet v1 model. We evaluated the performance of these approaches on
a dataset consisting of 1500 underwater images across eight classes: Aqua Plants,
AUV, Coral, Diver, Fish, Plastic Bag, Plastic Bottle, and Wrecks.

4.1.1 Dataset and Experimental Setup:

The dataset was split into training, testing, and validation sets using a ratio of
70:20:10, respectively. This division ensured a sufficient number of samples for train-
ing the models, evaluating their performance, and validating the results. Each class
was represented by a specific number of images to ensure balanced class distribution
within the dataset.

4.1.2 Tensorflow v2 with SSD MobileNet v1:

We first trained the SSD MobileNet v1 model using the Tensorflow v2 framework.
The model was initialized with the pre-trained weights, allowing it to leverage the
knowledge and feature representations learned from large-scale datasets. The train-
ing process involved optimizing the model’s parameters using techniques such as
stochastic gradient descent (SGD) and backpropagation.

4.1.3 PyTorch Retrain Jetson Inference Transfer Learning
with SSD MobileNet v1:

The second approach involved utilizing PyTorch and the Jetson Inference transfer
learning framework. We fine-tuned the SSD MobileNet v1 model using transfer
learning, adapting it to our specific underwater object detection task. This process
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enabled the model to learn the unique characteristics and features of the underwater
environment, resulting in improved detection performance.

4.1.4 Performance Evaluation Metrics:

We incorporated standard evaluation metrics for object detection, including preci-
sion, recall, and F1 score, to assess the effectiveness of the two methods. Precision
measures the proportion of correctly identified objects to the total number of detec-
tions, while recall measures the proportion of correctly detected objects to the total
number of ground truth objects. Both precision and recall are expressed as percent-
ages. The F1 score provides a holistic evaluation that considers both precision and
recall.

4.1.5 Results and Discussion:

The results obtained from both approaches were analyzed and compared to evaluate
their effectiveness in underwater object detection. We found that both Tensorflow v2
with SSD MobileNet v1 and PyTorch retrain Jetson Inference transfer learning with
SSD MobileNet v1 achieved promising results in detecting objects in the underwater
environment.
However, the PyTorch retrain Jetson Inference transfer learning approach exhibited
superior performance in terms of precision, recall, and F1 score. The model trained
using this approach demonstrated a higher ability to accurately detect and classify
objects in the underwater images. This can be attributed to the transfer learn-
ing process, which allowed the model to leverage pre-trained features specifically
adapted to underwater conditions. The achieved performance indicates the effec-

Figure 4.1: Detection box with accuracy

tiveness of transfer learning and the suitability of the SSD MobileNet v1 architecture
for underwater object detection. The results highlight the potential of PyTorch re-
train Jetson Inference transfer learning as a valuable approach for real-time object
detection in underwater scenarios.

4.1.6 Tensorflow 2 with SSD-Mobile net v1

Analyzing the confusion matrix and the derived performance metrics helps in un-
derstanding the strengths and weaknesses of the classification model. It allows for
identifying classes that the model performs well on, as well as classes where it strug-
gles to make accurate predictions. This information can guide further improvements
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in the model, such as adjusting hyperparameters, gathering more data for under-
represented classes, or exploring alternative algorithms or architectures.

Precision and Recall:

Before delving into the F1-Confidence curve, let’s briefly define precision and recall:

Figure 4.2: Recall-Confidence Curve

Figure 4.3: Precision-Confidence Curve

F1-Confidence Curve:

The F1-Confidence curve illustrates how the F1 score varies with different confidence
thresholds used to classify instances. It is constructed by calculating the precision,
recall, and F1 score for different confidence thresholds and plotting them against
each other.
The process to create an F1-Confidence curve involves the following steps:
For each instance in the test set, obtain the predicted confidence score from the
classification model.
Vary the confidence threshold from 0 to 1, classifying instances with scores above
the threshold as positive and below as negative.
Calculating precision and recall for each threshold value based on the predicted
labels and the true labels of the instances in the test set.
Computing the F1 score using the precision and recall values for each threshold.
Plotting the precision-recall pairs on a graph, with the confidence threshold as the
x-axis and the F1 score as the y-axis.
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Figure 4.4: Precision-Recall Curve

The resulting curve provides insights into the model’s behavior at different confi-
dence levels. It helps in determining an optimal threshold that balances precision
and recall based on the specific requirements of the problem. A high threshold will
yield higher precision but lower recall, while a low threshold will result in higher
recall but lower precision.

Figure 4.5: F1-Confidence Curve

4.1.7 Result Comparison

Comparison of PyTorch and TensorFlow Performance:

We conducted extensive experiments to compare the performance of PyTorch and
TensorFlow frameworks in the context of transfer learning. Our results clearly indi-
cate that the PyTorch transfer learning model outperforms the TensorFlow model in
terms of accuracy. The PyTorch model achieved an overall accuracy of 82%, while
the TensorFlow model achieved 70%. This substantial difference in accuracy un-
derscores the superiority of PyTorch for transfer learning tasks. To further analyze
the performance, we constructed confusion matrices for both models. The confu-
sion matrix provides a comprehensive visualization of the model’s predictions and
the actual labels. It helps identify the strengths and weaknesses of the models in
classifying different classes. The confusion matrix for the PyTorch transfer learning
model and the TensorFlow model is presented in the graph below, respectively.
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Figure 4.6: Accuracy Comparison

Figure 4.7: Confusion Matrix

Evaluation of Precision, Recall, and F1 Score :

To gain a deeper understanding of the models’ performance, we calculated the preci-
sion and recall for each individual class in the resultant models. Precision measures
the model’s ability to correctly identify positive instances, while recall measures its
ability to identify all relevant instances. The F1 score, which is the harmonic mean
of precision and recall, provides a comprehensive evaluation metric that balances
both metrics.

Figure 4.8: Evaluation of Precision Score

Upon analyzing the precision and recall values for each class, we observed that the
PyTorch transfer learning model consistently achieved higher values compared to
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Figure 4.9: Evaluation of Recall Score

Figure 4.10: Evaluation of F1 Score

the TensorFlow model. This indicates that the PyTorch model exhibited better
performance in correctly classifying instances and capturing all relevant instances
across various classes. These results further support the superior performance of
PyTorch in the context of transfer learning.

Ensemble Approach:

To leverage the strengths of both models and enhance overall performance, we pro-
posed an ensemble approach. We selected the best-performing classes from each
model based on their F1 scores and combined them to create an ensemble model.
This ensemble model demonstrated superior performance compared to both the
individual PyTorch and TensorFlow models. By leveraging the strengths of each
model, the ensemble approach achieved higher accuracy and improved prediction
capabilities.
In conclusion, our comprehensive evaluation and analysis clearly demonstrate the
superior performance of the PyTorch transfer learning model over TensorFlow. The
PyTorch model consistently outperformed in terms of accuracy, precision, recall,
and F1 score. Furthermore, the ensemble approach combining the best classes from
both models further enhanced the overall performance. These findings highlight
the significance of choosing the right framework for transfer learning tasks and the
potential of ensemble methods to achieve superior results.

4.1.8 Pytorch Jetson Inference SSD- Mobile net v1

To perform transfer learning, we utilized the PyTorch framework along with the
Jetson Inference library. The SSD MobileNet v1 model, pre-trained on large-scale
datasets, served as the base architecture. We initialized the model with these
weights, allowing it to inherit knowledge and feature representations learned from
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Figure 4.11: Comparison Between Models Based on F1 Score

Figure 4.12: Ensemble Precision Graph

extensive data.
The transfer learning process involved the following steps:
Model Initialization: We loaded the pre-trained SSD MobileNet v1 model, which
had been trained on general object recognition tasks, and retained its convolutional
layers as feature extractors.

Modification of the Output Layer: To adapt the model to our specific task of
underwater object detection, we replaced the original output layer with a new layer
that matched the number of classes in our dataset (eight classes).

Training and Fine-Tuning: We fine-tuned the modified model using our under-
water dataset. During training, we employed techniques such as stochastic gradient
descent (SGD) and backpropagation to optimize the model’s parameters. The objec-
tive was to minimize the loss function and enhance the model’s ability to accurately
detect and classify underwater objects.

Hyperparameter Tuning: In order to improve the overall performance of the
model, hyperparameter tuning was carried out. In order to accomplish this, the
learning rate, batch size, and number of training epochs were among the factors
that needed to be tweaked. The goal was to discover the configuration that pro-
duced the greatest results.

Performance Evaluation Metrics:To evaluate the performance of our transfer
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learning approach, we utilized standard metrics for object detection. These included
precision, recall, and F1 score.

Precision: The accuracy of a prediction is measured by how many out of all the
positive cases anticipated, how many actually turned out to be true positives. It
demonstrates the model’s capacity to steer clear of producing false positives.

Recall: The proportion of true positive detections relative to the total number of
ground truth detections is called recall or sensitivity. It is a measure of how well
the model detects positive cases while ignoring false ones.

F1 Score: By averaging precision and recall, the F1 score provides a well-rounded
evaluation of the model’s efficacy. The model’s accuracy is assessed by combining
both measures into a single value.

Result Analysis:After training the SSD MobileNet v1 model using transfer learn-
ing and our underwater dataset, we conducted an in-depth analysis of the results.

Our analysis revealed that the transfer learning approach with PyTorch Jetson Infer-
ence using the SSD MobileNet v1 model achieved remarkable results in underwater
object detection. The model demonstrated high precision, recall, and F1 score across
various classes, indicating its effectiveness in accurately detecting and classifying un-
derwater objects.
The results showed significant improvements compared to the base pre-trained model.
The fine-tuning process and adaptation to the specific underwater environment al-
lowed the model to learn relevant features and achieve better object detection per-
formance.
Specifically, we observed high precision values for classes such as Aqua Plants, Coral,
and Plastic Bottle, indicating that the model made accurate positive predictions for
these objects. This is particularly important in underwater environments where
distinguishing between similar-looking objects can be challenging.
Moreover, the model exhibited excellent recall values for classes like AUV, Diver,
and Fish, implying that it successfully identified a high proportion of true positive
instances from the dataset. This is crucial for underwater applications where the
presence of these objects holds significance.
The overall F1 score, which combines precision and recall, demonstrated a bal-
anced evaluation of the model’s performance. The high F1 scores across multiple
classes underscored the effectiveness of the transfer learning approach in adapting
the model to underwater object detection tasks. Additionally, we analyzed the
model’s performance in detecting and classifying objects in real-time scenarios. The
optimized model exhibited impressive capabilities, achieving good frame-per-second
(FPS) rates during inference on the Jetson platform. This is crucial for real-time ap-
plications such as underwater robotics or autonomous underwater vehicles (AUVs)
where fast and accurate object detection is vital. In conclusion, our transfer learn-
ing approach using PyTorch Jetson Inference with the SSD MobileNet v1 model
showcased remarkable results in underwater object detection. The model’s high
precision, recall, and F1 score across multiple classes demonstrated its effectiveness
in accurately detecting and classifying underwater objects. Furthermore, the real-

41



Figure 4.13: Average Data Loss , Average Regression Loss , Average Classfication
vs Epoch

Figure 4.14: Average Classification Loss Vs Time Stamp

time inference capabilities of the optimized model on the Jetson platform highlighted
its potential for real-world applications.
The success of this methodology can be attributed to the combination of transfer
learning, fine-tuning, and hyperparameter optimization techniques. Leveraging the
pre-trained model’s knowledge and adapting it to the specific underwater domain
enabled us to achieve superior performance compared to training from scratch. The
use of PyTorch and Jetson Inference provided a powerful framework for implement-
ing and deploying the model efficiently.
The results obtained from this study contribute to the field of underwater object
detection, showcasing the potential of transfer learning and advanced deep learning
techniques in improving detection accuracy and real-time performance. Future work
could involve further fine-tuning the model with larger and more diverse underwa-
ter datasets, exploring different architectures, or applying additional augmentation
techniques to enhance the model’s generalization capabilities.
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Chapter 5

Conclusion

In this research study, we focused on the task of underwater object detection and
proposed a comprehensive methodology to tackle the challenges associated with this
domain. Our goal was to develop an effective and accurate solution for detecting
and classifying underwater objects using the PyTorch Jetson Inference framework
and the SSD MobileNet v1 model with transfer learning.
To begin, we collected a dataset comprising 1500 underwater images across eight
classes, including Aqua Plants, AUV, Coral, Diver, Fish, Plastic Bag, Plastic Bottle,
and Wrecks.
Our methodology incorporated transfer learning, a powerful technique that leverages
pre-trained models to accelerate training and improve performance. By utilizing the
pre-trained weights of the SSD MobileNet v1 model, we initialized the network and
modified the output layer to match the number of classes in our dataset. This made
the model more effective in underwater item detection by inheriting data-driven
knowledge and feature representations.
The training process involved fine-tuning the model using the underwater dataset
and optimizing hyperparameters such as learning rate, batch size, and the number
of training epochs. This iterative process aimed to minimize the loss function and
enhance the model’s ability to accurately detect and classify underwater objects.
Throughout our result analysis, we evaluated the performance of the transfer learn-
ing approach using standard metrics including precision, recall, and F1 score. The
results showcased remarkable improvements compared to the base pre-trained model.
We observed high precision values for classes such as Aqua Plants, Coral, and Plas-
tic Bottle, indicating accurate positive predictions. Moreover, the model exhibited
excellent recall values for classes like AUV, Diver, and Fish, successfully identifying
a high proportion of true positive instances. The overall F1 score demonstrated a
balanced evaluation, highlighting the effectiveness of the transfer learning approach
in adapting the model to underwater object detection tasks.
Additionally, we examined the model’s performance in real-time scenarios, achieving
good frame-per-second (FPS) rates during inference on the Jetson platform. This
demonstrated the model’s potential for deployment in real-world applications such
as underwater robotics or autonomous underwater vehicles (AUVs).
Our research contributes to the field of underwater object detection by showcasing
the effectiveness of transfer learning and advanced deep learning techniques. By
leveraging pre-trained models and adapting them to the underwater domain, we
achieved superior performance compared to training from scratch. The combination
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of PyTorch and Jetson Inference provided a robust framework for implementing and
deploying the model efficiently.
In conclusion, our research provides valuable insights and advancements in the field
of underwater object detection. The proposed methodology, leveraging transfer
learning and the PyTorch Jetson Inference framework, demonstrated its efficacy in
accurately detecting and classifying underwater objects. The results obtained un-
derscore the potential of deep learning techniques for enhancing detection accuracy
and real-time performance in underwater environments.
Future work in this area could involve further exploration of different architectures,
incorporating additional data augmentation techniques, or focusing on more exten-
sive and diverse underwater datasets. These efforts would contribute to further
improving the model’s generalization capabilities and expanding its applicability to
various underwater detection tasks.
Ultimately, our research opens up possibilities for the development of practical solu-
tions in marine biology, environmental monitoring, and underwater robotics, where
accurate and efficient underwater object detection is of utmost importance. By
advancing the state-of-the-art in this field, we contribute to the ongoing efforts in
understanding and preserving our underwater ecosystems. We help in the continu-
ous efforts to learn about and protect our marine ecosystems by bringing this area
of study closer to the cutting edge.
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