
A Comparative Analysis Of The Different CNN-LSTM

Model Caption Generation Of Medical Images

by

Mahzabin Yasmin Binte Amin
18101479

Weney Hasan Shammo
19101601

Jawad Bin Sayed
21341025

MD Junaied Hossain
20101204

Department of Computer Science and Engineering
Brac University

May 2023

© 2023. Brac University
All rights reserved.



Declaration

It is hereby declared that:

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Mahzabin Yasmin Binte Amin
18101479

Weney Hasan Shammo
19101601

Jawad Bin Sayed
21341025

MD Junaied Hossain
20101204

i



Approval

The thesis titled “A Comparative Analysis Of The Different CNN-LSTM Models
For Caption Generation Of Medical Images” submitted by

1. Mahzabin Yasmin Binte Amin (18101479)

2. Weney Hasan Shammo (19101601)

3. Jawad Bin Sayed (21341025)

4. MD Junaied Hossain (20101204)

Of Spring, 2023 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on May 29, 2023.

Examining Committee:

Supervisor:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Md. Tanzim Reza
Lecturer

Department of Computer Science and Engineering
Brac University

ii



Thesis Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

iii



Dedication

To our loving parents, who constantly motivated us to achieve excellence in every
aspect.

iv



Acknowledgement

Firstly, all praise be to Almighty Allah (SWT) for whom our thesis has been com-
pleted without any major interruption.

Secondly, to our thesis supervisor, Professor Dr. Md Golam Rabiul Alam Sir for
his humble cooperation and guidance in our research. He has helped us enormously
whenever the need arose.

Thirdly, to our Co-Supervisor, Mr. Tanzim Reza Sir for being cooperative and help-
ing us troubleshoot throughout all the complexities that we have faced.

And finally, to our parents as without their thorough support this journey would
not have been possible. With their kind support and prayers we are now on the
verge of our graduation.

v



Table of Contents

Declaration i

Approval ii

Dedication iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables ix

Nomenclature x

Abstract xi

1 Introduction 1
1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 4
2.1 Medical Image Caption Generation . . . . . . . . . . . . . . . . . . . 4
2.2 Encoder-Decoder Model . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Convolutional Neural Network (CNN) . . . . . . . . . . . . . . . . . . 5
2.4 Long Short-Term Memory (LSTM) . . . . . . . . . . . . . . . . . . . 7
2.5 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Methodology 12
3.1 Description of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Text Data Preparation . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Image Data Preparation . . . . . . . . . . . . . . . . . . . . . 15

3.2 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Inception v3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 VGG16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



3.2.4 Input Data Preparation . . . . . . . . . . . . . . . . . . . . . 18
3.2.5 Vanilla LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.6 Bi-Directional LSTM . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.7 Defining The Encoder-Decoder Model . . . . . . . . . . . . . . 20
3.2.8 Predicting Captions Using The Model . . . . . . . . . . . . . 22
3.2.9 Holistic View Of The Proposed Model For Image Caption

Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Results and Discussion 24
4.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.3 Naive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Training Loss Of The Models . . . . . . . . . . . . . . . . . . 30
4.2.2 Training Time Of The Models . . . . . . . . . . . . . . . . . . 32
4.2.3 Cosine Similarity Of The Models . . . . . . . . . . . . . . . . 32
4.2.4 Naive Accuracy Of The Models . . . . . . . . . . . . . . . . . 33

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusion 35

Bibliography 37

vii



List of Figures

3.1 Top level overview of the proposed method. . . . . . . . . . . . . . . 12
3.2 Partial samples of dataset . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Steps for text preprocessing. . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Steps for image preprocessing. . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Model architecture of Inception v3. . . . . . . . . . . . . . . . . . . . 17
3.6 Model architecture of VGG16. . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Sample input and output data. . . . . . . . . . . . . . . . . . . . . . 18
3.8 Architecture of the encoder-decoder model with Vanilla LSTM as the

decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9 Architecture of the encoder-decoder model with Bi-Directional LSTM

as the decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.10 Detailed architecture of the hybridized CNN-LSTM model. . . . . . . 23

4.1 Ultrasound images for the captions in Table 4.1. . . . . . . . . . . . . 25
4.2 Training loss of Inception v3 and Vanila LSTM. . . . . . . . . . . . . 30
4.3 Training loss of VGG16 and Vanila LSTM. . . . . . . . . . . . . . . . 30
4.4 Training loss of Inception v3 and Bi-directional LSTM. . . . . . . . . 31
4.5 Training loss of VGG16 and Bi-Directional LSTM. . . . . . . . . . . . 31

viii



List of Tables

4.1 Comparison of Actual and Predicted Uterus Evaluation . . . . . . . . 25
4.2 Actual and predicted word count in caption 1 of Table 4.1. . . . . . . 26
4.3 Actual and predicted word count in caption 2 of Table 4.1. . . . . . . 27
4.4 Model Training Times . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Model Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 Naive Accuracy Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

σ Sigma

BLEU Bilingual Evaluation Understudy

CNN Convolutional Neural Network

CT Runs scored by Home team

LSTM Long Short Term Memory

METEOR Metric for Evaluation of Translation with Explicit Ordering

MRI Magnetic Resonance Imaging

MT Machine Translation

RNN Recurrent Neural Network

SVM Support Vector Machine

V GG16 Visual Geometry Group with 16 layers

x



Abstract

The intent of this paper is to make the process of interpreting and understanding
information within ultrasound pictures simpler and quicker by addressing the lack
of techniques for automatically deciphering medical images. In order to do so, we
propose a method of ultrasound image caption generation using AI that highlights
the potential Machine Translation has in translating medical images to textual no-
tations. The model needs to be trained on an ultrasound image dataset of the
abdominal region including the uterus, myometrium, endometrium and cervix, a
field of the medical sector that remains inadequately addressed. Two pre-trained
CNN models, namely, VGG16 and Inception v3 have been used to extract features
from the ultrasound images. Subsequently, the encoder-decoder model takes in two
types of inputs, one for each of its layers. The two kinds of inputs are the text se-
quence and the image features. Both Vanilla LSTM and Bi-directional LSTM have
been used to build the language generation model. The embedding layer along with
the LSTM layer will process the text input. At last, the output from the two layers
stated above will be merged.

Keywords: Ultrasound Image; Image Captioning; Medical Image Captioning; Con-
volutional Neural Network; LSTM
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Chapter 1

Introduction

1.1 Motivation and Background

Traditionally, we see, a lot of contributions have been made to the field of medical
image classification. However, the contributions made in the field of medical image
caption, in the manner where a detailed diagnosis is portrayed, is very limited.
Over that, diseases in ultrasound images can be very hard to identify given that
the outlines of the shapes of organs are quite obscured. Moreover, it takes a large
amount of time to prepare test reports for patients, increasing the waiting time
required per patient to get a diagnosis. In a lot of cases it becomes an extremely
tedious process to find skilled radiologists who can quickly provide an accurate
diagnosis. In this paper we propose that Artificial Intelligence(AI) can save the day.
Machine Translation (MT) is already being used in a wide range of general purposes.
Within the field of MT, recurrent neural networks are used in the encoder-decoder
architecture to solve sequence-to-sequence prediction issues. In an encoder-decoder
model the encoder is a neural network that transforms input data into a different
representation and extracts its important features. The encoder takes an input, for
example, image or text and compresses it into a lower dimensional representation.
After that, the decoder takes input from the output of the encoding layer and maps
the compressed representation into its original format. With substantial changes
made to it, the encoder-decoder architecture can bear great potential in translating
medical images to captions. However, that it is trained on diagnosis based on medical
images through the usage of Neural Network (NN) models such convoluted Neural
Network (CNN) and Long Short Term Memory (LSTM) needs to be ensured.

1.2 Problem Statement

There exists a lack of techniques for automatically deciphering information from
ultrasound images despite ultrasound imaging being an invaluable tool for studying
complicated anatomical structures. This can be attributed to diseases in ultrasound
images being very hard to identify given that the outlines of the shapes of organs are
quite obscured. Moreover, it takes a large amount of time to prepare test reports for
patients, increasing the waiting time required per patient to get a diagnosis.Most
research found in the status quo in regards to image understanding is mostly con-
cerned with natural images. Ultrasound image captioning is particularly more chal-
lenging than natural images since a description must capture not just the features
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within an image but also their relationships to one another and their characteristics.

An even more overlooked area of the already challenging field of research is female
healthcare. A significant research deficit has long existed in the area of female
healthcare, which has impeded our knowledge and development in this important
area. Female-specific health issues and diseases have been left unaddressed or little
understood. Wide-ranging effects of this disparity include misdiagnoses and inap-
propriate treatments for women. Focused study is necessary to address the specific
biological and hormonal difficulties that women encounter throughout their lifetimes,
such as reproductive health and menopause.

In this paper, we want to emphasize on the hybridization of the pre-trained models
of CNN and LSTM in order to improve the current situation of caption or report
generation in the medical imaging field.

1.3 Research Objective

We wish to present a method of ultrasound image caption generation through the
usage of AI and develop the functionalities of caption generation such as time effi-
ciency and the accuracy of existing caption generation models. In order to ensure
equal improvements in medical knowledge and improved health outcomes for all
women, it is critical that we rectify this historical neglect and actively engage in
comprehensive and extensive research projects that target female healthcare. The
paper will aim to focus on how CNN and LSTM, in tandem, will perform to gener-
ate medical image captions based on ultrasound images. Along with that, we want
to showcase a comparative analysis of the certain variants of LSTM such as Vanila
LSTM and Bi-directional LSTM.

The following is a list of the contributions of this research:

• We propose an encoder-decoder model where pre-trained CNN models have
been initialised as the encoder while RNN, specifically variants of LSTM, has
been used at the decoder end. The model is to process both image and text
sequences in order to produce authentic annotations for ultrasound images.

• We provide a comparative analysis of the four different variants of the mod-
els used in the context of this research with the aid of relevant performance
metrics. The combinations are Inception v3-vanilla LSTM, Inception v3-Bi-
directional LSTM, VGG16-Vanilla LSTM and VGG16-Bi-directional LSTM.

• We extensively train our models on our own curated dataset consisting of
ultrasound images and their corresponding reports providing diverse diagnoses
pertaining to female health. This demonstrates the learning performance of
our proposed architecture.
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• We highlight the effectiveness of architectures such as CNN and LSTM in
translating medical images and attaining salient information for given image
input. This, in turn, can help patients and doctors understand obscure ultra-
sound images more clearly and make the whole process less time consuming.

1.4 Thesis Outline

The research report is organized as follows:

Chapter 1 consists of the motivation behind our research, objectives of our research
and problem statement.
Chapter 2 details relevant theoretical concepts including medical caption genera-
tion, encoder-decoder model, CNN, and LSTM, and also includes previous works
related to this research.
Chapter 3 is the methodology section that is comprised of the workflow, descrip-
tion of the data and the model.
Chapter 4 includes the result analysis and showcasing comparison of the perfor-
mances of the implemented techniques.
Chapter 5 concludes the report.
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Chapter 2

Literature Review

2.1 Medical Image Caption Generation

A research area that has garnered rapid recognition in recent years is image caption-
ing. It refers to the process of automatically generating captions from an image, a
goal that is attained by capturing semantic information from images and thereafter
expressing the extracted information in natural languages. This field necessitates
the bridging of two major research fields, namely, computer vision and natural lan-
guage processing.

A promising, even though challenging, sub-field of image captioning is medical image
captioning. Medical caption generation in general, makes use of machine learning
models, deep learning models in particular, to generate textual summaries or an-
notations of both medical images and videos [12]. Analyzing medical images and
videos from various modalities ranging from X-ray, MRI, Ultrasound, CT, and more,
effective advancements in this field has the potential to bring about substantial im-
provements in healthcare by providing better results and further down the line, at
a lower cost[11]. Medical caption generation can play an integral role in improv-
ing the interpretability of medical images and assisting healthcare professionals in
diagnosis, treatment, planning, and communication. It can contribute to improved
patient care, increased efficiency, and enhanced medical education and research.

The non-negotiable requirement for acute precision and accuracy in the results ob-
tained, makes it imperative that a sizable dataset is used to train the relevant deep
learning models. In fact, the availability of large medical datasets is few and far be-
tween and that is exactly where the greatest challenge of medical caption generation
resides. In order to extract meaningful features from the visual content to formulate
accurate descriptive captions, techniques like convolutional neural networks (CNNs)
for image analysis and recurrent neural networks (RNNs) or transformers for caption
generation are used.

Metrics such as BLEU (Bilingual Evaluation Understudy) and METEOR (Metric
for Evaluation of Translation with Explicit Ordering) are commonly used to eval-
uate the overall performance of the system by assessing the similarity between the
generated captions and human-generated reference captions.
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2.2 Encoder-Decoder Model

Encoder Decoder models are very popular for machine translation tasks[18]. In an
encoder decoder model the encoder is a neural network that transforms input data
into a different representation and extracts its important features. Most of the time
the encoder converts the feature vectors into lower dimensional representations. The
encoder takes an input that could either be image or textual data, and compresses
it into a lower dimensional representation; this compressed representation contains
the most important features of the input. After that, the decoder takes input from
the output of the encoding layer. The decoder then maps the compressed represen-
tation into its original format. Encoder-Decoder models are used in many types of
applications such as speech recognition, language translation, and data compression.

2.3 Convolutional Neural Network (CNN)

Convolutional Neural Networks(CNN) are a deep neural network which are mostly
used for image processing [9]. These are hugely used for tasks like image classifi-
cation and object recognition in images. In CNN, at the very onset, we take an
input image and it is processed by the convolution layers. The convolution layers
generate feature maps using filters that go through the pixels of the image. Each
filter learns some patterns in the pixels of the images, patterns such as edges, corners
and textures. The feature maps are activated to add non-linearity and enhance the
model’s capacity using activation functions to learn intricate patterns. Then pool-
ing layers are used to downsize the feature maps and reduce spatial dimensionality.
Afterwards, the output from convolution layers and pooling layers are passed to the
hidden fully connected layers. These fully connected layers are then connected to
an output layer that eventually predicts the final prediction. A loss function is used
to calculate the weights and biases using the predicted outputs and ground truth.

This paper [11] shows the use of Convolutional Neural Networks (CNNs) for adap-
tive image processing. The discussion emphasizes CNN’s capacity for a wide range
of applications other than image processing, such as physiological records, financial
time series analysis, and satellite image processing. It advises investigating CNN
architectural enhancements such as the use of detachable filters and expansions to
three-dimensional (video) processing. The paper also requests theoretical work that
connects CNNs with finite impulse response filters, adaptive filters, and wavelet
transformations. It also advises looking at approaches for customizing the CNN
architecture using discriminant or entropy-based cost functions.

The research proves the applicability of CNNs for adaptive image processing while
also identifying opportunities for future research and development in CNN struc-
tures and applications.

Author Andrew Gibiansky [17] explains convolutional neural networks (CNNs) and
its architectural components, such as convolutional and max-pooling layers. The
formula for determining the input to a unit in a convolutional layer in forward prop-
agation is written as:
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xℓij =
m−1∑
a=0

m−1∑
b=0

ωabyℓ−1(i+ a)(j + b) (2.1)

where ω is the filter, yℓ−1 represents the previous layer, and xℓij is the pre-nonlinearity
input.

The nonlinearity is applied using the formula :

yℓij = σ(xℓij) (2.2)

where σ denotes the activation function. Max-pooling layers Select the highest value
inside each block to reduce dimensionality.

The gradient of the filter weights is determined using the formula for backward
propagation:

∂E

∂ωab

=
N−m∑
i=0

N−m∑
j=0

∂E

∂xℓij

yℓ−1(i+ a)(j + b) (2.3)

The deltas
(

∂E
∂xℓij

)
at the current layer are computed as:

∂E

∂xℓij

=
∂E

∂yℓij
σ′(xℓij) (2.4)

where σ′ represents the derivative of the activation function.

The errors
(

∂E
∂yℓ−1ij

)
at the previous layer are obtained through a convolution with

the flipped filter weights:

∂E

∂yℓ−1ij

=
m−1∑
a=0

m−1∑
b=0

∂E

∂xℓ(i−a)(j−b)

ωab (2.5)

CNNs use weight sharing to replicate the behavior of the human visual cortex, and
they have shown to be extremely effective in applications like object identification.

The next paper [7] implemented multiple convolutional neural network models to
create a system for identifying fruit flies using convolutional neural networks, deep
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learning architectures, and transfer learning. The researchers conducted two tests to
assess the efficacy of various deep features and machine learning algorithms. They
examined five in-depth features and nine machine-learning approaches (Inception,
ResNet, VGG16, VGG19, and Xception). The results demonstrated that bottle-
neck characteristics retrieved using the VGG16 architecture outperformed support
vector machines (SVM) using a linear kernel. The research also compared the top-
performing tuples (in-depth feature + learning technique) to two state-of-the-art
techniques from the literature. Statistical analysis found no significant difference
between the deep learning algorithms and the two baselines despite the fact that
VGG16+SVM attained the greatest mean accuracy of 95.68%. However, one of the
baselines depended on color-based histogram characteristics, which may not be ap-
propriate for real-time systems. The advantages of deep learning techniques, such
as their ability to extract a mixture of visual features from data were underlined by
the authors. Deep learning approaches, as opposed to the mid-level representation
approach, eliminate the necessity of picking the appropriate mix of keypoint de-
tectors and feature extractors. Without any extra image processing advancements,
the suggested approach outperformed the baselines. Finally, the research showed
the efficacy of deep learning architectures and transfer learning for fruit fly iden-
tification. The VGG16 architecture with SVM and a linear kernel produced the
greatest results. This method has the potential to contribute to the development
of real-time pest management systems in agriculture. Future work might include
ensemble classifiers and the creation of a transportable device to help field specialists.

2.4 Long Short-Term Memory (LSTM)

According to the article[16], the neural networking algorithm, LSTM, is used to
resolve the problem of exploding and vanishing gradients. The LSTM network is
composed of one or multiple memory modules or cells, and each of them consists
of units of memory that govern the flow of data throughout the system. LSTM
takes on a function that is responsible for the memorization of time-series related
data unlike RNNs, as these cells can consist of three different logic gates known as
input, output and forget gate due to the sigmoid neural network layer. This layer
is responsible for selectively passing information. In order to construct a new value,
the input gate begins with summarising the cell unit status value, filtered value,
and added value. The forget gate produces an output with a range of 0 to 1, which
represents a value that can be disregarded or reserved in the system, respectively.
The system employs a storage gate which in addition contains sigmoid and tanh
layers. To choose new data to store in the cell, this gate is used. The sigmoid layer
picks the value that has to be changed in this case, and the tanh layer’s job is to
create vectors of new candidate values before adding them to the cell unit state. The
LSTM network architecture is described as a sequential model with two fundamental
components: states and gates. The previously concealed layer’s value is the hidden
state, whereas the input state is a linear mixture of the present input data and the
state that was previously concealed. Each unit of the LSTM cell network, which
comprises three gates, uses an optimizer function to modify the weights connected
with the network’s units.
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The value, “f(t)” is required to find which information from the previous state needs
to be retained for further calculation. It is computed at the forget state using the
following equation:

f(t) = σ(W (fx) · x(t) +W (fs) · s(t− 1) + b(f)) (2.6)

where, “σ” is the sigmoid activation function.

Subsequently, the intermediate parameters i(t) and C(t) are found using the input
gate. This is done to figure out if the internal state values function as memory cells
or not. The equations below are used for this purpose:

i(t) = σ(W (ix) · x(t) +W (is) · s(t− 1) + b(i)) (2.7)

c(t) = tanh(W (cx) · x(t) +W (cs) · s(t− 1) + b(c)) (2.8)

Lastly, the information to be retained is derived by merging the outputs of the input
and forget gates:

C(t) = f(t) · C(t− 1) + i(t) · c(t) (2.9)

The sigmoid and tanh layers are applied to calculate fresh data to be stored in cell
state. The output layer then uses the o(t) equation to create an output that is used
to anticipate the final output, s(t).

o(t) = σ(W (ox) · x(t) +W (os) · s(t− 1) + b(o)) (2.10)

s̃(t) = o(t) · tanh(C(t)) (2.11)

The final functions are ”W” and ”b,” which stand for the respective weights and
biases applied at various layers, and ”s(t),” which stands for the output of the LSTM
network at time signal t.

The LSTM networks are classified as vanilla, stacked, bidirectional, and other flavours[16].
Vanilla LSTM has one LSTM unit in the hidden layer and one in the output layer.
On the other hand, stacked LSTM architecture consists of numerous stacked LSTM
layers that are transmitted to a dropout layer and output layer at the final output.
Additionally, by using the information in both ways, bidirectional LSTM improves
model performance for sequence classification challenges as the bidirectional LSTM
has an additional LSTM layer that changes the direction of information flow.
The bidirectional mechanism research by J. Shah, R. Jain, V. Jolly, and A. Godbole
demonstrates that the sigmoid layer specifies what information must be conserved
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and erased from the bidirectional LSTM cell which holds for the more traditional
and simple versions of LSTM as well.[14].

2.5 Related Works

According to Baltrusaitis et al.[6], the research based definition of multimodality
lies within the different modalities of human perception, such as vision and auditory
senses. The paper then goes into giving details of five adversities to the development
of multimodal machine learning, which are representation, translation, alignment,
fusion and co-learning. Data representation deals with formatting unprocessed data
for any model to use and is essential for machine learning models. Unimodal data
can be portrayed as multimodal data via joint representation and are used in neural
networking, sequential representation and probabilistic graphical models, whereas
coordinated representations are substitutes for it and are primarily used in similarity
models. A huge chunk of multimodal learning is dependent on mapping or trans-
lation. Its job is to convert from one modality to another. Example-based transla-
tion can be retrieval-based where the translation is extracted with no changes, and
combination based where translations are obtained from a complicated set of rules.
Meanwhile, generative approaches to translation are concerned with grammar-based
models, which make the task more comprehensible by limiting the target domain
using a set of rules. Encoder-decoder models encode the input modality to a form
of representation and then decode to produce output modality and continuous gen-
eration models which produce the output modality while input modality streams
are constantly fed into the system. The alignment of multimodality is concerned
with developing connections between sub-parts of multiple modalities and is of two
types, implicit and explicit. Implicit modalities use graphical models or neural net-
works whereas explicit modalities work with supervised and unsupervised alignment
techniques. The paper then talks about the process of fusion, that is, developing
information from multimodal data for forecasting a result. Model agnostic fusion
is not based on predefined ML architecture and can be divided into early, late and
hybrid fusion. Model-based fusion prioritizes the concept of fusion and can be uti-
lized in multiple kernel learning, and graphical models like RNN and LSTM. The
last adversity in the hierarchy of multimodality is co-learning which helps develop
a modality that lacks amenities by utilizing pre-learnt information from a different
modality with sufficient amenities. Therefore it deals with the challenges of handling
parallel and non-parallel data along with co-training and transfer learning.

Zhang et al.[10], discusses the representation of multimodalities, and its fusion and
applications. The paper details the different types of representations of unimodal
intelligence such as linguistic, visual, word vector, image vector, speaker, etc. The
paper also discusses the representation of multimodal intelligence such as unsu-
pervised training techniques. Examples include joint embeddings and supervised
learning with either multimodal biased components or intra-modality producing
components. Other representations of multimodal intelligence can be done through
zero-shot learning techniques and techniques that use transformer models.
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Shah et al.[13], present the challenges imposed by the typical encoder-decoder method
of image captioning. Conventionally, CNN is used as an encoder whereas RNN, a
kind of sequence generator, is employed as the decoder. While this approach has
been proven to be efficient in most cases, the need for sequences to be processed
in order can be of disadvantage. To address the inability to parallel the genera-
tion of captions, considerable changes have been made to image captioning in the
English language in recent times. Most notable is the use of a Transformer model.
The paper essentially attempts to replicate the efficiency derived from the Trans-
former model in respect of Bengali language using three Bengali datasets including
Flicker8k, BanglaLekha and their own curated dataset, Bornon.

Park et al [12] presents how medical image caption generation is a promising but
challenging sub-field of image captioning. Medical caption generation in general,
makes use of machine learning models, deep learning models in particular, to gener-
ate textual summaries or annotations of both medical images and videos. Analyzing
medical images and videos from various modalities ranging from X-ray, MRI, Ul-
trasound, CT, and more, effective advancements in this field has the potential to
bring about substantial improvements in healthcare by providing better results at
a lower cost. Medical caption generation can play an integral role in improving the
interpretability of medical images and assisting healthcare professionals in diagno-
sis, treatment, planning, and communication. It can contribute to improved patient
care, increased efficiency, and enhanced medical education and research. The non-
negotiable requirement for acute precision and accuracy in the results obtained,
makes it imperative that a sizable dataset is used to train the relevant deep learning
models. In fact, the availability of large medical datasets is few and far between and
this is where the greatest challenge of medical caption generation resides. In order to
extract meaningful features from the visual content to formulate accurate descriptive
captions, techniques like convolutional neural networks (CNNs) for image analysis
and recurrent neural networks (RNNs) or transformers for caption generation are
used.

Zeng et al. [8], discusses the challenges associated with understanding ultrasound
images and proposes a coarse-to-fine medical image captioning ensemble model for
generating descriptive captions for ultrasound images. They initialized their model
for extensive training of the ultrasound pictures using transfer learning, which trans-
fers parameters from the pre-trained VGG16 model. They have suggested a strategy
to train the ultrasonic image encoding model from coarse to fine in order to lessen
the mutual interference between various illnesses of various organs. The ultrasound
pictures used in this study were taken between 2014 and 2015 at a tertiary hos-
pital in China. The approach highlights the necessity of studying both the natu-
ral language necessary for sentence formation as well as the visual comprehension
of ultrasound pictures. The authors suggest integrating image captioning genera-
tion, a method used to comprehend content information in natural images, into the
field of ultrasonic image understanding in order to address the lack of techniques
for automatically deciphering information pertaining to diseases within ultrasound
pictures. With the use of this technique, ultrasound pictures may be converted di-
rectly into annotation text, providing a thorough grasp of the information contained
within. The ultrasound picture captioning generating method provides doctors and
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patients with a more practical and effective way to immediately understand ul-
trasound images. This concept aims to improve the efficiency and practicality of
content interpretation and understanding inside ultrasound pictures. The model
has three primary steps for operation. As the initial step to identify the organs in
the ultrasound images, a coarse classification model is used. Second, based on the
determined organ labels, a fine-grained classification model encodes the ultrasound
pictures. As a final step, the encoded vectors are sent into a language generation
model, which creates annotation text for the ultrasound images that automatically
describes the diseases they contain. The ultrasound image’s encoding vector is ex-
pected to include as much information about illnesses as feasible. CNN is used as
the ultrasonic image encoder throughout the encoding step. To initialize the en-
coder model, they employed the pre-trained CNN model that was trained on the
ImageNet dataset. The LSTM model is an excellent answer to the issue of long-
term sequence dependency because it features a multiplicative gate structure that
effectively handles gradient explosion and vanishing. Hence, they have chosen to
employ LSTM to build the language generation model because of the considerable
advancements achieved by the LSTM model in the existing techniques for image
captioning. The liver, gallbladder, and kidney are the three categories into which
they have categorized the ultrasound pictures after the first phase of training using a
coarse classification model they named ”organ.” The matching language generation
model with organ labels receives the encoding vector as input. The annotation text,
which is composed of n-grams and is utilized by BeamSearch to describe the con-
tent of the ultrasound picture, is then obtained. Four assessment metrics—BLEU,
ROUGE-L, METEOR, and CIDEr—have been utilized to assess the performance of
the ensemble model for ultrasound picture captioning.
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Chapter 3

Methodology

Figure 3.1: Top level overview of the proposed method.
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We began by collecting the data, consisting of the ultrasound images and their corre-
sponding reports. The collected data was filtered to suit our needs, that is, the scans
for the required organs were selected and kept. The reports, too, were filtered to
gain the necessary portions of texts. Thus, going forward, the images were prepared
and visualized for usage. Afterwards, the text pre-processing was done. Patient’s
personal information was removed from both the respective scans and reports to
maintain confidentiality. Following the pre-processing of data, it was split into the
train and test datasets. Each set was pre-processed using relevant pre-processing
techniques. From here, we move on to the feature extraction step that utilizes
pre-trained CNN algorithms and the structure’s ability to automatically learn char-
acteristics at different levels from data. Baseline CNN-LSTM models were built
following that. We used our models to compare the predicted and actual captions.
Based on the performance of the models and the percentage accuracy derived from
the results, the best model was determined.

3.1 Description of the Data

3.1.1 Data Acquisition

We have constructed an ultrasound image dataset including the uterus, myometrium,
endometrium and cervix. The dataset includes images for an array of women of dif-
ferent ages and in different cycles of their lives ranging from pregnant women, elderly
women and women who have surgically removed their uterus. Needless to say, there
are distinctions within those categories as well.

Our ultrasound images are from an esteemed hospital in Dhaka, Bangladesh, and
have been collected over the span of a month, that is, from late April 2023 to May
2023. The shape of the same organ may alter in different ultrasound pictures be-
cause doctors examine patients’ bodies from a variety of angles and the ultrasound
intensity is not consistent. Ultrasound images from a particular radiologist or so-
nologist can belong to patients of both sexes, and also be of different regions of the
body. Therefore, not all ultrasound images can be used to construct the available
dataset. From the data collected in the given period, reports and images belonging
to male patients were discarded. Afterwards, reports containing no comments on
the uterine region, such as reports on the breast tissues, are not used in our dataset
either.

The ultrasound images are partitioned according to the keywords “uterus”, “my-
ometrium”, “endometrium” and “cervix” in the text extracted from the original
diagnostic reports with the help of a seasoned radiologist or operator. The ultra-
sound images and the corresponding text data are both saved after all personal
patient information from the images and reports are removed to maintain confiden-
tiality.
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Uterus is atrophied Uterus is surgically removed

Uterus is gravid containing single foetus The uterus is bulky in size

Figure 3.2: Partial samples of dataset

3.1.2 Text Data Preparation

Each of the captions was placed after their respective image file names in a single
text file. The caption was extracted per image and redundancies such as punctua-
tion, spaces, newlines were removed. All letters were made lower case to maintain
consistency as well. The text was also put in order as such, similar information was
placed in the same order to further maintain this consistency. Each of the captions
was tokenized, that is, divided into words. Each word was assigned a unique index
number. Each unique word is considered a new vocabulary. The total amount of
vocabulary was then calculated. Maximum length of the sequences is calculated.
Smaller lengths of sequences were padded in comparison to the maximum length so
that all of the sequences are padded to the maximum length.
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Figure 3.3: Steps for text preprocessing.

3.1.3 Image Data Preparation

To process the images, at first, the color space was changed. For the Inception v3
model, RGB is required therefore, if any of the images contain VGG color space it
is changed. For the VGG16 model, VGR is required, therefore if any RGB image
exists it is converted to VGR. The images are then resized. For VGG16 all the
images are resized to 224 x 224 resolution whereas for Inception v3, all the images
are resized to a resolution of 299 x 299. Finally, the pixel values have been modified
and were normalized as such that the value ranges from -1 to +1.

Figure 3.4: Steps for image preprocessing.
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3.2 Model Specification

3.2.1 Inception v3

The input size for Inception v3, typically, is 299x299 pixels [5]. The first component
of the architecture is the stem block where input image is processed, and low-level
features are extracted. Convolutional, max pooling, and dimensionality reduction
layers are frequently used here in conjunction. The stem block helps to recognize
fundamental visual patterns and gets the data ready for further processing.

Inception-A is a building block of the architecture where features are captured and
processed at multiple scales. Parallel pathways with various convolutional proce-
dures, including 1x1 convolutions, 3x3 convolutions, and double 3x3 convolutions,
are included in this. These routes enable a variety of feature representations and
information acquisition at various receptive fields.

The Reduction-A block is reached after a series of Inception-A blocks. Its goal
is to increase the number of channels while downsampling the feature maps’ spa-
tial dimensions. It frequently combines max pooling with convolutional layers with
greater strides. This block aids in introducing some spatial compression. It does so
by acquiring higher-level features and lowering computational complexity.

The Inception-B captures features at multiple scales, much like the Inception-A
block. Parallel routes with various convolutions, such as 1x1 convolutions, 7x7 con-
volutions, and double 7x7 convolutions, are included. A string of Inception-B blocks
is followed by the Reduction-B block. The spatial dimensions of the feature maps
are further reduced. Downsampling the feature maps using the reduction blocks
allows for the capture of higher-level, more abstract features.

The Inception-C block continues to utilize parallel pathways with various convolu-
tions, including 1x1, 3x3, and double 3x3 convolutions to obtain multi-scale features.
The block makes it possible to integrate the features at multiple scales by improving
the expressive power of the network.

Auxiliary classifiers are extra branches that link to intermediate layers. These are
included to help with the training process’ vanishing gradient issue. They add more
gradients and loss functions, facilitating learning and enhancing gradient flow.

The average pooling layer comes after the Inception-C block. The network can han-
dle input pictures of any size due to this layer’s reduction of the spatial dimensions
of the feature maps to a fixed size. By averaging each spatial region, the features
are summarized. Figure 3.5 shows the detailed architecture of the model.
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Figure 3.5: Model architecture of Inception v3.

3.2.2 VGG16

The VGG16 network receives a fixed-size RGB image as its input, generally mea-
suring 224x224 pixels. There are 16 layers altogether in the VGG16 architecture,
comprising 13 convolutional layers and 3 fully linked layers [4]. Small (3x3) receptive
fields are used in the convolutional layers to better capture local features as well as
patterns. From 64 to 512 filters are added progressively. This enables the network
to learn increasingly complex and abstract representations as it progresses.

The max pooling layers with a 2x2 window downsample the feature maps while
the convolutional layers collect features from the input picture. The pooling layers
downscale the feature maps’ spatial dimensions over time, collecting just the most
important characteristics. Each of the three fully connected layers following the con-
volution and pooling layers, consists of 4096 neurons. Using the softmax activation
function, The final layer of VGG16, the fully connected layers at the network’s end
categorize the features into one of the 1000 distinct classes in the ImageNet dataset.

A ReLU activation function follows each convolutional layer besides the last layer.
The network can learn complicated representations thanks to the ReLU activation,
which aids in the creating non-linearity. The application of dropout regularization
after every fully connected layer is done to avoid overfitting.

The sequential structure of VGG16 is useful in allowing the network to progressively
collect features, both local and global, from the input images. This leads to a
representation that is discriminative and rich and hence, results in a more accurate
image classification. Figure 3.6 shows the detailed architecture of the model.
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Figure 3.6: Model architecture of VGG16.

3.2.3 Feature Extraction

Two pre-trained CNN models, that is, the VGG16 and Inception v3 were used to
extract the features from the ultrasound images. Pretrained models are advanta-
geous as they do not require to be trained from scratch with large amounts of data.
The models were trained using the ImageNet dataset. The pretrained weights were
loaded for both the models. For both these models the final layer, that is, the dense
layer is removed. The immediately preceding layer of the dense layer, that is, the
global pooling layer, is the layer from which the features were extracted. The output
that was generated from this layer is the actual feature vector.

3.2.4 Input Data Preparation

After extracting the required features using both the VGG16 and the Inception v3
model, it was time for preparing the input data for the actual caption generation
model which is the encoder-decoder model consisting of two layers. The layers take
in two types of inputs, that is, the text sequence and the image features.

The caption generation model works in the manner such that it takes one image
feature and a specific text sequence depending on the specific word and therefore,
predicts and then generates the immediate next word as shown in Figure 3.7.

Figure 3.7: Sample input and output data.
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3.2.5 Vanilla LSTM

The basic recurrent neural network (RNN) model is extended with the vanilla LSTM
(Long Short-Term Memory) architecture in order to overcome the vanishing gradi-
ent problem [1]. This also captures the long-term relationships in sequential data.
It adds new gating systems that control how information moves across the net-
work. The input gate, forget gate, and output gate are the three primary parts of a
standard LSTM. At various levels of processing, each of these gates is in charge of
managing the flow of information.

The input gate chooses which components from the prior hidden state and the cur-
rent input should be included in the current memory cell. It applies a sigmoid acti-
vation function on the hidden state and the current input. The numbers between 0
and 1 produced by this activation function represent the relative importance of each
component. A potential activation vector is element-wise multiplied by the outcome
of the sigmoid operation. Information from the current input that is considered to
be pertinent is included in this vector. The value derived from the multiplication of
the sigmoid result and the candidate activation vector is equivalent to the output
of the input gate. This output stands for the new information meant to be added
to the memory cell.

Which components of the preceding memory cell should be destroyed or forgotten
is decided by the forget gate. It uses a sigmoid activation function to transmit the
current input and the prior hidden state through, much like an input gate. The prior
memory cell state is multiplied element-wise by the sigmoid output. This procedure
manages the quantity of information from the preceding memory cell that is to be
preserved. The components of the preceding memory cell that will be retained are
represented by the resultant vector.

The input gate and forget gate outputs are combined in the memory cell update step
to update the memory cell’s current state. The output of the forget gate is elemen-
tally multiplied with the preceding memory cell state. The network can now get rid
of unnecessary data from the preceding memory cell thanks to this procedure. The
output of the input gate, which represents the new information to be assimilated, is
added element by element as a result. The resultant vector shows the altered state
of the memory cell.

The output gate chooses the hidden state that will be transferred to the following
time step and utilized to make predictions. A sigmoid activation function is used to
process the current input and the prior hidden state. A hyperbolic tangent (tanh)
activation function, which condenses the values between -1 and 1, is applied to the
state of the present memory cell to enable non-linear changes. The sigmoid output
and the tanh output are multiplied element-by-element as this gate’s output. This
procedure regulates the information transfer from the memory cell to the hidden
state. The hidden state is represented by the resultant vector. The vanilla LSTM
design enables the network to selectively retain or forget information over lengthy
sequences by adding these gating mechanisms.
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3.2.6 Bi-Directional LSTM

A variation on the basic LSTM architecture, the bidirectional LSTM architecture
uses data from both the past and the future to produce predictions [2]. It consists of
two LSTM layers, one of which processes the input sequence forward and the other
of which processes it backward.

The input sequence is processed by the forward LSTM in the orginal order, from
beginning to end. It creates an updated hidden state at each time step using the
previous hidden state and the current input. Additionally, the forward LSTM keeps
track of the state of the memory cells that store pertinent data from earlier time
steps. The hidden state is represented by the forward LSTM’s output at each time
step, which may be used as an input by layers subsequent to it. The input sequence
is processed by the backward LSTM in reverse, that is, from the end to the begin-
ning. It uses the prior hidden state and the current input, much like the forward
LSTM, to create an updated hidden state. It also preserves the state of a memory
cell. Each time step’s backward LSTM output reflects the hidden state and extracts
data from the context of the future.

The outputs of both LSTMs are concatenated once both the forward and back-
ward LSTMs have effectively processed the complete input sequence. Information
from both the past and future contexts are combined using concatenation. Hence,
dependencies in both directions are captured.

3.2.7 Defining The Encoder-Decoder Model

There are two types of inputs, firstly, text, which is a length of numerical sequence
and secondly, the image features for the encoder decoder model. For the image
features the channel dimension is 2048 for Inception v3 and 4096 for VGG16. The
numerical sequence lengths are taken to be equal to that of the maximum length.
For the captions that do not have maximum length, we pad the remaining length.

The input image features are then passed onto the dropout layer for regularization
or generalization to prevent overfitting. From there the features are then passed
onto the dense layer where the dimension is reduced because the dimension of the
output of LSTM needs to match with the dimension of the extracted features.

The numerical sequence of the text data will be passed through the embedded layer
consisting of 128 units. Output of the embedded layer will be propagated through
an LSTM layer which is either a vanilla LSTM or a bi-directional LSTM. In case of
vanilla LSTM there are 128 units in the layer and in case of bi-directional LSTM
there are 256 units in the layer.

Then we will merge the outputs of the LSTM and dense layer of the two input
layers to another dense layer. If the LSTM in the previous layer is vanilla, the dense
layer is of 128 units. Otherwise, if the LSTM is bi-directional, the dense layer is
of 256 units. The dense layer is processed to generate the ultimate predicted caption.
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Since the output of the dense layer is one-hot encoded, we will require the same
number of output nodes. The probability distribution obtained is then passed to
a softmax function where the index with the highest probability is chosen. This,
in turn, becomes the newly generated output in each timestep. The final layer will
consist of an equal number of nodes to the size of the set of the vocabulary. The
Figures 3.8 and 3.9 show the different architectures of the encoder-decoder models.

Figure 3.8: Architecture of the encoder-decoder model with Vanilla LSTM as the
decoder.

Figure 3.9: Architecture of the encoder-decoder model with Bi-Directional LSTM
as the decoder.
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3.2.8 Predicting Captions Using The Model

For caption prediction, features are extracted from the set of images for testing. The
same model of CNN used for the training set of images for feature extraction is also
used for the feature extraction of the set of test images. If the training model was
VGG16, then VGG16 was also used for the test set as well and if the training CNN
was Inception v3, then Inception v3 was also used for the test set as well. For pre-
dicting the caption token by token, a start token along with specific image features
was given as input. The model hence predicted the next word. The newly predicted
token was merged with the existing sequence and both the sequence and the same
feature vectors were fed to the caption generation model once again. Until the end
token was predicted the process repeated itself. Next, another feature vector along
with the start token was fed to the caption generation model to predict the next
caption following the same process mentioned earlier.

3.2.9 Holistic View Of The Proposed Model For Image Cap-
tion Generation

In most cases, the encoder-decoder architecture employs LSTM to serve both as an
encoder and decoder. In our version of the model, CNN has been utilised to initialise
the encoder while RNN, more specifically LSTM, has been used at the decoder end.
Two pre-trained models of CNN, namely VGG16 and Inception v3 have been used to
extract important features from the medical images. The extracted feature vectors
along with text sequences have been merged and served as the input to the generation
model. The embedding layer along with the LSTM layer will process the text input.
At last, the output from the two layers were merged.
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Figure 3.10: Detailed architecture of the hybridized CNN-LSTM model.
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Chapter 4

Results and Discussion

4.1 Performance Metrics

4.1.1 Loss Function

If we assume that for a classification based problem, Softmax probabilities (S) and
the labels (T), then in terms of equations, categorical cross-entropy can be defined as:

LCE = −
n∑

i=1

Tilog(Si) (4.1)

Softmax is continuously differentiable function and therefore, it enables the deriva-
tive of the loss function to be calculated for each weight in the neural network[15].
Due to this quality, the model is able to modify the weights in a way that minimizes
the loss function and produces results that are near to the real values.

If the current loss is less than previous loss, it implies that the model is learning.
Up until the conclusion of training, the optimization process (changing weights to
bring the output close to true values) continues.

When true labels are one-hot encoded, categorical cross-entropy is utilized. For
instance, the true values for the three-class classification issue are [1,0,0], [0,1,0],
and [0,0,1].

4.1.2 Cosine Similarity

The cosine similarity index [3] calculates how similar two vectors in an inner product
space are to one another. It establishes if two vectors are generally pointing in the
same direction by calculating the cosine of the angle between them. In text analysis,
it is frequently used to gauge document similarity.
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Ultrasound image for caption 1. Ultrasound image of caption 2

Figure 4.1: Ultrasound images for the captions in Table 4.1.

A document may include hundreds of characteristics, each of which tracks the fre-
quency of a certain word or phrase (such as a keyword) inside the text. As a result,
every document is an object that may be represented by a term-frequency vector.
For instance, Table 4.1 and Table 4.2 show that the term “is” appears three times
in actual caption, but the word “uterus” only appears one time for caption 1. The
term “containing” is not present anywhere in the whole text, as shown by a count
value of 0. These statistics may be quite asymmetrical.

No. Actual Predicted

1. the uterus is bulky in size it
is anteverted in position two
hypoechoic lesions are seen
in fundal region and anterior
wall of uterus near to cervix
endometrial echo is central
and thickness is within nor-
mal limit endometrial cavity
is empty

the uterus is normal in size
it is anteverted in position
myometrium shows uniform
echotexture endometrial echo
is central and thickness is
within normal limit no fo-
cal lesion is seen endometrial
cavity is empty cervix is nor-
mal

2. uterus is gravid containing
single gestational sac foetal
pole is seen mild fluid col-
lection is seen around perisac
area intrauterine pregnancy

uterus is gravid containing
single gestational sac foetal
cardiac pulsation is present
placenta anterior in location
amniotic fluid adequate in-
trauterine pregnancy

Table 4.1: Comparison of Actual and Predicted Uterus Evaluation
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Word(caption 1) Actual Frequency Predicted Frequency

uterus 1 1

is 3 2

gravid 1 1

and 1 0

retroverted 1 0

in 1 2

position 1 0

a 1 0

single 1 1

gestational 1 1

sac 1 1

seen 1 0

foetal 1 1

cardiac 1 1

pulsation 1 1

present 1 1

intrauterine 1 1

pregnancy 1 1

containing 0 1

placenta 0 1

anterior 0 1

location 0 1

amniotic 0 1

fluid 0 1

adequate 0 1

Table 4.2: Actual and predicted word count in caption 1 of Table 4.1.
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Word(caption 2) Actual Frequency Predicted Frequency

uterus 1 1

is 3 2

gravid 1 1

containing 1 1

single 1 1

gestational 1 1

sac 1 1

foetal 1 1

pole 1 0

seen 1 0

mild 1 0

fluid 1 1

collection 1 0

around 1 0

perisac 1 0

area 1 0

intrauterine 1 1

pregnancy 1 1

cardiac 0 1

pulsation 0 1

present 0 1

placenta 0 1

anterior 0 1

in 0 2

location 0 1

amniotic 0 1

adequate 0 1

Table 4.3: Actual and predicted word count in caption 2 of Table 4.1.
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Term-frequency vectors frequently feature a lot of 0 values and are quite lengthy.
Information retrieval, text document grouping, biological taxonomy, and gene fea-
ture mapping are examples of applications that use these structures. For such sparse
numerical data, the conventional distance metrics do not perform well. For instance,
two term-frequency vectors may have a large number of 0 values, indicating that
the associated texts do not include many terms in common, but this does not imply
that the two papers are comparable. We require a metric that concentrates on the
terms that are shared by the two papers as well as their frequency of occurrence.
In other words, we need a numeric data metric that does not take into account zero
matches.

Cosine similarity can be used to rank documents in relation to a given vector of
search terms or to compare documents. Assuming x and y be two vectors that are
to be compared, utilizing the cosine metric as a similarity function, we get:

sim(x, y) =
x.y

||x||y||′
(4.2)

where ||x|| is the Euclidean norm of vector x = (x1, x2, ..., xp), defined as
√

x2
1 + x2

2 + ...+ x2
p

.
It is the theoretical length of the vector. Similar to that, ||y|| is vector y’s Euclidean
norm. It calculates the cosine of the angle formed by the vectors x and y. When the
cosine value is 0, it signifies that the two vectors are orthogonal and do not match.
The lower the angle and the better the fit between the vectors, the closer the cosine
value is to 1. It should be noted that the cosine similarity measure is regarded as a
nonmetric measure.

For the actual and predicted captions in Table 4.1 we can assume that the actual
and predicted captions are two different documents. Therefore, we can calculate the
cosine similarity based on the frequency values in Table 4.2 and Table 4.3.

Here, for caption 1, x = (1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) and
y = (1, 2, 1, 0, 0, 2, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

By calculating the cosine similarities, we get: sim(x, y) = x.y
||x||y||′ = 0.73

Again, for caption 2, x = (1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
and y = (1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1).

By calculating the cosine similarities, we get: sim(x, y) = x.y
||x||y||′ = 0.62

The closer the value of cosine similarity is to 1, the more similar are the actual and
predicted captions.
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4.1.3 Naive Approach

We have used two measures for measuring the naive similarity of the actual and pre-
dicted words. The first one is the number of correct words present in the predicted
caption that are also present in the actual caption taken from the report made by
the radiologist and is defined by the following equation:

% of correct words =

∑n
i (
∑W

j wj) : wjϵ ai, pi

n
∗ 100% (4.3)

The second measure gives us the percentage of words in the predicted caption that
are either redundant or incorrect compared to the actual caption and can be defined
by the equation below:

% of not matching words =

∑n
i (
∑W

j wj) : wjϵ pi ∩ wj ̸ ϵ ai

n
∗ 100% (4.4)

In each of these naive metric equations, n represents number of total sentences in
each corpus(actual and predicted), W represents number of total vocabularies and
wi represents the ith word. The ith word in actual caption is represented by ai and
the ith word in predicted caption is represented by pi.
Therefore, if we want to calculate the naive accuracy for caption 1 in Table 4.1 using
the values in Table 4.2, firstly, we get:

% of correct words =
∑n

i (
∑W

j wj):wjϵ ai,pi

n
∗ 100% = 72.22%

secondly, we get:

% of not matching words =
∑n

i (
∑W

j wj):wjϵ pi∩wj ̸ϵ ai

n
∗ 100% = 48%

Again, if we want to calculate the naive accuracy for caption 2 in Table 4.1 using
the values in Table 4.3, firstly, we get:

% of correct words =
∑n

i (
∑W

j wj):wjϵ ai,pi

n
∗ 100% = 61.11%

secondly, we get:

% of not matching words =
∑n

i (
∑W

j wj):wjϵ pi∩wj ̸ϵ ai

n
∗ 100% = 59.25%
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4.2 Result Analysis

4.2.1 Training Loss Of The Models

We have calculated the training loss by importing categorical cross-entropy from
Keras and then compared the training loss of all our four models. The Figures 4.2,
4.3, 4.4 and 4.5 shows the visual representations of the training loss of all the 4
models. Here we can see that all the models converge after 10 epochs. But they
do not converge entirely. For better convergence, training the models for 20 to 25
epochs is recommended.

Figure 4.2: Training loss of Inception v3 and Vanila LSTM.

Figure 4.3: Training loss of VGG16 and Vanila LSTM.
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Figure 4.4: Training loss of Inception v3 and Bi-directional LSTM.

Figure 4.5: Training loss of VGG16 and Bi-Directional LSTM.
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4.2.2 Training Time Of The Models

Table 4.4 shows the total training time for each of the four model combinations used
for this task. The Inception V3 with the vanilla LSTM network took 26 minutes and
10 seconds to train whereas the Bidirectional LSTM model having the same CNN
backbone needed 19 minutes and 20 seconds to train itself. On the other hand, the
combination of VGG16 and traditional LSTM network required 27 minutes and 21
seconds to train compared to the 22 minutes and 12 seconds training time of the
VGG16 and Bidirectional LSTM-based architecture.

Result Training Time

Inception v3 + BiLSTM 19 minutes 20 seconds

Inception v3 + LSTM 26 minutes 10 seconds

VGG16 + LSTM 27 minutes 21 seconds

VGG16 + BiLSTM 22 minutes 12 seconds

Table 4.4: Model Training Times

4.2.3 Cosine Similarity Of The Models

We have also calculated the cosine similarity as an accuracy metric for all the four
models. We calculated the cosine similarity for each of the captions and then we
have taken the avaerage cosine similarity for all captions combined and converted
it into a percentage. Table 4.5 shows the average cosine similarities of all the four
models. Here we can see that the inception and Bidirectional LSTM gives the best
result with 62.28% cosine similarity. And the VGG16 and Bidirectional LSTM gives
the lowest accuracy.

Model Cosine Similarity

Inception v3 + BiLSTM 62.28%

Inception v3 + LSTM 60.39%

VGG16 + LSTM 54.61%

VGG16 + BiLSTM 52.60%

Table 4.5: Model Cosine Similarity
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4.2.4 Naive Accuracy Of The Models

A naive accuracy check for the predicted and actual texts has been carried out. We
calculated the naive accuracy for each of the captions and then we have taken the
avaerage naive accuracy for all captions combined and converted it into a percent-
age. In this metric, the number of words in actual captions that are also present
in the predicted captions has been calculated. The number of words that are not
present in the predicted captions but are present in the actual captions have also
been calculated as shown in Table 4.6.

Model Number of
words in pre-
dicted caption
present in the
actual caption
(%)

Number of
words in pre-
dicted caption
that are not
matching with
the actual
caption (%)

Inception v3 + BiLSTM 76.83% 45.68%

Inception v3 + LSTM 70.55% 37.05%

VGG16 + LSTM 59.54% 53.25%

VGG16 + BiLSTM 69.77% 50.25%

Table 4.6: Naive Accuracy Metrics

For the VGG16-LSTM model, 69.77% of the words that are present in the actual
captions are also present in the predicted captions and 50.25% of words are not in
either predicted captions or the actual captions. The VGG16-Bi-Directional LSTM
model produced results where 59.54% of the words that are present in the actual
captions are also present in the predicted captions. 53.25% of words are not in
either predicted captions or the actual captions. Afterwards, results for the model
Inception V3 and LSTM has been derived. The results showcased that 70.55% of
the words that are present in the actual captions are also present in the predicted
captions and 37.05% of words are not in either predicted captions or the actual
captions. Finally, the results for the Inception V3 and Bi-Directional LSTM model
show that 76.83% of the words that are present in the actual captions are also
present in the predicted captions and 45.68% of words are not in either predicted
captions or the actual captions.
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4.3 Discussion

In results section we have seen which model takes how much time to train fully.
The pre-trained CNN models we used, VGG16 and Inception v3 take some time
to extract features from images. In comparison to VGG16 the Inception v3 model
takes more time to extract the features. Inception v3 takes about 28 seconds to
extract all features from the image and the VGG16 model takes 54 seconds, which
is more than double the time. In Table 4.1 we can see the total times each model
has taken to train on our dataset. From the table we can say that the Inception
and Bidirectional LSTM takes the minimum time out of the four models. So the
fastest model is Inception and bi directional LSTM which takes 19 minutes and 20
seconds to train while on the other hand the slowest model is VGG16 and vanilla
LSTM which takes 27 minutes and 21 seconds.

34



Chapter 5

Conclusion

In our paper, we have curated a dataset of ultrasound images of women and their
corresponding textual diagnoses. The dataset includes images mostly from the ab-
dominal region to include the uterus, myometrium, endometrium and cervix in order
to obtain an array of impressions related to female health. The lack of techniques
for automatic medical caption generation is addressed with the usage of Machine
Translation. Two pre-trained CNN models, namely, VGG16 and Inception v3 were
used to extract features from the ultrasound images. The feature vectors generated
and the text sequences serve as inputs for the encoder-decoder model. Vanilla LSTM
and Bi-directional LSTM are the generation models that formulate the annotations
that explain the diagnoses from the image content. Four different combinations
using VGG16, Inception v3, Vanilla LSTM and Bi-directional LSTM will be used
to derive results of varying levels of accuracy. Based on the performance of the
models and the percentage accuracy derived from the results, the best model was
determined. Our model not only makes medical image interpretation convenient
for both patients and medical staff, but also lessen the void that exists in works
related to automatic ultrasound image captioning. With further exploration, this
model can also be used for similar medical image datasets of different modalities
given corresponding textual representations are present. A further scope of research
may include, in the stead of discreet values, utilizing continuous data from reports
in regards to medical diagnosis.
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