
Comparative Performance Analysis of SDN vs Traditional
Networks using SDN Controller

by

Md. Sakib Shahriar
19101361

Jahid Hossain Sabit
19101344

Akib Ahmed
22241175

Amiruzzaman
22141068

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
School of Data and Science

Brac University
January 2023

© 2023. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Md. Sakib Shahriar

19101361

Jahid Hossain Sabit

19101344

Akib Ahmed

22241175

Amiruzzaman

22141068

i

Approval

The thesis titled “Comparative Performance Analysis of SDN vs Traditional Net-
works using SDN Controller.” submitted by

1. Md. Sakib Shahriar (19101361)

2. Jahid Hossain Sabit (19101344)

3. Akib Ahmed (22241175)

4. Amiruzzaman (22141068)

Of Fall, 2023 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 19, 2023.

Examining Committee:

Supervisor:
(Member)

Amitabha Chakrabarty, PhD

Associate Professor
Department of Computer Science and Engineering

Brac University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD

Professor
Department of Computer Science and Engineering

Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi

Associate Professor
Department of Computer Science and Engineering

Brac University

ii

Abstract

New difficulties have been presented to the future of the Internet by emerging devel-
opments in information and communication technology (ICT) and numerous Inter-
net services, with high priority given to dynamic maintenance and high bandwidth.
Considering traditional networking techniques, where device setups are conducted
manually and the network infrastructure’s capacity is not completely exploited, the
high bandwidth required for transmitting enormous amounts of data cannot be at-
tained. SDN, or software defined networking, is a new approach to solving these
issues. This study compares and contrasts the performance of conventional networks
versus SDN. By contrasting round-trip propagation latency between end nodes and
maximum attainable throughput between nodes in traditional as well as Software-
defined network environments, a performance study for fundamental and suggested
network topologies is conducted using simulations carried out in Mininet.

Keywords: SDN; Networks; Tree; Linear; Packet Drop; Ping; RTT

iii

Acknowledgement

Firstly, all praise to the Great Allah for whom our thesis have been completed
without any major interruption.
Secondly, to our advisor Dr. Amitabha Chakrabarty sir for his kind support and
advice in our work. He helped us whenever we needed help.
And finally to our parents without their throughout sup-port it may not be possible.
With their kind support and prayer we are now on the verge of our graduation.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables viii

Nomenclature x

1 Introduction 1
1.1 Research Problems . 5
1.2 Research Objectives . 6

2 Literature Review 8
2.1 Software Defined Network (SDN) . 8
2.2 SDN frameworks and its architecture 8
2.3 Related Works . 10

3 Methodology 15
3.1 Topology . 15
3.2 Routing . 15

4 Implementation 18
4.1 Traditional Networks . 18
4.2 SDN Networks . 19

5 Result 20
5.1 Network Monitoring . 20
5.2 Limited Management . 20
5.3 Complex Network Management . 21
5.4 Latency . 22
5.5 Processing Delay . 22
5.6 Round Trip Time . 23

v

5.7 Packet Drop . 25
5.8 Data Flooding . 26
5.9 Scalability . 27
5.10 Centralized Provisioning . 28
5.11 Maintaining quality of service . 29
5.12 Security . 29
5.13 Reduced Hardware Footprint . 30
5.14 Outcome . 30

6 Conclusion and Future Work 32
6.1 Conclusion . 32
6.2 Future Work . 33

Bibliography 41

vi

List of Figures

2.1 SDN Architecture . 9

3.1 Traditional Networks Routing . 16
3.2 SDN Networks Routing . 17

4.1 Traditional Networks . 18
4.2 SDN Networks . 19

5.1 Processing Delay . 23
5.2 Max Ping . 24

vii

List of Tables

5.1 Average Ping . 24
5.2 Packet Drop . 25

viii

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ACL Access Control List

AI Artificial Intelligence

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BGP Border Gateway Protocol

CLI Command Line Interface

CPU Central Processing Unit

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Service

DOS Disk Operating System

DTE Data Terminal Equipment

GUI Graphical User Interface

ICT Information and Communication Technology

IDS Intrusion Detection system

IOT Internet Of Things

IP Internet Protocol

IPS Intrusion Prevention System

IPv4 Internet Protocol version 4

LAN Local Area Network

MPLS Multi Protocol Label Switching

NAC Network Access Control

ix

NIB Network Information Base

NS3 Network Simulator 3

NTP Network Time Protocol

ODL OpenDayLight

OF Open Flow

OS Operating System

OSPF Open Shortest Path First

OV S OpenVSwitch

PC Personal Computer

QoS Quality of Service

RTT Round Trip Time

SBI Service Based Interface

SLA Service Level Agreement

SSH Secure Shell Host

TC Traffic Control

TCP Transmission Control Protocol

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

UI User Interface

V LAN Virtual Local Area Network

VM Virtual Machine

V N Virtual Network

V PC Virtual Personal Computer

WLAN Wireless Local Area Network

x

Chapter 1

Introduction

In every nook and cranny of our life, the Internet plays a significant role. When it
comes to TCP/IP transmission, the networking technologies are crucial. To get to
their intended recipient, the packets of data traveling from the source pass via the
Internet’s routers, switches, and so on. These protocols have the responsibility of
rapidly identifying connection failure and determining a different path to the target
in the event of a connection failure [3].
According to [47], in today’s environment, the capacity for failure recognition and
remediation has grown crucial due to the rise in unanticipated breakdowns and as-
saults. In the same way, it is essential to move data from one origin to a certain
endpoint whenever a link fails or even when modifications to the topological data
take place. Knowing or being able to predict the projected optimal time needed for
a system to coincide under specific conditions is essential for the prevention and/or
reduction of packet or data failure. [3], [37]. Networks must prioritize the data
transmission convergence duration since it is seen as a crucial performance criterion
and layout objective for assessing the productivity of the navigation method [16].
Its viability for use in actual deployments increases with the speed at which the pro-
tocol’s running routers aid the infrastructure in recovering throughout breakdown
[35].
Providing accessibility to users so that network activities may be used effectively is
one of the key goals of forthcoming Internet-based apps. Although high bandwidth,
simple connectivity, and dynamic maintenance are crucial factors for the foreseeable
Internet, new developments in smartphones, media platforms, cloud technology, and
big data have presented new challenges [36]. The paper [50] proposes that when it
comes to massive amounts of data, such as those found in data centers, traditional
network solutions that rely on human setup of specialized devices are complicated,
susceptible to mistake, and unable to fully leverage the capabilities of physical net-
work infrastructure. It is hard to maintain outdated network management tech-
niques. Configuration, bug-fixing, and adding additional devices are challenges that
necessitate a significant amount of human effort. The paper [66] states that tradi-
tional networks are more challenging to administer since each network component
must be configured separately by the network administrator using particular instruc-
tions, some of which may vary from provider to provider. Furthermore, deploying
dynamic rules to the network is a difficult task since there is no mechanism for the
network to automatically reconfigure itself in the event of load variation and fail-
ures. Current conventional networks have a close relationship between the control

1

plane, which controls network traffic management, and the data plane, which directs
traffic in accordance with control plane decisions. The primary cause of traditional
networks’ architectural intricacy [22], particularly in switches and routers, is this
close connection between forwarding devices and the management plane. In paper
[13] the authors have indeed made an expenditure in a project that expands net-
works’ development capabilities and lessens the requirement for changing equipment
replacement in order to address scalability issues. These criteria prompted the cre-
ation of the Software Defined Networking architecture, a novel networking approach
(SDN).
The concept ”software-defined networking” (SDN) means a networking technique in
which APIs or controllers that are based on software and connected to the under-
lying hardware architecture, regulate network traffic. Networks that are traditional
employ traffic with embedded systems (including switches, routers, etc). That is
how this paradigm of SDN differs from those networks. The paper [63] states that
until 2025, the total number of IoT devices on the planet is expected to reach 25.2
billion. Software-defined networking (SDN), in accordance with [41], permits the
development and administration of both virtualized systems and traditional hard-
ware. Software-defined networking supports an innovative approach to maintaining
the setup of packets of data via a centralized server, in contrast to network virtual-
ization, which empowers institutions to stratify different simulated systems inside a
single physical system or connect equipment on variety of physical systems to estab-
lish a single virtual network. [45]. The paper [33] dictates that there is no globally
approved flexible network administration that fairly permits flows that goes through
switches. switches in any of the present traditional core and access networks, never-
theless. Furthermore, a typical network lacks a global perspective that is necessary
to maintain an appropriate throughput ratio as the quantity of flows rises. As a
result, once scalability has been reached, it cannot handle new flows or users. By
isolating the Control Plane’s centralized Controller from the Data Plane, SDN rein-
vents this troublesome network management as it currently exists [24]. The need
for each switch and its present flow demand might be understood due to SDN’s
global perspective. Thus, a more equitable distribution of immigrant flows might be
achieved. In addition to improving network scalability to handle additional flow ar-
rivals, this would maintain appropriate levels of flow throughput for each flow. The
benefits of SDN over conventional networks and how it may save costs and enhance
network efficiency have been demonstrated by several writers [30]. A pressing and
intriguing topic for academics nowadays is the smooth conversion from conventional
networks to SDN [64]. The integration connection that was present in a normal
network is destroyed by SDN, which separates the control layer from the data layer.
Network switches are made simpler as a result of this division and are reduced to
simple forwarding devices. A new device dubbed ”Controller” now houses the sys-
tem cognitive plane, also known as the control plane.
The paper [33] dictates that an open-source simulation tool for SDN networks called
Mininet supports this field’s research and instruction. In addition to enabling soft-
ware deployments on the topology utilizing an SDN controller like POX or Flood-
light, the paper [14] offers a simulated network ecosystem incorporating network
apparatus. In conjunction with POX and Floodlight controllers, the paper [18] cov-
ers the SDN elements on the Mininet simulation tool. According to them, the tool’s
functionality is heavily focused on producing outcomes in a real-world setting. Ad-

2

ditionally, according to prototyping, implementation, and collaboration, the paper
[5] details the efficiency of Mininet, particularly in terms of time and materials. It is
also simple because of the drag and drop capabilities that makes it simple to design
topology. In accordance with [71] Mininet is a solution for orchestrating and sim-
ulating SDN networks. For network comprehensive simulation, it offers a portable
virtualization system. It has the ability to operate a variety of hosts, switches,
routers, and connections on a Linux kernel. The papers [24] and [51] state that the
capabilities accessible using Mininet are as follows:

• Customized topologies can be created.

• Engaging with actual Linux OS apps in real time.

• Switches may be configured for packet forwarding.

• It is simple to use and straightforward to provide results.

• It offers a quick and inexpensive way to evaluate networks for the advancement
of OpenFlow applications.

• It enables autonomous tasks on a single network topology by different re-
searchers.

• Without even requiring a physical infrastructure, it facilitates evaluation of
enormous and complex structures.

• This encompasses tools to troubleshoot and test across the network.

• This also offers straightforward Python APIs for testing.

• It endorses a wide range of topologies and contains a basic collection of topolo-
gies.

The paper [66] also proposes that a Linux Secure Shell (SSH) connection may be
made to a virtual host on the mininet that functions like a genuine device and can be
used to execute many programs, including Linux-installed ones. It uses the network
domain system and process-based virtualization, a characteristic of Linux, to build
virtual hosts that behave like distinct hardware components. In order to simulate
connection speed and latency, packets can be sent through a workflow that resembles
a genuine Ethernet by the programs connecting the virtual hosts. A predetermined
degree of queueing is used to simulate real Ethernet switches and routers in order
to handle packets. The OpenFlow switches software, known as ”Open vSwitch,”
which is used for virtual switches, will be covered later. Utilizing virtual Ethernet
pairs that are made available by the Linux Kernel, virtual connections are created
between hosts and virtual switches. Link synchronization primitives and virtual
Ethernet connections are used in conjunction with the virtualization capabilities of
the Linux kernel, as well as CPU speed separation and network namespaces. In-
stead of using whole virtual machines as emulators do, this approach starts up more
quickly and expands to multiple hosts.
In agreement with [66] the elements that make up a Mininet network are as follows:

3

1. Isolated Hosts: A network namespace is occupied by a collection of user-
level activities that make up an emulated host. With the use of network
subdomains, process groups may privately control their surfaces, ports, and
routing tables. Each activity group’s share of a CPU is restricted by Mininet
via CPU Bandwidth Restriction.

2. Emulated Links: Linux Traffic Control (TC), which uses packet schedulers
to bend traffic to a defined pace, determines the data rate for each link. Ev-
ery simulated host has at least one virtual Ethernet port. When two virtual
interfaces or virtual switch ports need to be connected, a virtual Ethernet is
employed. To pretty much the entire network, including application software,
each virtual connection functions as a genuine, working Ethernet port.

3. Emulation Switches: To switch packets between several network interfaces,
Mininet employs Open vSwitch, which operates in kernel mode.

In accordance with [28] a network operating system, often known as the SDN con-
troller, is the primary element of a software-defined network. The SDN paradigm’s
characteristics are determined by the controller. It is the part in charge of focusing
communication across all of the network’s configurable components and offering a
single picture of the network. Numerous SDN controllers are available right now.
The design and intricacy of the controller’s programming language, along with its
use in its development, are crucial for creating applications. The paper [23] focuses
on a free and controller for OpenFlow and SDN, POX. POX is used to create and
prototype innovative network services more quickly. The Mininet virtual machine
has a pre-installed POX controller. POX Controller enables you to turn straight-
forward OpenFlow systems in switch, hub, load-balancing, and firewall hardware.
OpenFlow/SDN studies may be carried out simply using the POX controller. To
do investigation using testbeds, actual hardware, or a Mininet emulator, POX may
be supplied various settings in accordance with real or experimental topologies. Ac-
cording to [11], the TCP dump packet capturing tool is required in order to observe
and collect the messages traveling through the POX controller and OpenFlow end-
points.
The functionality of a software application and its hardware architecture are pre-
cisely reproduced through emulation, which does not allow for modeling [67]. Several
thousand network engineers throughout the world use Mininet to simulate, config-
ure, test, and debug real and virtual networks. Industrial sensor network, compos-
ite topology architecture, automated networking, and multi-protocol label switching
(MPLS) are some of the notable works that have been done using Mininet. Making
the shift to become modern firms that improve consumer experiences and empower
employees to execute at the very highest level possible is made simpler by technolo-
gies such as VMware. A single Windows or Linux PC may run numerous operating
systems as virtualized systems, thanks to VMware. Open vSwitch, sometimes known
as OVS, is a global emulated multilayer switch program that is available as an open-
source project. Open vSwitch’s primary goal is to offer a switching layer for hardware
virtualization settings whilst enabling a variety of interfaces and conventions used
in computer networks. It comes hand-in-hand with VMware as well. According to
the paper [56], it is possible to activate the firewall feature on the SDN switch using
the Open vSwitch. In the SDN context, controllers have a significant impact. It is

4

an application that utilizes the Northbound API to manage all data flow between
application modules and switches. The operator which oversees all network-wide
managing responsibilities is known as the SDN controller, to put it briefly [46]. The
paper [46] claims that a software-defined networking (SDN) solution makes use of
the POX and Floodlight Controller, an open group of programmers, majority of
them are representing Big Switch Systems, to build a network in the SDN hub that
is deployed in a virtual box, the characteristics of POX and Floodlight controllers
are evaluated in this study. Multiple controllers are packaged together in the SDN
hub. That controller may be created and utilized to manage the established network
depending on user needs.
In this paper we will be using Mininet, VMware, Open vSwitch, and POX controllers.
Since Mininet is used for evaluating and fixing networks, both real and virtual, it
helped us to virtualize real hardware devices. We can operate different topologies
with only a few devices. The devices produced while we constructed topologies of
traditional and SDN in Mininet utilizing the all-in-one software GUI interface had to
be hosted and managed by a server function. This is where VMware came into play
for our work. If you want to utilize the Mininet VM, we had two options for running
it, directly on your PC through virtualization software like VMware Workstation,
VirtualBox, or Hyper-V, or globally on a server via VMware ESXi or perhaps in the
cloud. We went with the former. For device routing, we could utilize OpenVswitch
(OVS), a virtual switch which joins virtual computers with the aid of virtual con-
nections and ports, because it can connect virtual machines. For connecting the
routers, switches, and maintaining traffic, we are using the POX SDN controller.
The SDN Controller POX is in responsible of providing the infrastructure facilities
with the instructions it requires to regulate traffic, and it is required to keep all
network policies current and accurate.

1.1 Research Problems

The effectiveness of the network is impacted by a number of distinct characteris-
tics of SDN controllers. It is unimportant to choose a controller based on only one
attribute, therefore choose many to see how they affect network efficacy and pro-
ductivity. In the study [46], one method of the decision technique is discussed in
depth. The papers [14],[9],[24] state that as opposed to smaller networks, where
development and implementation may be performed without the need for special-
ized personnel, Software defined networking infrastructure, according to the article’s
writers, is not a system that is easily transferrable. In contrast, the paper [18] pro-
poses that organizations operating large-scale data networks must be concerned with
implementation in software-defined networks. As a result, unplanned contact with
other installed networks may increase the data rate of broadcast traffic generated by
devices that are not OpenFlow compatible. The paper [51] proposes that one of the
most significant difficulties with SDN is interoperability. It is necessary to provide
an interface for communication between SDN and non-SDN control planes, such as
MPLS, since this will boost the operational network’s scalability. The amount of
data flows that the SDN controller can manage depends on the open flow mecha-
nism, which sets up the flow process every time a new flow is launched which can
be an issue.
Computer networks are functionally divided into three areas: the data, control, and

5

management planes. The phrase data plane refers to the networking hardware which
is responsible for (essentially) sending information. The paper [61] suggested, the
control plane is a representation of the procedures that are employed to populate
the routing columns of the data plane elements. The management plane contains
the software programs necessary to continuously monitor and modify the control
capabilities. The SNMP-based utilities are some examples [2]. The [34] examines
that, the management plane defines network protocol, the control plane enacts it,
and the data plane puts it into action by transmitting data in accordance with.
According to [29], IP networks’ control and data planes have historically been closely
related and a part of the same networking infrastructure. The gadgets are exten-
sively distributed throughout the entire corporation. The result is a tremendously
intricate and static architecture. Additionally, it is the basic cause of the rigidity of
conventional networks. It is very difficult to maintain and regulate. The paper [29]
asserts that these two characteristics are largely to fault for a vertically integrated
industry that lacks creativity.
According to [68], in the modern world networks, network setup failures and their
related issues are very prevalent. Very undesirable network events, such as forward-
ing loops, packet loss and configuration of unexpected pathways, service disruptions,
or contract infringements, may arise from a single incorrectly configured device. In
fact, although it happens seldom, a single improperly configured router can impair
the proper performance of the entire Internet for several hours. Moreover, to en-
sure that all queries are processed without interruption, managing a large volume of
data in the network necessitates a controller with a high CPU and memory capacity.
Few companies provide unique solutions comprising specialized hardware, operating
systems, and control software to enable network administration. In [68] it is said
that prolonged payback on investment cycles and high capital and operating costs
associated with constructing and access control, load balancing, energy efficiency,
and traffic engineering are examples of novel features and applications that cannot
be implemented with current networking systems.
Controller positioning, scalability, efficiency, safety, compatibility, and reliability are
among the SDN difficulties [21]. One controller is responsible for managing all the
networks according to the SDN centralized controller paradigm [68]. Because there
is no backup controller, if the central controller fails, the entire network is destroyed
[57]. According to [27], the goal of software-defined networking is to promote de-
velopment and provide easy programmatic management of the network data path.
Another issue that arises with SDN is scalability, since, with this method, the data
and control planes are separate yet may still function autonomously so long as an
API links them. From a single perspective, control plane modifications are acceler-
ated by network changes. The necessity for a consistent API for both planes and
the SDN controller, which presents a challenge as the network’s number of switches
and nodes increases, is one of the drawbacks of the decoupling process [40].

1.2 Research Objectives

We are aiming to get results of various networking modules by comparing traditional
networks with software-defined networks. From our research, we are able to describe
the performance analysis of both SDN and traditional networks.
The objectives of this research are:

6

• Understanding the differences between traditional and SDN networks.

• Understand and implement both traditional and SDN topologies.

• Comprehensive implementation of tools like Mininet, OpenFlow, Open vSwitch
etc.

• Operation of different SDN controllers.

• Understanding the pros and cons of both traditional and SDN networks.

• Comprehension of when to transform from traditional to SDN network.

• To offer a better and more improved analysis.

7

Chapter 2

Literature Review

Today is the age of the internet. Our everyday work-related devices are all now
connected to the internet. So, they all can be considered as IoT devices. For
this, everyone needs some kind of network to connect all these devices to one an-
other. Nowadays every industry, organization and institution have its own network.
Therefore, network speed and performance need to be faster and more efficient. The
traditional network has some major drawbacks. Such as implementation and adding
new routers need to be set up manually. Whereas Software Defined Network makes
it way much easier. As the control of the network is centralized. Moreover, the com-
plexity of network configuration, operation and maintenance can be highly reduced.
So, in terms of performance SDN can be a great solution.

2.1 Software Defined Network (SDN)

Software-defined networking (SDN) is where the network control logic is separated
from infrastructure and the hardware that executes the job. This method stream-
lines the administration of, which may be exclusive to a single business or parti-
tioned to be used by multiple. Controllers in SDN overlay network hardware in the
cloud or on-premises. Thus, it can implement the security control on network level
rather than user level. SDN helps to control the network’s security in a cheaper
way but ensures much more security and control over the network. As the network
is programmable and software can easily update it is much more convenient than
hardware. According to [15] [8], SDN has raised the network structure where the
control plane logic is decoupled from the forwarding plane. SDN is structured in
such a way that a center will control the whole network according to the settings it
needs. [20]

2.2 SDN frameworks and its architecture

SDN’s architecture can be divided into 3 layers. So, the layers in a standard SDN are:

1. Data layer: This is where every data is received and gets forwarded. Here
the IoT devices mainly work.

8

2. Control layer: This is where all the decisions are made. Here, traffic passes
through, and data is monitored and controlled by controllers. It serves as the
network’s brain.

3. Infrastructures layer: This is defined by the following switches that build
up the data plane and handle data packet transportation.

Figure 2.1: SDN Architecture

The framework of SDN consist of 4 things:

1. SDN enabled Switch: to use an SDN based network infrastructures every
user needs to be connected with an SDN compatible switch and the switch has
security policies and rules implemented.

2. IoT devices: devices that can access the internet are considered as IoT de-
vices. These devices connected to SDN enabled switch and follow the rules set
by SDN.

3. Cluster SDN Controller: Based on their geolocation, a small group of
end-users is formed. a cluster could be made up of only a few SDN enabled
switches. A service provider can build a group of users into a cluster in a
certain area to easily enable facility and monitorability in a subspace. [43]

9

4. Master SDN Controller: According to paper [43], at the top of the SDN
system, the Master Controller receives instructions only from the network
operator. The Master SDN Controller manages all Cluster SDN Controllers
under its. This controller can see network traffic flow and access request across
the whole network.[43]

2.3 Related Works

This section will review and critique previous major work on the performance differ-
ence between traditional network and software defined network. Based on different
papers we’ll be able to learn the reasons for performance deficit, challenges and how
to address them using many procedures and algorithms.
SDN based networks perform exceptionally greater than traditional networks on the
basis of managing users as well as reducing lags. Research work [65] shows that the
built-in lag of SDN based WLAN with switches is larger than the SDN based WLAN
without switches. Although, after the handover, traditional networks have a higher
delay than SDN. Traditional based WLANs take more time to send packets than
SDN based WLANs both in terms of with switches and without switches. There-
fore, the overall delay of the Traditional network is significantly higher. Moreover,
the research [65] declares that when the figure of switches boost, SDN structured
networks will still perform superior than the traditional network under most data
rate and delay.
Traditional network is hardware established while SDN is usually software estab-
lished. SDN has greater accessibility than traditional networks under most of the
handling resources. One of the major benefits of SDN, it offers a platform for soft-
ware with huge data. Such as virtualization, traffic modeling, simulation, big data,
and cross layer architecture. Research [35] shows the comparison with the networks
with or without the SDN approach. By using the SDN access, the network con-
tracts packet loss and escalates the bandwidth. As the endowed datagrams were
absent 3.3% in SDN endorsed networks. On the contrary, datagram losses in the
SDN network were 16.6%. For that reason, the prospected structure can be efficient,
scalable, flexible, reusable, as well as robust for contrasting applications. In short,
SDN offers effective and automated network control solutions to the network’s grow-
ing complexity as well as that of many other software domains.
According to paper [35], in comparison with traditional network and SDN, moderate
time required for SDN (OpenFlow-enabled network) is low. Because the increasing
speed of data communication and improved round-trip propagation delay impacts
better speed and maximizes throughput. Again, network efficiency increases signif-
icantly by diminishing undesirable traffic and overheads of the data packet. In a
traditional network, data plane and control plane are perpendicularly unified on a
system core devices and have complicated designs and can be challenging to control
and manage. SDN architecture solves the vertical integration issue in traditional
networks by centrally controlling the data plane. Also, control plane separation
from network core devices helps to manage the network more efficiently. Even for
different topologies such as single, linear and tree topology, SDN (OpenFlow-enabled
network) performs agile due to its chief controlled construction. The switch will pre-
serve a document of that specific data flow entry for a length of time determined by
the OpenFlow controller once it has been made in the flow table of an OpenFlow-

10

enabled switch for each given flow. If further packets of the cloned data flow arrive at
the switch within the specified pace but after a lag, the switch will immediately send
the packet to its intended terminal based on the stated flow entry. As a result, time
for route calculation is reduced drastically and network performance is improved.
Due to the quickest data transmission rate, the OpenFlow-enabled network’s overall
throughput will be higher than a traditional network.
From research [70], we can see that SDN-based delay measurement approaches are
more precise and exact than traditional network strategies when paired with the
route information. Additionally, they are more resistant to dynamic route changes.
As the route changes can be done comfortably in comparison to traditional net-
works. Also, by including the delays of each of its subsequent links, the controller
may construct a one-way delay route which is not feasible in a traditional network
due to lack of route information. Moreover, SDN is more suitable than traditional
networks for executing several measurements simultaneously and parallel due to its
central control and flexibility. Furthermore, SDN chooses the best nodes and path-
ways possible to reduce overall overhead while maintaining accuracy. Resulting in
a more effective technique to coordinate network-wide measures through the con-
troller. So, the performance of SDN is greater than traditional networks.
According to [35], an SDN based network has advantages of centralizing the data, re-
ducing hardware cost, cloud abstraction, security, automation, flexibility and more.
Almohaimed and Asaduzzaman clearly explained [58], a modern engineering for
connecting node corners computing to software-based organizing and appearing to
make strides in managing with enormous information handling in SDN. That can
only be controlled from the central main controller. The matter that has been de-
creased by SDN’s conception of tall weight on the most controller influences the by
and large organize yield, driving to longer inactivity as the information estimate in-
crements. They handled a modern show of SDN Edge Controlling that, by handling
edge computing advances, conquered the impediments of the execution. In order to
curtail the concern on the SDN controller and the control plane and diminish the lag
between the control plane and forward plane, the objective is to urge the computer
and computing adroitness near to the arranged gear. The test has shown that the
most controller’s by and large reaction time is decreased by nearly 62 percent per
10,000 demands, and transmission capacity is diminished by nearly 45 percent.
In paper [23], it states that applying SDN to Unmanned Aerial System (UAS) to
screen sensor information gives the capacity to oversee sensor systems while run-
ning itself in the full capacity and UAV by a centralized SDN controller. They
displayed the SD-UAV design system and sensor organizing. They performed the
analogy between the systems without SDN and systems utilizing the SDN access.
The reenactment discoveries appeared that utilizing the SDN approach inside sys-
tems diminishes parcel misfortune and increments the broadcast capacity as trans-
mitted datagrams were misplaced in SDN-assisted systems at 3.3%. In comparison,
misfortunes in SDN arrange datagrams were 16.6%. The result too appeared that
the proposed framework can be versatile, adaptable, and reusable for distinctive
applications.
In the case of [35], bringing a few conceivable bottlenecks that assailants can use
to diminish organized productivity or indeed hinder the accessibility of systems. In
expansion, a more capable and profitable immersion strike, a table miss assault,
is inspected. There comes about more than standard immersion. As protocol-

11

independent security and effective stage for SDN/OpenFlow systems, they proposed
SDN Gatekeeper to avoid lost table assaults. They too proposed SDN Gatekeeper.
It is found between the switch and other controller arrangements and ensures the
organize utilizing four utilitarian modules: The bundle touchy areas preprocessor
module, which causes the controller’s stream rules to transmit; the risk locator mod-
ule to caution of the assault flag; a module of activity channel which classifies the
focused-on ports; and frequency-based sifting of activity; the law sweeper within the
turn stream table for erasing pernicious rules. All SDN Gatekeeper plans comply
with OpenFlow, requiring no change of the convention or outside hardware. The
evaluation appeared that, in terms of control channel transmission capacity, machine
CPU utilization, and exchange stream table with negligible gadget overhead, SDN
Gatekeeper seem to viably ease the table-miss assault and ensure arrangement of
foundation assets.
The survey and analysis of [35] shows that conventional systems are difficult to reg-
ulate and intricate. The majority of the causes for this are vertical coordination
between communication and control planes and producer-specificity. By separating
the Data plane from the Control plane, increasing the arrangement’s adaptability,
and centralizing the control, SDN was given the chance to address these lengthy
problems. This led to several ideas focusing on SDN and its application rather than
traditional organization. Based on the writing survey, each inquiry examined SDN
since of distinctive highlights.
From the comparison graph of [35] shows, Using a safe and efficient sustainable en-
ergy system of Blockchain-enabled software-defined IoT as opposed to traditional
Blockchain will help to maintain the security and integrity of the organization, and
the authors of [23] explained, utilizing the SDN approach inside systems diminishes
parcel misfortune and increments the transfer speed. But also, the study of [35]
presents a systematic, secure SDN platform capable of fending off DoS attacks and
spoofing attacks with minimal setup costs.
It is made evident in the study SDN versus traditional network [23] that signifi-
cant changes in the architecture of present networks are necessary to support ICT’s
projected future development and current consumption levels. The substitute that
is intended to handle present and future difficulties in communication systems is
software defined systems. Systems need to be more flexible, adaptable, controllable,
and secure when SDN is implemented. The outcomes of this experiment are positive
and demonstrate the potential of SDN, particularly in relation to a crucial area like
scalability and network expansion adaption. In the studies, it was feasible to see
how longer delays were measured in the old network than in the SDN as the network
evolved. On the other side, it was discovered that the SDN network also produced
good outcomes when the average throughput in both systems was compared. The
study also demonstrated the value of simulation in understanding and assessing the
performance of communication networks, particularly the open-source application
Mininet, which was developed for SDN investigation and improvement. Neverthe-
less, there is a still far to go.
Research work of [35], states that SDN changes the organizing vision with a notewor-
thy thought of isolating the organizing control from the information administration
equipment and brings unused functionalities such as programmability, flexibility,
adaptability, and appropriation capability within the arrange, which are trouble-
some to think of in conventional inflexible arrange design. Be that as it may, a wide

12

extent of helpless surfaces specifically or in a roundabout way influence the SDN-
based system’s data security and dispatch different assaults. The paper starts with
a set of the preferences of SDN over the conventional organization but, the discov-
eries of the investigation take off the wraps with respect to vulnerabilities and their
results on data security. Subsequently, the risk surfaces are uncovered that exist
in SDN design due to frail data security. In expansion, the investigate discoveries
too uncover other unmistakable issues independent of data security issues. The con-
sideration is to ring the chime within the most extreme SDN viewpoints and make
analysts or experts mindful of current trends of SDN within the best conceivable
way. The comprehensiveness of this work is held by specifying each portion of SDN,
which makes a difference for the analysts or experts to progress SDN fundamentally
or practically.
Liu and Godfrey portraits [71], and explains the differing and changeable organize
upper-layer applications and trade necessities and the current steady and unbending
conventional organize design. Moreover, the failure to perform clever stream control
and visualized arrange status supervision based on organized conditions is addition-
ally an issue that ruins advance improvement for traditional networks. Furthermore,
it shows that the programmable network which uses SDN has 3 major advantages
and those are challenges confronted by interface/protocol standardization. At dis-
play, the control design framework of the SDN centralized control concept isn’t
bound together, and it is troublesome to attain common operation due to the dis-
tinctive degrees of vendors’ back for the SDN standard, The center controller of
the SDN organize may have security issues such as over the top stack, single point
disappointment, and powerlessness to organize assaults. In this manner, it is vital
to set up a sensible component to guarantee the safe and steady operation of the
complete framework and the existing ASIC chip engineering is based on the conven-
tional IP or Ethernet tending to and sending plan. In this manner, whether the gear
beneath the SDN engineering can keep up the hypothetical tall execution remains
to be talked about.
In the research of [35] they define that for the control plane, conventional organiz-
ing actualizes a dispersed worldview. For each organized gadget, convention works
freely. These organize gadgets interface, but no central AI oversees the full organi-
zation or makes it shorter.[23][35].
This paper [35]centralize the idea about SDN’s positive highlights would essentially
encourage collecting, conveying, recovering, and analyzing enormous information.
On the contrary side, Big Data would have important recommendations for the
design and management of SDN. The developers suggested that SDN seemed to
benefit from vast amounts of data, including activity modelling, cross-layer architec-
ture, potential threats removed, and SDN-based intra- and cross centre technologies.
Enormous info and SDN joint development will be a good structuring strategy with
this data. On the other hand, the research of Achleitner, Bartolini, He, Portaand
Tootaghaj [35] explains that SDN gives an instrument permitting the utilization of
stream rules to adjust and re-program the information plane effectively. Effective
stream rules updates are essential for the development of highly adaptable SDNs
that can quickly recover from planned blackouts or respond to evolving needs. The
optimized architecture and associated flow configuration calculations, which take
into account computing the existing streaming configuration on the controller and
the duration of implementation of this establishment on the switches, have been

13

developed to support fast-changing streaming specifics in SDNs. Through point-
by-point recreations. The suggested computations have demonstrated that they
outperform current, most short-path-based arrangements in the circumstances un-
der consideration by reducing the overall initialization time of the organization by
up to 55% while delivering equivalent parcel loss.
They also discovered that, in an arranged arrangement with the partition of a snuffed
relationship, computations would reduce the typical time to restore damaged flows
by 40%.
For the network routing management, the research of [35] distinguishes that Application-
aware directing “routes” each application exclusively by adjusting the application’s
communication inclinations and ways with comparing properties. This strategy
permits different steering techniques to be connected at the same time, successfully
growing the extent of applications the arrange can back with the help of SDN. How-
ever, traditional networks have no such ways. Moreover, an OpenFlow controller for
actualizing an application-aware arrangement, was created as a reference execution.
The appropriateness of an application-aware organization was approved by assess-
ing the possibility and common sense of the innovation. Possibility was assessed by
comparing the execution of an application-aware organization and a conventional
arrangement in basic circumstances. Common sense was assessed by testing an
application-aware arrangement with a real-world application and a wide-area orga-
nization with the help of different SDN algorithms used for better management.

14

Chapter 3

Methodology

Entire network topology is affected by the SDN control plane which gives direct
and indirect, the overall performance. Different factors knowledge should be gained
which is crucial for better performance. Methodology is given below:
A PC with AMD Ryzen (TM) 3600 CPU @3.80GHz. x2 with RAM 16GB,512GB
SSD, 2TB HDD with Windows 10 operating system where we are using Ubuntu 22.4
Lts by using VMware software version 16.2.5. We have made an SDN topology using
Mininet version 2.3.0 with Open vSwitch that is controlled by Pox as the controller.
NS3 GUI is used to build and connect the topology that are written in Python
version 3.5/3.7 scripts. Pox is python based CLI interface controller for SDN. For
traditional networks we use GNS3 Simulation tools with Cisco C7200 router image
and both Windows and Ubuntu VPC. In traditional networks we use Rip v2 for
routing and DHCP as well as Static Ip for PCs. For SDN, we use mininet Vterminal
for collecting data.

3.1 Topology

For making any kind of network topology is must needed. Computer network topol-
ogy is how to interconnect different com-ponents of network. There are several
topologies. In traditional network system we have used tree topology for 3 routers.
Tree topology is where we use the network components in branches like a tree. [6]
These 3 routers are placed like a star topology system. Star topology is where com-
ponents of a network are placed and connected with each other. For SDN we have
used only tree topology keeping the open-VSwitch as the controller at the top of the
brunch and next brunch is the routers. After those switches are used as one branch
and last branch is used for end-users as well as different servers.
For SDN we have used only tree topology keeping the POX as the controller at the
centre of some switches. After that switches are used as one branch and last branch
is used for end-users as well as different servers.

3.2 Routing

In networking routing is a very important part. For traditional networking we have
to assign Ipv4 address for every inter-face with the subnet mask. If every Ipv4 ad-
dress is unique then we can configure the routers in the console. Here, we are using

15

rip dynamic routing. We need to configure every routing path for this.

Figure 3.1: Traditional Networks Routing

For SDN routing can be done by the controller. We are using POX as the controller.
It has a GUI interface. In the flood light interface there is routing option which is
solely purposed SDN network routing.[35]

16

Figure 3.2: SDN Networks Routing

17

Chapter 4

Implementation

4.1 Traditional Networks

Traditional network is implemented by using GNS3. GNS3 is a Linux operating
system-based network simulator. To make it work, we needed to use VMware for
GNS3 environment to use it in Windows operating system. We have used 20 routers
and 20 switches. One for each router. For router-to-router connection we used se-
rial port as the interface and Serial DTE cable for connections. For router to switch
connection, we used ethernet port (RJ-45) as the interface. We have also used some
PCs as the end user, 1 DNS server, 1 DHCP server. We used ethernet port (RJ-45)
as the interface to connect these components. Moreover, we assigned IPv4 address
to some of the PCs separately and the others by DHCP and run DHCP duplication
check to check if every single one is unique or not. Then, we configured all the
routers and interfaces using router console and used rip dynamic routing for the
routing path. After that, we transferred data from one end Pc to another end PC.
By repeating data transmission and recording by the parameters we collection our
data and analysis them.
We have Used Hybrid architecture to collect data. The reason behind Hybrid ar-
chitecture is the flexibility to convert into other network types by simply switching
links on and off. By connecting to cloud services, it can easily access the internet
via VPCs easily.

Figure 4.1: Traditional Networks

18

4.2 SDN Networks

For this we must simulate the network in Mininet a network simulator. The Mininet
is a Python based network simulator which needs to Run on in a LINUX distro. For
this Linux distribution we choose UBUNTU 18.04 a Debian based Linux distribution
by canonical. For UI we used putty 0.78 and Xming 7.7’s X11 forwarding method.
For controllers we used POX as well as ODL to run the comprehensive tests. POX
uses OpenFlow v1.0 and ODL uses OpenFlow v1.3 control system. Both use North
bound and South bound interface to maintain the flow. In Mininet we use Open-
Vswitch as Interfaces. ODL has a web UI from there all the OpenFlow switches, and
routers can be configured. However, POX does not have any Graphical UI to work
with, rather we used CLI Interface to RUN the tests. In SDN all the network is con-
trolled through our OpenFlow controller, in our case POX. From the controllers, we
assign IP to all the devices, and it automatically routes the network using Shortest
Path Algorithm. When we ping the devices across the network result is positive, so
the ping is successful. By repeating the transfer of data, we collected results via our
parameters.
Again, we have Used Hybrid architecture to collect data. The reason behind Hybrid
is to flexibility to convert in.

Figure 4.2: SDN Networks

19

Chapter 5

Result

5.1 Network Monitoring

The process of collecting, analyzing and interpreting data regarding a network’s
performance and behavior is known as network monitoring. It is an essential part of
network management since it enables the detection of issues and the application of
fixes to enhance network performance. Network monitoring is essential to network
management operations. Trends and patterns in network traffic and devices behav-
ior are a key function of network monitoring [25]. Various specialized hardware and
software solutions are commonly used in traditional networks to carry out network
monitoring. These tools are made to gather information from different network
hardware such as switches and routers. It provides network managers with a gen-
eral picture of network performance. Traditional network monitoring technologies
are not easy to use and could not provide a full picture of the network. SDN offers
a more centralized and customizable method of network monitoring. Network ad-
ministrators receive a thorough overview of the network performance of the network
devices thanks to SDN’s use of a centralized controller. The controller may also
be set up to automatically detect and fix network problems, requiring less operator
interaction. The capacity to gather and analyze network data programmatically is
one of the main benefits of SDN network monitoring. This enables the development
of unique monitoring programs that may be adjusted to the requirements of the
network. To evaluate the data and find patterns and trends that may be utilized to
enhance network performance, SDNs can also apply machine learning techniques.
The capacity to build virtual networks that can be rapidly and readily adjusted to
meet demands is another benefit of SDN network monitoring. By allowing for more
effective use of network resources, this increases network flexibility and may assist
in preventing network problems. For instance, a virtual network can be built for a
particular application with strict criteria for low latency and high throughput, like
video conferencing.

5.2 Limited Management

Traditional networks, also known as ”static networks,” rely on manual configura-
tion of network devices. This approach can be more straightforward and easier to
manage for organizations with limited technical expertise and resources. However,
traditional networks can also be less flexible and less efficient than SDN, as they

20

require manual reconfiguration to make changes to the network infrastructure.

Whereas SDN uses software to centrally control and manage network devices. This
approach can provide greater flexibility, automation, and programmability, allowing
for faster and more efficient network management.[35] However, it also requires a
higher level of technical expertise and specialized hardware and software, which can
be costly to purchase and maintain. Additionally, SDN is relatively new technol-
ogy, lack of industry standards and vendor interoperability can make it difficult for
organizations to integrate SDN with their existing network infrastructure.

In the paper [35], it states that for network performance management, power op-
timization management and resource management different algorithms of SDN are
used to make the network better than the traditional network. Because there is
no option to modify traditional networks like SDN based networks using different
priorities.

In summary, traditional networks may be a better option for organizations with
limited technical expertise and resources, while SDN may be a better option for
organizations with more advanced technical expertise and resources and are looking
for more flexibility and automation.

5.3 Complex Network Management

When it comes to managing complex networks, Software-Defined Networking (SDN)
can provide several advantages over traditional networks.
The research of [74] shows that one of the biggest advantages of SDN is its ability to
provide a centralized, programmable control plane, which allows for better visibility
and control of the network. This can make it easier to manage and troubleshoot
complex networks, as well as automate network configuration changes.
Another advantage of SDN is clarified in [23] that the control plane and data plane
can be separated, allowing for the usage of various hardware and software on each
plane. This can make it easier to scale and adapt the network to changing require-
ments, as well as improve network security. Additionally, SDN can also provide
network virtualization, by which it allows multiple logical networks to run on single
physical hardware, which can be useful for multi-tenancy environments [35].
However, SDN also requires specialized hardware and software, as well as a high
level of technical expertise to implement and manage. Furthermore, SDN is still a
relatively new technology, and the lack of industry standards and vendor interoper-
ability can make it difficult for organizations to integrate SDN with their existing
network infrastructure [35].
In conclusion, SDN can provide significant advantages for managing complex net-
works, but it also requires specialized hardware and software, as well as a high
level of technical expertise to implement and manage. Organizations must weigh
the benefits against the costs and challenges of implementing SDN before making a
decision.

21

5.4 Latency

Latency is a critical metric in network performance. It determines the overall time
needed for a data packet to travel from its source to its destination. According
to [54], this measure is crucial because it shows whether a network has issues with
managing traffic load, such as blockages, which might be delaying it considerably. In
traditional networks, latency is typically introduced by routers and switches. The
data must pass through these network devices. In contrast, SDN aims to reduce
latency by abstracting the control plane of the network away from the underlying
hardware and placing it in software. Another way that SDN reduces latency is by
programmatically controlling the flow of traffic through the network. As a result,
network resources may be used more effectively, and bottlenecks that could increase
latency can be avoided. To further reduce latency, SDNs can employ strategies like
traffic engineering to optimize the route that packets take via the network. Rout-
ing and switching are proprietary network equipment that are used in traditional
networks to manage traffic flow. These devices contain features like firewalls and
Quality of Service (QoS) to monitor and regulate traffic. They employ complicated
routing protocols to find the optimum path for packets to go via the network. How-
ever, because these devices are proprietary, they are difficult to configure and have
limited network management. On the contrary, Software-defined networks isolate
the network’s control plane from the underlying hardware. The data plane is respon-
sible for forwarding the packets and it’s a part of the network equipment. However,
the control plane which regulates and controls the flow of traffic via the network, is
implemented in software. For that, the network is more flexible and programmable
as the control plane can be readily upgraded without needing modifications to the
underlying hardware.

5.5 Processing Delay

The time it takes for a packet of data to be processed by each network device it
travels through end route to its destination is known as processing delay, also known
as end-to-end delay [4]. It is an important indicator of network performance since
it has an impact on the network’s general responsiveness and quality. The many
network devices that data must transit through in older networks are usually what
cause processing delays. The optimum route for packets to travel via the network
is determined by devices like routers and switches. These devices are proprietary
and hard to program, which results in a significant processing delay. By abstracting
the network’s control plane from the underlying hardware and putting it in soft-
ware, software-defined networks (SDNs) seek to minimize processing time. SDN
provides the network additional programmability, flexibility, and control, which can
result in networks that are more effective and agile. Utilizing virtualization is an-
other method through which SDNs might lessen processing time. SDNs enable the
creation of virtual networks that may be rapidly and easily modified to fit require-
ments by abstracting the network away from the underlying hardware. By allowing
for more effective use of network resources, this increases network flexibility and
may assist in shortening processing delays. For instance, a virtual network can be
built for a particular application with strict criteria for short processing latency,
such as real-time gaming. Despite the continued widespread usage of traditional

22

networks, software-defined networking has the potential to drastically reduce pro-
cessing latency and boost network performance. SDNs’ programmability, flexibility,
and control may make networks more effective and nimbler.

In our testing we get that, the processing delay between topologies are not very
different with each other in 5hop length traditional network has 7.27ms and 8.1ms
delay on an average, but SDN has lower 6.04ms and 7.07ms delay on an average,
but if we increase the hop count, the delay keeps on rising. On the contrary, it is
always seen that SDN has lower delay than the traditional network.

Figure 5.1: Processing Delay

5.6 Round Trip Time

Round trip time counts the amount of time it takes for a data packet to travel from
its source to its destination and back to the source [48]. It is a crucial indicator
of network performance. Numerous factors such as network congestion, link speed
and distance have an impact on it. Due to the numerous network devices that data
must transit through and the lack of network traffic flow control in traditional net-
works, the RTT is frequently high. In contrast, SDN uses less network devices. By
abstracting the network’s control plane from the underlying hardware and putting
it in software, SDN can lower RTT. Furthermore, SDNs provide the network addi-
tional programmability, flexibility, and control, which can result in networks that
are more effective and agile. Again, SDN uses traffic engineering techniques to lower
RTT and optimize the path packets go through. Traffic engineering is the process
of managing, routing and analyzing work traffic to enhance and optimize the per-
formance of the network [19]. SDN uses a programmatic approach to manage and
direct traffic based on some specific rules and policies. Whereas traffic engineering
in traditional networks is based on routing protocols and done manually. Open
Shortest Path First (OSPF) and Border Gateway Protocol (BGP) determine the

23

best path for packets to travel through the network [1]. It is done typically by net-
work administrators manually which is a very time consuming and complex process.
In our collected data on linear and SDN topologies, we have found that different
topologies act differently. The average ping of SDN and Traditional Network in 5
switches are not that different but traditional network has lower than their counter
part SDN. When we increase the length of networks to 10 hops, traditional net-
work’s linear topology has an average of 1.345ms RTT whereas, SDN has 1.248ms,
but in tree topology SDN has 1.969ms while traditional network scoring 1.548ms.
It reflects the rest of the testing where SDN linear performs the best and SDN tree
performs worst. From the data we get, we can say that SDN linear has been the
best.

Average Ping 5 Hops 10 Hops 15 Hops 20 Hops 1 Hop
Traditional linear 0.669 1.345 2.336 4.169 -
SDN linear 0.725 1.248 1.784 2.329 -
Traditional Tree 0.992 1.548 2.557 3.746 -
SDN tree 1.061 1.969 3.157 3.926 -
Traditional Single - - - - 0.1
SDN single - - - - 0.06

Table 5.1: Average Ping

Figure 5.2: Max Ping

When it is about Maximum ping traditional linear has 35ms, 65.22ms ,74.12ms and
112,36ms on our test cases. But SDN linear has slightly lower scores than the other
scoring that are 34.826ms, 54.773ms, 79.681ms and 109.71ms. Same reflects on the
tree topology as well. But in tree topology maximum pings are way higher than the
traditional network. But previously we saw that the traditional tree outperforms
the SDN tree on average.

24

On the other hand, single topology has no significant impact on either SDN or
Traditional network on average ping, but for maximum ping, traditional network
takes around 7ms which is 5 times higher than SDNs’ 1.23ms.

5.7 Packet Drop

Packet drop refers to the process of discarding packets that are being transmitted
over a network due to a variety of reasons. Packet drop can occur in traditional
networks as well as in Software-Defined Networking (SDN) environments.
In traditional networks, packet drop can occur due to several reasons such as:
Overloaded network devices (routers, switches, link-nodes and many more) which
May or may not be able to process the amount of traffic they are sending and re-
ceiving. Congestion on the network, which can cause packets to be dropped if the
network is not able to handle the amount of traffic it is receiving. Configuration
error on network devices, such as incorrect access control lists (ACLs), can cause
packets to be dropped. Hardware or software failures on network devices can cause
packets to be dropped.
In SDN environments, packet drop can occur due to several reasons such as: Over-
loaded SDN controllers, which overwhelmed the network controller with data causing
unable to handle the amount of traffic they are receiving. Congestion on the net-
work, which can cause packets to be dropped if the network is unable to process
the amount of traffic it is receiving. Incorrect flow rules or policies on the SDN
controller can cause packets to be dropped. Hardware or software failures on the
SDN controller can cause packets to be dropped. Packet drop can have a negative
impact on network performance and can lead to poor application and service avail-
ability. To mitigate packet, drop in traditional networks, network administrators
can use techniques such as traffic shaping and rate limiting, while in SDN environ-
ments, network administrators can use techniques such as flow-based filtering and
proactive monitoring

packet drop 5 switch 10 switch 15 switch 20 switch
traditional linear 1% 2% 4% 7%
SDN linear 0% 0.50% 1% 2%
traditional tree 3% 4.50% 6% 3%
SDN tree 1% 1% 2% 7%
traditional single 0% 0% 0% 0%
SDN single 0% 0% 0% 0%

Table 5.2: Packet Drop

In our testing the packet drop we see there is significantly less packet drop in SDN
then linear. In SDN vs traditional networks 5 switches, 10 switches 15 switches and
20 switches test cases.
In the traditional linear topology, as the number of hops increases, the packet drop
rate also increases linearly. For example, at 5 switches, the packet drop rate is 1%,
at 10 switches rate is at 2% and at 20 switches, the packet drop rate is 7%. This
suggests that as the number of switches in the network increases, the packet drop
rate also increases.

25

In contrast, in the SDN linear topology, the packet drop rate is Somewhat lower
and remains relatively constant as the number of switches increases. For example,
at 5 switches, the packet drop rate is 0%, and at 20 switches, the packet drop rate
is 2%. This suggests that in an SDN environment, the packet drop rate is low and
less affected by the increasing number of switches adding in the network.
In the traditional tree topology, the packet drop rate increases as the number of
switches increases, but it’s not linear. For example, at 5 switches, the packet drop
rate is 3% and at 20 switches, the packet drop rate is 3%. This suggests that as the
number of switches in the network increases, the packet drop rate increases but not
in a linear way.
In the SDN tree topology, the packet drop rate is relatively low and remains relatively
constant as the number of switches increases. for example, at 5 switches, the packet
drop rate is 1% and at 20 switches, the packet drop rate is 2%. This suggests that in
an SDN environment, the packet drop rate is lower and less affected by the number
of switches in the network.

5.8 Data Flooding

Data flooding happens when large number of data arrives or requested from a net-
work. Most of times data flooding occurs when someone attacks or perform attack
in a network. There can be normal users trying to send a big data or some attackers
attacking the network. Both Traditional and SDN has data flooding but both types
of networks have different system to be flooded and mitigate this.
In traditional networks, Flooding can be happened by sending large amount data
than the network capacity which refers to DDOS attack. Alongside it pings using
mismatching information and spoofing also cause data flooding. Data amplification
also a method to flood a network by DNS and NTP.
In SDN DDoS also can caused data flooding. Moreover, Flood table overflowing
and protocol over flowing also causing flooding in SDN networks. Flow table over-
flow attack is a type of data flooding in which the attacker sends a huge number
of packets towards the SDN controller with the intention of overwhelming the flow
table, causing the controller to crash or become unresponsive [10]. Protocol flood-
ing attack is a type of data flooding in which the attacker sends a huge number of
packets to the SDN controller with the intention of overwhelming the southbound
protocol, causing the controller to crash or become unresponsive [10].
To mitigate the data flooding in traditional network in order to prevent network
flooding, traffic shaping and rate limiting involve limiting the amount of traffic that
can enter the system. Devices like routers and switches that have been set up with
traffic shaping and rate limiting policies can be used for this [10].
Attacks that aim to flood servers with data can be recognized and stopped using
these systems. IDS/IPS systems can be used to detect and block incoming traffic
that matches particular attack signatures, while firewalls can be configured to block
incoming traffic from known malicious IP addresses.
By segmenting the network, one can confine the harm a data flooding attack causes
to a particular portion of the network. Network access control (NAC) solutions or
the creation of virtual LANs (VLANs) can be used to accomplish this.
A significant amount of incoming traffic can be absorbed and filtered out by these
services, keeping it from reaching the intended network. Both specialized DDoS pro-

26

tection appliances and cloud-based DDoS protection services can be used to achieve
this.
The use of a load balancer allows for the distribution of incoming traffic among nu-
merous servers. It can aid in distributing the traffic load and guard against a data
flooding attack that would overwhelm a single server.
To mitigate the data flooding in SDN traffic shaping and rate limiting policies can
be applied more automatically and dynamically using SDN controllers. More precise
control over network traffic is possible thanks to the controller’s centralized view of
the entire network.
When incoming traffic matches certain flow attributes, such as source or destination
IP addresses, ports, or protocols, SDN controllers can drop or rate limit the traffic.
By dropping or rate limiting traffic that matches specific attack signatures, this can
help to stop data flooding attacks [12].
Using SDN controllers, the network can be divided into sections and protected from
data flooding attacks. Virtual networks (VNs) and network access control (NAC)
software are two methods for achieving this.
Similar to traditional networks, SDN can use specialized DDoS protection appli-
ances or cloud-based DDoS protection services to absorb and filter out a significant
portion of incoming traffic, preventing it from reaching the target network.
Real-time monitoring and analysis of network traffic is possible thanks to SDN con-
trollers’ centralized view of the entire network. This can be used to quicker and
more successfully detect data flooding attacks and respond to them.
Programmable mitigation is made possible by SDN, where software programming
languages are used to create the mitigation policies. This enables more dynamic and
adaptable mitigation policies and can make it simpler to adjust to shifting network
conditions and requirements.

5.9 Scalability

One characteristic that many technologies claim to have been scalability. An issue
with many facets, indeed. The fundamental idea may be obvious, but not everyone
will immediately associate scalability with the same idea. As a result, neither its con-
cept nor its substance is subject to widespread, exact consensus. Scalability can be
interpreted in a variety of ways. Some people describe it as the efficiency of process-
ing capacity to CPUs, while others view it as a metric of application parallelization
over several computers. It is a desired quality showing good sense towards a system,
design, algorithm, and other things, independent of what it means to someone. Ac-
cording to [49], preemptive rule implementation in SDN switches lowers the burden
on the controller, which cuts down on processing time and flow commencement cost
in the controller. Nevertheless, this limits the adaptability brought on by the imple-
mentation of reactive flow and lessens the controller’s and the network’s ability to
make quick decisions. As another method of reducing the cognitive burden on the
controller, controller dispersion also has coordination and integrity issues. Scalabil-
ity, then, is a mixture of problems that involves exchange to be openly articulated
when offering a cure rather than an isolated concern which can be addressed entirely.
The paper [49] also proposes that Flow-level forwarding configuration in OpenFlow
switches must be put up and destroyed by a controller in SDN either proactively
or reactively. In order to avoid having to repeat this step for consecutive packets

27

within the same flow, the flow forwarding status is stored on the OpenFlow switches
after it has been configured. A delay is also a part of this configuration procedure.
The SDN industry believes that this flow configuration is the most likely culprit for
the control plane’s efficiency barrier. As a result, while assessing the effectiveness of
control plane scalability, the throughput requests processed and flow establishment
delay take center stage. Because of this, throughput and flow setup delay are the
two measures that best describe scalability, and in the domain of SDN, control plane
virtualization specifically. SDN provides the customer with more scalability, which
is a beneficial byproduct of centralized provisioning. You may quickly alter your
network architecture if you have the flexibility to supply services as needed. When
contrasted to a traditional network arrangement, where resources must be manually
acquired and managed, the disparity in scalability is astounding. Scalability issues
are SDN’s key challenges. According to [72] there are two related concerns that may
be deduced from this main issue: (A) The controller’s scalability (B) The network
node’s scalability. The paper [73] states that up to 6 million flows can be processed
by one controller per second. As a result, in paper [55] [44] it shows how just one
controller, or a few controllers, can operate the necessary control plane operations
for a significant amount of data forwarding nodes. The theoretically hierarchical
controller should therefore be strategically distributed to promote scalability rather
than running peer-to-peer [31]. In spite of whether a controller system is distributed
or peer-to-peer, according to the study [62], all system components will have the
same connectivity problems as the controller.

5.10 Centralized Provisioning

One of SDN’s main advantages is its capability to govern networks from a central-
ized perspective. Simply said, SDN attempts to show the network and data control
planes, enabling users to provide both physical and virtual components from a single
place. This is quite helpful since managing traditional architecture may be difficult,
specifically when there are numerous different components that must be controlled
separately. An administrator can dig down and up at will thanks to SDN, which
removes this barrier. According to [35], in the traditional architecture, network
setup, deployment, and maintenance necessitate highly specialized network and sys-
tem engineer involvement and operating expenses associated with provisioning and
maintaining massive multi-vendor systems. In SDN, a controller that establishes
the network policy centralizes control processes. Open-source controller systems
include Floodlight, OpenDayLight, and Beacon. There are several layers at which
the network may be managed. According to [59] by monitoring the network topo-
logical graph within the Network Information Base, the Controller of SDN keeps a
centralized perspective of the system (NIB). The Controller introduces forwarding
instructions through the so-called Southbound Interface into the nodes that have
flow tables in the network in accordance with data in the NIB and regulations set
forth by network applications (SBI). OpenFlow (OF) is the SBI that is well known
[17]. The packet header data which must match are listed in a flow table entry,
along with the activities that should be taken when a match is made. The paper
[26] implies that centralization protocols like OpenFlow say that a switch is man-
aged by a controller. In order to allow alternative controllers to take over during
the case of a breakdown, OpenFlow permits the connecting of several controllers to

28

a switch.

5.11 Maintaining quality of service

The main difference between maintaining QoS in (SDN) and traditional networks is
the way in which QoS is implemented and managed.
In traditional networks, QoS is typically implemented through a combination of
hardware and software, using devices such as routers, switches, and firewalls. These
devices are configured with various QoS policies and rules, such as traffic shap-
ing, prioritization, and bandwidth management, to manage and prioritize network
traffic. However, managing QoS in traditional networks can be complex and time-
consuming, and it requires a deep understanding of the underlying network infras-
tructure and protocols.
In SDN, QoS is implemented through software-based controllers and algorithms.
The SDN controller has a centralized view of the entire network and can apply QoS
policies and rules in a more automated and dynamic way. This allows for more
granular control over network traffic, and it can make it easier to manage and prior-
itize network traffic. Additionally, SDN allows for real time monitoring and control
of the network traffic, which can be used to optimize QoS and resolve issues more
quickly.
Additionally, SDN supports Automated QoS enforcing rules. So, when needed Con-
trollers can easily roll out the policies and ensure stability. On the other hand,
traditional networks typically manually configured on network devices, and it can
be difficult to ensure that the policies are consistently enforced across the entire
network. In SDN controller it has a centralized view of entire network and monitor
it in real time. But traditional one network cannot see what is happening in other
network so resolve issues takes a lot of time.

5.12 Security

Security is an essential element of software-defined networking. SDN safety must
be embedded into the design in order to give all components and data usefulness,
integrity, and security [69]. Targeting the routes of interaction between separated
planes allows one plane to attack another while pretending to be another. There
are no standards or explicit criteria that would allow open APIs for programs to
administer network support and activities through the control plane, which puts
system services, processes, and functions at substantial security risk [7]. Accord-
ing to [32] a centralized decision-making body in SDN is the control plane, which
might be an OpenFlow controller. Because of its crucial role, the controller can
therefore be specifically attacked for network compromise or criminal activity. Ac-
cording to [17], In SDN, the data plane’s security is significantly impacted by the
security of the control plane. It implies that if one controller is hacked, the system
as a whole, which consists of several data plane nodes, would also be vulnerable.
Threats notwithstanding, there are also remedies. It is simple to develop new apps
that would receive network information and packet attributes via the controller
to create additional security services thanks to the centralized control architecture
made possible by SDN.

29

Additionally, while adhering to security restrictions, access to legitimate apps must
be ensured by the control plane. in accordance with their functional needs. Addi-
tionally, dangerous apps that may install, alter flow controls in the data route must
be prevented from accessing the data plane. For applications that have the ability to
alter flow rules, perfectly alright security enforcement techniques like authentication
and authorization are utilized. Users are given a comprehensive understanding of
their infrastructure and the ability to regulate the security of their whole network
despite the fact that doing so makes the SDN controller a threat.

5.13 Reduced Hardware Footprint

An operator can increase productivity by optimizing hardware consumption with
SDN. Dynamic hardware can have its functionality changed at any time by the
user. This implies that sharing of resources is quite simple. This is superior to
a legacy-driven network with restricted hardware use. The paper [52] states that
the idea of Software-Defined Networking (SDN) is to transfer communication con-
trol from hardware level to the software level. In the context of SDN, routers are
transformed into configurable hardware components with the capacity to modify
their connections in response to instructions from an SDN Controller. The papers
[53] [60] imply that this method encourages a general and concise interaction layout
framework, and because the Controller has a high level of understanding about the
communication facilities, it also leverages self-adaptivity and multi-objectivity. As a
result, the on-chip communication infrastructure is made simpler. simple CS router
design that requires no routing or mediation and simply needs configurable facilities
for packet forwarding.
In this study, we examine the viability of reducing energy usage by adopting software-
defined networks based on OpenFlow. This was carried out in a simulated setting
with Mininet. The paper [39] states that being a command-line program, Mininet
constructs a virtual network made up of virtual hosts, switches, and a controller;
these speeds up response time and simplifies the process to operate. Mininet is
employed to emulate a controller and improve a network architecture in order to
reduce time, power, and resources. A Flow Table can be virtualized and utilized on
the physical network of OpenFlow switches after the network has been simulated
and referred to the controller.

5.14 Outcome

By comparing and testing both SDN and Traditional Networks, Software-Defined
Networking (SDN) is a network architecture that separates the control plane and
data plane of network devices, allowing for more centralized control and dynamic
configuration of network devices. This approach allows for more flexibility and
ease of management, as network administrators can use software to Overall, SDN
allows for more efficient, flexible, and automated management of networks. It also
provides an open and programmable interface, which enables integration with other
technologies, such as virtualization, cloud computing and IoT. However, it requires
a significant investment in terms of infrastructure and expertise [45].
In our tests, at every topology SDN out performs Traditional Static Network and

30

it is also seen that in terms of scalability and monitoring SDN has a lot more
advantage than the Traditional network. In terms of Latency, Delay and RTT our
tests shows that if the length is small there is no significant difference in SDN
and Traditional network. But as the Network length increases SDN has shown a
greater success than Traditional network in maintaining the networks. In the test
SDN linear topology is the best topology by maintaining networks stability on the
other hand Traditional network Tree is the worst. However, average RTT is lower
than the SDN tree. But other cases it is not performing well in other cases. In
terms of Data flooding mitigation and prevention SDN has more real time measure
than Traditional network. So, is more like to use SDN as the future technology
in networks. Additionally, it’s worth mentioning that some traditional network
still has its value in certain use case, for example, networks with high security or
criticality requirements, where the centralized control plane of SDN may not be
suitable. Confidentiality also reduces in SDN as well.

31

Chapter 6

Conclusion and Future Work

6.1 Conclusion

It is tough and challenging to modify conventional networks. The development of
flexible configurability features, that circumvent this limitation, is indeed a core
SDN concept. Traditional networks now in use are difficult to administer and ex-
ceedingly sophisticated. One crucial element is the vertical connection between a
switch’s Control Plane and Data Plane. Additionally, these switches are vendor-
specific. They are restricted to certain lines and models of items. In other terms,
we may argue that every network switch might have a unique administration and
setup plane, that causes a lengthy loop for creating changes. Vendor lock-in issues
are caused by all the aforementioned factors, which also severely impede creativity
and progress. These old issues may now be resolved in large part because of software
defined networking. The key tenet of software-defined networking architecture is, in
fact, the separation of the control plane and the data plane. By concentrating on
performance instead of data, SDN enables the virtualization of the human intellect
accessible to networking. Current networking methods like SDN have been utilized
to reinvent a variety of remedies to traditional network concerns, while certain is-
sues still provide difficulties. With the rising complexities of the infrastructure and
numerous more software sectors, SDN offers effective and automated network man-
agement. The construction and deployment of networks now follow the emerging
paradigm of SDN. SDN is built on a versatile, adaptable, and generally simple-
to-implement infrastructure that is perfect for the necessities of modern world’s
networks and services.
Software-defined infrastructure may be the answer for the Internet of the future.
Traditional networks have complex architecture and can be hard to manage because
of the vertical integration of the control and the data planes on a networking central
device. Because the data and control plane are separated as from network base units
in SDN technology, the hierarchical unification concern with conventional networks
is resolved. This is in contradiction to conventional network architecture, which is
decentralized in management.
In this paper, the varied network topologies taken into account allow for a perfor-
mance comparison of traditional networks with software-defined networks. by con-
trasting two fundamentally tree-based Mininet network topologies. The collected
numerical findings unequivocally show that SDN performs better than conventional
networks. The objective of this study was to conduct a quantitative comparison

32

of key network operational indicators, such as Latency, Round-Trip Time, and
Throughput between a conventional network design utilizing the POX controller,
routing algorithms, and the OpenFlow interface and an SDN network structure
employing these same components. In general, improved productivity in the vari-
ables under study is confirmed by SDN, confirmed by descriptive statistics, with
normalcy and non-parametric testing. Studies have also been done on potential
performance penalties in functionally complicated SDN systems. Results disprove
this phenomenon. Simulation experiments have proven as expected that network
performance is dependent on sources of potential, virtual node density, and network
structure. Because of this, experimental outcomes in systems with varying time and
bandwidth may occur.

6.2 Future Work

Like all things have their limitations, networks also have theirs. We have faced a
lot of issues while working with SDN and traditional networks. The limitations are
more in number in terms of SDN. The traditional network is what we are using on a
regular basis, but since SDN is a new paradigm, it is hard to get resources for SDN.
Nowadays there are hardly any recent resources available online. For example, we
have faced a lot of difficulties while only setting up the SDN network alone. Most of
the resources that are available online are too old which do not work anymore. Ac-
cording to [38] interactions between processes and programs using the same physical
architecture are the root cause of SDN’s increasing complexity. The anticipation of
these interconnections and the corresponding adaptation of the SDN to give reliabil-
ity assurances in terms of accessibility and responsiveness are significant challenges
that service providers must overcome. The most crucial step in adjusting to shifting
client demands and load variations is determining and delivering the required re-
sources to achieve the service level agreement (SLA). Choosing the level of precision
at which resources (such as CPU cycles, cluster nodes, increased memory, expanded
storage capacity, and bandwidth) should be constantly introduced is also of utmost
relevance for the long-term observance of SLA.
We initially started to work on GNS3 for simulation purposes, but later shifted to
Mininet. There are no recent updates of Mininet or GNS3. In GNS3, there are
hardly any free sources available to work on. Cisco and Ubuntu both had put down
their necessary plugins from GNS3, which makes it hard to use GNS3 as a sim-
ulator. Since it will be costlier to purchase all the necessary materials, GNS3 is
abandoned in a way. We later shifted to Mininet. However, since Mininet does not
have a recent update, we were left with a bunch of errors for connecting Mininet
with our SDN controller OpenDayLight which we used before the POX controller.
We were not able to connect the OpenDayLight controller with Mininet because of
the unavailability of the resources. Later we used the POX controller and did our
work successfully.
Among all the SDN controllers, only OpenDayLight (ODL) has recent updates. All
the other controllers’ versions are old. Old versions are not compatible in newer
environments in Mininet. So, this was challenging as well. However, the OpenDay-
Light controller does not have the documentation available which made us not go
for ODL. Since the resources are too old, and we had no documentation to follow
as well, we chose not to work with ODL. Hence, we chose the POX controller over

33

all other controllers and finally we were able to get our desired results.
Further comparisons of the SDN network characteristics in Mininet and OpenDay-
light might be instructive in illuminating the weaknesses and merits of the two
systems. SDN handles the majority of the operations, however security is a key
worry. As vital as endpoints are, network security is as crucial. The centralized
design of SDN creates a security issue. Stronger infrastructure will thus be used
to counter this. The security concerns relating to the control plane are compara-
ble across traditional networks and SDN, but the necessary countermeasures are
different. For the purpose of filtering control packets from end nodes, traditional
networks can set up a network border. Less beneficial in SDN is this strategy. In
the paper [42] it has SDN controllers incorporated into its control plane, that are
frequently connected to the network’s edge and have connection points that are anal-
ogous to end host placements. If a particular control network exists that is separate
from user networks, then the answer may change. In order to prohibit intruders
from taking part in the control plane, SDN mostly needs cryptographic security.
Therefore, security for SDN can be a major field to study in the future. According
to [72] numerous specific SDN challenges, such as standardizing the SDN modules
and establishing new special SDN processes, still need further research to minimize
problems brought about by traditional networks. To develop original ideas for the
controllers that function as the SDN architecture’s intellect, the research must place
a greater emphasis on the control plane. Various security precautions should be
taken into consideration because the control plane is a potential point of break-
down for the overall infrastructure. As a result, SDN is crucial in creating countless
fixes for traditional network concerns, while certain difficulties still pose a challenge.
Additionally, it offers effective and autonomous network control that fulfills the de-
mands of the network’s growing intricacy as well as those of several other software
fields. Future study will need to take into account shared, diverse communication
architectures, the sustainability of the SDN idea for large networks, i.e., control
network delay, as well as consequences and methods for security, i.e., susceptibility
of the control system through the switches.

34

Bibliography

[1] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional ip
routing protocols,” IEEE Communications Magazine, vol. 40, no. 10, pp. 118–
124, 2002. doi: 10.1109/MCOM.2002.1039866.

[2] R. Presuhn, Version 2 of the Protocol Operations for the Simple Network Man-
agement Protocol (SNMP), RFC 3416, Dec. 2002. doi: 10.17487/RFC3416.
[Online]. Available: https://www.rfc-editor.org/info/rfc3416.

[3] G. Lichtwald, M. Zitterbart, and U. Walter, “Improving convergence time of
routing protocols,” 2004.

[4] R. Ramaswamy, N. Weng, and T. Wolf, “Characterizing network processing
delay,” in IEEE Global Telecommunications Conference, 2004. GLOBECOM
’04., vol. 3, 2004, 1629–1634 Vol.3. doi: 10.1109/GLOCOM.2004.1378257.

[5] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyp-
ing for software-defined networks,” in Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[6] T. Fencl, P. Burget, and J. Bilek, “Network topology design,” Control Engi-
neering Practice, vol. 19, no. 11, pp. 1287–1296, 2011.

[7] T. Nadeau and P. Pan, “Software driven networks problem statement,” Net-
work Working Group Internet-Draft, Sep, vol. 30, 2011.

[8] R. Antonello, S. Fernandes, C. Kamienski, et al., “Deep packet inspection tools
and techniques in commodity platforms: Challenges and trends,” Journal of
Network and Computer Applications, vol. 35, no. 6, pp. 1863–1878, 2012, issn:
1084-8045. doi: https://doi.org/10.1016/j.jnca.2012.07.010. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S1084804512001622.

[9] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: A ret-
rospective on evolving sdn,” in Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, ser. HotSDN ’12, Helsinki, Finland: As-
sociation for Computing Machinery, 2012, pp. 85–90, isbn: 9781450314770.
doi: 10.1145/2342441.2342459. [Online]. Available: https://doi.org/10.1145/
2342441.2342459.

[10] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang, “Interest
flooding attack and countermeasures in named data networking,” in 2013 IFIP
Networking Conference, 2013, pp. 1–9.

[11] M. Fernandez, “Evaluating openflow controller paradigms,” in ICN 2013, The
Twelfth International Conference on Networks, 2013, pp. 151–157.

35

https://doi.org/10.1109/MCOM.2002.1039866
https://doi.org/10.17487/RFC3416
https://www.rfc-editor.org/info/rfc3416
https://doi.org/10.1109/GLOCOM.2004.1378257
https://doi.org/https://doi.org/10.1016/j.jnca.2012.07.010
https://www.sciencedirect.com/science/article/pii/S1084804512001622
https://doi.org/10.1145/2342441.2342459
https://doi.org/10.1145/2342441.2342459
https://doi.org/10.1145/2342441.2342459

[12] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach, “Virtual
network embedding: A survey,” IEEE Communications Surveys Tutorials,
vol. 15, no. 4, pp. 1888–1906, 2013. doi: 10.1109/SURV.2013.013013.00155.

[13] A. Gelberger, N. Yemini, and R. Giladi, “Performance analysis of software-
defined networking (sdn),” in 2013 IEEE 21st International Symposium on
Modelling, Analysis and Simulation of Computer and Telecommunication Sys-
tems, 2013, pp. 389–393. doi: 10.1109/MASCOTS.2013.58.

[14] E. Patouni, A. Merentitis, P. Panagiotopoulos, A. Glentis, and N. Alonisti-
oti, “Network virtualisation trends: Virtually anything is possible by connect-
ing the unconnected,” in 2013 IEEE SDN for Future Networks and Services
(SDN4FNS), 2013, pp. 1–7. doi: 10.1109/SDN4FNS.2013.6702545.

[15] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, and L. Veltri, “In-
formation centric networking over sdn and openflow: Architectural aspects
and experiments on the ofelia testbed,” Computer Networks, vol. 57, no. 16,
pp. 3207–3221, 2013, Information Centric Networking, issn: 1389-1286. doi:
https://doi.org/10.1016/j.comnet.2013.07.031. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1389128613002727.

[16] D. Sankar and D. Lancaster, “Routing protocol convergence comparison using
simulation and real equipment,” Advances in Communications, Computing,
Networks and Security, vol. 10, pp. 186–194, 2013.

[17] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: Scalable and
vigilant switch flow management in software-defined networks,” in Proceed-
ings of the 2013 ACM SIGSAC conference on Computer & communications
security, 2013, pp. 413–424.

[18] A. L. Valdivieso Caraguay, L. I. Barona Lopez, and L. J. Garcia Villalba,
“Evolution and challenges of software defined networking,” in 2013 IEEE SDN
for Future Networks and Services (SDN4FNS), 2013, pp. 1–7. doi: 10.1109/
SDN4FNS.2013.6702542.

[19] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for traffic
engineering in sdn-openflow networks,” Computer Networks, vol. 71, pp. 1–30,
2014, issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.2014.06.002.
[Online]. Available: https : / /www . sciencedirect . com/ science / article / pii /
S1389128614002254.

[20] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, and T. Gayraud, “Software-
defined networking: Challenges and research opportunities for future internet,”
Computer Networks, vol. 75, pp. 453–471, 2014, issn: 1389-1286. doi: https:
//doi.org/10.1016/j.comnet.2014.10.015. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1389128614003703.

[21] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, Software-defined network-
ing: State of the art and research challenges, 2014. doi: 10.48550/ARXIV.
1406.0124. [Online]. Available: https://arxiv.org/abs/1406.0124.

[22] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and a layered taxonomy
of software-defined networking,” IEEE Communications Surveys Tutorials,
vol. 16, no. 4, pp. 1955–1980, 2014. doi: 10.1109/COMST.2014.2320094.

36

https://doi.org/10.1109/SURV.2013.013013.00155
https://doi.org/10.1109/MASCOTS.2013.58
https://doi.org/10.1109/SDN4FNS.2013.6702545
https://doi.org/https://doi.org/10.1016/j.comnet.2013.07.031
https://www.sciencedirect.com/science/article/pii/S1389128613002727
https://www.sciencedirect.com/science/article/pii/S1389128613002727
https://doi.org/10.1109/SDN4FNS.2013.6702542
https://doi.org/10.1109/SDN4FNS.2013.6702542
https://doi.org/https://doi.org/10.1016/j.comnet.2014.06.002
https://www.sciencedirect.com/science/article/pii/S1389128614002254
https://www.sciencedirect.com/science/article/pii/S1389128614002254
https://doi.org/https://doi.org/10.1016/j.comnet.2014.10.015
https://doi.org/https://doi.org/10.1016/j.comnet.2014.10.015
https://www.sciencedirect.com/science/article/pii/S1389128614003703
https://www.sciencedirect.com/science/article/pii/S1389128614003703
https://doi.org/10.48550/ARXIV.1406.0124
https://doi.org/10.48550/ARXIV.1406.0124
https://arxiv.org/abs/1406.0124
https://doi.org/10.1109/COMST.2014.2320094

[23] S. Kaur, J. Singh, and N. Ghumman, “Network programmability using pox
controller,” Aug. 2014. doi: 10.13140/RG.2.1.1950.6961.

[24] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using open-
flow: A survey,” IEEE Communications Surveys Tutorials, vol. 16, no. 1,
pp. 493–512, 2014. doi: 10.1109/SURV.2013.081313.00105.

[25] S. Lee, K. Levanti, and H. S. Kim, “Network monitoring: Present and future,”
Computer Networks, vol. 65, pp. 84–98, 2014, issn: 1389-1286. doi: https :
//doi.org/10.1016/j.comnet.2014.03.007. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S138912861400111X.

[26] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future of pro-
grammable networks,” IEEE Communications surveys & tutorials, vol. 16,
no. 3, pp. 1617–1634, 2014.

[27] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future of pro-
grammable networks,” IEEE Communications Surveys Tutorials, vol. 16,
no. 3, pp. 1617–1634, 2014. doi: 10.1109/SURV.2014.012214.00180.

[28] L. R. Prete, A. A. Shinoda, C. M. Schweitzer, and R. L. S. de Oliveira, “Simula-
tion in an sdn network scenario using the pox controller,” in 2014 IEEE Colom-
bian Conference on Communications and Computing (COLCOM), 2014, pp. 1–
6. doi: 10.1109/ColComCon.2014.6860403.

[29] V. Sokolov, I. Alekseev, D. Mazilov, and M. Nikitinskiy, “A network analytics
system in the sdn,” in 2014 International Science and Technology Conference
(Modern Networking Technologies) (MoNeTeC), 2014, pp. 1–3. doi: 10.1109/
MoNeTeC.2014.6995603.

[30] K. Venkatraman, V. Parthasarathy, S. S. Kumaar, and M. Jayalakshmi, “Su-
pervision of network through software defined networking,” in International
Conference on Information Communication and Embedded Systems (ICICES2014),
2014, pp. 1–7. doi: 10.1109/ICICES.2014.7033777.

[31] S. Zeebaree and H. M. Yasin, “Arduino based remote controlling for home:
Power saving, security and protection,” International Journal of Scientific &
Engineering Research, vol. 5, no. 8, pp. 266–272, 2014.

[32] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in software de-
fined networks: A survey,” IEEE Communications Surveys Tutorials, vol. 17,
no. 4, pp. 2317–2346, 2015. doi: 10.1109/COMST.2015.2474118.

[33] M. Erel, E. Teoman, Y. Özçevik, G. Seçinti, and B. Canberk, “Scalability anal-
ysis and flow admission control in mininet-based sdn environment,” in 2015
IEEE Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN), 2015, pp. 18–19. doi: 10.1109/NFV-SDN.2015.7387396.

[34] D. Kreutz, F. M. V. Ramos, P. E. Veŕıssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015. doi: 10 . 1109 /
JPROC.2014.2371999.

37

https://doi.org/10.13140/RG.2.1.1950.6961
https://doi.org/10.1109/SURV.2013.081313.00105
https://doi.org/https://doi.org/10.1016/j.comnet.2014.03.007
https://doi.org/https://doi.org/10.1016/j.comnet.2014.03.007
https://www.sciencedirect.com/science/article/pii/S138912861400111X
https://www.sciencedirect.com/science/article/pii/S138912861400111X
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1109/ColComCon.2014.6860403
https://doi.org/10.1109/MoNeTeC.2014.6995603
https://doi.org/10.1109/MoNeTeC.2014.6995603
https://doi.org/10.1109/ICICES.2014.7033777
https://doi.org/10.1109/COMST.2015.2474118
https://doi.org/10.1109/NFV-SDN.2015.7387396
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999

[35] J. Panford, K. Riverson, O. Boansi Kufuor, and R. Yehuza, “Comparative
analysis of convergence times between rip and eigrp routing protocols in a
network,” vol. 2, May 2015.

[36] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on software-
defined networking,” IEEE Communications Surveys Tutorials, vol. 17, no. 1,
pp. 27–51, 2015. doi: 10.1109/COMST.2014.2330903.

[37] H. Zhang and J. Yan, “Performance of sdn routing in comparison with legacy
routing protocols,” in 2015 International Conference on Cyber-Enabled Dis-
tributed Computing and Knowledge Discovery, 2015, pp. 491–494. doi: 10 .
1109/CyberC.2015.30.

[38] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, “Software-defined
networking (sdn): A survey,” Security and Communication Networks, vol. 9,
no. 18, pp. 5803–5833, 2016. doi: https://doi.org/10.1002/sec.1737. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1737. [Online]. Avail-
able: https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1737.

[39] D. B. Rawat and C. Bajracharya, “Software defined networking for reducing
energy consumption and carbon emission,” in SoutheastCon 2016, 2016, pp. 1–
2. doi: 10.1109/SECON.2016.7506640.

[40] V. Shamugam, I. Murray, J. A. Leong, and A. S. Sidhu, “Software defined net-
working challenges and future direction: A case study of implementing SDN
features on OpenStack private cloud,” IOP Conference Series: Materials Sci-
ence and Engineering, vol. 121, p. 012 003, Mar. 2016. doi: 10.1088/1757-
899x/121/1/012003. [Online]. Available: https ://doi .org/10 .1088/1757-
899x/121/1/012003.

[41] A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, and W. Kellerer,
“Software defined optical networks (sdons): A comprehensive survey,” IEEE
Communications Surveys Tutorials, vol. 18, no. 4, pp. 2738–2786, 2016. doi:
10.1109/COMST.2016.2586999.

[42] A. Abdou, P. C. van Oorschot, and T. Wan, “A framework and comparative
analysis of control plane security of sdn and conventional networks,” arXiv
preprint arXiv:1703.06992, 2017.

[43] S. S. Bhunia and M. Gurusamy, “Dynamic attack detection and mitigation in
iot using sdn,” in 2017 27th International Telecommunication Networks and
Applications Conference (ITNAC), 2017, pp. 1–6. doi: 10.1109/ATNAC.2017.
8215418.

[44] O. Chippalkatti and S. Nimbhorkar, “An approach for detection of attacks
in software defined networks,” in 2017 International Conference on Inno-
vations in Information, Embedded and Communication Systems (ICIIECS),
IEEE, 2017, pp. 1–3.

[45] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A survey
on the security of stateful sdn data planes,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1701–1725, 2017. doi: 10.1109/COMST.2017.
2689819.

38

https://doi.org/10.1109/COMST.2014.2330903
https://doi.org/10.1109/CyberC.2015.30
https://doi.org/10.1109/CyberC.2015.30
https://doi.org/https://doi.org/10.1002/sec.1737
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1737
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1737
https://doi.org/10.1109/SECON.2016.7506640
https://doi.org/10.1088/1757-899x/121/1/012003
https://doi.org/10.1088/1757-899x/121/1/012003
https://doi.org/10.1088/1757-899x/121/1/012003
https://doi.org/10.1088/1757-899x/121/1/012003
https://doi.org/10.1109/COMST.2016.2586999
https://doi.org/10.1109/ATNAC.2017.8215418
https://doi.org/10.1109/ATNAC.2017.8215418
https://doi.org/10.1109/COMST.2017.2689819
https://doi.org/10.1109/COMST.2017.2689819

[46] C. Fancy and M. Pushpalatha, “Performance evaluation of sdn controllers
pox and floodlight in mininet emulation environment,” in 2017 International
Conference on Intelligent Sustainable Systems (ICISS), 2017, pp. 695–699.
doi: 10.1109/ISS1.2017.8389262.

[47] D. Gopi, S. Cheng, and R. Huck, “Comparative analysis of sdn and conven-
tional networks using routing protocols,” in 2017 International Conference
on Computer, Information and Telecommunication Systems (CITS), 2017,
pp. 108–112. doi: 10.1109/CITS.2017.8035305.

[48] B. Hale, T. Jager, S. Lauer, and J. Schwenk, “Simple security definitions for
and constructions of 0-rtt key exchange,” in Applied Cryptography and Net-
work Security, D. Gollmann, A. Miyaji, and H. Kikuchi, Eds., Cham: Springer
International Publishing, 2017, pp. 20–38, isbn: 978-3-319-61204-1.

[49] M. Karakus and A. Durresi, “A survey: Control plane scalability issues and ap-
proaches in software-defined networking (sdn),” Computer Networks, vol. 112,
pp. 279–293, 2017.

[50] M. Lali, R. Mustafa, F. Ahsan, M. Nawaz, and W. Aslam, “Performance eval-
uation of software defined networking vs. traditional networks,” The Nucleus,
vol. 54, no. 1, pp. 16–22, Mar. 2017. [Online]. Available: http://202.83.167.
189/index.php/Nucleus/article/view/95.

[51] S. Mishra and M. A. R. AlShehri, “Software defined networking: Research is-
sues, challenges and opportunities,” Indian Journal of Science and Technology,
vol. 10, no. 29, pp. 1–9, 2017.

[52] Y. E. Oktian, S. Lee, H. Lee, and J. Lam, “Distributed sdn controller system:
A survey on design choice,” computer networks, vol. 121, pp. 100–111, 2017.

[53] M. Ruaro, H. M. Medina, and F. G. Moraes, “Sdn-based circuit-switching for
many-cores,” in 2017 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2017, pp. 385–390. doi: 10.1109/ISVLSI.2017.74.

[54] V. Jara and Y. Shayan, “Latency measurement in an sdn network using a
pox controller,” in 2018 IEEE Canadian Conference on Electrical Computer
Engineering (CCECE), 2018, pp. 1–5. doi: 10.1109/CCECE.2018.8447647.

[55] A. Jefia, S. Popoola, and A. Atayero, “Software-defined networking: Cur-
rent trends, challenges, and future directions,” in Proceedings of the Inter-
national Conference on Industrial Engineering and Operations Management,
2018, pp. 27–29.

[56] P. Krongbaramee and Y. Somchit, “Implementation of sdn stateful firewall on
data plane using open vswitch,” in 2018 15th International Joint Conference
on Computer Science and Software Engineering (JCSSE), 2018, pp. 1–5. doi:
10.1109/JCSSE.2018.8457354.

[57] L. Mamushiane, J. Mwangama, and A. A. Lysko, “Given a sdn topology, how
many controllers are needed and where should they go?” In 2018 IEEE Con-
ference on Network Function Virtualization and Software Defined Networks
(NFV-SDN), 2018, pp. 1–6. doi: 10.1109/NFV-SDN.2018.8725710.

39

https://doi.org/10.1109/ISS1.2017.8389262
https://doi.org/10.1109/CITS.2017.8035305
http://202.83.167.189/index.php/Nucleus/article/view/95
http://202.83.167.189/index.php/Nucleus/article/view/95
https://doi.org/10.1109/ISVLSI.2017.74
https://doi.org/10.1109/CCECE.2018.8447647
https://doi.org/10.1109/JCSSE.2018.8457354
https://doi.org/10.1109/NFV-SDN.2018.8725710

[58] A. Almohaimeed and A. Asaduzzaman, “Dedicated backup units to alleviate
overload on sdn controllers,” in 2019 IEEE 9th Annual Computing and Com-
munication Workshop and Conference (CCWC), 2019, pp. 0591–0596. doi:
10.1109/CCWC.2019.8666452.

[59] M. Amadeo, C. Campolo, G. Ruggeri, A. Molinaro, and A. Iera, “Sdn-managed
provisioning of named computing services in edge infrastructures,” IEEE Trans-
actions on Network and Service Management, vol. 16, no. 4, pp. 1464–1478,
2019. doi: 10.1109/TNSM.2019.2945497.

[60] S. Ellinidou, G. Sharma, T. Rigas, T. Vanspouwen, O. Markowitch, and J.-M.
Dricot, “Sspsoc: A secure sdn-based protocol over mpsoc,” Security and Com-
munication Networks, vol. 2019, 2019.

[61] E. Kaljic, A. Maric, P. Njemcevic, and M. Hadzialic, “A survey on data plane
flexibility and programmability in software-defined networking,” IEEE Access,
vol. 7, pp. 47 804–47 840, 2019. doi: 10.1109/ACCESS.2019.2910140.

[62] V. Netes and M. Kusakina, “Reliability challenges in software defined net-
working,” in Conference of Open Innovations Association, FRUCT, FRUCT
Oy, 2019, pp. 704–709.

[63] W. Rafique, X. He, Z. Liu, Y. Sun, and W. Dou, “Cfadefense: A security
solution to detect and mitigate crossfire attacks in software-defined iot-edge
infrastructure,” in 2019 IEEE 21st International Conference on High Per-
formance Computing and Communications; IEEE 17th International Confer-
ence on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), 2019, pp. 500–509. doi: 10.1109/HPCC/
SmartCity/DSS.2019.00080.

[64] L. Csikor, M. Szalay, G. Rétvári, G. Pongrácz, D. P. Pezaros, and L. Toka,
“Transition to sdn is harmless: Hybrid architecture for migrating legacy ether-
net switches to sdn,” IEEE/ACM Transactions on Networking, vol. 28, no. 1,
pp. 275–288, 2020. doi: 10.1109/TNET.2019.2958762.

[65] M. Emran and I. Kotuliak, “Performance analysis of traditional and sdn based
handovers in wireless lan networks,” in 2020 IEEE International IOT, Elec-
tronics and Mechatronics Conference (IEMTRONICS), 2020, pp. 1–6. doi:
10.1109/IEMTRONICS51293.2020.9216435.

[66] M. Hasan, H. Dahshan, E. Abdelwanees, and A. Elmoghazy, “Sdn mininet
emulator benchmarking and result analysis,” in 2020 2nd Novel Intelligent
and Leading Emerging Sciences Conference (NILES), 2020, pp. 355–360. doi:
10.1109/NILES50944.2020.9257913.

[67] S. Helali, “Simulating network architectures with gns3,” in Systems and Net-
work Infrastructure Integration: Design, Implementation, Safety and Supervi-
sion. 2020, pp. 9–25. doi: 10.1002/9781119779964.ch2.

[68] H. Leqing, “How to realize the smooth transition from traditional network
architecture to sdn,” in 2020 5th International Conference on Mechanical,
Control and Computer Engineering (ICMCCE), 2020, pp. 1948–1952. doi:
10.1109/ICMCCE51767.2020.00427.

40

https://doi.org/10.1109/CCWC.2019.8666452
https://doi.org/10.1109/TNSM.2019.2945497
https://doi.org/10.1109/ACCESS.2019.2910140
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00080
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00080
https://doi.org/10.1109/TNET.2019.2958762
https://doi.org/10.1109/IEMTRONICS51293.2020.9216435
https://doi.org/10.1109/NILES50944.2020.9257913
https://doi.org/10.1002/9781119779964.ch2
https://doi.org/10.1109/ICMCCE51767.2020.00427

[69] S. M. S. A. Abdullah, S. Y. A. Ameen, M. A. Sadeeq, and S. Zeebaree, “Mul-
timodal emotion recognition using deep learning,” Journal of Applied Science
and Technology Trends, vol. 2, no. 02, pp. 52–58, 2021.

[70] D. Chefrour, “One-way delay measurement from traditional networks to sdn:
A survey,” ACM Comput. Surv., vol. 54, no. 7, Jul. 2021, issn: 0360-0300.
doi: 10.1145/3466167. [Online]. Available: https://doi.org/10.1145/3466167.

[71] F. G and R. Anandhi, “Study on sdn with security issues using mininet,” in
Dec. 2021, isbn: 9781643682167. doi: 10.3233/APC210186.

[72] S. H. Haji, S. Zeebaree, R. H. Saeed, et al., “Comparison of software defined
networking with traditional networking,” Asian Journal of Research in Com-
puter Science, pp. 1–18, 2021.

[73] D. H. Maulud, S. R. Zeebaree, K. Jacksi, M. A. M. Sadeeq, and K. H. Sharif,
“State of art for semantic analysis of natural language processing,” Qubahan
Academic Journal, vol. 1, no. 2, pp. 21–28, 2021.

[74] T. Jackisch, Sdn vs traditional network, Apr. 2022. doi: 10.13140/RG.2.2.
17889.38246.

41

https://doi.org/10.1145/3466167
https://doi.org/10.1145/3466167
https://doi.org/10.3233/APC210186
https://doi.org/10.13140/RG.2.2.17889.38246
https://doi.org/10.13140/RG.2.2.17889.38246

	b872e7dd-aad6-42ae-a9d2-29242b6be20c.pdf
	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Research Problems
	Research Objectives

	Literature Review
	Software Defined Network (SDN)
	SDN frameworks and its architecture
	Related Works

	Methodology
	Topology
	Routing

	Implementation
	Traditional Networks
	SDN Networks

	Result
	Network Monitoring
	Limited Management
	Complex Network Management
	Latency
	Processing Delay
	Round Trip Time
	Packet Drop
	Data Flooding
	Scalability
	Centralized Provisioning
	Maintaining quality of service
	Security
	Reduced Hardware Footprint
	Outcome

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

