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Abstract
According to WHO, cardiovascular disease (CVD) is the leading cause of death glob-
ally. Unfortunately, these diseases are difficult to diagnose without proper equip-
ment which is not cheap. One of the reasons for such a high cost of treatment is the
use of expensive technologies like ECG or electrocardiograph monitoring systems.
These monitoring systems are usually implemented using expensive high-compute
hardware and proprietary algorithms. Conventional ECG systems cost between
$2000 and $10,000. But in theory, these systems can also be developed through
low-compute hardware (such as microcontrollers or FPGA) and machine learning.
This paper performs a comparative study on the implementation of low-cost, low-
power, and low-compute-based ECG systems and analyzes better approaches for
future design. Additionally, it implements an ECG monitoring system based on
that approach.

Keywords: ECG; arrhythmia; low-cost; low-compute; low-power; machine
learning; micro-controller
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Chapter 1

Introduction

1.1 Background And Motivation
According to WHO [1], An estimated 17.9 million people died from CVDs in 2019,
representing 32% of all global deaths. Of these deaths, 85% were due to heart
attack and stroke. This implies that a significant portion of global deaths is caused
by CVDs. One might assume this portion of death is only from high-income and
high-middle-income groups, but the leading cause of death in low and middle-income
countries is CVD [1].

One of the most vital devices used to diagnose such diseases is the ECG or
Electrocardiogram machine. Electrocardiography is the process of producing an
electrocardiogram (ECG or EKG), a recording of the heart’s electrical activity [2].
An electrocardiogram is a voltage versus time graph of a heart’s electrical activity
[3]. The ECG system simply draws a graphical representation of the heartbeat
on a screen and/or paper using probes that are attached to the patient’s torso by
which physicians can analyze the state of the patient’s heartbeat patterns. Modern
ECG systems also provide alerts, whenever the patient is having irregular heartbeat
patterns or arrhythmia.

1.2 Problem Statement
Although recent studies provide successful approaches for developing ECG monitor-
ing systems, not all of them are cost-effective. Since any ECG monitoring system
would require running 24/7, power consumption is also a factor overlooked by most
studies. Also, ECG monitoring systems are used once for every required patient
in a hospital, which further multiplies the importance of low-power and low-cost
systems.

Chen et al.[5], Sakib et al.[6], Ahsanuzzaman et al.[7]and Hartman et al.[8] de-
veloped ECG monitoring system on single board computers (SBC). Faraone et al.[9],
Scirè et al.[10] and Raj et al.[11] developed the same but with mere micro-controller
units. Additionally, all of them implemented machine-learning-based arrhythmia
detection on their devices including studies where MCUs were used as the main
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Figure 1: Single-lead ECG devices [4].

device.

Using MCUs instead of SBCs lowers the power consumption by a factor of
1000 at the very least since MCUs operate within milliwatt ranges. Moreover,
MCUs are comparatively cheaper than SBCs. Hence, for broad-scale deployment
and 24/7 duty, MCUs are a much better choice than SBCs for ECG monitoring
system development. Although, development with MCUs does not necessarily mean
sacrificing any features available in modern ECG monitoring systems since some of
the above-mentioned studies already proved that.

However, one might assume that arrhythmia detection on ECG monitoring sys-
tems may require cycle expensive algorithm like machine learning which might not
be feasible for MCUs. But inference or forward pass of a small enough machine learn-
ing model is possible. Since they are primarily simple matrix multiplication whose
values are passed through activation functions of a few varieties. Even training ma-
chine learning models have been possible in extremely low constraints as MCU[12].
Therefore, with an efficient enough machine learning model for arrhythmia detec-
tion, one can develop a cost, compute, and power-efficient ECG Monitoring System
based on MCUs with little to no drawbacks compared to industry-grade systems.

Moreover, the high cost of treatment for CVD has created a demand for cheaper
and more efficient devices in developing and underdeveloped countries. This means
developing cost-effective and efficient ECG monitoring systems could save more lives
(potentially millions) by lowering CVD treatment costs. In addition, the global
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market will prefer systems that are cost, power, and compute efficient.

1.3 Research Contributions
Therefore, it is clear that we need a cheaper, low-cost alternative for modern ECG
monitoring systems for developing and underdeveloped countries. At the same time,
we mustn’t trade modern features like arrhythmia detection for cost. Based on our
study, we make the following set of specific contributions to this paper-

• We perform a comparative analysis of recent studies on their approach to
developing an ECG system.

• We analyze the papers on four metrics - cost, compute, power, and the use of
detection algorithms

• Subsequently, we propose an implementation based on the approach inferred
from the comparative analysis. Our implementation superseded most other
approaches reviewed.

1.4 Thesis Organization
First, this paper provides an overview of an ECG monitoring system (section II). In
section- III, we perform a comparative analysis of 9 studies conducted from 2018-
2021 and propose the best approach. In section - IV we provide our system’s hard-
ware and software design. In sections - V, and VI we provide details of our main two
software modules, HDM and ADM respectively. In section VII, we provide technical
details on how our software was ported to MCU. Section VIII performs a cost com-
parison of some commercial low-cost ECG monitoring systems with our proposed
implementation. Finally, we conclude this paper by discussing future directions of
research and their impact.
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Chapter 2

Overview Of ECG Monitoring
System

ECG stands for Electrocardiography system which records the voltage versus time
series data of the heart’s electrical activity. The continuous depolarization followed
by repolarization of the heart spreads electrical charges throughout the body as an
electric volume conduit [13]. Electrical charges create a potential difference between
pair(s) of electrodes attached to the skin of a subject. The signals from leads are
passed through analog circuitry to amplify and filter the signal. The component
breakdown and their function are as follows:

2.1 Electrodes Or Leads
The potential difference between any two electrodes can be detected. When the
heart continuously depolarizes and repolarizes sequentially (or beats), pair(s) of
electrodes attached to the skin, can detect the changes in potential difference(s).
Such pairs are known as leads. Leads or pairs of electrodes are placed across the
torso & limbs to detect heartbeats. The ECG systems are made of single or multiple

Figure 2: Basic ECG signal processing chain
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Figure 3: Types of modern ECG monitoring system

leads [14]. Although the most common system is a 12-lead ECG system.

2.2 Analog Circuitry
ECG signals are within the 0.5 - 4mV range [15], for which amplification is impor-
tant. Also ECG signal contains noise, since, the entire human body is operated via
electrical signals sent from the nervous system. Moreover, there is 50/60Hz inter-
ference of AC electricity running through almost every building. Therefore, ECG
signals must be passed through the analog circuitry in the following order:

• Amplification: The first step is instrumental amplification[14]. The signal from
leads is amplified to the desired voltage for easier reading.

• Filtration: As mentioned before, ECG signals contain noise. Therefore, the
signals from amplifiers are passed through the analog low pass, high pass, and
notch filters for noise removal [14]. Instead of using analog filters, one can also
use digital ones implemented via FFT (Fast Fourier Transform) on computing
systems.

2.3 Detection Algorithms
The filtered signal now can be passed through computing units to detect a heart-
beat. After a heartbeat window is detected from an ECG signal stream, it can
be passed to the arrhythmia detection module to detect arrhythmia. Most mod-
ern ECG monitoring system contains this feature. The component breakdown of

5



Figure 4: A voltage vs time representation of a heartbeat / QRS complex

detection algorithms is as follows:

• Heartbeat or QRS detection module (HDM): The heartbeat windows of an
ECG signal wave are labeled as PQRST peaks. Detecting Q, R, and S peaks
allow one to separate a heartbeat from an input data stream.

Table i: QRS wave analysis

Wave Deflection Action Heart portion

Q downwards depolarization interventricular septum

R upwards depolarization main mass of the ventricles

S downwards depolarization Purkinje fibres

• Arrhythmia detection module (ADM): The window separated as QRS or heart-
beat can be passed through machine learning algorithms to classify arrhyth-
mia.

Here, table I explains Fig-4 and relates signal deflection to the corresponding action
of the heart.
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Chapter 3

Literature Review and
Comparative Analysis

In this section, we perform a comparative analysis of previous studies. The analysis
is performed on four metrics. After discussing the comparison metrics, we analyze
the studies based on those metrics. Finally, we reveal our findings in the comparative
results and discussion subsection.

3.1 Comparison Metrics
1. Cost: Since the implementation of most ECG systems is expensive, a cheaper

ECG system without significant setbacks should be considered superior. There-
fore, we believe cost should be one of the deciding factors for comparison. In
this study, only the cost of the development board (which has the processing
unit embedded) is considered. Since, sensors, display units, etc. other compo-
nents are available at variable costs and are interfaceable with any MCU/MPU,
it may be better to leave them out for comparative analysis.

2. Compute: Proprietary ECG systems are expensive, which implies the hard-
ware used may be high-compute based. Here, computing power implies the
operating clock cycle frequency of a processor. Typically lower clock cycle
frequency machines are cheaper than higher ones albeit slower. Therefore, the
lower compute processor used, the cheaper the cost of the system will be. But
it is important that the system designed must not have caveats that may lead
to an inferior treatment or death of the patient.

3. Power : Power hungry system eventually will raise the cost of treatment, since
healthcare complexes have to pay for electricity. Therefore low-power systems
are better than power-hungry ones.

4. Detection algorithm: Irregular heartbeat pattern detection algorithms are used
in most commercial ECG monitoring systems. Pattern detection is important
as it alerts healthcare professionals to provide proper attention to the patient
having an irregular heartbeat pattern. Therefore, this is a significant factor
for comparison.
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3.2 Analysis
Chen et al. [5] present a real-time electrocardiogram (ECG) analysis system that
can detect atrial fibrillation (AF) using a Neural Network algorithm (NN). The
authors used the PYNQ-Z2 development board which contains both a programmable
chip (MPU) and programmable logic (FPGA). They used NN for arrhythmia/atrial
fibrillation detection on the FPGA but used the MCU for feature extraction. The
cost of their development board was around USD 149. Since the processor is 650
MHz dual-core, the total computing power used is 1300 MHz. The total power
consumed by their board during the running of the algorithm was not disclosed.

Table ii: Comparative analysis based on cost, compute, power and detection algo-
rithm

Study Cost (USD) Compute (MHz) Power (mW) Detection Algorithm

Chen et al. [5] 149 1300 - NN

Sakib et al. [6] 59-99 5720 - CNN

Ahsanuzzaman et al.[7] 35 4800 - LSTM

Faraone et al.[9] 39 64 20.65 R-CNN

Hartman et al.[8] 35 ≥700 - DistilledDNN

Scirè et al. [10] 39.95 32 44.08 KNN + LSTM

Sakib et al.[6] tested their algorithm on Raspberry Pi 3, Raspberry Pi 4, and
Jetson Nano. The best performance was on Jetson Nano. Since, Jetson Nano
had the best performance, in this study, the rest are excluded. The cost of their
development board was USD 59-99. The computing power for each core of ARM
A57 on board stood at 1430 MHz, for four cores, it was 5720MHz. The authors
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did not disclose the power consumption of their algorithm. The paper implemented
CNN (Convolutional Neural Network) on single-channel raw ECG data and detected
arrhythmia.

Ahsanuzzaman et al.[7] developed an LSTM (Long Short-Term Memory) algo-
rithm for arrhythmia detection on Raspberry Pi 3. The cost of their main develop-
ment board stood at USD 35. The power consumption of their algorithm was not
discussed. The computing power for each core of ARM A53 stood at a minimum of
1200 MHz, for four cores it was 4800MHz. They also used other processing units
like the ATmega328P on the Arduino Uno development board, but it was only used
for interfacing and preprocessing ECG data from the ECG AD8232 sensor.

Faraone et al.[9] adapted a convolutional-recurrent neural network, designed to
detect and classify cardiac arrhythmia from a single lead electrocardiogram to the
low-power embedded System-onChip nRF52 from Nordic Semiconductor with an
ARM CortexM4 processing core. The cost of nRF52 - DK stood at USD 39. Power
consumption during the running of the algorithm on a loop stood at 20.65mW.

Hartman et al.[8] implemented distilled deep learning(dDNN) based arrhyth-
mia detection classification on a Raspberry Pi-based platform and compared their
performance with respect to three key performance indicators (KPI) of interest for
health care applications: accuracy, energy efficiency, and latency. The cost of their
development board stood at USD 35. The minimum computing power of the Rasp-
berry Pi-based platform is 700MHz. They did not disclose the specific model of
the development board used. The power consumption of their algorithm was not
disclosed.

Rakin et al.[16] and Alam et al. [17] did not implement any detection algorithm
for arrhythmia. They also used analog circuitry to develop a low-cost ECG system.
Processing units were used for display purposes only. Which, was difficult for us to
compare with other studies.

Scirè et al.[10] implemented heartbeat detection using KNN (k-Nearest Neigh-
bor) and arrhythmia detection using an LSTM (Long Short Term Memory) clas-
sifier on an asymmetric embedded processor - the Intel Curie module and NXP
MPC8572E module which provides a dedicated core for hardware-assisted pattern
matching. The cost of their development board stood at USD 39.95. The authors
reported a total of 44.08 mW of power consumed while detecting the heartbeat
(15.24 mW) and classifying arrhythmia (28.84mw).

Raj et al.[11] implemented the ECG signal analysis method via discrete cosine
Stockwell transform for feature extraction and artificial bee colony (ABC) optimized
least-square twin support vector machines (TSVM) as classifiers on commercially
available 32-bit microcontroller test platform to detect real-time heart-beat anoma-
lies. They did not disclose the specific 32-bit microcontroller platform used or its
power consumption. Which, was difficult for us to compare with other studies.
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3.3 Comparative Results And Discussion
From table-II we can observe that Farone et al.[9] and Scirè et al.[10] has the low-
est compute-powered processor running R-CNN and RNN algorithm respectively.
Farone et al.[9] and Scirè et al.[10] reported 20.65 mW and 44.08 mW power con-
sumed respectively. This indicates that the low-compute approach is highly power
efficient which in turn will reduce the overall cost incurred of the operation of the
ECG monitoring systems via electric utility bill.

In contrast, the development boards used by Chen et al.[5], Sakib et al.[6],
Ahsanuzzaman et al.[7], and Hartmann et al.[8], which usually run a Linux-based
operating system, consume at least 700 mW of power at idle mode with no periph-
erals connected. To put into perspective, that is ∼34 devices of Farone et al.[9] or
∼16 devices of Scirè et al.[10] can be run by the same power.

Therefore, it is clear that for low-cost, low-compute, and low-power with de-
tection algorithms, using micro-controllers with no overhead of operating systems,
might be the best approach. To provide a clearer picture of our suggested approach,
we design a system in the next section.
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Chapter 4

System Design

Following the revealed best approach of this paper, we implemented our own design.
The outline of the entire system and the cost, compute and power parameters are
discussed as follows:

Figure 5: System hardware setup.

4.1 Hardware
For our development board chose Arduino Nano. Additionally, we used the AD8232
SparkFun Single-Lead Heart Rate Monitor sensor to read the ECG data stream.
The details are as follows:

4.1.1 Arduino Nano
Based on the ATmega328P, the Arduino Nano is a compact, comprehensive, and
breadboard-friendly board that was introduced in 2008. The MCU’s processor,
ATmega328P, is clocked at 16MHz and has a 32-bit data bus along with a 24-bit
address bus [18]. Moreover, it has 2KB SRAM and 32KB Flash memory where 2KB
is used by the bootloader. It has an operating voltage of 5V and current consumption
of 19mA (Power consumption of 95 mW) [19]. It can be programmed using the
Arduino Software integrated development environment (IDE), which is available
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both online and offline and is shared by all Arduino boards. The board is affordable
and widely available making it one of the most popular starter development boards
for learning embedded systems programming for engineers, non-professionals, and
children alike. Because of such ease of development, availability, low cost, low-
compute, and low-power consumption, we chose this board as our main and only
computing device.

Table iii: Arduino Nano specifications

Cost USD 24.90

SRAM 2 KB

Flash memory 32 KB (2 KB used by bootloader)

Compute 16 MHz

Operating voltage 5.0 V

Current consumption 19 mA

DC current per I/O pins 40 mA

Power 95 mW (no peripherals)

4.1.2 AD8232 SparkFun Single-Lead Heart Rate Monitor
The AD8232 SparkFun Single-Lead Heart Rate Monitor is a low-cost board for
measuring the electrical activity of the heart. This electrical activity is recorded as
an ECG or electrocardiogram and output as an analog measurement. The AD8232
single-channel heart rate monitor acts as an operational amplifier to easily obtain
clear signals from the PR and QT intervals [20].

Table iv: Sparkfun ECG AD8232 Sensor board [20]

Cost USD 21.50

Leads Single

Operating voltage 3.3 V

Current consumption 170 µA

Power 0.561 mW
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4.2 Software
There are two steps to detecting Arrhythmia from raw ECG data:

4.2.1 Heartbeat Detection Module (HDM)
The heartbeat detection module detects R peaks ECG data stream. We chose the
Pan-Tompkins (PT) algorithm [21] which is highly respected and established in the
bibliography.

4.2.2 Arrhythmia Detection Module (ADM)
After detecting the heartbeat, we need to classify Arrhythmia into five classes only
one of which is normal via a densely connected neural network.

Figure 6: System flow-diagram

In figure 6, we can see the end to end flow-diagram of our system design. Raw
ECG signal passes from the actor to the processing unit, where the signal is pre-
processed. Afterward, the preprocessed signal is passed to the heart-beat detection
module. If the signal is not a heartbeat the algorithm continues otherwise it passes
the stream to the Arrhythmia detection module which if detects an abnormal beat,
sets off the on-device alarm. Here, the simple alerting system is only for demonstra-
tion, a much more sophisticated alert system can be implemented if needed.

Table III presents the specifications of the Arduino Nano board. We can see that
the power consumption by the board only is 95mW. However, adding peripherals
that draw power may increase power consumption.

Table IV depicts the specifications of the Sparkfun ECG AD8232 Sensor board
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we used. We can see that the power consumption by the board is close to 0.561 mW
which barely affects the total power consumption of our system when connected.
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Chapter 5

Heartbeat Detection Module

We will only discuss the software part of our implementation since the hardware
used was merely connected but not modified. The discussion is as follows -

As discussed earlier we used the Pan-Tomkins algorithm in our system. However,
we performed some modifications in our implementation of the PT algorithm. Hence
a brief description of the PT algorithm and our implementation are provided in
Algorithm 1.

5.0.1 Pan-Tomkins Algorithm
The PT algorithm passes an ECG data stream through a series of mathematical pre-
processing modules: bandpass filter, differentiation, squaring, and moving window
integration/one-dimensional convolution. Afterward, two sets of dual thresholding
techniques are used to detect the R-peaks/heart-beat peaks. This means in each set
of thresholds there are two thresholds. The first set of thresholds is applied to the
data stream from the bandpass filtering module and the second set is applied to the
data stream from the moving window integration module. If any heartbeat peak/R
peak is not detected within the 166 percent of the average R-R peak interval ap-
plying the first threshold, the algorithm searches back through the buffer applying
the second threshold. The second threshold is half of the first threshold. That way,
false negatives might be eliminated and memory saved requiring a short buffer.

5.0.2 Our Implementation Of The PT Algorithm
Listing 1 of Appendix A is an excerpt from our code from the implemented system
and figure 7 is the corresponding implementation of the counterpart of the PT
algorithm by the authors on the Zilog Z80 microprocessor. Comparing both we
observe, the Pan-Tomkins algorithm uses two thresholds, whereas we implemented
one. That also makes performing the search-back algorithm and calculating the R-R
interval average redundant.

Our reasoning for such modification is simply the reduction of inference time.
Since we lose time inferring the beat type after detection (refer to Algorithm 1),
we could miss newer beats or parts of them while performing the search-back algo-
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Algorithm 1 Pseudocode of the implemented system
data← ∅
sampling ← 250 Hz
wait← 0.6 seconds
period← wait · sampling (150 samples)
while sensor_value is available at sensor do

data.append(sensor_value)
if data.length = period then

start_time← current_time_in_seconds()
beat← data
beat← bandpass_filter(beat← beat, high← 15Hz, low ← 5Hz)
beat← derivate(beat← beat)
beat← square(beat← beat)
beat← moving_window_integration(beat← beat, window ← 15)
beat← apply_threshold(beat)
if beat = ∅ then

end_time← current_time_in_seconds()
data.remove(start← 1, end← (end_time− start_time) · wait)
continue (Noise detected, hence we continue)

end if
index← get_peak_index(beat← beat)
beat← beat.get_values(start← index− 30, end← index+ 30)
type← infer_beat_type(beat← beat)
if type 6= N then

alarm(state← ON)
end if
end_time← current_time_in_seconds()
data.remove(start← 1, end← (end_time− start_time) · wait)

end if
end while
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Figure 7: Code excerpt from the PT algorithm[21].

rithm. Since more recent beats depict a clearer picture of a patient’s condition, we
emphasized analyzing newer beats over older ones.

Furthermore, the PT algorithm used two sets of dual thresholds. The first was
set used on the data stream from the bandpass filter and the second one was used
on the data stream from the moving window integration module. In our implemen-
tation, we only applied the second set of thresholds. This too was done to save time
by not missing newer beats. The modification of the PT algorithm was adopted
from Michal et al. [22].

Table v: Differentiating our implementation and the PT algorithm

Our Implemetation PT algorithm

1 set of threshold used 2 sets of thresholds used

Search-back was not implemented Search-back was implemented

Total thresholds used was 1 Total thresholds used was 4
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Chapter 6

Arrhythmia Detection Module

The Arrhythmia detection module reads a detected heart beat from the HDM mod-
ule and classifies heart beats into Normal, Supraventricular, Ventricular, and Fusion
beats (please refer ro Table III). For classification, we used Deep Neural Network
(DNN). Below is a description of DNN:

6.1 Deep Neural Network (DNN)
A deep neural network is a multi-layered artificial neural network (ANN) where each
layer could consist of 1 or more neurons. It mimics the workings of the human brain.
A neuron is also known as a perceptron.

6.1.1 Perceptron
A perceptron or an artificial neuron is a function that consists of a weight/kernel,
bias/threshold, and an activation function. The output of a perceptron is usually
between 0 and 1. The function is as follows:

F (x) = σ(w ∗ x+ b) (i)

Here σ is the activation function, which is responsible for taking a number and
turning it into a decision (0 or 1). The x here is our input data for learning, the w
is weight/kernel and b is the bias or threshold. For now, we can update the values
of w and b such that it can learn any linear sequence of data. For example, given
a sequence of values of x of the equation y = 3 ∗ x + 6, it can eventually come up
with a much closer equation, provided w and b can be updated properly. To do that
we need to know what amount to update the weight and bias to and when we shall
stop updating (know when we are close enough).

For this, an error function is necessary that will let us know how far we are from
the linear equation. One such error function is the mean squared error algorithm:

18



E = MSE =
n∑

i=1

(yi − (w ∗ xi + b))2

n
(ii)

Here, xi is one of the given range of values and yi is one of the corresponding
values derived from the equation given to predict for the given xi. And n is the
total number of samples provided to predict. The equation takes the square of the
difference of yi and its corresponding predicted value. This way it gets a squared
error for each (yi, xi) pair. To get the mean squared error, all errors are summed
and divided by n.

However, the perceptron still needs a system to update its weight and bias. That
is where the optimizer function comes in. One such optimizer function is the gradient
descent function. In this function, we take the partial derivative of the error function
with respect to each weight and bias. Then we subtract the partial derivative times
the learning rate from respective the weight or bias. Here, subtracting allows error
minimization as MSE is a quadratic equation: the lower we move in the function,
the less error we have.

w = w − α ∗ ∂E
∂w

(iii)

b = b− α ∗ ∂E
∂b

(iv)

Learning rate or α is simply a rate chosen to update the parameter at each
step. A large rate would allow the model to converge faster but it might start
oscillating and never reach the minimum it could if a smaller rate was chosen.
Smaller rates, however, require more time but can reach go lower compared to their
larger counterparts.

The loss/error/cost and optimizer function discussed are an example only. One
may use another loss-optimizer pair for their use case.
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Figure 8: Gradient descent

However, the perceptron still alone cannot learn non-linear data. But multiple
layered perceptrons can do so.

Figure 9: Single layered perceptron

6.1.2 Multi Layered Perceptron
It is not possible for a single-layered perceptron to learn non-linear data. However,
as layers increase, they can eventually catch on to non-linear data.

Each layer in a single-layered perceptron can be imagined as two layers, where
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one layer passes the data to the next, which processes the data and provides output
[23].

Hence, each layer in a multilayered perceptron can be imagined in the same way.
Let i be the neuron of the previous layer and j be the neuron of the next layer. The
output yj of jth neuron can be depicted as -

yj = σ(
n∑

i=1

wij ∗ xi + bj) (v)

Here, wij represents the strength of the synaptic connection between the i and
j th neuron. bj is the threshold of the j th layer.

We observe that output from every neuron of the previous layer is multiplied by
wij, summed, and the threshold bj is added. The result goes through the activation
function, hence converted to a binary value of 0 or 1. This goes on for as many
neurons as that layer has.

In this way, a complete neural network can be built with a varying number of
layers and neurons per layer. The learning process of applying error and optimizer
functions should be done as well for the entire network. For this, we need to calculate
the total error Et and update the weights/biases for each and every neuron -

Et = MSE =
L∑
l=1

k∑
j=1

n∑
i=1

(yi − (wij ∗ xi + bij))
2

n
(vi)

wij = wij − α ∗ ∂Et

∂wij

(vii)

bij = bij − α ∗ ∂Et

∂bij
(viii)

Here, k can assume any pattern of natural numbers. Which allows k neurons in
any l-th layer. For example, for 3 layered perceptron the values of k could be -

k = 1, 4, 2
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Figure 10: Multi-layered perceptron

6.2 Implemented DNN
In order to explain the implemented DNN, the training dataset needs to be discussed.

6.2.1 Dataset
The research on arrhythmia analysis and related topics has been supported since
1975 by labs at MIT and Boston’s Beth Israel Hospital (now the Beth Israel Dea-
coness Medical Center). The MIT-BIH Arrhythmia Database, which was finished
and started disseminating in 1980, was one of the first significant outcomes of that
work. The database, which was used in about 500 locations around the world, was
the first generally accessible collection of standard test materials for arrhythmia de-
tector validation. In addition to the assessment of arrhythmia detection, it was also
used for fundamental study into cardiac dynamics. Initially, the dataset was deliv-
ered on a quarter-inch IRIG-format FM analog tape and 9-track half-inch digital
tape at 800 and 1600 bpi. A CD-ROM version of the database was in August 1989.

48 half-hour snippets of two-channel ambulatory ECG recordings from 47 people
who participated in BIH Arrhythmia Laboratory research between 1975 and 1979
are available in the MIT-BIH Arrhythmia Database. 23 recordings were chosen from
the set of 4000 24-hour ambulatory ECG recordings made from a mixed population
of inpatients (about 60%) and outpatients (about 40%) at Boston’s Beth Israel
Hospital. The remaining 25 recordings were selected from the same set in order to
include less common however clinically significant arrhythmia.

The recordings were digitalized over a 10 mV range at 360 samples per second
per channel with 11-bit resolution. Each record was separately annotated by two
or more cardiologists; differences were settled to produce the computer-readable
reference annotations for each beat, which are supplied with the database and total
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over 110,000 annotations.

Since the launch of PhysioNet in September 1999, around half of this database—25
of 48 complete records, and reference annotation files for all 48 entries—has been
freely accessible https://physionet.org/content/mitdb/1.0.0/. In February 2005, the
final 23 signal files that had previously only been accessible via the MIT-BIH Ar-
rhythmia Database CD-ROM was posted.

Table vi: Classification of Arrhythmia according to AAMI [24]

N Normal and bundle branch block beat

S Supraventricular ectopic beats

V Ventricular ectopic beats

F Fusion of N and V

Q undefined or paced beats

The Association for the Advancement of Medical Instrumentation (AAMI) stan-
dard for testing and reporting performance results of cardiac rhythm and seg-
ment measurement algorithms states that the arrhythmia classification performance
should be based on five major categories of heartbeats (Table VI) to evaluate an
arrhythmia detection algorithm.

6.2.2 Data Preprocessing
We passed the heart-beat data through the same preprocessing as the HDM (heart-
beat detection module). At first, we passed the data through the bandpass filter to
filter out noise. This is important since ECG data could be attenuated by 50-60 Hz
alternating current (AC) current running through housing infrastructure along with
interference from other sources. Taking the derivative and consequently performing
moving window integration allows a beat’s feature to be concentrated in a smaller
temporal space. Preprocessing and training algorithm is provided in Algorithm 2.
The example for each type of beat is provided from figure 11 to figure 14.
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Figure 11: Normal beat preprocessed and unchanged

Figure 12: Supraventricular ectopic beat preprocessed and unchanged
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Figure 13: Ventricual ectopic beat preprocessed and original

Figure 14: Fusion beat preprocessed and original

6.2.3 Neural Network
The structures of our deep learning networks and training convergence graphs are
depicted from figure 15 through 22. Please note that the input layer was not con-
sidered the first layer, since it had no activation function. By first layer we meant
the first layer after the input layer.

Hence, we used two layers, with 10 neurons in the first and 4 in the last. However,
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Algorithm 2 Algorithm for training DNN for classification of arrhythmia
Ensure: data from MIT - BIH dataset is initialized

preprocessed_beats← ∅
while data.length > 0 do

beat, type← data.get()
beat← bandpass_filter(beat← beat, high← 15Hz, low ← 5Hz)
beat← derivate(beat← beat)
beat← square(beat← beat)
beat← moving_window_integration(beat← beat, window ← 15)
beat← beat.get_values(start← index− 30, end← index+ 30)
preprocessed_beats.append((beat, type))

end while
train_and_validate(preprocessed_beats)

we tried more than one approach to find the best network. The network structures
are discussed below -

6.2.4 Sigmoid-Sigmoid
In this network we used sigmoid activation function in all 14 neurons in the first and
the last layer. Training achieved the highest accuracy and convergence was also the
quickest.

Figure 15: Sigmoid-sigmoid based network architecture
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Figure 16: Sigmoid-sigmoid based network training convergence

6.2.5 ReLU-Sigmoid
Here, we used ReLU (all 10 neurons) in the first layer and all 4 sigmoid in the last
layer.

Figure 17: ReLU-sigmoid based network architecture
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Figure 18: ReLU-sigmoid based network training convergence

6.2.6 ReLU-Softmax
We used softmax activation function for the last 4 neurons. The first 10 neurons
however used ReLU.

Figure 19: ReLU-softmax based network architecture
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Figure 20: ReLU-softmax based network training convergence

6.2.7 Sigmoid-Softmax
We also tried sigmoid in the first layer and softmax activation function in the last.

Figure 21: Sigmoid-softmax based network architecture
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Figure 22: Sigmoid-softmax based network training convergence

Even though we are classifying arrhythmia in this system, we opted not to choose
softmax activation for a reason aside from the inferior training performance. Which
is that the softmax activation function involves two consecutive loop for which it
might delay inference time (see listing 2 of Appendix A). Also, in an MCU, the clock
is already slower, which makes saving time crucial. We chose the Sigmoid-sigmoid
model for the ADM module for its best performance. We provide the variants of
activation functions used from equation ix to equation xi.

σ(z) =
1

1 + e−z
(ix)

Relu(z) = max(0, z) (x)

σ(zi) =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . , K (xi)

6.2.8 Error Function
We chose the mean squared error for our error/loss function. This function has been
described before in the deep neural network section under the perceptron and the
multi-layered perceptron subsection through equations ii and vi.

6.2.9 Optimizer
For our optimizer algorithm, we chose the Adam optimizer developed by Kingma
and Ba [25]. The name Adam is derived from adaptive moment estimation. This
optimizer uses bias-corrected moment estimates of previous timesteps’ gradients to
update the weight of the current step, instead of directly using the current step’s
gradient. The complete algorithm is stated in Algorithm 3.
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Algorithm 3 Algorithm for Adam
Require: α: Learning rate
Require: E(θ): Error function
Require: β1, β2 ∈ [0, 1)
Require: : θ0: Initial weight

m0 ← 0
v0 ← 0
t0 ← 0
while θt is not converge do

t← t+ 1
gt ← ∇θE(θt−1) (Calculate gradient w.r.t. chosen weight θ)
mt ← β1 ·mt−1 + (1− β1) · gt (Calculate biased first moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2t (Calculate biased second raw moment estimate)
m̂t ← mt

(1−βt
1)

(Calculate unbiased moment estimate)
v̂t ← vt

(1−βt
2)

(Calculate unbiased second raw moment estimate)
θt ← θt−1−α · m̂t√

v̂t+ε
(Update weight, please note that gt was not directly used

as GD or SGD)
end while
return θt (Return updated weight)

6.2.10 Quantization And Model Compression
After training the size of the model was 2616 bytes. However, the MCU we decided
to use only has 2000 bytes of SRAM. The model size exceeds the RAM. Moreover,
even if the model fit within 2KB, we have the HDM module and the Arduino library
to fit as well. For which, the model size should be less than 1000 bytes. To solve
this problem, we introduced quantization.

Quantization or scaling a machine learning model simply means changing the
scale of the weights and biases. Meaning if a model has weights 1, 2, 3 and bias
4, 5, and, 6. We can make another model with the exact same performance with
weights 0.5, 1, 1.5 and bias 2, 2.5, and, 3. Notice that the weights/biases of the
second model are half of the first. However, the performance will be the same since
the proportion of each weight/bias with the other has been kept the same.

Another way to think of quantization is to expand or constrict any given range
to another range. For example, the range from 1 to 6 is constricted to 0.5 to 3.
Again, the same can be thought of in reverse (expanding 0.5 to 3 range into 1 to 6).

To quantize a range into another, we need to select the lower limit and upper
limit of the quantized range, αq, and βq respectively, for any given upper and lower
limit of the unquantized range, α and β respectively. Then, through equation xiv to
xvii, we can get the quantized value given an unquantized number and vice versa.

Even though for quantization, the need to calculate the scale (equation xiv)
seems self-explanatory, calculating the zero point (equation xv) might not seem so.
But, we still need to calculate the zero point which is the middle point and offset of
all number lines.
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Figure 23: Quantizing for compression

This is necessary since not all quantized ranges will have zero points at zero.
For instance, for αq = −128, βq = +127 and β = −α = 1, to keep the zero point
in the middle it has to be a little to the right, or the positive side (z = 0.5). Since
the range has more negative values than positive. That way, both the positive and
negative side has the same length in a number line, keeping the quantized range
balanced with the unquantized.

In order to calculate scale s and zero point z, we substitute x and xq of xvii into
equations xviii and xix and solve them as a system of two equations. Equations xvii
and xviii are a given since the lower unquantized limit will always map to the lower
quantized limit. The same goes for the mapping of the upper limits.

However, quantization is redundant for model compression if rounding is not
applied (see equation xvi). As we know to train models we need to use floating point
quantities that consume at least 4 bytes (IEEE 754 32-bit standard in most CPU
architectures). Because iteratively updating weights and bias does not guarantee a
change in whole numbers. But integers can be represented in only 1 byte with the
cost of representing 256 values including 0. Hence, after training, if we can quantize
weights into any single byte range of 256 values, we can save 4 times memory.

αq = −127 (xii)

βq = +127 (xiii)

s =
β − α

βq − αq

(xiv)
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z =
αβq − βαq

β − α
(xv)

xq = round
(1
s
x− z

)
(xvi)

x = s(xq + z) (xvii)

α = s(αq + z) (xviii)

β = s(βq + z) (xix)

But to keep symmetry, if the range to be quantized contains negative values, we
should ensure that zero is quantized to zero. Not only that, we noticed significant
accuracy improvement across all model types tested when that is done. This is what
we did in our implementation of quantization.

Our α and β range is dynamically set as the maximum quantity achieved, β =
−α = max However, we chose αq = −127 and βq = +127. Such choices allowed
zero to be mapped to zero. We still tested the case of zero not being mapped to
zero, where α = least, β = max and αq, βq were kept the same.

Table vii: Accuracy drop in (appx. in %) when zero is mapped to zero vs when not
while quantizing

Quantized model zeroquant 6= 0, A zeroquant = 0, B Drop, B − A

Sigmoid-Sigmoid 80.023 93.74 13.717

ReLU-Sigmoid 89.33 95.40 6.07

ReLU-Softmax 89.33 94.27 4.94

Sigmoid-Softmax 7.13 95.23 88.1
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6.2.11 Temporary Dequantization And Model Selection

Table viii: Accuracy (appx.in %) comparision between model types in default, quna-
tized and, dequantized state

Model Default Qunatized Dequantized

Sigmoid-Sigmoid 97.09 93.74 96.84

ReLU-Sigmoid 96.68 95.40 96.53

ReLU-Softmax 96.63 94.27 93.33

Sigmoid-Softmax 97.21 95.23 95.51

In table VIII, default refers to the state after the model is trained. Quantized refers
to quantizing the default model’s weight/bias to 8-bit integer from -127 to +127
in this case. Dequantized state means, scaling the weights/biases back to default.
However, the weights/biases may not be equal to the default since quantizing in-
volves rounding (see equation xvi ). However, they will be approximate. Table IX
includes some weights and biases in their default, quantized, and dequantized state
from each layer for β = −α = 64.74442 and βq = −αq = 127 along with their cor-
responding accuracy. We can see that in the dequantized state, they do not recover
their exact precision but are close.

Table ix: Default, quantized, dequantized state of weight-bias for each layer and
corresponding accuracy (appx in %) for the sigmoid-sigmoid model

Weight/bias type Layer 1 weight Layer 1 bias Layer 2 weight Layer 2 bias Accuracy

Default -56.74 -1.58 14.58 -17.0 97.09

Quantized -111 -3 29 -33 93.74

Dequantized -56.59 -1.53 14.78 -16.82 96.84

Even though it is not possible to pack one of the default models to the MCU,
since their size exceeds 2KB, we can pack the quantized and the dequantized weight-
s/biases. Using quantized weights/biases will be the easiest since they will take the
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least space and work seamlessly. However, packing dequantized state is also possible
through temporary dequantization. That is why we decided to use the dequantized
sigmoid-sigmoid model with the temporary dequantization technique since it has
the highest accuracy among the dequantized and quantized models.

In this technique, weights can stay as 8-bit integers in memory (as quantized
integers). However, when that specific weight/bias is used for calculation, it can be
copied, dequantized, used, and released from memory.

Hence, we packed the sigmoid-sigmoid quantized weights/biases along with the
calculated scale and zero point. Then when the time came for inference using any
of the above weights, we dequantized only that specific weight/bias and caused
inference.

That way at inference time, we are only using 4 bytes of additional memory.
Which is tolerable, provided the increase in performance is achieved. Listing 3 of
Appendix A shows the use of temporary dequantization in MCU code (cpp).

6.2.12 Performance
In this section, we showed the performance of the dequantized sigmoid-sigmoid
model since it achieved the highest accuracy with the ability to be compressed
to fit in MCU’s memory. The performance details are provided in table X.

Table x: Performance of dequantized sigmoid-sigmoid model (selected)

N S V F Accuracy Macro avg Weighted avg

Precision 0.975297 0.783034 0.928136 0.937500 0.968398 0.905992 0.966362

Recall 0.992711 0.522876 0.892379 0.452830 0.968398 0.715199 0.968398

F1-score 0.983927 0.627041 0.909906 0.610687 0.968398 0.782890 0.965907

Samples 29908 918 2388 265 0.968398 33479 33479

To evaluate our metrics we used precision, recall, and F1 score along with ac-
curacy since accuracy alone can be misleading. Even though an imbalanced dataset
can cause a very high accuracy, the classifier may be wrongly detecting any sample as
the highest available sample in the dataset. For instance, if a classifier that detects
cats and dogs is trained on a dataset of dogs only and is tested on a dataset with 99
dogs and 1 cat, it may detect all the members as dogs. That way the classifier still
has 99/100 = 99% accuracy, which is a very desirable score. However, the model
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has 0 classification ability. Therefore, we need other metrics besides accuracy that
account for false positives (like the cat on the testing dataset) and false negatives.

The formula provided for the used metrics is provided from equations xx through
xxiv. To understand them, some concepts are needed to be explained:

• True positive: Number of samples detected as positive and are also positive.

• False positive: Number of samples detected as positive but are actually nega-
tive.

• True negative: Number of samples detected as negative and are also negative.

• False negative: Number of samples detected as negative but are actually pos-
itive.

Table xi: True vs False positives and negatives

Ground Truth Predicted

TP Positive Positive

FP Negative Positive

TN Negative Negative

FN Positive Negative

Here, precision is a ratio of detected true positives for a specific class in a clas-
sification problem with a total number of testing samples detected as positive (both
true and false). The recall is the ratio of true positives but with the total number of
samples for that class. A fall in precision means an increase in false positives. On
the other hand, a fall in recall means a rise in false negatives. The rise consequently
means the opposite for both. For which high recall and precision are always desir-
able. However, in some cases, only one of them being higher than the other also
works as long as both are high enough.

The F1 score is the harmonic mean of precision and recall. A harmonic mean
for two numbers is only high when all of its members are high. Therefore using the
F1 score, we can know whether both the recall and precision are high or not. That
way we can use a single metric of performance instead of two.

The macro average is the average of any of the classification scores (precision,
recall, or f1). However, in the weighted average, each score is weighted by the
no. of times it appears in the dataset. That way the mean score accounts for the
success/failure it had for each class.

Precision =
TP

TP + FP
(xx)
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Recall =
TP

TP + FN
(xxi)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(xxii)

Macro average =

Number of classes∑
i=1

Scorei

Number of classes
(xxiii)

Weighted average =

Number of classes∑
i=1

Number of Samplesi ∗ Scorei

Total no. samples
(xxiv)

Table xii: Train-test split of the used dataset

Samples N S V F

Training 60723 1863 4848 538

Testing 29908 918 2388 265

Total 90631 2781 7236 803

We can observe that the model has nearly perfect precision and an even recall for
type N arrhythmia. Which provides a great F1 score. The second-best performance
was achieved by type V arrhythmia. However, the scores for types S and F are not
satisfactory. Although type F has a higher precision, the recall is less than 50%. On
the other hand, the recall score for S type is slightly higher than type F. However
both have close F1 scores. Which means the overall performance type S and F is
the same. The reason for this is quite clear since the training samples of S and F
are close to 2000 and 500 respectively. However, type N has nearly 60,000 samples
and V has almost 5000 samples which is significantly higher than S and F.

Moreover, the weighted average for each score is very high, implying the success
of classifying the N and V type arrhythmia correctly. However, in the case of the
Macro average which implies as said before, the model would have performed better
if a more balanced dataset was provided.

Furthermore, analyzing FLOPs (Floating Point Operations) we observe our op-
eration count is 1314 operations per inference. Also, the model weights and biases
consume 664 bytes of memory. But we at least need to keep 150 samples of ECG
data in memory for the HDM module which is eventually preprocessed to 61 sam-
ples that the ADM module intakes for inference. Each of the 150 samples occupies 4
bytes, whereas the model weight/bias occupies 1 byte each. Also for temporary de-
quantization we require an additional 3 bytes at any moment in time. That amounts
to 1267 bytes or 1.267 KB of memory.

37



However, this calculation is of the unreleasable memory and an approximation.
In practice, we had to allocate and deallocate some more memory. The calculations
are provided in tables XIII and XIV.

Table xiii: FLOPs & memory breakdown per layer

Layer FLOPs Memory

1 1230 620

2 84 44

Total 1314 664

Table xiv: System SRAM consumption breakdown in MCU

Memory (bytes)

Model size 664 + 3 = 667

ECG buffer 150 · 4 = 600

Total 1267

Previously, we discussed about the best performance of Faraone et al [9]. and
Scire et al. [10]. to achieve better performance than all other compared stud-
ies. Therefore, table XV contains the performance of their arrhythmia classification
model vs ours. There, we notice that the FLOPs and memory calculation of Scire
et. al is absent. The reason being we could not find explicit data or the number
of weights or biases used by them per layer in the study. However, compared with
the available data we notice that our model consumes more than 5 times less mem-
ory and 2500 times fewer operations than Faraone, where our performance exceeds
theirs by 0.2% in terms of F1 score and 11% in terms of accuracy. However, we
underperformed compared to Scire et al. by 6.3% in terms of F1 score where our
accuracy was equal.

Therefore, this study shows that deep learning models using fewer weights/biases
and primitive activations like sigmoid can outperform or come close to modern
networks with a high parameter count using Dropouts and Convolution layers in
some cases.
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Table xv: Performance comparison with the best arrhythmia classification models
studied

Model Faraone et al.[9] Scirè et al. [10] Ours
FLOPs (MOps) 3.221 - 0.001314
Memory (KB) 6.8 - 1.267

Precision 0.795 0.805 0.905
Recall 0.776 0.891 0.715

F1-score 0.780 0.845 0.782
Accuracy 0.854 0.968 0.968

For sake of future research and reference, we are also including tables for the
default, quantized, and dequantized models that we did not decide to use in table
XVI through XXVI. We noticed the relu-sigmoid dequantized and sigmoid-sigmoid
quantized model to provide the second and third-best performances whose F1 scores
were 0.753 and 0.720 respectively whereas the selected sigmoid-sigmoid dequantized
model has 0.782. Using different random seeds, one might get a higher performance
for them since those models have very close scores. This might make temporary
dequantization redundant (if the sigmoid-sigmoid quantized model gets a better f1
score) and ensure faster inference.

Table xvi: Relu-sigmoid dequantized model

N S V F Accuracy Macro avg Weighted avg

Precision 0.970984 0.817269 0.932057 0.780000 0.965292 0.875077 0.962481

Recall 0.994684 0.443355 0.855946 0.441509 0.965292 0.683874 0.965292

F1-score 0.982691 0.574859 0.892382 0.563855 0.965292 0.753447 0.961751

Support 29908 918 2388 265 0.965292 33479 33479
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Table xvii: Sigmoid-sigmoid quantized model

N S V F Accuracy Macro avg Weighted avg

Precision 0.980569 0.369759 0.819113 0.558065 0.937394 0.681876 0.948960

Recall 0.953324 0.586057 0.904523 0.652830 0.937394 0.774183 0.937394

F1-score 0.966754 0.453434 0.859701 0.601739 0.937394 0.720407 0.942154

Support 29908 918 2388 265 0.937394 33479 33479

Table xviii: Sigmoid-softmax default model

N S V F Accuracy Macro avg Weighted avg

Precision 0.977666 0.809278 0.947323 0.878788 0.972072 0.903264 0.970102

Recall 0.993814 0.513072 0.911223 0.656604 0.972072 0.768678 0.972072

F1-score 0.985674 0.628000 0.928922 0.751620 0.972072 0.823554 0.969966

Support 29908 918 2388 265 0.972072 33479 33479
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Table xix: Sigmoid-softmax dequantized model

N S V F Accuracy Macro avg Weighted avg

Precision 0.955181 0.937500 0.959082 0.894737 0.955106 0.936625 0.954496

Recall 0.998328 0.065359 0.804858 0.513208 0.955106 0.595438 0.955106

F1-score 0.976278 0.122200 0.875228 0.652278 0.955106 0.656496 0.943087

Support 29908 918 2388 265 0.955106 33479 33479

Table xx: Sigmoid-softmax quantized model

N S V F Accuracy Macro avg Weighted avg

precision 0.951744 0.800000 0.970757 0.857143 0.952328 0.894911 0.948190

Recall 0.999064 0.013072 0.778476 0.498113 0.952328 0.572181 0.952328

F1-score 0.974830 0.025723 0.864048 0.630072 0.952328 0.623668 0.938175

Support 29908 918 2388 265 0.952328 33479 33479
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Table xxi: Sigmoid-sigmoid default model

N S V F Accuracy Macro avg Weighted avg

Precision 0.976478 0.805128 0.942054 0.931818 0.970907 0.913870 0.968971

Recall 0.993848 0.513072 0.898660 0.618868 0.970907 0.756112 0.970907

F1-score 0.985086 0.626747 0.919846 0.743764 0.970907 0.818861 0.968697

Support 29908 918 2388 265 0.970907 33479 33479

Table xxii: Relu-sigmoid default model

N S V F Accuracy Macro avg Weighted avg

Precision 0.972532 0.812741 0.928920 0.875969 0.966755 0.897541 0.964275

Recall 0.994416 0.458606 0.875628 0.426415 0.966755 0.688766 0.966755

F1-score 0.983352 0.586351 0.901487 0.573604 0.966755 0.761199 0.963384

Support 29908 918 2388 265 0.966755 33479 33479
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Table xxiii: Relu-sigmoid quantized model

N S V F Accuracy Macro avg Weighted avg

Precision 0.955721 0.971429 0.947654 0.617188 0.953971 0.872998 0.952896

Recall 0.998796 0.074074 0.803601 0.298113 0.953971 0.543646 0.953971

F1-score 0.976784 0.137652 0.869703 0.402036 0.953971 0.596544 0.941587

Support 29908 918 2388 265 0.953971 33479 33479

Table xxiv: Relu-softmax default model

N S V F Accuracy Macro avg Weighted avg

Precision 0.973631 0.827826 0.906830 0.0 0.966277 0.677072 0.957161

Recall 0.993814 0.518519 0.900754 0.0 0.966277 0.603272 0.966277

F1-score 0.983619 0.637642 0.903782 0.0 0.966277 0.631261 0.960652

Support 29908 918 2388 265.0 0.966277 33479 33479
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Table xxv: Relu-softmax dequantized model

N S V F Accuracy Macro avg Weighted avg

Precision 0.961679 1 0.685644 0.0 0.933301 0.661831 0.935428

Recall 0.969975 0.021786 0.927973 0.0 0.933301 0.479934 0.933301

F1-score 0.965809 0.042644 0.788612 0.0 0.933301 0.449266 0.920212

Support 29908 918 2388 265.0 0.933301 33479 33479

Table xxvi: Relu-softmax quantized model

N S V F Accuracy Macro avg Weighted avg

Precision 0.960054 0.0 0.800739 0.0 0.942651 0.440198 0.914766

Recall 0.982781 0.0 0.907035 0.0 0.942651 0.472454 0.942651

F1-score 0.971284 0.0 0.850579 0.0 0.942651 0.455466 0.928354

Support 29908 918.0 2388 265.0 0.942651 33479 33479

6.3 Porting
In order to port to Arduino Nano and test them, we had to code deeply connected
layers and activations into a cpp header file. Listing 4 of Appendix A includes a
significant excerpt of that file along with the PT algorithm functions. However dense
and matmul functions have already been shown in listing 3 of the same appendix,
for which they were excluded.
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Chapter 7

Commercial Low-cost ECG
monitoring Systems

In this section, we discuss some commercially available low-cost ECG monitoring
systems and their advertised features. We also compare their cost with the studies
we analyzed and our designed system.

Alivecor KardiaMobile is a single-lead ECG device that connects wirelessly with
a smartphone and transfers the ECG signals from the fingertips of the patient. It
can record 30 seconds to 5 minutes of ECG data.

Omron Wireless Blood Pressure Monitor+ EKG is a hand-held blood pressure
monitor with a built-in ECG device. It is portable and has an LCD display screen
to check ECG data.

Table xxvii: Cost comparison of low-cost commercially available ECG monitoring
systems

Name Cost (USD)
Alivecor KardiaMobile 79.00

Omron Wireless Blood Pressure Monitor+ EKG 199.99
Instant Check 459.00

Heart Check CardiBeat 129.00
AFibAlert 179.00

ReadMyHeart 189.00
Studies reviewed 35.00 - 149.00

Implemented system 24.90

InstantCheck is a portable ECG device with an LCD screen to display ECG in
real-time. It allows users to record their ECG signals conveniently.

HeartCheck CardiBeat is a small handheld ECG monitor that is capable of
capturing a wide range of arrhythmia such as tachycardia, bradycardia, ventricular
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premature beats (VPBs), pauses, and atrial fibrillation.

AFibAlert Heart Rhythm Monitor allows patients who have been diagnosed with
AF or are at risk of developing AF or other arrhythmias, to take periodic readings
and to transmit this data to their physician by email, fax, or secure online access.

ReadMyHeart Handheld ECG is a handheld standard heart monitoring device
utilizing ‘Modified Lead 1 – ECG’ measurements that are normally obtained from
the traditional single-lead ECG signal.

Table XXVII reveals that commercially available systems are much more ex-
pensive than the ones researchers implemented. The lowest cost for the systems
mentioned here is USD 79 whereas for the studies we reviewed it was USD 35. The
cost of our system is USD 24.90 which is even lesser. But this excludes the cost of
analog circuitry, sensors, display elements, labor, and other miscellaneous costs, for
both our system and the studies analyzed.

However, it is noteworthy that researchers themselves bought their components
at retail prices. This implies if their systems go to production their cost of man-
ufacturing would be much lower. Not to mention, a lot of the components on the
development boards used are obsolete for this specific implementation, the removal
of which could further lower the price.

Therefore, redesigning the schematics with the embedded computing unit could
potentially lower the cost (by removing obsolete components and adding relevant
ones) which in turn, could lower the manufacturing cost and make room for some
profit margin.
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Chapter 8

Conclusion & Future Work

The objective of this study was to identify the best approach to developing a low-
cost, low-compute, low-powered ECG monitoring system and providing an imple-
mented system. Analyzing 9 recent studies from 2018 to 2021 which attempted to
develop a low-compute ECG monitoring system, we can conclude that the best ap-
proach might be using low-compute micro-controller units with no operating systems
overhead combined with machine learning-based detection algorithms.

Consequently, we implemented a system using a widely used, low-cost, low-
compute, and low-power microcontroller with the Pan-Tompkins algorithm for heart-
beat detection and a deep neural network for arrhythmia detection.

Figure 24: Fog computing

Future researchers could integrate IoT(Internet of Things) capability on such
low-cost systems to increase usability, capability, robustness, and long-term hardware-
software support. IoT capabilities can be incorporated in two ways :
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Figure 25: Edge computing

• Edge computing based system: Through this system, only actionable infor-
mation should be sent to the cloud to alert hospitals and physicians on their
phones in case of abnormalities like arrhythmia. That way medical profes-
sionals who might not be nearby could rush to help the patient. But data
processing will occur at the edge or the ECG monitoring system.

• Fog computing based system: The edge computing system could be further
developed to use fog computers with comparatively high-compute processors,
to detect trends in patients. Which could allow the system to detect disease,
heart failure, or stroke long before they occur. Also, the fog computers could
be used to optimize the algorithm running on low-compute micro-controllers,
allowing continuous and limitless improvement of the system as more and more
data becomes available.

Developing such ECG monitoring systems could allow developing and underde-
veloped countries to acquire and operate ample systems for their hospitals, which
could lower deaths from CVD diseases. This could also help patients with CVD to
receive better care at home at a much lower cost by combining telemedicine and
low-cost systems.

Following the process discussed, many other biomedical devices, that rely on
signal processing could be developed. Recently, the TinyML community is helping
developers around the world to flash machine learning algorithms to edge devices like
micro-controllers and other embedded processors and move machine learning away
from the cloud. Therefore, working on such a research topic could be comparatively
easier than before.
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Overall, attempting to develop more power efficient, zero operating system over-
head, machine-learning-based systems could make countless lives simpler and reduce
the cost of development for under-developed and developed countries. Future re-
search may delve more into systems like the ECG monitoring system, following the
approach discussed in this study.
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Appendix A

Code

Listing 1: Code excerpt from our modification of the PT algorithm
if (last_qrs_index == -1 ||
i - last_qrs_index >
refractory_period)
{
float current_peak_val = res[i];

// Comparing peaks with threshold values

if (current_peak_val > threshold)
{

last_qrs_index = i;

qrs_indices[*qcount] = i;
*qcount = *qcount + 1;

//Running QRS peak estimate

qrs_peak_est = qrs_filt * current_peak_val
+ (1 - qrs_filt) * qrs_peak_est;

}
else
{

noise_indices[*ncount] = i;
*ncount = *ncount + 1;

//Running Noise peak estimate

noise_peak_est = noise_filt * current_peak_val
+ (1 - noise_filt) * noise_peak_est;

}

//Note that only one threshold is being used
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threshold = noise_peak_est + qrs_noise_diff_weight
* (qrs_peak_est - noise_peak_est);
}

Listing 2: Softmax implementation in cpp
void softmax(float *x, int rows , int cols)
{

float sum = 0;
for (int i = 0; i < rows; i++)
{

for (int j = 0; j < cols; j++)
{

x[i * cols + j] = expf(x[i * cols + j]);
sum += x[i * cols + j];

}
}
for (int i = 0; i < rows; i++)
{

for (int j = 0; j < cols; j++)
{

x[i * cols + j] = x[i * cols + j] / sum;
}

}
}

Listing 3: Temporary dequantization implementation
void matmul(float *result , float *x,
uint8_t *y, int r1, int c1, int r2, int c2)
{

if (c1 != r2)
printf("c1 and r2 should be equal");

for (int i = 0; i < r1; i++)
{

for (int j = 0; j < c2; j++)
{

for (int k = 0; k < c1; k++)
{

result[i * c1 + j] +=
x[i * c1 + k] *
dequantize(y[k * c2 + j]);

// Temporary dequantization is applied here
}

}
}

}
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void dense(float *output , float *input ,
uint8_t *kernel , uint8_t *bias , int ir,
int ic, int kr, int kc)
{

matmul(output , input , kernel , ir, ic, kr, kc);
for (int i = 0; i < ir; i++)
{

for (int j = 0; j < kc; j++)
{

output[i * kc + j] +=
dequantize(bias[i * kc + j]);

// Temporary dequantization is applied here
}

}

sigmoid(output , ir, kc);
}

Listing 4: Excerpt of the model ported as header

void sigmoid(float *x, int rows , int cols)
{

for (int i = 0; i < rows; i++)
{

for (int j = 0; j < cols; j++)
{

x[i * cols + j] = 1
/ (1 + expf(x[i * cols + j]));

}
}

}

int argmax(float *output , int len)
{

int max_ind = 0;
float max = output[max_ind];

for (int i = 1; i < len; i++)
{

if (output[i] > max)
{

max = output[i];
max_ind = i;

}
}
return max_ind;

}
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float dequantize(int8_t x_q)
{

float scale = 0.5097986056110052;
float zero = 0.0;
return scale * (x_q + zero);

}

int pan_tom_detect_qrs()
{
int len = 150;
float y[len] {0.0};
float x_2 = 0.0;
float x_1 = 0.0;
float y_1 = 0.0;
float y_2 = 0.0;

const float a0 = 1.0;
const float a1 = -1.73356294;
const float a2 = 0.77567951;
const float b0 = 0.11216024;
const float b1 = 0;
const float b2 = -0.11216024;

for (int i = 0; i < len;)
{

if ((digitalRead(10) == 1) || (digitalRead(11) == 1)) {
}

else {
float x_i = (analogRead(A0) / 511.5) - 1;
y[i] = (b0 * x_i
+ b1 * x_1
+ b2 * x_2
- (a1 * y_1 + a2 * y_2)) / a0;
x_2 = x_1;
x_1 = x_i;
y_2 = y_1;
y_1 = y[i];
++i;

}
}

for (int i = 0; i < 5; i++)
y[i] = y[5];

for (int i = 0; i + 1 < len; i++)
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{
y[i] = y[i + 1] - y[i];
y[i] *= y[i];
}

len--;

int integration_window{15};
int n = len + integration_window - 1;
int max_len = len >
integration_window ?
len :
integration_window;
for (int i = 0; i < n; i++)
{

int kMax = i < max_len ? i : max_len;
for (int k = 0; k <= kMax; k++)
{

if (k < len && (i - k) < integration_window)
{

res[i] += y[k];
}

}
}

int spacing{50};
float limit{0.35};
float qrs_peak_est{0.0};
float noise_peak_est{0.0};
float noise_peak_val{0.0};
float qrs_filt{0.125};
float noise_filt{0.125};
float qrs_noise_diff_weight {0.25};
float last_qrs_index{ -1};
int refractory_period{120};
float threshold{0.0};

for (int i = 0; i < n; i++)
{
int lookup = (i - 1) -
spacing < 0 ? i : spacing;
bool is_broken = false;
for (int j = 1; j <= lookup; j++)
{

if (!(res[i] > res[i - j]))
{

is_broken = true;
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break;
}

}
if (is_broken)

continue;

lookup = (i + 1) +
spacing > n - 1 ?
(n - 1) - i : spacing;
for (int j = 1; j <= lookup; j++)
{

if (!(res[i] > res[i + j]))
{

is_broken = true;
break;

}
}
if (!is_broken && res[i] > limit)
{

if (last_qrs_index == -1
|| i - last_qrs_index >
refractory_period)
{

float current_peak_val = res[i];
if (current_peak_val > threshold)
{

last_qrs_index = i;
return i;

}
else
{

noise_peak_est = noise_filt *
current_peak_val + (1 - noise_filt)
* noise_peak_est;

}
threshold = noise_peak_est +
qrs_noise_diff_weight * (qrs_peak_est -
noise_peak_est);

}
}
}
return -1;
}
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