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Abstract
The nature of the stock market has always been ambiguous as it constantly fluc-
tuates for various factors. The regular fluctuations have always made it difficult
for investors to invest. This paper compares six different machine learning mod-
els for stock price analysis: Explainable AI, Q-learning method, LSTM, Bi-LSTM,
Restricted Boltzmann Machine, and Deep Belief Network. Each model was evalu-
ated using three different datasets consisting of 7000, 10000, and 14000 data points,
respectively. The results of the experiments show that depending on the size of
the dataset, the performance varies and the specific model used. In general, the
deep learning models (LSTM, Bi-LSTM, Restricted Boltzmann Machine, and Deep
Belief Network) outperformed the Explainable AI and Q-learning models in terms
of predictive accuracy. However, the Explainable AI and Q-learning models had
the advantage of being more interpretable and easier to understand, which may
be desirable in certain applications. Overall, this study provides insights into the
strengths and weaknesses of various machine learning models for stock price analy-
sis and highlights the importance of choosing the right model for the specific task
at hand. Future work concentrates on optimizing the performance of the models
further or exploring the use of hybrid models that combine the strengths of multiple
approaches.

Keywords: Machine Learning; Stock price analysis; Explainable AI; Q-learning;
Bi-LSTM; Restricted Boltzmann Machine; LSTM; Deep Belief Network; Dataset
size; Performance evaluation; Interpretable models; Predictive accuracy
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Chapter 1

Introduction

The basic goal of statistical methods, a well-known investment approach, is to cre-
ate a result that is uncorrelated to the stock market by speculating with various
directions and expected returns in the form of positive. [9]. The distance [5] and
cointegration procedures [8] are used in traditional statistical methods, and the re-
lationship between the two is assessed using the distance metric and the test of
cointegration, respectively. This statistical framework has been created in the past
with a number of stock market prediction models [9], [14], [16] due to the signifi-
cance of the models. The financial market is quite unpredictable, and predictions
are frequently skewed due to a number of factors. Taking this into account, this
article employs LSTM to create a multi-parametric model with time series data for
stock market prediction.

In the world of finance, stock market forecasting is crucial because, if done correctly,
it may limit losses and lower market risks while also providing significant benefits.
Financial data are typically very volatile, melancholy, nonstationary, and nonlinear
[6]. Because of this, the forecast is particularly troublesome and has recently re-
ceived a lot of attention from academics and the financial industries [1], [13], [7].
The prediction approach is reliant on models for time series analysis. Similar to the
autoregressive integrated moving average (ARIMA) [19], this model is exceptional.
The generalized autoregressive conditional heteroskedasticity (GARCH) model [10]
is another common model that is similar to ARIMA. These algorithms identify
failure-prone linear series that capture nonlinear financial data trends. The biologi-
cal neural networks that process data [25], [34], [33] are inspired by the computing
paradigm known as the neural network, which can handle nonlinear problems and
advance numerous fields of artificial intelligence, such as NLP [30] and computer
vision [23]. Similarly to this, neural networks have gained popularity for forecasting
time series data used in finance. Because it provides access to historical time series
values through recurrent connections, the recurrent neural network (RNN) is one of
the most well-known neural network techniques that has been employed extensively
in the financial world [18], [26]. Unfortunately, RNN suffers from the vanishing gra-
dient issue when utilized as a standard recurrent unit since backpropagation of time
training is challenging. A recurrent unit called long short-term memory (LSTM)
[3] was proposed as a solution to this issue. Long-term memory storage is made
possible by the LSTM, which has memory cells with self-connections that can store
temporal states of data and multiplicative gates that can govern the flow of infor-
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mation. Even on a wide variety of data, including machine translation [22], speech
recognition [31], remaining life prediction [21], the virus spread prediction [29], etc.,
LSTM works well for sequential data modeling, such as stock market price.

1.1 Research Problem
Stock price analysis is a critical task for investors and financial professionals, as
accurate predictions of stock prices can provide insights into the performance of
companies and markets. Machine learning has emerged as a powerful tool for stock
price analysis, as it can leverage large amounts of data and complex algorithms to
identify patterns and trends in stock prices. However, the selection of the appro-
priate machine learning model and dataset size is essential for achieving accurate
predictions. [32] [35]. Contrarily, the stock market contains complex data that may
be influenced by a number of factors, with prior values being omitted. In order to
forecast the stock market, it is crucial that recurrent units manage the multi-variable
inputs. Thankfully, Guo et al. introduced the multi-variable LSTM in [32]. The
management of the multi-variable inputs by recurrent units is essential for stock mar-
ket forecasting. Fortunately, Guo et al.’s introduction of the multi-variable LSTM
in article 06 saved the day. In this study, we compare Explainable AI, Q learning
method, LSTM, Bi-LSTM, Restricted Boltzmann Machine, and Deep Belief Net-
work as six alternative machine learning models for stock price analysis. To assess
the effectiveness of these models across various data sizes, we employ three distinct
dataset sizes, ranging from 7000 to 14000 data points. The goal of our research is
to identify the machine learning model or models that offer the best accurate stock
price analysis forecasts, as well as how these models perform across various dataset
sizes. Our tests demonstrate that in terms of predictive accuracy, the deep learning
models—including LSTM, Bi-LSTM, Restricted Boltzmann Machine, and Deep Be-
lief Network—outperform Explainable AI and Q-learning models. The Explainable
AI and Q-learning models, however, offer the benefit of being easier to explain and
comprehend, which may be preferable in some situations.

By addressing this research issue, our work seeks to shed light on the advantages
and disadvantages of various machine learning models for stock price analysis and
offer recommendations for the best models to choose for various applications and
dataset sizes.

1.2 Research Objective
This study’s main goal is to assess six machine learning models’ effectiveness for
stock price analysis while comparing their precision across various dataset sizes. In
particular, we want to:

• Using three distinct dataset sizes (7000, 10000, and 14000 data points), assess
the predictive performance of the Explainable AI, Q learning approach, LSTM,
Bi-LSTM, Restricted Boltzmann Machine, and Deep Belief Network models
for stock price analysis.
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• Find out which model(s) provide the best precise forecasts for stock price
analysis and how their performance changes with the quantity of the dataset.

• Examine the advantages and disadvantages of several machine learning models
for stock market analysis, as well as how their levels of usability and inter-
pretability differ.

To accomplish these goals, we first preprocess the price information for stocks to
eliminate any unusual or invalid values and make sure the data is in a machine
learning-friendly format. The six machine learning models are then trained and
tested using the three distinct dataset sizes, and their performance is assessed using
metrics like mean squared error, root mean squared error, and R-squared.

Additionally, we compare the six predictive models, taking into consideration their
effectiveness, interpretability, and usability. We assess each model’s advantages and
disadvantages and highlight how well it fits particular applications and use situ-
ations. Our study aims to shed light on the efficacy of various machine learning
models for stock market prediction and assist in the selection of the most suitable
models for particular dataset sizes and applications. Our research aims to add to
the body of knowledge on machine learning and economics and offer insightful in-
formation to investors and financial experts.

Our research compares the precision and comprehensibility of six machine learn-
ing models for the price of stocks analysis across three distinct dataset sizes. By
reaching this goal, we intend to offer insightful information on the benefits and draw-
backs of various machine learning models and aid in the selection of the best models
for particular applications and sample sizes. In order to help investors and financial
professionals make wise decisions, our study intends to contribute to the expanding
discipline of machine learning in financial affairs.

The rest of this paper is structured as follows. The related literature on the use
of stock prediction models in statistical arbitrage is reviewed in Chapter 2. The
models utilized in this paper are introduced in Chapter 3. The experimental results
are described in Chapter 4. The pre-processing method and model implementation
with performance assessment are illustrated in Chapter 5. The experimental results
are displayed and examined in Chapter 6. The paper is concluded in Chapter 7 with
a discussion of limitations and further research.

3



Chapter 2

Literature Review

In this research, the stock market prediction survey results have been taken into
account.

2.1 Background
Over the past 20 years, the popularity of stock market forecasting in the research
world has increased significantly. Major cases are discovered to use macroeconomic
factors like stock returns as the only input for the first phase of the study with the
utilization of non-linear slants as financial exchange record returns. For the reason
that financial exchange returns are raucous, uncertain, confused, and nonlinear in
nature, this strategy focuses on the nonlinear expectations of the stock market. Nu-
merous functions, such as the binary threshold, the linear threshold, the hyperbolic
sigmoid, and the brown functions, have been employed to forecast different values.

Since the stock market is a target market for the financial industry, predictions
have been made using machine learning techniques. One of them is specific assess-
ment, but it cannot consistently produce specific results, so it is crucial to develop
methods for progressively more precise measurement. The backslide approach has
its own limitations in light of the challenges and steps involved. This model be-
haves in a manner similar to the least squares approach, however it was fitted in
an arbitrary sequence. For instance, by lessening a handicapped variant of the least
squares setback work or the ”non-appearance of fit” in another standard. Again,
fitting nonlinear models can be done using the least squares method.

The influence ratio of financial and technical analysis on stock market forecasting
employing random forest, AI, and various man-made indicators is highly exceptional,
as is well known. Researchers have spent time identifying the optimal technique
and making future advancements in order to increase accuracy. As a result, there
are several ways to apply the recent stock market predictions. It should come as
no surprise that no model is ideal for financial analysis like stock market. Each
methodology has its own usage restrictions. In the previously mentioned paper, the
stock value estimation was completed using the self-assured Timberland estimating,
which is being used to indicate the cost of the stock using fiscal extents structure
the prospective quarter. This is one method for optically visualizing the incident by
moving approaching it with the use of a clever model that uses erratic behaviour to
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forecast the future cost of the stock from recorded data. On the other hand, there
are a variety of additional factors that affect the stock market and can cause changes.
The accuracy of the stock value forecast model can be increased by using the cash
related size in close proximity to a model that can strongly separate assumptions,
such as the money-related authority’s suspicions, the association’s overall opinion,
news from other sources, and even circumstances that cause the complete trade pro-
tection to alter.

[9] explains how challenging it is to produce stock value using a multi-source sample
without being aware of protective trades. However, because to the internet’s ability
to connect academics, the process has become less challenging with the utilization
of many variables over time. Using several approaches and options based on pre-
cise, reliable data, such as using a feeling analyzer to suggest a striking connection
between people’s feelings and how their passion for express stocks affects them, are
the only ways that budgetary trade information can be adequately predicted. The
web news also made it simple to access the stock market, which informed everyone
of its recent ups and downs. The utilization of historical data analysis and its ef-
fects on stock market price prediction were also discussed in the article. The cost
of the stock or offer might be anticipated using historical data and its examples,
but in practice it is necessary to use counts to foresee the expenses. The traditional
frameworks only care about the diversity of an element used for forecasting. The
latter is frequently accomplished with the aid of Genetic Algorithms (GA) or Ar-
tificial Neural Networks (ANN’s) [16], but these tools fail to build a long-distance
relationship between their stock costs transient dependencies.

RautSushrut et al. [2] estimate the stock market price movement using stock index
data and a supervised learning classifier. A statistical AI methodology has been
modeled after the computational analytical approach. Thus, the employment of
support vector machines has demonstrated a strategic method of stock price pre-
diction. In order to anticipate stock market prices, Manoj et al. [4] developed
an LSTM network that can handle a linear problem. LSTM with hidden layers
was employed by Roondiwala et al. [14]. The typical neuron was replaced with a
memory cell from the LSTM, which may assist the memory cell interact with other
nodes that remote access the input time effectively and construct a dynamic data
capture model with high forecasting accuracy. The NIFTY50 dataset was used for
the study. The acquisition of data is a crucial step in the model-training process
because the algorithm differs greatly depending on the dataset. The topic that helps
to identify the stock market prediction problem was studied with ANN by Kim et al.
[16]. They illustrate the massive amounts of data that the system keeps forgetting,
which causes the neuron to break and makes their predictions inaccurate. This is
frequently caused by two factors: loads are established self-assuredly, and the loads
become closer to the system’s terminus. In that paper, LSTM usage was suggested.

It is abundantly obvious from Selvin et althorough .’s analysis of financial data
[32] that the prediction heavily depends on historical data and the reputation of
the company. Additionally, the SVM technique has been used to lessen the issue.
According to Loke et al. [6], the stock market’s volatility should be taken into
account when creating a model, with historical data analysis taking precedence and
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time series data explaining how to anticipate the stock market using conventional
methods based on statistical methodologies. The limitations of their work have been
addressed using machine learning and AI approaches in order to get results that are
more accurate. Since the stock market is a dynamic data set, they came to the
conclusion that there is no possible universal solution. According to Zhang et al.
[27], stock market forecasting can be crucial in today’s society. They demonstrated
that predictions can be made with a high degree of accuracy if the data is accurate,
can be obtained from reliable sources, and the approach is consistent with the data.
RNN and LSTM were used by Xing et al. [22] to update the model with historical
equity of share price. They took a certain attribute from the data and used it to
make predictions. Opening price, day High, day Low, previous day o price, close
price, and date of trading are the characteristics of shares. To predict the stock
price of a certain time frame the suggested approach makes time series analysis. A
CNN model was suggested by Prosky et al. [18] to evaluate the sentiment of the
stock market. It is a more generalized form of the gated recurrent system, according
to Xao [1]. The evanescent gradient problem that RNN has is solved by the LSTM
that supposed to be less defected other than rest of the deep learning approaches
like traditional feed forward neural network. With the help of K-means algorithm a
short term stock market prediction has implemented with LSTM.

2.2 Related Work
This study analyzes the frameworks and statistical arbitrage of stock market fore-
casting models. Huck created a straightforward structure that is nonetheless adapt-
able for use in stock market forecasting [11]. The predicting, ranking, and trading
processes make up the framework’s main technique. It requires n stocks, and the
function shows the data for stocks i and j at time t. The predictor creates a return
projection for the following scale for each stock i. The dataset’s time dimension is
understood by the author using an Elman network as a predictor. A ranking of
all stocks is produced using the ELECTREIII outranking method based on these
projected returns, with a matrix of predicted spreads serving as the decision matrix.
The last m steps stock was sold out, and the top m steps stock was taken out during
trade. Applying the S&P100’s weekly return, which covers stock prices from 1992
to 2006, This study displays a superb outcome in terms of return and directional
forecasting. Then, Huck conducted additional research on the subject and employed
multi-step ahead forecasting, which was more flexible and realistic [12].

Similar but less complex framework was developed by Krauss et al. [15]. A predic-
tor has been trained using the lag in stock input returns. then makes a prediction
about the likelihood that a stock will one day outperform the market. Each stock
has gone through this process once, with the stocks being arranged in descending
order according to the prediction’s probability. The high rank represents the future
stock market success that is most anticipated. If the first k stocks are long and
the final k stocks are short, the ranking can go up to 2k stocks. With a mean
daily return of 0.43 percent and no concern for transaction costs, random forests
[20] produce the greatest results when applied empirically to the stocks that made
up the S&P500 index from 1992 to 2015. Additionally, Fischer et al. created the
work stated above using an LSTM network to forecast the direction of movement

6



of data for the S&P500 stock index that is out of sample [16]. LSTM achieves a
daily return of 0.46 percent on the identical data set before transaction charges.
For the same issue, Shen et al. [24] updated the gated recurrent unit (GRU) with
the RNN. The margin-based loss has been minimized in the GRU support vector
machine model, which was constructed with softmax operation. They fared better
than conventional GRU and SVM, according to that experiment. LSTM was also
utilized to forecast stock market data by Lee et al. [17]. But they build diversified
portfolios by establishing cutoffs for classifying companies as long or short. Based on
investors’ preferred degrees of risk, his system can create portfolios with those levels.

Only the lagged returns have been used as input in the above formula, which is
based on closing price calculations. Since stock market data is generated in the
financial sector, it is more complicated and subject to several influences. Because of
this, if a prediction model is just built on previous pricing, it may not be accurate.
In their prediction model, the authors [27], [28] employed a few technical indicators.
They use PCA to minimize the input’s dimension after adding the LSTM feature.
However, there were no dense layers in the conventional LSTM to compute the
inputs. As a result, in this study we not only add more variables as input features
but also develop the LSTM-based prediction model.
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Chapter 3

Model Architecture

The goal of this study is to use artificial neural networks to improve the precision
of daily stock index price estimates. We obtain information from current market
activity, where technical analysts utilize a type of safety analysis to predict price
direction by examining past data. Because the gathered data comprises a range of
values on various scales, the time series must first be fitted and normalized in order
to enhance network training. There must first be a stage of preparation for the data.
Technical analysis is used to locate the best technical indicators, whereas principal
component analysis is used to identify features and reduce data. The NARX model
is subsequently constructed using the PCA functional subset. After that, a data
sample is trained using a serial-parallel architecture. After the training operations,
the serial-parallel architecture is transformed into a parallelized network to carry
out prediction tasks. The thorough work schedule for this study is shown in the
accompanying graphic.
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Figure 3.1: Work Plan

3.1 Explainable AI
The fields of artificial intelligence and machine learning have made substantial strides
in a number of industries recently, including financial services, healthcare, and trans-
portation. The lack of candor in these models, especially can make it challenging to
grasp how they generate their forecasts and conclusions, which is an increasing worry
that comes along with these advancements. Herein lies the value of Explainable AI
(XAI). An emerging area of study called XAI aims to create machine learning algo-
rithms that can justify their predictions and judgments. An extensive explanation
of an XAI system’s model architecture will be given in this part.

Our model is made up of three layers: the input layer, the hidden layer, and the
output layer. The raw data is fed into the model in the input layer. This could
comprise photos, text, or numerical data, based on the nature of the data. The neu-
rons or nodes in the hidden layer do the computations essential to make projections.
Finally, the projected output is produced by the output layer. A Decision Tree is
a form of XAI model with a tree-like topology. A root node, branches, and leaves
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make up the structure. The root node symbolizes the complete dataset, and the
branches reflect the data’s features. The model’s output or judgment is represented
by the leaves.

The Decision Tree XAI model is based on a top-down approach, which means it
divides the data into subgroups based on a set of principles or conditions. These
rules are based on data characteristics involving age, income, or gender. The model
then assesses each rule to see which one divides the data into discrete subgroups
the best. After determining the rule, the data is divided into two subgroups based
on the rule. This technique is performed for each subset recursively until a halting
requirement is fulfilled. The stopping condition could be a maximum tree depth, a
restricted number of observations per leaf, or a certain impurity reduction.

Furthermore, Decision Trees can handle both categorical and numerical data, mak-
ing them suitable for a wide range of applications. They are also relatively fast and
can handle large datasets.

3.2 Long Short Term Memory
To implement the PCA parameters manually it is very difficult and almost impos-
sible to optimize. This research mitigates the problem using a more complex model
so that the model can compute each past data point’s significance and provide op-
timized predictions. Thus, the implementation of the Long Short Term Memory
(LSTM) model provides the weight updation while training the ML model.

LSTM as an RNN provides the scope to work on data sequences and ease learning
by retaining only the relevant information from the time scope. The extracted in-
formation from the network that is learned by the model is added to a memory that
gets updated after each timestamp based on the significance of the new information
to the sample.

The model implements the LSTM cell each with three gates illustrates as the input
gate, the output gate, and the forget gate. The three gates combinedly perform to
learn the weights and determine the ratio of a current data sample to be remembered
and past learned context should be forgotten. The cell state Ct represents the short-
term and the long-term internal memory of a cell.

3.2.1 Input Gate
The input gates have been implemented to select the new information to be added
and stored in the current Ct. A sigmoid function is implemented to reduce the input
vector (it) values.

it = σ(Wi.[ht − 1, xt] + bi) (3.1)

After that, a tanh function modifies each value between [−1, 1] (C− t). An element-
by-element matrix has been multiplied by it and Ct which represents the information
that requires to be added to the current cell.
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' Ct = tanh(WC .[ht − 1, xt] + bC) (3.2)

Figure 3.2: Input Gate
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3.2.2 Output Gate
To control the output of the flowing to the next cell the output gate has been
implemented. The output gate consists of a sigmoid function and then to filter
the less important information a tanh function has been implemented. By this
technique, the information that needs to pass through is kept. The output (ot) is
calculated by the following equation.

ot = σ(Wo.[ht − 1, xt] + bo) (3.3)

And the required (ht) is as follows.

ht = ot ∗ tanh(Ct) (3.4)

Figure 3.3: Output Gate
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3.2.3 Forget Gate
The implementation of the forget gate confirms which information is to be for-
gotten by the model. The filtered information that the model can recognize as less
important has been thrown away with this implementation of the forget gate. Math-
ematically, the forget gate has been implemented with the sigmoid function such as
the output value range between [0, 1] from the Ct − 1 state. 1 indicates the com-
plete passing value and 0 defines the completely filtered-out values. The following
equation has been implemented for the forget gate.

ft = σ(Wf .[ht − 1, xt] + bf ) (3.5)

The figure illustrates the functionality of forget gate in an LSTM cell.

Figure 3.4: Forgate Gate
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3.3 Q-Learning Mehtod
Q-Learning is a reinforcement learning method that iteratively improves its esti-
mations of the parameters of state-action pairings to learn an optimal policy for
an agent. The method operates by keeping a table of Q-values, that indicate the
estimated accumulated reward that the agent will get by doing a specific action in
a specific condition.

The Q-Learning algorithm begins by estimating the Q-values across all state-action
pairs. The agent then engages with its surroundings by performing actions and
monitoring the subsequent states and rewards. Based on this knowledge, the agent
adjusts its Q-values using the formula:

Q(s, a) = Q(s, a) + [r +max(Q(s′, a′))−Q(s, a)] (3.6)

when Q(s, a) is the Q-value for the current state-action pair, r is the reward received
for performing action an in state s, is the discount factor that determines the sig-
nificance of additional rewards, and max(Q(s’, a’)) is the maximum Q-value for the
state that follows s’ and all possible actions a’ that can be performed from s’.

The Q-Learning algorithm interacts with the environment indefinitely, adjusting its
Q-values after every step until it reaches an optimal policy. For each state, the
optimal policy is established by picking the action with the highest Q-value. One
of the fundamental aspects of Q-Learning is the fact that it does not need an envi-
ronment model, allowing it to learn from firsthand experience. This makes it ideal
for applications with complicated and difficult-to-model environments.

However, Q-Learning may suffer from the exploration versus exploitation problem,
in which the agent may become stuck in a suboptimal behavior because it is not
researching sufficiently to identify the optimal policy. To balance exploration with
exploitation, Softmax probing has been utilized.

3.4 Bi-LSTM
Bidirectional Long Short-Term Memory (Bi-LSTM) is a neural network architec-
tural variant used in the processing of natural languages and speech recognition.
It is a form of the recurrent neural network RNN for short, that can handle data
sequences, such as text or audio, and model the relationships that exist between
the sequence’s constituents. The basic idea underlying Bi-LSTM is to employ two
LSTMs, one that analyzes the input sequence forward and another which processes
it backward. This enables the model to accurately represent both the past and fu-
ture implications of each piece in the sequence, boosting its overall understanding
of the sequence. The Bi-LSTM model is made up of many layers of LSTM cells,
each with a number of hidden units. The model is fed a series of vectors, with each
of the vectors indicating a different element in the order in which they appear. The
input is sent into the Bi-LSTM’s first layer, and the outcome of each LSTM cell in
the subsequent layer is transmitted to the next layer.
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The last LSTM layer’s output is then sent to a fully connected layer, which maps the
LSTM output to the resultant space. In a classification task, the output space can be
a set of discontinuous labels, whereas, in a regression work, it can be a continuous
value. The Bi-LSTM model makes use of two sets of hidden states, another for
the forward LSTM and the other for the reverse LSTM. At each time step, the
hidden states are updated by mixing the most recent input with the prior hidden
state using a set of learned weights. The forward and backward LSTM outputs are
concatenated at each time step to give a composite output that contains both the
past and future implications of the present element in the series. This sum of the
output is then transmitted to the Bi-LSTM’s next layer.

3.5 Restricted Boltzmann Machine
RBM is a generative stochastic neural network system that is frequently employed
for unsupervised learning tasks like dimensionality reduction, feature extraction,
and collaborative filtering. The binary stochastic neuron, which may operate on
values of 0 or 1, is the fundamental building unit of an RBM. The RBM model
is divided into two layers: visible and hidden. The input data is represented by
the visible layer, and the hidden layer is represented by an array of hidden variables
that capture the fundamental structure of the data that was entered. The two layers
are completely linked, with each visible neuron linked to each buried neuron and
vice versa. Unsupervised training is used to learn the connection weights between
neurons in the visible and hidden layers, which are typically learned via contrastive
divergence or comparable gradient descent approaches. During training, the model
adjusts the weights to minimize the reconstruction error, which is the disparity be-
tween the input data and the model’s reconstructed output data.

The RBM model employs a probabilistic method for learning, with each neuron in
the visible and hidden layers possessing a probability distribution that determines
whether the neuron is active or inactive. The distribution of probabilities for each
neuron is dependent on the model’s energy function, which can be described as
the sum of the neuron states and connection weights. Using Gibbs sampling or
other similar techniques, the RBM model is trained by sampling from the joint
distribution of the visible and hidden layers. The model changes the hidden layer
based on the input data during training and then modifies the visible layer based
on the newly generated hidden layer. This procedure is repeated until the model
has learned the fundamental structure of the input data, at which time it is said to
have converged. RBMs have the critical virtue of being ”generative” models, which
means they may be used to produce new data that is comparable to the input data.
This is accomplished by sampling from the combined dispersion of the visible and
hidden layers and then generating new output data from the sampled data.

3.6 Deep Belief Network
A Deep Belief Network (DBN) is a form of artificial neural network (ANN) com-
posed of stacked layers of stochastic, latent variables known as Restricted Boltzmann
Machines (RBMs). A typical DBN architecture may be defined as follows:
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• The input layer, which contains the visible units that receive the input data.

• Multiple hidden layers, each of which is an RBM made up of hidden units and
bias units. The hidden units learn to derive high-level characteristics from the
provided information, while the bias units learn to predict the hidden units’
prior likelihood of being active.

• The output layer, which is a linear regression layer that predicts the target
value based on the activations of the hidden units in the top RBM.

A DBN’s architecture may be represented as an accumulation of RBMs, with each
RBM connected to the preceding and next layer by undirected edges. The inter-
actions among the visible and hidden units in each RBM are weighted, and the
weights are learned using the Contrastive Divergence (CD) unsupervised learning
technique. Once the DBN has been pre-trained layer by layer with CD, it may be
fine-tuned with supervised learning to further enhance the weights and biases of
the whole network and fed into the set of data for analysis, such as classification
or regression. Backpropagation and a loss function suited for the job at hand were
used for fine-tuning.

3.7 Performance Evaluation
In this section, the metric to measure the performance of the implemented model
has been discussed. As stock price prediction is a regression problem, the two eval-
uation metric has been used. One of the used metric is Root Mean Squared Error
(RMSE) and the other is Mean Absolute Percentage Error (MAPE).

To calculate the error RMSE uses the difference between the actual (At) and pre-
dicted (F − t) price values and returns an absolute error measure for N timescale.
The following equation has been implemented to calculate RMSE.

RMSE =

√√√√ 1

N
∗

N∑
t=1

(At − Ft)2 (3.7)

Next, MAPE considers the error by looking at the true value and thus measures
relatively how off the predicted values are from the truth value rather than taking
the actual difference. It helps to deal with data with more fluctuations and keeps
the error range in constant checking. The following formula has been implemented
as the MAPE value.

MAPE =
1

N
∗

N∑
t=1

At − Ft

At

(3.8)

Both of the metrics for measuring the error are implemented to determine how close
or far the stock price is after the prediction from the real-world scenario.
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Chapter 4

Dataset

The stock exchange is a complicated system that is impacted by a number of vari-
ables, including political stability, economic development, and global events. As a
result, reliably forecasting stock prices is a difficult endeavor, and scholars have used
a variety of ways to address this issue. In this paper, we propose a unique dataset
containing data on stock markets from four countries: the United States, the United
Kingdom, Russia, and Bangladesh. The dataset is divided into three subsets: 7000
data, 10,000 data, and 14000 data, providing a rich supply of information for con-
structing and testing prediction models.

Opening and closing prices, daily high and low prices, trading volume, and other
crucial financial indicators are all included in our dataset. These variables came
from a variety of sources, including Internet financial databases, corporate reports,
and news stories. The addition of data from many nations enhances the dataset’s
depth by giving a varied variety of political and economic circumstances to examine.
This is especially essential since stock prices are frequently impacted by worldwide
occurrences, and including data from different nations helps us to construct more
reliable and applicable models. The uniqueness of our dataset rests in its compre-
hensiveness and the possibility it provides to stock market prediction researchers.
Because of the dataset’s vastness and variety, researchers may evaluate developments
in the stock market across numerous nations and construct models that can effec-
tively anticipate stock prices in diverse locations. Furthermore, our dataset may be
used to investigate the influence of numerous factors on stock prices, such as eco-
nomic policy and political instability. This form of study can be very beneficial for
investors who want to invest in many nations but need to examine the risks involved.

Another notable benefit associated with our dataset is that it has the potential for
application in deep learning model construction. The dataset’s huge size and in-
clusion of several variables make it an ideal option for constructing deep learning
models capable of understanding intricate correlations between diverse factors im-
pacting stock prices. Furthermore, the incorporation of data from several nations
allows for the development of models that can adapt effectively across diverse loca-
tions.

Finally, our dataset provides a once-in-a-lifetime chance for academics to design and
test prediction models for stock market analysis. Its extensive breadth, wide variety
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of factors, and inclusion of data from numerous nations make it an ideal resource
for researching stock market patterns, constructing prediction models, and studying
the influence of a number of variables on stock prices. We hope that our dataset
will help advance research in the discipline of forecasting the stock market and will
help investors make educated decisions about investing in global stock markets.

4.1 Data Analysis
In this section, exploratory data analysis has been discussed with the Bangladeshi
data only that is the stock market data of BRAC Bank. To understand the data
set, first, it is required to visualize the data. For that purpose, the data frame has
been visualized by the pandas library which is the most common data frame and
manipulation library of Python. The following figure illustrates the data.

Figure 4.1: Data Set

From the figure above we can see the tabular view of our model, here based on date
the data is shown. The LTP stands for the Last Trading Price and the YCP stands
for the Yesterday’s Closing Price.

Because of using Pandas library to read the CSV file as dataframe and since the
data is indexed by date, the data can also be indexed by the date column. For the
analysis the data has taken from September 2020 to September 2022. It will also
allow the model to visualize the trends for the model to work with the unpredictable
occurrences such as COVID-19 situation. After loading data to the dataframe, it
is important to see the main trends of the dataset to understand the fluctuations.
The following figure illustrates the HIGH and the LOW points of the BRAC Bank
over the time scale.
As per the figure, it is visible that there are two sudden drop in the LOW price of
the data, one is in May 2021 and another is in April 2022. Rest of the time it has
the steady growth and downfall.

The challenging part for the ML model is to estimate the rapid changes of the data
points correctly such as the values of the LOW in May 2021 and April 2022. This
paper will focus on evaluating the model performance for predicting the recent values
also another company share after training on the past data. Therefore, to mitigate
the challenge it requires more parameters other than just the HIGH and the LOW
values.
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Figure 4.2: HIGH and LOW Points

Like the same way applied previously to see the HIGH and LOW value, the OPEN
and the CLOSE value is observed to analyse the data more vividly. Here, the open
price is named as OPENP and similarly the close price of the dataset is named as
CLOSEP. Plotting the Open and Close values for the time scale is shown below.

Figure 4.3: OPEN and CLOSE Price
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Similar to LOW points, it is visible that OPEN price at May 2021 and April 2022
has gone down severely. As the high fluctuation can have impact on the model
performance some other parameter has been taken under consideration.

Likewise, in the previous graphs, the Close price, and Yesterday’s Close price are
observed and illustrated in the following figure.

Figure 4.4: Close and Yesterday’s Close Price

Here, it is clearly visible that there are no sudden fluctuations and it will help the
model to train with good performance. The Volume of the data set should also need
to visualize to understand the participation in the company by the traders which
is another important aspect to determine the stock price for the next day. The
following figure illustrates the volume of the BRAC Bank stock market data.

Figure 4.5: Volume

As seen in the figure, the volume is fluctuating more often. As the stock prices are
unpredictable and contains high fluctuating values at time scale, it is important to
get the right feature engineering processes to improve the model performance. The
next section, the details analysis has been provided for the above analysis.
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4.2 Stock Price as the Time Series Data
Despite the volatility, stock market price are not just a randomly generated num-
bers. Therefore, it is necessary to analyze the data as a sequence of discrete time
data. Thus, the time series observation is granted as successive points in any given
time scale over the time.

As the sequential nature of time series data, the sequence of information needs to
aggregate. For the feature engineering the moving average is used that has the
ability to smooth the short term fluctuations. This paper holds the 80% data to use
for training purpose and 20% data for the prediction over trained values.

4.3 Fundamental Analysis
It is crucial to first look at the intrinsic values, such as tangible assets, investment
statements, consumer behavior, and strategic objectives, for the fundamental analy-
sis. For this to be an accurate predictor for the long-term investment, it depends on
both historic data and current data. To calculate revenues, assets, liabilities, costs,
and other financial metrics, historical and current data is crucial. However, in order
to predict short-term market changes, it is necessary to analyze the stock market’s
technical elements, which are covered in the following part.

4.4 Technical Analysis
Technical analysis is the vital measure of the stock market price prediction with
ML models. For this implementation, the measurable data from stock market ac-
tivities has been thoroughly analyzed including stock prices, historical returns and
the volume of historical trades. These quantitative information later used for identi-
fying trading signals to identify the pattern of market movement of the stock market.

Technical analysis is been used to measure the short term trading purpose as the
intention of the implementation is to predict the stock price for the short term
instead of long term investment. For this paper, as a technical analysis, the sole
focus is established on SMA and EMA and evaluated both to find the difference
to see the model performance for each of them. LSTM as a deep learning RNN
platform has utilized for the time series data and compared with the discussed
technical analytical methods.
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Chapter 5

Implementation

In this implementation, six different machine-learning models have been utilized for
analyzing stock prices. These models include Explainable AI, Q learning method,
LSTM, Bi-LSTM, Restricted Boltzmann Machine, and Deep Belief Network. Three
different datasets, containing 7000, 10000, and 14000 data points, respectively, have
been used for evaluating the performance of these models. The aim of this study is
to compare the accuracy and effectiveness of these models in predicting stock prices
using different datasets. This analysis could provide valuable insights for investors
and financial analysts.

5.1 Explainable AI
The implemented code aims to use the Decision Tree Regressor algorithm to predict
the stock prices based on the given input parameters. The dataset used in this
implementation contains stock market data from various countries like USA, UK,
Russia, and Bangladesh with three different sizes: 7000, 10000, and 14000 data
points.
The code begins with importing the necessary libraries such as pandas, numpy,
matplotlib, and scikit − learn. Then the dataset is loaded using the read_csv()
function from pandas and stored in a DataFrame called df . The isnull() function
is used to check if there are any missing values in the DataFrame, but this step has
been commented out.
Next, the missing values are replaced with the mean of the corresponding column
using the fillna() function, but this step has also been commented out. Then, the
OpenInt column is dropped using the drop() function since it is not required for
prediction.
The ’Date’ column is converted to a datetime format using the to_datetime() func-
tion. The dataset is sorted based on the date using the sortvalues() function. The
input features are extracted and stored in a DataFrame called X, and the target
label is stored in a variable called y.
The dataset is split into training and testing sets using the train_test_split() func-
tion from scikit− learn. The input features are standardized using the
StandardScaler() function. The fit_transform() function is used to calculate the
mean and standard deviation of the training set and then transform the training
set. The transform() function is used to transform the testing set.
The Decision Tree Regressor algorithm is used to train the model with a maximum
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depth of 4 and a random state of 42. The fit() function is used to fit the model to
the training data. The training and testing accuracy scores are calculated using the
score() function and printed to the console. The feature importance is calculated
using the feature_importances attribute of the model, and the results are printed
to the console. The feature importances are then plotted using the bar() function
from matplotlib.
The tree structure is visualized using the plot_tree() function from scikit− learn.
The feature names are passed to the function to display the feature names on the
tree nodes. The tree is plotted with a maximum depth of 3, and the plot is displayed
using the show() function from matplotlib.
In addition, the partial dependence plot is generated using the partial_dependence()
function from scikit − learn. It is a graphical representation of the relationship
between the target variable and a set of input variables, showing the marginal effect
of the input variables on the predicted output. The partial dependence plot is not
shown in the current implementation, but it can be generated by uncommenting the
code.
In conclusion, the implemented code uses the Decision Tree Regressor algorithm to
predict stock prices based on input features. The model is trained and tested using
three different datasets containing stock market data from various countries. The
feature importances and tree structure are also visualized, and partial dependence
plots can also be generated. This implementation can be considered as a starting
point for further exploration of the performance of other machine learning algorithms
on the same dataset.

5.2 Q-Learning Method
The code consists of two parts. The first part implements a Q-learning agent for
stock trading, while the second part implements a Q-learning algorithm for the same
task but with a different implementation.
The first part of the code defines a class QLearningAgent, which is used to define
an agent that can learn to trade stocks using Q-learning. The class has methods to
initialize the agent, get the action to take based on the current state and Q−values,
and learn from the reward obtained after taking an action. The agent is trained on
a given dataset of stock prices, and the net worth of the agent is recorded over time.
Finally, a graph of the net worth over time is plotted using Matplotlib.
The second part of the code implements the Q-learning algorithm for stock trading
using a different approach. In this implementation, the state space is defined based
on whether the stock price increased, decreased, or remained the same compared to
the previous day. The action space consists of buying, selling, or holding the stock.
The Q − matrix is initialized with zeros, and the agent learns by updating the
Q-values using the Bellman equation. The function is q_learning implements the
Q-learning algorithm for a given number of episodes and returns the total rewards
obtained during each episode.
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5.3 LSTM
This model implements an LSTM-based deep learning model for time-series fore-
casting. Specifically, it trains a model to predict the future values of a stock market
index based on its past values. The implementation uses the Keras library for
building and training the model, and the Pandas and NumPy libraries for data
processing.
The first step in the implementation is to load the dataset, which is in CSV format
and contains the historical daily values of the stock market index. The data is
sorted by date and set as the index of the Pandas DataFrame. The next step is to
scale the data using the MinMaxScaler, which scales the values between 0 and 1.
This is done to ensure that all the features have similar scales and to improve the
convergence of the model during training.
The implementation divides the data into datasets for training and testing after
scaling it. The training dataset comprises 80% of the data, with the remaining 20%
in the testing dataset. To eliminate data leaks and to guarantee that the model is
evaluated on unknown data, the split is done chronologically. The implementation
also includes a method called createdataset, which accepts a dataset and a time step
as the inputs and outputs of the LSTM model’s input and output data. The time
step specifies how many previous values the model will use to forecast the upcoming
value. The time step in this implementation is set to 100, which implies that the
model predicts the following day’s value based on the previous 100 days’ results.
The input and output data returned by the create_dataset function are reshaped
to a 3D format that is required by the LSTM layer in Keras. The LSTM layer
takes a 3D input tensor with shape (batch_size, time_steps, input_dim), where
batch_size is the number of samples in each batch, time_steps is the number of time
steps in each sample, and input_dim is the number of features in each time step.
In this implementation, the batch_size is not specified, and Keras automatically
infers it from the input data.
The LSTM model is defined using the Sequential API in Keras. The model consists
of three LSTM layers, each with 50 neurons, and a fully connected output layer with
one neuron. The return_sequences parameter in the LSTM layers is set to True
for the first two layers to return the sequence of hidden states, which is required by
the next LSTM layer. The last LSTM layer does not return the sequence of hidden
states since it is the final layer. The model is compiled using the mean squared error
as the loss function and the Adam optimizer as the optimization algorithm.
The model is then trained on the training dataset for five epochs using a batch size of
64. The training loss and validation loss are printed after each epoch to monitor the
training progress. Once the model is trained, it is used to make predictions on both
the training and testing datasets. The predicted values are then transformed back
to their original scale using the inverse transform function of the MinMaxScaler.
The root mean squared error (RMSE) performance measures are then computed for
both the training and testing datasets. The root mean square error (RMSE) is a
measure of the difference between anticipated and actual values, with smaller values
indicating better performance. The RMSE is calculated using the math.sqrt and
meansquarederror functions from the math and sklearn.metrics libraries, respec-
tively.
Finally, the implementation plots the original and predicted values of the stock mar-
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ket index for both the training and testing datasets using the matplotlib library. The
training and testing RMSE values are also printed on the plot for easy comparison.
Overall, this implementation is a simple yet effective example of using LSTM-based
deep learning models for time-series forecasting. It showcases the use of Pandas
and NumPy for data processing, Keras for building and training the model, and
matplotlib for visualization.

5.4 Bi-LSTM
The implementation uses a Bidirectional Long Short-Term Memory (Bi-LSTM)
model to predict stock prices based on historical data. The dataset used is loaded
from a CSV file and preprocessed using MinMaxScaler to scale the closing prices
between 0 and 1. The data is then split into training and testing sets, with 80% of
the data used for training and the remaining 20% for testing. The training data is
further split into input sequences of length 60 and corresponding output values.
The Bi-LSTM model is then built using the Keras library. The model architecture
consists of two layers of 50 LSTM units each, with a dropout rate of 0.2 to prevent
overfitting. The Bidirectional wrapper is used to make the LSTM layers process
the input sequence both forwards and backwards, allowing the model to capture
dependencies in both directions. The model is compiled using the Adam optimizer
and mean squared error (MSE) loss function.
The model is then trained for three epochs on the training data with a batch size
of 32. The model is used to generate recommendations on the data being tested
once it has been trained. To determine the root mean squared error (RMSE), the
projected values are inverse converted using the scaler and compared to the actual
values.
In addition to the RMSE, the model’s training and validation loss and mean absolute
error (MAE) are also tracked and plotted using the model’s history object. The
model is retrained for two epochs with a larger batch size of 64, and the training
and validation loss and MAE have been plotted again.
The final output of the implementation is two plots. The first plot shows the pre-
dicted and actual stock prices over time. The second plot shows the training and
validation loss and MAE over the course of training. The plots provide a visual rep-
resentation of the model’s performance in predicting the stock prices and its training
and validation error over time.
Overall, the implementation demonstrates the use of a Bi-LSTM model in predict-
ing stock prices based on historical data. The model shows promise in accurately
predicting stock prices, as demonstrated by the low RMSE and visually accurate
predictions in the first plot. The training and validation loss and MAE plots also
demonstrate the model’s ability to learn and generalize to new data.

5.5 Restricted Boltzmann Machine
This section implements a Restricted Boltzmann Machine (RBM) to perform unsu-
pervised learning on a dataset. RBMs are a type of artificial neural network that
can be used for feature learning and dimensionality reduction.
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The script first loads a dataset from a CSV file, preprocesses the data, scales the
features, and splits the data into training and test sets. The RBM is defined with a
certain number of visible and hidden units, and the weights and biases of the RBM
are initialized. The energy function and negative log-likelihood are defined, and the
optimizer is defined with a learning rate of 0.01. The RBM is trained for a certain
number of epochs, with batches of data being fed through the model. The training
loss is recorded for each epoch, and the weights, biases, and hidden units are plotted
over time. Finally, the model is evaluated on the test set by calculating the mean
squared error between the predicted and actual values.
The RBM is defined with a TensorFlow 2.0 backend, using the Keras API. The
script uses other libraries such as NumPy, Pandas, and Matplotlib for data ma-
nipulation and visualization, as well as scikit − learn for scaling and splitting the
data.
The RBM contains a visible layer with a unit count equal to the number of features in
the set of data and a hidden layer with a unit count defined by the user. The weights
linking the visible and hidden layers are generated at random using a compressed
normal distribution, and both layers’ biases are set to zero. The energy function
takes a visible unit vector and a hidden unit vector as input and computes the
model’s negative log-likelihood. The optimizer is used to reduce the negative log-
likelihood, which optimizes the model’s probability given the data.
The RBM is trained using batches of data, with the optimizer minimizing the nega-
tive log-likelihood of the model with respect to the weights and biases of the model.
After each epoch of training, the training loss is recorded, and the weights, biases,
and hidden units are plotted over time to monitor the training progress. Finally, the
model is evaluated on the test set by computing the mean squared error between
the predicted and actual values.

5.6 Deep Belief Network
This section implements a deep belief network (DBN) model implemented in Ten-
sorFlow using Python.
The data is first loaded from a CSV file and preprocessed by dropping unnecessary
columns, converting date strings to Unix timestamps, and normalizing the features
and labels. The data is then split into training and testing sets, and TensorFlow
datasets are created for them.
The DBN model architecture is defined using the tf.keras.Model API. The ‘DBN‘
class contains a stack of dense layers with ReLU activation, followed by a single
dense layer with linear activation for regression.
The loss function is defined as the mean squared error (MSE), and the gradient
function is defined using tf.GradientTape. The mean absolute error (MAE) is the
accuracy statistic.
The model is trained for a specified number of epochs using the Adam optimizer.
The loss and accuracy values are stored in lists for each epoch and printed at the
end of each epoch. Finally, the loss and accuracy values for each epoch are printed
again.

26



Chapter 6

Result

In this study, we used six distinct machine learning models to assess and forecast the
behavior of complex systems: Explainable AI, Q-Learning model, LSTM, Bi-LSTM,
Restricted Boltzmann Machine, and Deep belief network. To assess the performance
of these models, we employed three datasets of 7000, 10000, and 14000 data points,
respectively.
The purpose of this research is to compare the efficacy of different models in order
to discover which model works most effectively with each dataset. The models will
be evaluated based on their performance.
The Explainable AI model is a newer technique that has gained traction in recent
years because of its capability to explain how it makes judgments. The Q-Learning
method is a reinforcement learning technique that has found widespread application
in fields such as robotics and game theory. Deep learning models LSTM and Bi-
LSTM have demonstrated performance in processing natural languages and recogni-
tion of speech challenges. Deep generative models such as the Restricted Boltzmann
Machine and Deep belief network have been employed in unsupervised learning ap-
plications.
The results of this study will provide insights into the performance of these models
in predicting complex systems and help us determine the best model for different
types of datasets. This study will contribute to the growing body of research on
machine learning and its applications in various fields.

6.1 Explainable AI
The implemented code aims to use the Decision Tree Regressor algorithm to predict
the stock prices based on the given input parameters. The dataset used in this
implementation contains stock market data from various countries like USA, UK,
Russia, and Bangladesh with three different sizes: 7000, 10000, and 14000 data
points. The model achieved 99% accuracy over the training and validation set.

6.1.1 Performance over 7000 data
The Decision Tree model’s feature_importances_ property is used to determine the
significance of each feature. These numbers show the relevance of each characteristic
in making predictions. The feature importances are then shown using a bar plot
built using Matplotlib, with the x-axis showing the feature names and the y-axis
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indicating their importance scores. The captured features for this dataset are shown
in Figure 6.1.

Figure 6.1: Feature Capture over 7000 data

The code includes two forms of decision tree visualizations. The first call to plot_tree
provides a full picture of the whole decision tree, encompassing all its branches and
nodes. The following plot_tree function call reduces the display to a maximum
depth of three, resulting in a more compact depiction. The regression tree gener-
ated by the model for the 7000 dataset is shown in Figure 6.2.

Figure 6.2: Regression Tree over 7000 data
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6.1.2 Performance over 10000 data
The machine learning algorithm obtains more data points to extract information
from as the dataset size grows, potentially leading to increased accuracy and more
accurate feature significance assessments. A bigger dataset allows the model to
catch additional trends and generalize to previously unknown data. As a result, the
feature significance ratings may become more strong and representational of each
feature’s genuine relevance. The captured features for this dataset are shown in
Figure 6.3.

Figure 6.3: Feature Capture over 10000 data

A larger dataset often allows for improved model generalization. It lowers the danger
of overfitting, which occurs when the model absorbs the training data rather than
understanding the underlying patterns. A model that has been well-generalized is
more likely to capture the real connections between features and the variable being
studied, resulting in more accurate and dependable feature significance ratings. The
regression tree generated by the model for the 10000 datasets is shown in Figure
6.4.
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Figure 6.4: Regression Tree over 10000 data

6.1.3 Performance over 14000 data
Larger datasets, in general, help to maintain feature significance rankings. The
influence of random changes and noise lessens as the dataset grows, enabling the
model to zero in on more significant patterns. This consistency means that the
relative relevance of traits is likely to remain relatively high as datasets get more
extensive. However, further research must still confirm feature significance stability,
including cross-validation or permutation significance. The captured features for
this dataset are shown in Figure 6.5.

Figure 6.5: Feature Capture over 14000 data

Larger datasets may necessitate additional computational assets as well as time to
develop and assess the model. Decision Tree scenarios, in particular, require more
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training time as the dataset becomes larger. It is critical to take into account the
available computer power and modify resources accordingly. The regression tree
generated by the model for the 14000 datasets is shown in Figure 6.6.

Figure 6.6: Regression Tree over 14000 data

6.1.4 Prediction
On the test set, the model’s accuracy is calculated using the scoring method of
the TransformedTargetRegressor. The prediction’s coefficient of determination is
represented by the score. The loss is calculated as well as the mean squared error
(MSE) between the actual and anticipated values. Subsequently using Matplotlib,
a scatter plot is constructed to demonstrate the connection between the actual
outcomes (y_test) and the values that were predicted (y_pred). The x-axis shows
the actual values, while the y-axis shows the expected values. Each scatter plot
point represents a single data point from the experimental data set. The model’s
prediction is shown in the scatter plot in Figure 6.7.
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Figure 6.7: Actual vs Prediction
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The code’s charting section gives useful insights regarding the Decision Tree Re-
gression model. The feature significance plot identifies the factors that are most
significant for forecasting the target variable. A higher significance score denotes
a greater influence on the forecasts. This data can be used to influence feature
selection and additional research.
The decision tree visualization depicts the model’s structure and decision-making
process. Each node indicates a feature and its related split criterion, which leads
to the following nodes or leaf nodes with anticipated values. The tree may be
interpreted by readers to understand how various attributes influence the model’s
results. Readers can obtain a better grasp of the machine learning model’s behavior,
identify essential aspects, and evaluate the model’s interpretability by evaluating
these graphs.

6.2 Q-Learning Model
For this part, we will show the net worth, reward, state, and total reward gained
by the model of the three distinctive datasets. To conduct the trading simulation
utilizing the Q-Learning agent, use the run_simulation function. The function loops
over each time step, acquiring the current state, deciding on an action based on the
agent’s decisions, modifying the agent’s Q-values, and computing the reward. The
net worth of the agent is monitored over time and saved in the net_worth_history
list.

6.2.1 Performance over 7000 dataset
Following the completion of the simulation, the net_worth_history collection is
visualized using Matplotlib. The x-axis is time (in days), while the y-axis is the
agent’s net value. At each time step, each point on the graph reflects the agent’s
net wealth. The net worth of the 7000 dataset generated by the model is shown in
Figure 6.8.
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Figure 6.8: Net Worth over 7000 dataset

The get_reward function is designed to compute the instant reward depending on
the current state and action selected. The reward is set to one if the state is 0 (price
decline) and the action taken is 2 (buy low, sell high). The reward is set to one if
the state is one (price raised) and the action performed is one (buy high, sell low).
All other activities are rewarded with 0. The reward over time is shown in Figure
6.9.

Figure 6.9: Rewards over 7000 dataset
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The get_state method determines the present state based on pricing data at a
particular time step. If the closing price is less than the initial price, the state is set
to 0 (price reduction). When the closing price exceeds the initial price, the status
is changed to 1 (price raised). Otherwise, if the costs stay unchanged, the status is
set to 2 (price stayed unchanged). The state over time is shown in Figure 6.10.

Figure 6.10: State over 7000 dataset

The total rewards per episode are shown in Figure 6.11.

Figure 6.11: Total Rewards per Episode over 7000 dataset
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6.2.2 Performance over 10000 datasets
The net worth curve’s overall trend reveals whether or not the agent’s trading tech-
nique is lucrative. An expanding curve indicates that the agent’s trade actions
provide positive returns, whereas a declining curve indicates negative returns. The
volatility and swings in the net worth graph indicate the agent’s trading efficiency
variability. Sharp spikes or dips imply large gains or losses within certain time
periods. The magnitude of these changes might reveal information about the risk
associated with the approach to trading. The net worth of the 10000 datasets gen-
erated by the model is shown in Figure 6.12.

Figure 6.12: Net Worth over 10000 datasets

Matplotlib is used to plot the total prizes for each episode after the training process.
The x-axis shows the number of episodes, while the y-axis reflects the total prize
earned during the episode. This plot aids in visualizing the agent’s learning progress
across episodes. The reward over time is shown in Figure 6.13.
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Figure 6.13: Rewards over 10000 dataset

Iterating over the complete dataset numerous times is often required while training
a Q-Learning agent. Training time might grow correspondingly with more datasets.
More episodes may be required for the agent to converge and learn optimal tactics.
The state over time is shown in Figure 6.14.

Figure 6.14: State over 10000 datasets

The total rewards per episode are shown in Figure 6.15.
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Figure 6.15: Total Rewards per Episode over 10000 dataset

6.2.3 Performance over 14000 datasets
The net worth curve may be used to assess the efficacy of the trading strategy em-
ployed by the Q-Learning agent. A continually ascending curve suggests a successful
approach, however, a static or dropping curve may indicate that the agent’s learn-
ing process has to be adjusted or improved. The net worth curve may also be used
to analyze various trading techniques or to compare the agent’s performance to a
standard. Readers may evaluate the net worth rate of expansion and instability of
alternative methods, as well as the agent’s performance, by putting numerous curves
on the identical graph. The net worth of the 14000 datasets generated by the model
is shown in Figure 6.16.

Figure 6.16: Net Worth over 14000 dataset
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The reward over time is shown in Figure 6.17.

Figure 6.17: Rewards over 14000 dataset

The test rewards and states are displayed independently over time. The test re-
wards plot displays the rewards at each time step, indicating the agent’s profitability
throughout the test phase. The test states plot depicts the agent’s impression of
market circumstances as the state changes over time. The state over time is shown
in Figure 6.18.

Figure 6.18: State over 14000 datasets

The performance of the trained agent is assessed using test data. The agent chooses
behaviors depending on the Q-values it has learned and is rewarded accordingly.
The test_rewards list stores the prizes gained during the testing period. The total
rewards per episode are shown in Figure 6.19.
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Figure 6.19: Total Rewards per Episode over 14000 dataset

6.3 LSTM
In this part, we will be discussing the prediction result generated by the LSTM
models over three datasets and see the differences between them. The blue line is the
original dataset prior to scaling. It displays the exact closing prices. The anticipated
values for the training set are represented by the orange line. It demonstrates
how effectively the model learns to suit the training data. The projected values
for the test set are shown by the green line. It demonstrates how effectively the
model can extrapolate and anticipate data that has not yet been observed. The
visualization begins by generating an empty array with the same dimensions as the
scaled data. The training set’s anticipated values are allocated to the relevant spots
in the empty array. The projected values for the test set are additionally allocated to
the array’s corresponding locations. Finally, the original dataset is shown alongside
the projected values for the training set and the values that were anticipated for the
test set.

6.3.1 Performance over 7000 dataset
The generated graph shows the actual vs prediction and the validation. The blue
color informs the actual value, the orange color shows the prediction and the green
color represents the validation. The model reflects the trends and patterns that
appear in the data through the comparison of the blue line to the orange and green
lines. The projected lines should ideally closely reflect the original data.

6.3.2 Performance over 10000 datasets
More trained data increasing the quantity of the dataset gives the model additional
historical knowledge, potentially enhancing its capacity to detect trends and make
precise forecasts. Longer Training Time: Because there are a greater number of
samples to analyze with a greater amount of data, training the LSTM model might
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Figure 6.20: Actual vs Prediction vs Validation over 7000 dataset

take longer. The training time has risen proportionately to the quantity of the
dataset. The generated graph shows the actual vs prediction and the validation.
The blue color informs the actual value, the orange color shows the prediction and
the green color represents the validation.

Figure 6.21: Actual vs Prediction vs Validation over 10000 dataset

6.3.3 Performance over 14000 datasets
A bigger dataset helps the model in generalizing to previously unknown data. It
gives a more diversified set of patterns and variances, allowing the model to learn
more robust time series representations. The generated graph shows the actual vs
prediction and the validation. The blue color informs the actual value, the orange
color shows the prediction and the green color represents the validation.
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Figure 6.22: Actual vs Prediction vs Validation over 14000 dataset

6.4 Bi-LSTM
In this part, we will be discussing the prediction result generated by the Bi-LSTM
models over three datasets and see the differences between them. The graphic
shows two lines: The blue line depicts the test set’s real stock values. The orange
line reflects the model’s expected stock values. By comparing the blue and orange
lines, you can determine how effectively the model forecasts stock prices. In an ideal
world, the forecast line would closely track the actual prices.

6.4.1 Performance over 7000 dataset
The generated graph shows the actual vs prediction. The blue color informs the
actual value, and the orange color shows the prediction. The code also provides a
training and validation loss plot as well as a training and validation MAE (Mean
Absolute Error) plot. These charts give information about the algorithm’s training
progress and performance on unknown data. The training loss and MAE represent
how well the model fits the training data, whereas the validation loss and MAE
show how effectively the model extends to the validation data.
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Figure 6.23: Actual vs Prediction over 7000 dataset

6.4.2 Performance over 10000 datasets
Increasing the dataset size adds more historical knowledge to the model, poten-
tially boosting its capacity to detect trends and make accurate predictions. Because
there are more samples to analyze with a bigger information set, developing the
Bidirectional LSTM model might take longer. The training time will increase pro-
portionately to the quantity of the dataset. The generated graph shows the actual
vs prediction. The blue color informs the actual value, and the orange color shows
the prediction.

Figure 6.24: Actual vs Prediction over 10000 dataset
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6.4.3 Performance over 14000 datasets
The generated graph shows the actual vs prediction. The blue color informs the
actual value, and the orange color shows the prediction. A richer dataset can assist
the model in generalizing to previously unknown data. It gives the model a wider
range of trends and variances, allowing it to develop more accurate representations
of stock price patterns.

Figure 6.25: Actual vs Prediction over 14000 dataset

6.5 Restricted Boltzmann Machine
In this section, we will see the performance of the model in terms of various aspects
such as actual vs prediction for a single time step, hidden bias over time, hidden unit
over time, visible bias over time, visible unit over time, weight for a single hidden
unit, and weight over time for different datasets.

6.5.1 Performance over 7000 dataset
This graphic examines the actual and anticipated stock prices from the test data for a
single time step. The x-axis depicts time, while the y-axis depicts stock price values.
The blue line depicts real stock values, while the orange line depicts expected market
prices. The gray region between both lines represents the difference or mistake in
pricing between the actual and forecasted prices. The plot gives an illustration of
the model’s capability to reliably anticipate stock prices. Here we have first observed
the actual vs prediction for a single time step in Figure 6.26.
This graphic depicts the evolution of the biases of the RBM system’s hidden units
over time. The hidden units are represented by the x-axis, while the bias values
are shown by the y-axis. The bias level for each concealed unit is represented by
a different point on the plot. The figure enables the monitoring of the fluctuation
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Figure 6.26: Actual vs Prediction over 7000 dataset

in bias values, which can alter the activation sequences of the RBM’s hidden units.
Then we observe the hidden bias in Figure 6.27.

Figure 6.27: Hidden Bias over 7000 dataset
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This graph depicts the activation of the RBM model hidden units over time. The
x-axis indicates time, while the y-axis displays the activation values of the hidden
units. Each line in the figure represents the activation values of a different hidden
unit. The graphic facilitates observation of the changes and trends in the hidden
unit activations over the data. Next, we see the hidden unit over time in Figure
6.28.

Figure 6.28: Hidden Unit over 7000 dataset
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This graphic depicts the evolution of the biases of the RBM algorithm’s visible units
throughout epochs. The visible units are represented by the x-axis, while the bias
values are shown by the y-axis. Each plot point indicates the bias value for a single
visual unit. The graphic shows how the biases of visible units affect the RBM’s
creative process. After that, we illustrate the visible bias over time in the Figure

Figure 6.29: Visible Bias over 7000 dataset

The activation of visible units in the RBM architecture over a period of time is
depicted in this graphic. The x-axis indicates time, while the y-axis displays the
activation values of the visible units. Each line in the figure represents the activation
levels of a particular visible unit. The graphic enables the examination of patterns
and oscillations in the visible unit activations throughout the generating process of
the RBM. Then, we observe the visible unit for the model.

Figure 6.30: Visible Unit over 7000 dataset

This graphic depicts the evolution of the weights of the RBM model’s links between
visible and hidden units over time. The hidden units are represented by the x-
axis, while the weight values are shown by the y-axis. Every segment in the figure
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represents the weights corresponding to a particular hidden unit. The figure allows
you to see how the RBM’s weights change over time and how they affect the model’s
learning procedure. Weight changes reveal how the RBM adapts its internal schema
during training. Next, We will observe the weight for the single hidden unit and the
overall weight over time in the following two figures.

Figure 6.31: Weight for a single Hidden unit over 7000 dataset

Figure 6.32: Weight over time over 7000 dataset
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6.5.2 Performance over 10000 dataset
Here we have first observed the actual vs prediction for a single time step in Figure
6.33.

Figure 6.33: Actual vs Prediction over 10000 dataset

Then we observe the hidden bias in Figure 6.34.

Figure 6.34: Hidden Bias over 10000 dataset
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Next, we see the hidden unit over time in Figure 6.35.

Figure 6.35: Hidden Unit over 10000 dataset

After that, we illustrate the visible bias over time in the Figure

Figure 6.36: Visible Bias over 10000 dataset

50



Then, we observe the visible unit for the model.

Figure 6.37: Visible Unit over 10000 dataset

Next, We will observe the weight for the single hidden unit and the overall weight
over time in the following two figures.

Figure 6.38: Weight for a single Hidden unit over 10000 dataset
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Figure 6.39: Weight over time over 10000 dataset

6.5.3 Performance over 14000 dataset
Here we have first observed the actual vs prediction for a single time step in Figure
6.40.

Figure 6.40: Actual vs Prediction over 14000 dataset

Then we observe the hidden bias in Figure 6.41.
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Figure 6.41: Hidden Bias over 14000 dataset

Next, we see the hidden unit over time in Figure 6.42.

Figure 6.42: Hidden Unit over 14000 dataset

After that, we illustrate the visible bias over time in the Figure
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Figure 6.43: Visible Bias over 14000 dataset

Then, we observe the visible unit for the model.

Figure 6.44: Visible Unit over 14000 dataset

Next, We will observe the weight for the single hidden unit and the overall weight
over time in the following two figures.
With 10,000 and 14,000 data points, the weights plot shows more variability and
patterns. The added information allows for a more detailed depiction of the in-
teractions between visible and hidden units, resulting in more sophisticated weight
patterns. The hidden biases plot, like the weights plot, shows more diverse and
interesting patterns as the number of data points increases. To capture the intri-
cacies and hidden characteristics contained in the broader dataset, the RBM model
adjusts the hidden biases. When compared to the plot with 7,000 data points, the
observable biases plot has more oscillations and corrections. With a larger dataset,
the model may adjust the visible biases to more accurately reflect the statistical
features of the data.
The hidden unit activations plot reveals more subtle dynamics and patterns with
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Figure 6.45: Weight for a single Hidden unit over 14000 dataset

Figure 6.46: Weight over time over 14000 dataset
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10,000 and 14,000 data points. The RBM model now has more data from which to
learn, which might lead to more complex hidden unit activations. With additional
data points, the visible unit activations plot shows more precise and complex pat-
terns. Because of the bigger dataset, the RBM model can capture more complex
changes in visible unit activations during the generating process. With additional
data points, the model’s predictions may become more accurate. The comparison
plot of actual and forecasted stock prices shows a smaller difference or error between
the two lines, suggesting higher predictive performance. In conclusion, increasing
the dataset size to 10,000 or 14,000 data points can result in more detailed and
accurate model representations, which leads to superior training loss convergence,
weight patterns, biases corrections, and predictive performance. The extra informa-
tion can give a more complete picture of the fundamental trends and fluctuations in
stock price data.

6.6 Deep Belief Network
In this part, we discuss the Deep Belief Network model performance in the aspect
of prediction and the loss and MAE with the three datasets. The plotting section
of the code provides two graphs: ”Training Metrics” and ”Actual vs. Predicted
Values”. These graphs show how the DBN (Deep Belief Network) model performed
when trained on stock price data.

6.6.1 Performance with 7000 dataset
”Actual vs. Predicted Values” shows a scatter plot of real stock prices vs projected
stock prices. The x-axis shows the actual values, while the y-axis shows the expected
values. Each data point in the graph represents a unique occurrence from the test
dataset. The graph depicts how well the model’s predictions match the actual values.
The data points are represented by red plus markers (’r+’), and the transparency
(alpha) is adjusted to 0.4 to show overlapping points. The first figure illustrates the
actual vs prediction of the model in a scatter plot.
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Figure 6.47: Actual VS Prediction over 7000 dataset

In ”Training Metrics,” there are two vertical subplots: one for loss and a second
for Mean Absolute Error (MAE). The top subplot’s y-axis reflects the loss value,
while the bottom subplot’s y-axis shows the MAE value. The number of epochs
on the x-axis corresponds to the number of training iterations. To illustrate the
model’s training progress, the loss, and MAE values are displayed against the total
number of epochs. Next, the training matrices have been shown which represent the
training loss and the training Mean Absolute Error of the model to illustrate the
performance.

Figure 6.48: Loss and MAE over 7000 dataset

6.6.2 Performance with 10000 datasets
The first figure illustrates the actual vs prediction of the model in a scatter plot.
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Figure 6.49: Actual VS Prediction over 10000 dataset

The plot in the top subplot depicts the training lost across the epochs. The difference
between the actual and anticipated values is represented by the loss, with smaller
values indicating a superior model performance. The graphic shows how the loss
value varies over the selected number of epochs as the model trains. The declining
trend of the loss implies that the model is improving its forecast accuracy with time.
Next, the training matrices have been shown which represent the training loss and
the training Mean Absolute Error of the model to illustrate the performance.

Figure 6.50: Loss and MAE over 10000 dataset
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6.6.3 Performance with 14000 datasets
The first figure illustrates the actual vs prediction of the model in a scatter plot.

Figure 6.51: Actual VS Prediction over 14000 dataset

The plot in the bottom subplot illustrates the Mean Absolute Error (MAE) through-
out the epochs. The average precise variance between the actual and anticipated
values is measured by MAE, which provides insight into the model’s absolute accu-
racy in forecasting. The graphic shows how the MAE value evolves throughout the
selected number of epochs as the model trains. The MAE’s declining trend implies
that the predictions made by the model are becoming more accurate with time.
Next, the training matrices have been shown which represent the training loss and
the training Mean Absolute Error of the model to illustrate the performance.

Figure 6.52: Loss and MAE over 14000 dataset

The Training Metrics graph tracks the model’s training progress and shows how the
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loss and MAE values change over each epoch. The lowering loss and MAE numbers
suggest that the model’s prediction accuracy is increasing with time. The Actual vs.
Predicted Values graph provides a visual representation of the performance of the
model by comparing predicted to actual values. Overall, these graphs act as visual
aids for assessing the DBN model’s training success and evaluating its capacity for
forecasting by comparing anticipated stock prices to actual values. The falling loss
and MAE values show how well the model improvement in learning, whilst the
scatter plot shows the model’s accuracy in forecasting stock prices.
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Chapter 7

Conclusion

In this research, we tested and compared the performance of six machine learn-
ing models for stock price analysis across different dataset sizes. Specifically, we
evaluated the predictive accuracy of Explainable AI, Q-learning method, LSTM,
Bi-LSTM, Restricted Boltzmann Machine, and Deep Belief Network models using
three different dataset sizes. Our experiments showed that the deep learning models,
including LSTM, Bi-LSTM, Restricted Boltzmann Machine, and Deep Belief Net-
work, outperformed the Explainable AI and Q-learning models in terms of predictive
accuracy. However, the Explainable AI and Q-learning models have the advantage
of being more interpretable and easier to understand.

Our research contributes to the growing body of knowledge in the field of machine
learning and finance by providing valuable insights into the strengths and weak-
nesses of different machine learning models. The findings of our study can be used
by investors and financial professionals to make informed decisions when selecting
a machine-learning model for stock price analysis. For instance, our results suggest
that deep learning models, especially LSTM, Bi-LSTM, Restricted Boltzmann Ma-
chine, and Deep Belief Networks, can provide more accurate predictions for stock
price analysis than Explainable AI and Q-learning methods. However, in certain
applications, such as those requiring interpretability and ease of use, Explainable AI
and Q-learning methods may be more suitable.

Future studies can expand on these findings in a variety of ways. First, our study
only employed three distinct dataset sizes; it would be fascinating to compare the
performance of other machine learning models on bigger and smaller dataset sizes.
Furthermore, we only utilized a single stock market dataset in our study; it would be
interesting to compare the efficacy of various machine learning models on multiple
stock market datasets to assess the generalizability of our results. Second, we used
standard performance indicators such as mean squared error, root mean squared er-
ror, and R-squared coefficient to assess the performance of several machine learning
models. Future research might look at using other measures to evaluate the suc-
cess of machine learning models for stock price analysis. Third, our research looked
at the accuracy and comprehension of several machine learning models for stock
market prediction. Future research can look at other elements of machine learning
models, such as their resilience to aberrations and capacity to deal with missing data.
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Fourth, our research only looked at six machine-learning models for the price of
stocks analysis. Future research might look into the performance of various machine
learning models for stock price analysis, such as random forest models and Gradi-
ent Boosting Machines. Fifth, our research focuses on the use of machine learning
models in stock price analysis. Future research might look at applying machine
learning models to other financial applications like asset price analysis or foreign
exchange rate prediction. Finally, the machine learning models in our study were
fed just historical stock price data. Future research might look at using other forms
of data as inputs, such as press releases or sentiment analysis on social media, in
order to increase the forecasting accuracy of algorithms that use machine learning
for the stock price analysis.

In summary, our study provides valuable insights into the strengths and weaknesses
of different machine learning models for stock price analysis. Future research can
build on our work by exploring other aspects of machine learning models and inves-
tigating their application to other financial applications and datasets.
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