
Automated Feedback Test Generation and Functionality Testing
for UI Development with Self-Guided Recommendation

by

Md.Tanvir Hasan
18101087

S.M. Hazzaz Durjoy
18101384

Jahidul Hasan
18101213

Mahazabin Binte Zafar
18101337

N/A
N/A

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
School of Data and Sciences

Brac University
January 2023

© 2015. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Md.Tanvir Hasan
18101087

S.M. Hazzaz Durjoy
18101384

Jahidul Hasan
18101213

Mahazabin Binte Zafar
18101337

i

Approval
The thesis titled “Automated Feedback Test Generation and Functionality Testing
for UI Development with Self-Guided Recommendation” submitted by

1. Md.Tanvir Hasan(18101087)

2. S.M. Hazzaz Durjoy (18101384)

3. Jahidul Hasan(18101213)

4. Mahazabin Binte Zafar(18101337)

5. N/A(N/A)

Of Fall, 2022 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on 19 January 2023.

Examining Committee:

Supervisor:
(Member)

Dr. Muhammad Iqbal Hossain
Associate Professor

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Name of Supervisor
Designation

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Ethics Statement (Optional)
This is optional, if you don’t have an ethics statement then omit this page

iii

Abstract
UI development is the most integral part of the Software Development Life Cycle
and testing the functionality of the UI is also as much important during the Software
Testing Life Cycle of any software project. Without proper testing, we will remain
unaware of how an application is working and in which scenario the application
fails to do what was intended. Graphical User Interface is directly related to user
experience and pretty much determines the future usage of that application, so it
is important to make the application responsive, user-friendly, and simple with a
proper functioning interface. UI development and testing the functionality is very
important and also a time and resource-consuming process as the GUI has to be
fault free. To do that, every permutation of the GUI functionality needs to be tested
to launch the application in time. An android application consists of many core and
composite components and to make such a seamless and fault-free application, every
component’s functionality has to fulfill its required functions. On one hand, testing
the functionality of these components is necessary, on the other hand, the position
of these components on the user interface is also as much important. As a result,
a recommendation system is a must for the UI developer to save time during UI
development which will make it easier for the developer to place each component
in the correct position. Testing out all the functionality of a component is time-
consuming. Even though some tools make the testing easier, the necessity of an
automated tool is felt during the UI development that can make sure that the UI
developer is getting necessary recommendations of the component’s position and
also able to check for himself if the components are reacting as it was intended to
do. As a result, a huge amount of time and resources will be saved during software
development. So in this paper, we intended to work on proposing a system that
may give us the privilege of UI development and component functionality testing
automation. functionality testing automation.

Keywords: Software Testing, Functionality Testing, YOLOv5, Object Detection,
Computer Vision, Feedback Test Generation, UI Development, Self-Guided Recom-
mendation, Android Application, Machine Learning.

iv

Dedication (Optional)
To our beloved parents and those who believed in us.

v

Acknowledgement
First and foremost, thanks to the Great Almighty, our thesis was completed without
any serious setbacks.

Moreover, we are thankful for the utmost contribution, time and support from our
respected supervisors Dr. Muhammad Iqbal Hossain

Finally, to our parents and loved ones for their unwavering support.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iii

Abstract iv

Dedication v

Acknowledgment vi

Table of Contents vii

List of Figures ix

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Objective and contributions . 4
1.4 Thesis Structure . 4

2 Related Work 6
2.1 Literature Review . 6
2.2 YOLOv5 . 17
2.3 Pytorch Framework . 18
2.4 Computer Vision . 18
2.5 Object Detection . 19

3 Model & Dataset 21
3.1 Dataset description . 21

3.1.1 Data preprocessing . 21
3.1.2 Feature selection . 24

3.2 Model description . 24
3.2.1 Single Stage Object Detector 24
3.2.2 Other important part for improved result 25

vii

4 Implementation and Result Analysis 26
4.1 Implementation . 26

4.1.1 Hardware Specification . 26
4.1.2 Environment Setup . 26
4.1.3 Package Installation . 26
4.1.4 Custom Model Configuration 27
4.1.5 Automation System . 28

4.2 Result Analysis . 28
4.2.1 Comparative Analysis . 28
4.2.2 Selected Model Result Analysis 30
4.2.3 System Analysis . 33
4.2.4 Performance Analysis . 37

5 Conclusion 40
5.1 Challenges . 40
5.2 Future Prospect . 40
5.3 Conclusion . 41

Bibliography 44

viii

List of Figures

3.1 Summary of RICO dataset . 21
3.2 Labeling images using LabelImg package 22
3.3 Data after Image Labeling . 23
3.4 Visual Representation how labeling works 23

4.1 Comparison Graph of YOLOv5 Variants 30
4.2 confusion matrix of our custom model 31
4.3 System Overview . 32
4.4 Detection(Left side - the Application, Right side - Detection) 33
4.5 No recommendation Perfect case (Left side - the Application, Right

side - Recommendation) . 34
4.6 recommendation Perfect case (Left side - the Application, Right side

- Recommendation) . 34
4.7 Functional Testing Error Check Result (No Error)) 35
4.8 Functional Testing Error Check Result (Error Found) 36
4.9 Result . 37
4.10 F1 - confidence curve . 37
4.11 Precision Confidence Curve . 38
4.12 Recall Confidence curve . 38
4.13 Precision Recall curve . 39

ix

List of Tables

3.1 Features . 24

4.1 Component division on Train and Validaion 29
4.2 Confusion Matrix Results . 30

x

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

AUI Attachment Unit Interface

AUT Application Under Test

BCE Binary Cross Entropy)

CIoU Complete intersection over union

CNN Convolutional Neural Network

CPU Central Processing Unit

DRL Deep Reinforcement Learning

GPU Graphics Processing Unit

GUI Graphical User Interface

IDE Integrated Development Environment

LOC Lines of Code

mAP Mean Average Precision

MBT Model Based Testing

QA Quality Assurance

RAM Random Access Memory

SDLC Software Development Life Cycle

Silu Sigmoid Linear Unit

STLC Software Testing Life Cycle

UI User Interface

URL Uniform Resource Locator

UX User Experience

Y OLO You Only Look Once

xi

Chapter 1

Introduction

The UI development phase is the most important phase among other phases of
software development. Whether or not it will draw people and keep them from
using the application depends on the user interface development phase. Creative and
better usable UI is what ensures people to recommend others to use your application
and be loyal users. A well-designed UI is capable of making any application easy to
use and navigate as the user pleases without getting lost in the application. It also
makes the application more enjoyable, and efficient which leads to a positive user
experience. On the other hand, a poorly designed UI can be frustrating to use and
a user may not come back again to use that particular application and also may
hinder the efficiency of any work that is done on the application. A good UI, on
one hand, improves the user experience as well as on the other hand increases the
productivity and efficiency of a user.[9] There are different components of an android
UI. These components work according to how the developer has programmed them
to do. After developing the UI, a functionality test, which is also known as black
box testing, is conducted on it to see whether all the components are working or
not. If not, then feedback is given to the developer to improve them according to
feedback. Buggy and non-functional components can ruin the user experience and
users may not think about using the application again.[33]
During UI development, the developer must keep in mind that the UI should be
easy to use for the user. To ensure that, the developer must keep in mind the place-
ment, color contrast, and size of the components that are being placed on the UI.
Many core and composite components exist in android applications. Among them
are back buttons, settings-button, share-button, cross-buttons, check-box, switch-
button, search-button, and so on. The placement of these components on an android
application UI is very important as well as the functionality of these buttons. Be-
cause these buttons should be easily accessible and placed in such a position that
the user will not feel any discomfort pressing and doing the functions that these
buttons are programmed to do without any error. This is something that the UI
developer must keep in mind while designing the application user interface and also
while implementing the component’s functions. Every UI that is developed by the
UI developer, is evaluated by the QA team before any further development is done.
It takes quite some time before the QA team finalizes the UI design and function-
ality of these components, several steps are taken and feedback is sent back to the
developer to make certain changes about the position, color, and other things about
the components depending on the requirement which is a time-consuming process

1

and takes about 2-3 weeks, 5-6 weeks and 9-10 weeks for small, medium and big
size applications respectively and 20 to 30 percent of the overall development time
is estimated to do testing such as functionality testing, stress testing and so on.
The purpose of our research is to mitigate this time-consuming process and automate
this so that the UI developer can get proper auto-generated recommendations about
the core and some of the composite component placement so that he can design and
develop the UI according to the requirements that were set in term of the project and
also perform the functionality test by himself without having any testing knowledge
to ensure that the components that he placed on the UI are working as they were
programmed to do and finalize the UI way before the deadline of the UI development.

1.1 Motivation
Software Development Life Cycle is a process that is followed while developing a
software project. SDLC consists of a well-detailed plan which describes how to
develop, maintain and enhance the software. This software development life cycle
ensures the quality and overall development process. On the other hand, STLC is
the software testing life cycle where the software goes through various testing phases
to ensure that the software is bug-free. There are various stages of a typical software
development cycle. These are planning, defining, designing, building, testing, and
finally deployment. Planning and requirement analysis being the most important
as well as a fundamental stage, inputs from customers, sales department, and some
other entity is taken to plan the basic approach. After this stage, these requirements
are documented and defined, and approved by the customer or by the market analyst.
After the requirements are finalized, a design team draws up a mockup and sends
it for approval and after being approved this design is sent to the UI developer to
start designing the application. During the UI development phase the developer
being completed with the design, sends it to the QA testing team where the UI is
evaluated and tested on various test cases and eventually is sent back with additional
feedback to the UI developer about the components design, placement, visibility and
functionality and so on. After that, the UI developer makes changes according to
the feedback and again sends it to the QA tester for approval. After the UI is
finalized, further developments are done, and then again after proper testing on the
application it is deployed in the market.[32]
The UI design is the most crucial part of the whole software development process.
While developing the UI, the developer must send the developed UI to the QA
team to ensure that the UI is up to mark. This means if this UI has met the
requirements or not and if it is properly functioning. Otherwise, feedback is sent to
the UI developer to make those changes according to the QA tester. While the UI
is evaluated by the QA team, some things are taken into consideration and among
them, the placement and the functionality of the components are crucial parts. If
the components are not placed in certain places of the UI, the interface may become
difficult for the user to use. In order to ensure that, the UI developer has to send
the user interface design to the QA team several times for weeks before the UI is
finalized. And another QA tester does a functionality test on the UI to see if the
components are behaving the way they are supposed to. And this process of getting
feedback and making changes takes place several times before the UI is finalized
and further development is done on that project. A tremendous amount of time

2

is taken in this process while the UI developer goes back and forth with the QA
tester teams to finalize the UI. This process takes a lot of time from the total time
that was given for the development of the whole application. Additionally, further
development and testing are required to release the application on the market which
takes about 20 to 30 percent of the overall development time given. Furthermore, it
is also seen that in some cases, while the deadline is way past over, still the testing
phase is not completed. As a result, the deployment of the application is delayed.
In our research, we are focusing on giving self-guided recommendations to the UI
developer and an automated functional testing tool so that the developer can place
each component in the proper position on the UI and also check if the components
are working properly or not by the click of a button. One of the important factors
that the UI developer must keep in mind is the position and the functionalities of the
core and composite components of any android application. Thus we are focused on
creating such a system that can give the UI developer recommendations regarding
the positions of the android core and composite components which he can follow
and design the UI and also conduct an automated functional test of the components
very quickly so that during the testing phase it doesn’t take so much time for the
tester to finalize and deploy the application.

1.2 Problem Statement
As we can see, during the UI development, in order to check if the UI design has
met the requirements or not, the developer sends the developed UI to a QA testing
team and after the design is evaluated and approved, another QA testing team does
a black-box testing also known as the functional testing on the application to see
if the components are behaving as they should. A lot of processes and steps are
involved from design approval to black-box testing. Usually, 20-30 percent of the
total development times are given to testing but most of the time it has been seen
that the deadline passes but the necessary testing is not done yet on the application.
Furthermore, after testing if errors are found, feedback is sent to the developer to
make changes and improvements according to the feedback. And thus, it is again
sent for testing. This keeps going on until the QA testing team finally clears the
application for deployment. It is safe to say that a tremendous amount of time is
needed to finalize the application design and to conduct proper testing.
During software development, many automation tools are available to make the
process easier and to save time. Such as a tool like Jira that can be used to do
requirement gathering and Gherkin can be used to manage the requirements. Ad-
ditionally, many intelligent IDEs are available to coders which help them to auto-
generate codes and solve errors. Furthermore, tools like Taurus and Junit are used
to do Unit Testing of python and java applications respectively. Similarly, Selenium
is an automated web application testing tool that is used to write functional tests
automatically and Ranorex is also an available automatic functional GUI testing
tool. Besides, there are tools like Fabric, Packer, and Docker which are used to
automate the deployment of an application.[30]
So as we can see, most software development phases have different tools that help
automate the processes in order to save time. But during UI development, there are
no such tools or methodology that can mitigate some of these stages where the UI
developer has to get feedback from the QA tester about components placements and

3

also could conduct quick functional testing on the components in order to see if the
components functional code implementations that the developer has programmed,
works properly or not and make those improvements that are required.
Therefore the main question and the problem that we are trying to address is that,
How can an UI developer use automation during UI development to mitigate the
various steps involved in finalizing the UI and component functional testing by the
QA testing team and save time from both SDLC and STLC phases thus deploying
the application in time?

1.3 Objective and contributions
If we think about overall software development we see that UI development, backend
development, and database design take a lot of time. And even after that rigorous
amount of testing is needed to make sure that the application is properly usable
or not. During this testing phase the bugs and errors that are found, need to be
improved by the UI developer, backend developer and database deployment team,
and again sent for testing. This process goes on and on until the application has no
error and is approved for deployment.
GUI testing automation is a big sector. But testing comes after the development is
done. Without the development of an application being completed, the QA testing
team does not conduct tests to ensure the quality and usability of the application.
No automation tools are used during the development phase by the UI developer
who designs and implements the functionality of these android core and composite
components. As a result, the UI developer has to check by themselves if the im-
plementations of the component functions are working or not, one by one during
developing the user interface. Our main objective of this research is that a UI de-
veloper can use these automation tools and get the recommendation of the position
of the component and conduct auto-functional testing without sending it to the QA
testing team, hence saving so much time from the software testing life cycle.

1.4 Thesis Structure
Our research paper starts with introduction talking about how SDLC and STLC
plays a vital role in any software project and successful deployment. Behind all re-
search there is a motivation that drives the researcher to conduct through research
and complete the paper. In the motivation part we have explored the real reason
why we have taken such an aspect to conduct our research. Furthermore, we have
identified the research problem and what are the objectives that we are pursuing and
how our research can contribute to this very aspect of software engineering. Moving
on to the Background chapter, we have conducted a through literature review on
research papers that align with our research and did a detailed summary. Addi-
tionally, we have explained some methodologies such as YOLOv5, object detection,
pytorch framework and computer vision that are some of the important aspect of our
research. Moving ahead, in the Model and Dataset chapter, we portrayed how the
dataset was collected and pre-processed for further training purpose and a detailed
statistic which shows the components details and the amount of component found
in the dataset. Further going into the paper, we have described the model in similar

4

details as the features that YOLOv5 uses to produce their better accuracy. In the
Implementation and Result Analysis chapter at first we have explained in details the
total implementation guide for someone who might go through our research paper
to implement the system step by step. Additionally, we moved into result analysis
where initially we explained our reasoning for choosing YOLOv5s as model for our
system and did a comparative analysis of all the variants of YOLOv5 trained with
the same dataset. Furthermore, we have showed the results and other metrics show-
ing how YOLOv5s model performed and showed the test results step by step. As the
last part of this chapter we have put down the various performance metrics which
portrayed the performance of YOLOv5s model. Lastly, in the Conclusion chapter
we talked about the various challenges we faced while conducting our research and
what are the future prospect that our research can possibly fulfill.

5

Chapter 2

Related Work

2.1 Literature Review
The authors in this paper stated that for many GUI automation and GUI testing
jobs, the identification of graphical user interface (GUI) features are essential. Ac-
cording to the authors the initial step in performing GUI testing or GUI refactoring
is obtaining the precise positions and categories of GUI objects. The authors of this
paper constructed User Interface Element Recognition (UIED), a toolkit created to
offer users a straightforward and user-friendly framework for successful GUI com-
ponent recognition. To accommodate various and complex GUI pictures, UIED in-
cludes many classification technique, incorporating traditional computer vision (CV)
algorithms and deep learning frameworks. Additionally, it does have cutting-edge
detection approach that are innovative and specifically tailored to GUI elements.
The recognition outcome can be changed as well as edited over an interactive map
using the author’s toolkit. In the end, it outputs the identified UI parts from the GUI
image into configuration items which may then be subsequently altered in well-liked
UI design programs like Sketch and Photoshop. According to evaluations, UIED can
recognize objects accurately and is helpful for subsequent operations.When the tool
is ready, it will be integrated with their current UI2CODE research, which seeks
to generate code from a specific GUI picture, for use in continued expansion. By
allowing designers to submit new GUI designs to their system and quickly receive
useable code, computation will significantly aid GUI development[20].
In this paper, “Fragility of Layout-Based and Visual GUI Test Scripts: An As-
sessment Study on a Hybrid Mobile Application”, the authors The fragility of the
methodologies, i.e., the frequent requirement for updating test cases whenever the
application’s user interface (UI) changes, was cited by the authors of this research
as a potential explanation for why developers don’t employ automated GUI test-
ing.The authors of this research set out to quantify the upkeep required by test
scenarios for hybrid mobile apps and to identify related fragility reasons. They used
both layout-based and visual tools for evaluation. They discovered that 20% of
layout-based test techniques and 30% of visual testing methods required at least
one revision.Moreover, 3-4% of the test procedures had fragilities introduced. There
are three basic methods for creating mobile apps: hybrid, web-based, and native.
While hybrid apps only need to be maintained for a small number of native compo-
nents, native apps must be developed and updated independently for each OS.The
benefit of developing hybrid mobile applications is that it requires less work to cre-

6

ate cross-platform applications. Cordova, Xamarin, Flutter, React Native are few
examples of frameworks that exist for the development of hybrid apps.But hybrid
app comes with the cost of little bit of performance reduction as well as reduction
of feature for specific platform and sometimes with less user fondness.High usability
and few flaws should be promised by well-designed apps to their consumers. It is
crucial to thoroughly evaluate their GUIs (graphical user interfaces), which are how
the majority of their functions are shown. Testing tools are not widely used for all
types of mobile applications. Because of the constant growth of their GUI, mobile
apps are particularly vulnerable to fragility.We have compared the two strategies
in terms of both the convenience and effectiveness of test suites given on a native
softwareThe authors employed two distinct methods to examine the GUI testing
procedure in the domain of hybrid mobile applications. Both are third generation
or graphical based(EyeAutomate) and second generation or layout based (Appium).
The study’s findings are interpreted in accordance with the needs of developers of
Android apps and testers as well as experts working to address problems with the
tools or approaches employedThe study is conducted on the hybrid app PoliTO App,
which was created using Apache Cord and made available on the Google Play Store,
App Store as well as Microsoft Store.Students, professors, and researchers can log
in to the app to access a variety of functions, including news, maps, class schedules,
issue reporting, and more. degree programs and details on university employees.The
authors tried to get answers to three questions in the paper. First question was, if
the suites written in layout based and visual based tools spot the malfunction in
the app, the amount required for the maintenance effort needed for the used tool
and the kind of fragilities that are encountered during the evaluation. After doing
an evaluation, the authors came to the conclusion that the Layout-based and Vi-
sual test suites, respectively, required at least one change to 20% and 30% of the
test methods.By assigning unique IDs to each widget in the GUI structure of the
AUT, fragility may be easily avoided.In order to make changes, the authors said
they intended to allow the conversion of Espresso test cases for native languages
to EyeAutomate and Sikuli scriptsAdditionally, they intend to create automated
tools that will automatically fix the locators or oracles that require layout-based
and visual tests.[12]
The authors bring attention in this paper,”Fastbot2: Reusable Automated Model-
based GUI Testing for Android Enhanced by Reinforcement Learning”, industrial
apps undergo regular updates to meet evolving consumer requests and ongoing test-
ing is essential for prompt feedback of app quality. Existing testing methods, how-
ever, are inefficient and useless since they just run each version of the test from
scratch without using the results of earlier tests. At ByteDance, the authors in-
troduced a reusable automated tool that leverages model-based testing (MBT) to
accelerate development of industrial apps.To solve the problem the first challenge
they had to solve was to store knowledge from previous run effectivelyThey suggested
a probabilistic model for this, on which MBT may be developed to remember similar
information from every test cycle.How to properly use the previous knowledge to
direct GUI testing presented the writers with their second problem.To produce GUI
events, traditional MBT methods go across the model.The essential discovery is to
use a statistical model to carry out supervised model-based assessment immediately.
The authors suggested a model-based, automated, and reinforcement-enhanced GUI
testing method. acquiring the necessary practical skills for extensive testing. Their

7

final version, FASTBOT2, performs better than modern MBT tools, Stoat and Ape
and has additionally been deployed successfully in pipelines of the CI at ByteDance.
After evaluation the authors found that their version FASTBOT2 obtained the max-
imum activity saturation in each individual version as well as the greatest amount of
aggregate exposure over all ten iterations of both applications. For Douyin, FAST-
BOT2 was able to detect much more crashes than all other tools. This further
proved the point that the authors tried to establish that retaining knowledge from
previous test run can perform more coverage.[27]
In this paper,“Improving Crowd-Supported GUI Testing with Structural Guidance”,
the authors stated that crowd testing for Graphical user interface is easier as well
as faster than a dedicated team that checks the quality of the software. In crowd
testing a large number of crowd testers are hired by the developers to test the GUI of
the software. But the problem that arises with crowd testing is the low test coverage
due to the focus being on insufficient number of common UI navigation paths. This
approach has the ability to reduce redundant effort for the GUI testing procedure.
To solve this problem of low coverage of crowd testing the authors suggested two
approaches. They are: Interactive event-flow graphs and GUI-level guidance. For
the Interactive event-flow graphs, it remembers the already explored cases as well
as it aggregates each tester’s interaction and visualizes the whole in a graph that
is directed in a single direction. This opens a path for the crowd who tests the
software to interact with provided graphs to make unexplored navigation for the
paths, thus improving the coverage of the test cases. For the use of graphs to
augment the GUI (GUI-level guidance), the authors used this process to guide the
testers to avoid only exploring the paths that are commonly explored. The method
the authors provided was able to effectively assist the testers in avoiding wasting
time on pointless test cases, according to the assessment the authors conducted
with 30 crowdsourced volunteers on 11 distinct test websites. While redundancy
was decreased, the methods were also able to achieve the coverage of untrained
testers by 55%. The authors suggested that these methods will be really beneficial
for the development of more robust software that can perform for missions in more
critical settings which will increase the efficiency. These efficiencies are achieved not
only via testing more thoroughly. The authors also integrated the two methods in
various parts of the pipeline of the development. This ensures the development of a
much more reliable software in the early stage of the development phase.[16]
In this paper,”Scripted GUI testing of Android open-source apps: evolution of test
code and fragility causes”, the authors stated that from the existing evidence it is
proven that the mobile apps don’t get as much attention as their desktop versions.
There is a great amount of lack of care in the testing of the mobile version. Even in
all these the part that gets neglected the most is the GUI testing. Both web based
and mobile applications suffer from the consequence due to testing fragility. The
fragilities that the applications have to face are the failed GUI test class, sometimes
the needed intervention as a result of the change in AUI or GUI arrangement as well
as definition. In this paper the authors set the goal to determine what kind of diffu-
sion in the test classes popular automated GUI frameworks for Android applications
can generate. The authors also examined the amount that is necessary to retain the
test classes updates as well as the number of code churn that exist in the test suites.
Finally they also checked the amount of code churn along with the modification that
happens in the AUI which resulted in the modification in the first place. In addition

8

to a taxonomy of 28 potential reasons for modifications to test code, the authors
established 12 metrics to describe the evolution of test classes and test methods.
For performing the experiment the authors selected six popular open-source GUI
Automation Frameworks that are used in Android apps. By mining the GitHub
repositories that contained the tools, the authors were able to assess their dissem-
ination and generated their own set of metrics for the projects. The authors used
the Grounded Theory technique to manually review various test documents written
with the selected tools in the following section in order to establish a classification
of causes for modifications to test code.After conducting the experiment the authors
discovered that none of the GUI automation frameworks under consideration had a
significant level of adoption among the open-source Android projects that are hosted
on GitHub. The authors discovered that test suites needed modification frequently
for projects that used tests made with the chosen frameworks. They found that
around 8% of modified LOCs that were modified by developers belonged to test
code. Furthermore, around 50% on average of those modifications were the result
of changes in GUI definition and arrangement. Moreover, the evaluation shows that
in the course of a standard Android open-source project, test code that used GUI
automation frameworks required considerable interventions.For future work the au-
thors intend to create automated tools that can identify patterns associated with
fragility when changes are made to production code such as rearranging the GUI,
renaming widgets, or altering the text shown to the user. Furthermore, these tools
can also alert developers to possibly fragile classes and methods in the test suite.
They plan these tools to be incorporated as plug-ins for well-known IDEs (e.g.,
Android Studio). The authors wish to incorporate testing of Android applications
created with hybrid frameworks and apply the evolution and fragility metrics to
other test methods, frameworks, and platforms (e.g., Flutter or Cordova). Finally,
rather than just focusing on Android (or mobile, in general) apps, the classification
of test management causes will be extended by the authors to include any GUI-based
applications.[13]
In this paper,”Comparing the effectiveness of capture and replay against automatic
input generation for Android graphical user interface testing”, the authors stated
that the two practical and affordable as opposed to conventional test-case-based
techniques for graphical user interface testing of Android apps include test explo-
ration and completely automated testing tools. According to the authors, without
the need for extensive programming or testing expertise or prior test case construc-
tion, the test can be performed using capture and replay technologies that directly
transform circumstances of the execution that are registered by testers while testing
the test cases.The main advantage is that without the need for a tester, the latter
tools can test Android GUIs. The authors discover that even though both of these
methodologies are frequently used, no empirical research has been done to compare
their effectiveness and provide insights that might help a project manager create a
successful testing strategy.The authors discussed two studies that they ran to con-
trast the efficiency of exploratory testing methods that uses a capture and replay
tool (Robotium Recorder) versus three free automatic testing tools (AndroidRipper,
Sapienz, and Google Robo). The authors asked 20 students majoring in computer
engineering to record testing executions while being restricted by time limit and de-
nied accessibility to the source code.This experiment led the finding that the results
that were done by those students were marginally, but not significantly, superior to

9

those of fully automated tools.After that the authors instructed again the students
who were instructed before to increase the testing coverage gained by utilizing the
source code and with a less time constraint. They were also allowed to use cov-
erage of earlier tests.The findings of the second trial revealed that, particularly in
long/complex execution circumstances, students outperformed the automated tools.
The acquired results offer helpful cues for selecting testing approaches that incor-
porate both qualitative testing process and automation testing. Additionally, the
authors carried out a thorough qualitative review of the coverage gap discovered
by the testers as well as the AIG tools. They were able to look at both methods’
weaknesses towards this analysis. They discovered that a time constraint and a
deficiency of knowledge about the AUT are biggest barriers to the performance of
human testers. The AIG tools’ efficiency was constrained by methodological and
technical errors. The technical problems are caused by incompatible GUI events and
widgets and may be quickly fixed by technical tool improvements that are tailored
to the ongoing development of the Android foundation. For their future work, the
authors intend to recreate the experiment in an industrial setting and assess how
the testers’ proficiency level affects the efficacy of existing test suites they generate.
Additionally, the authors plan to design and conduct additional research to compare
the expenses of using automated technologies with manual testing. They also have
the intention to take into account additional testing efficiency indicators, like the
ability to discover faults.[21]
In this paper,”Automating GUI Testing with Image-Based Deep Reinforcement
Learning”, the authors stated that GUI is so important because visually interfaceable
systems are necessary for the users to interact between current software applications
and accessories .This is a reason why the GUIs has to be checked, and this helps the
app devs to look for probable malfunction and lack of consistent functionality, to
make sure of easier and reliable use case for the users. The authors drew attention
to the fact that automation in GUI testing can increase the efficiency of manual
GUI testing because it saves time and effort. The authors also admitted that even
though regular GUI testing technologies that are automated reduce the necessary
work of testing manually, most of the time they create continuity problems for cases
that are generated for testing which lead to less efficiency and higher cost in the long
run. The authors approached these difficulties by providing a deep reinforcement
learning-based (DRL) approach in the case of adaptive and automated GUI testing
to address these problems. The authors suggested assessing the effectiveness of an
image-based DRL approach. Then they modified the A3C technique for GUI testing
in order to simulate how a real person might interact with a GUI. The authors fed
the algorithm GUI screenshots as source and then allowed the algorithm to decide
the process it wanted to use to engage between the elements of the GUI. The au-
thors note that when compared to a few baseline techniques, their solution can yield
exploration efficiency gains of up to six times. Furthermore, in their experimental
GUI testing environment, their solution outperforms unfamiliar human testes and
is nearly as effective as a familiar human tester. In a period of 10,000 completed
actions, the author’s DRL resolution finds six times as many distinct application
situations than Q-learning and random testing, and four times more distinct URLs
in a duration of 100 clicks than Q-learning and random testing. The authors’ ap-
proach allowed them to find a few new vulnerabilities that traditional automated
tests were unable to find, like those brought on by repeatedly moving sequentially

10

away from and back to the same display.These factors led the authors to claim that
image-based DRL discovery is possible using as a practical GUI test methodology.
The authors wished to compare their solution to existing automated GUI testing
techniques, like Humanoid and QDroid, for use in future work. In addition, they
plan to investigate the potential for identifying logical mistakes in addition to the
present capacity for detecting crashes and unhandled exceptions.Last but not least,
the authors also consider the prospect of increasing the human benchmarking, leav-
ing it to further studies to expand the amount of people whose testing capability
is analyzed in order to attain a more universal human standard against which they
might measure their methodology.[17]
According to the authors of this research of the paper,”Benchmarking Automated
GUI Testing for Android against Real-World Bugs”, over the past ten years there has
been significant, ongoing improvement in automated GUI testing, which has helped
to ensure the dependability of Android apps.Numerous testing methods and tools,
in particular, have already been created as well as shown that they are very efficient
in identifying malfunction issues as well as surpass their corresponding preceding
tasks in terms of the quantity of discovered malfunctions. But the authors wanted
to ask how well and completely can these techniques uncover crash issues in actual
use is the big question . They discovered that this hasn’t been thoroughly investi-
gated, necessitating a ground-truth benchmark using actual bugs. The authors state
that previous researches aren’t able to provide a straight, comprehensive solution
to this topic as those just compare tools with a few particular apps.The authors
provided the very first quantitative ground-truth assessment of autonomous GUI
testing for Android to supplement earlier research and address the aforementioned
query. To achieve this, the authors put a lot of manual labor into setting up the
Themis benchmark set, which consists of two parts: (1) one cautiously crafted meta-
data containing 52 actual, reproducible crash bugs (which took two people several
months to collect and validate); and (2) one coordinated, scalable architecture with
six modern, cutting-edge testing tools.The authors spent over 10,920 CPU hours
performing the entire evaluation. 18 of the gathered actual flaws that are impossi-
ble to find using any program., which the authors found to be a serious flaw in the
softwares’ ability to identify problems.This systematic research carried out by the
authors additionally detects five significant regular issues that the existing softwares
confront as well as yields further data regarding factors influencing these tools in
bug discovery and prospects for tool development. Moreover, their task gives fresh,
precise information, which are most frequently challenging to find as well as com-
pletely undiscovered.In order to comprehend and evaluate the efficacy of current
testing instruments, this study offers a fresh perspective that is complementary to
earlier research. It also serves as a baseline for further study in this area.In order to
examine current testing techniques, the authors concluded that their study offers a
fresh, complementary viewpoint from earlier research.[24]
The authors of this work present a novel,”Practical GUI Testing of Android Ap-
plications via Model Abstraction and Refinement”, completely based on automated
models, as an efficient way of approaching testing of Android apps. The authors’
approach involved dynamically optimizing the model by utilizing the runtime in-
formation while testing, in contrast to current model-based solutions which use an
invariable GUI model to guide testing because in static GUI testing model’s abstrac-
tion does not change during testing, making it frequently inaccurate. The author’s

11

study reveals that this ability of model evolution greatly increases model precision
and, as a result, dramatically increases testing effectiveness when compared to pre-
vious methodologies. With APE, the authors have put their technique into practice.
APE exceeds the most advanced Android GUI evaluation methodology in relation
to coverage of the evaluation as well as which amount of unidentified crashes that
were detected in 15 huge, popular application that are available the Google Play
Store.The authors did another examination of APE on 1,316 well-known programs
in order to highlight its efficacy and usability further. This evaluation discovered
537 distinct crashes. Their evaluation was able to detect 38 crashes that have been
reported; 13 have been corrected, and 5 have been verified.The authors concluded
that among 15 very commonly valid benchmark applications, APE regularly beats
state-of-the-art techniques which don’t require any model system nor founded by
the basis test models that are static, in the segment of coverage of the code (14-78%
comparative enhancement) and the quantity of issues discovered (61 distinct events
as opposed to 31–44). According to the evaluation of the authors it shows that
APE is efficient, useful, and promising. Currently, the author’s industry partner
has implemented APE and integrated it into their testing procedure.[14]
The writers of this research paper,”Artificial Intelligence in Automated System for
WebInterfaces Visual Testing”, take into account an AI method for providing vi-
sual testing as well as the systematic approach that is linked into useful automated
test suites. Thus, visual modifications in the graphical user interface of the pro-
gram being tested were monitored and analyzed. The authors offered a tool that
is designed to address the issues with the current method of typical snapshot vi-
sual testing as a solution.Testing the graphical user interface (GUI) is a pivotal
step when guaranteeing the standard of software applications as it ensures a good
experience for the users. In the test program, the GUI serves as the main node
from which all functionalities can be accessed for the user.Because graphical user
interfaces are made to work with people rather than machines, it is challenging to
adequately test programs using them. This leads to the reuse of test cases from ear-
lier test runs almost impossible in most cases. Additionally, the authors noted that
interfaces are fundamentally non-static and subject to constant modification as a
result of functionality updates, enhanced usability, shifting requirements, or altered
circumstancesAdditionally, this makes it more difficult to design and maintain ex-
amples of tests without turning towards expensive and human inspection that takes
a lot of time.The authors talked about a suggested automated web interface visual
assessment system that compares images using machine vision capabilities also as
an ai - powered technique.The generated interface for test validation (specifically,
web pages) as well as the anticipated illustration featuring placement of the imagery
components along the webpage, for instance, a customer terminal, are compared.
To perform the experiment the author’s used scripting dialect Python, JavaScript,
library TensorFlow, testing environment Cypress, and database MySQL for cre-
ating an automated system for visual web interface testing.The authors covered
the theoretical underpinnings of automated visual assessment in the first section of
the study, as well as the methods and tools that are already in use.The authors
conducted a thorough review of the fundamental methodologies and methods for
machine vision testing, including pixel-by-pixel picture comparison and ways for el-
ement style verification, for the following sub-task.The authors talk about picture
segmentation clustering techniques (K-Means and Mean Shift).The authors did a

12

thorough examination and comparative analysis before choosing their image pro-
cessing techniques.To develop a truly automated GUI testing system the stages and
aspects of developing a web application were taken into account, software for the
creation for the right methodology had been chosen, picture segmentation methods
had been used, the methodology design had been established, one method to use
as imagery test method had been created, as well as the effectiveness was evalu-
ated thoroughly.This helped the author to create automation process for imagery
evaluation of web junctions employing artificial intelligence techniques for photo
classification as well as much more accurate exploration for the outcome of this
paper.[18]
With 85% of the Smart Mobile OS Market Dominance, Android platform of Google
leads mobile operating systems industry, according to findings of the authors. An-
droid applications frequently allow end users to engage with them via a graphical
user interface (GUI). The authors stress that any software’s lack of reaction ability
in an effective way to GUI operations frequently prevents it from carrying out a
user’s objective.GUI testing may be carried out manually or automatically using
test scripts. According to a study the authors reviewed,Only 14% of the more than
600 open-source Android software projects have cases for test generation, as well as
mere 9% of those have viable evaluation scenarios holding more than 40% code cov-
erage. The authors emphasize the necessity for ongoing study as a result of lack of
test code coverage of current methodologies, even though research has already been
done on building automated GUI test methods for Android applications. Applica-
tions for Android are created using certain elements of the Android programming
framework. Through a variety of input devices, including physical keyboards, soft-
ware keyboards, and touchscreens, users can interact with Android applications.
Numerous motions, including tap, drag, slide, pinch, and rotate are supported by
Android. The authors claimed that in order to design automated testing methods
for Android applications, it is required to take into account these interaction mech-
anisms as well as the distinctive design of the Android framework. According to the
authors, one common method for evaluating Android applications is random test
generation.Giving the Application Under Test (AUT) random GUI events as it runs
is a straightforward strategy.This method has the drawback that portions of the
program that need more in-depth testing could not get as much attention as those
that have been investigated already. This issue is made much worse when the AUT
needs to repeatedly execute particular occurrences in order to navigate previously
undiscovered areas of the application.In contrast to random test generation, the au-
thor of this study used reinforcement learning using trigger preference interrogative
to methodically produce test suites accompanied by better coverage of the code.
Trial-and-error interactions are used to register occurrences which are most proba-
ble to uncover new conditions as well as return incomplete levels of exploration in
their proposed Q-learning-based technique. An episode is selected by the Q-learning
algorithm using a given set of events in a given state based on linked rewards earned
from prior interactions. In this method events that have not yet been investigated
offer greater rewards and higher priority when it comes to being chosen next.The
first thing that the authors contributed in this paper is Automated GUI test case
generation and evaluation of Android apps using reinforcement learning as well as a
Q-learning-based test generating technique. Secondly they performed an empirical
study that contrasts coverage of the chunk of the Q-learning-based approach as well

13

as randomized case creation for testing test creation in eight Android applications.
They addressed the aforementioned shortcomings of randomized case creation for
testing in domain of GUI-based Android applications by using reinforcement learn-
ing methods.Without the necessity for an existing abstract model of the AUT, the
author’s test creation approach leverages dynamic event extraction to choose events
from the GUI while the application is running. The authors proposed that addi-
tional AUT components would probably undergo more comprehensive Q-learning
testing. The authors observed that their suggested approach produces test suites
which provide in the range from 3.31% and 18.83% better block-level test insurance
as opposed to generating test cases in a randomized way, after empirically analyzing
the methodology on eight Android applications.[9]
In this paper,”Test - Duo : A framework for generating and executing automated
acceptance tests from use cases”, the author explained that acceptance testing gen-
erally denotes a test process that ensures whether the system will be accepted by
the user or not. Even if we use tools for acceptance testing the errors can be mas-
sive. Acceptance testing tools have been improving in recent years. Even after that
the possibility of failing acceptance tests is huge. It is not only prone to error but
also requires a lot of labor. Tools like FIT/FitNesse, Robot Framework have been
used to reduce the labor and automate the task of test running and collecting in-
formation. The main objective of the paper is to leverage automated acceptance
testing platforms by further automating the tracing of another task as a sequence of
execution steps. It will take in data and provide the result for individual scenarios.
The approach that has been used by them is - the test cases are made clear by
breaking down every step of the use case. The data that are collected and will be
given as input will be pooled. The anticipated results are noted down after that.
The framework that they have worked on works in an iterative way. Then the uni
tests go through a selective search regime under the selected platform. The test duo
is responsible for recording each sequence step after the completion of the single
steps fails. Then it fixes the set and provides that as output. First steps are not
automated and are done manually. The last two steps are automated. The test duo
framework works due to collaboration between test director and test driver. While
the test detector sends the command as its step, the test driver waits for the com-
mand to get started with its step. In the test director framework test the inputs and
desired result goes to the test steps. Then it commands for directing the test drive.
Test driver receives commands from the Robot framework implemented on top of it.
The test director generates failed cases and uses them as test cases as well whereas
the test driver takes in command and uses the iterative way to perform command
as test keyword. State space scheme is operated by the test director to be able to
produce test steps. The initial node starts with the start node and branches down
to use cases. The state cases branch out and every arc represents a different arc di-
rected by the test duo framework. The node can be true or false. The goal nodes are
nodes that receive assertion failure. The objective is to start from a node and end at
a failure node. The failure node is the expected result in this scenario. The method
of state space search can be any algorithm. It can be depth first search, breadth
first search, iterative deepening. The objective is to find the shortest path to the
failed sequence. The test drive being a fixed ROBOT framework is responsible to
collaborate with the test director. A custom keyword is being fetched for delivering
commands. Upon receiving the command the test driver sets up, tears down or ter-

14

minates the test. From the keyword table the keywords are matched and are hence
given to the Robot framework. The data given in input is then used as a parameter
to check the desired result. Static parameter and dynamic parameter are used as
the main keyword for the framework. If in the annotation phase the keyword can
be accessed then it can be created statically. If the data can be generated logically
it will be termed as dynamic data. This way by generating the keyword and calling
functions the expected result is found out. The test duo framework hence works to
automatically generate acceptance testing.[2]
In this paper,”Identifying Infeasible GUI Test Cases Using Support Vector Machines
and Induced Grammar”, the author explained that Model based GUI testing is the
gateway to automated test cases generation. Test cases are the ways to find out the
faults and errors of an application. After the completion of a project it is run through
a series of tests to ensure that the application is working according to the required
specifications. But test cases terminate or have possibility of termination if one or
two events aren’t working or are not accessible. This creates a lot of waste resources
due to inefficiency. Which in terms had made the developers try and find a way to
produce a scenario which will allow them to have accessible and feasible test cases
which will not waste their resources. Feasibility has always been a priority in these
test cases. But to make the test cases feasible all the test cases are to be written,
then executed and then the developers get to figure out the test cases that aren’t
working and then it can the process is run recurringly until other factors terminate
this test cases. In this paper they have shown how to avoid inefficient, infeasible
error prone test cases. They have used two supervised machine learning processes
to support this idea that they have come up with. The two proposed methods to
be taken in action support vector machine and grammar induction. Three feature
extraction techniques had been implemented to find out infeasible GUI test cases
in various applications. They also tried to use the algorithm to train the model
to categorize the test cases of various and all lengths. They have used the SVM
implementation in Matlab. The function svmtrain() and svmclassify() are used to
implement the course of action. Gaussian Radial Basis Function kernel with a hard
scaling of factor of 1 is used in the functions. This function allows more detailed and
more analyzed and more complex margin to carry out the kernel function. SVM
is applied following the normal steps that are normally being performed in these
cases. Standard approaches for all machine learning techniques are executed in the
SVMs which is most commonly well known to be called data modeling phase. Data
is modeled in a way where the data can be used in a particular way that will provide
the best output of the scenario. Even though SVM requires its data to be actual
vectors, test cases on the other hand are clusters of IDs that are converted into actual
vectors. They were able to extract three other algorithms which help them create
vectors. The vectors were used to create three categories of SVM input. They were
called Basic, Pairwise and Full Pairwise. The production of the three categories are
done in four stages. Stage one is responsible for assigning values for the first N vector
attributes. N here denotes a number of different IDs. Where i stands for index and
index denotes the number of times an event i appears in the test cases. From this
stage we will get the result as a N-dimensional Basic vector. This obtained result
will be then used as input in Pairwise and full pairwise vectors. A string of events
will let us know if the test case is infeasible.The prediction of the infeasibility of
an event will be deduced from the next event that follows. Initially the test cases

15

use regular expressions. Then in the later phases the test cases keep changing the
expression iteratively by returning a certain expression following a regular pattern.
After the iterative changes finally fail to change further then only the set is declared
as final set and is added to the set of regular expressions. The usefulness of utilizing
two supervised learning algorithms are described in this paper elaborately. The two
supervised algorithms are support vector machines, and induced grammars. Even
though the results of induced grammars are really limited because rigorous use of this
algorithm will not be cost effective for us, induced grammar was efficient in finding
out the infeasible test cases more effectively than all the other types of algorithm in
use. A cost effective and optimized grammar induction will be really helpful when it
comes to finding failed infeasible test cases. Besides this the grammar induction will
help in acquiring information about the GUI constraints. Which in terms will help
us get rid of redundant test cases. The grammar that has been used in the described
paper is used on a small scale. A large number of data with an optimized grammar
induction will be really efficient in finding out and automating ways to get rid of
such redundancies. Faster algorithms with more complex grammar is not a rare idea
in the recent field of work. Even though the grammar used here is fairly simple, the
effectiveness can not be overlooked. The pairwise algorithm was the most efficient
in case of the effectiveness of the three extracted algorithms. Since this algorithm
allowed us to train test cases of one length and could let us execute the algorithm
in another length made it really feasible for us to use. The overall results denoted
that the opted result is possible. It made a clear statement that test case feasibility
is not a distant dream.[1]
The goal of the paper,”Mobile GUI Testing Fragility: A Study on Open-Source
Android Applications”, was to guess the adoption of GUI frameworks. It figures
out the amount of changes that need to be made to keep the test classes the latest.
21 matrics were taken into consideration to calculate the adoption of testing tools.
The ever changing nature of test cases were taken into consideration and hence the
fragility was assumed. The fact that GUI tests are overly fragile creates hindrance in
the automation of the GUI tests. It is overly sensitive and hence the automation can
be difficult. The good part of Android operating system is it is not restricted to one
source of Outsourcing. It can be available to a lot of marketplaces, can be available
to different platforms and can be perceived by consumers at any given time. The
marketplace for android software is huge but it has its downs as well. Since the
availability is so extended the competition is also huge. Scope of errors are thin
since lack of opportunities is huge. Since many applications are available for free
any competitor can take advantage of it and can take inspiration to build a better
error free version of the applications that are released. That’s why the key is to keep
the consumers hooked to our application. It can be done through mitigating errors,
bugs and giving a friendly UI that will keep the consumers hooked. There is no room
for softwares to casually crash. This will drive the consumers away and take them
to a competitor providing similar experience but with less hindrance. The softwares
has to work as the developers had told it will work. Such errors or failure will not
only drive consumers away but also will get us feedback that will not be so positive.
Applications will not just provide the required functionality. It will also provide
some additional requirements that are strictly nonfunctional. This will give the
users a better experience and will allow them to feel like they are having a personal
experience. So, providing such an application is not easy and has to go through

16

a series of test scenarios. Without going through extensive testing an application
is bound to fail. Failing or crashing while on the market is not an experience any
developer would want to provide his consumers. So to solve the problem the test
cases need to be adaptive. They need to be trained to learn and adapt with the
upcoming changes and they need to be able to evolve with the test cases for it to
work properly. Adaptive maintenance is the key to avoid the problems that coexist
with GUI testing fragility. So to see if a test case inhibits fragility or not the thing
that is to be done is to use an automation tool. JUnit shows a single test case
as a single test method. These single test methods are then made into a series of
test methods and then added to the java file of test cases. A test case will be called
fragile as soon as it will go through any modifications or changes. This test class will
also be called fragile if the methods inside the classes go through modifications. A
test class on the other hand will be considered non fragile if the test methods do not
go through modifications. The main goal of this paper or the things they have tried
to achieve is they took a snapshot of the GUI testing frameworks. A set of six tools
has been found out which can help us in automation of test cases. The tools are
UIAutomator, Selendroid, Espresso, Robotium, Appium and Robolectric. Besides
other findings they were able to find out that GUI testing framework is really thin
on adoption. The common testings are used to enable the GUI fragility testing but
they do not provide us with a lot of insight. 8% improvement on the fragility if the
GUI testing has been cited upon using the researched frameworks.[10]

2.2 YOLOv5
YOLOv5 is a computer vision model. YOLO is translated to You Only Look Once.
YOLOv5 is the 5th version of the model You Only Look Once. The main objective
of this model is object detection. So YOLO is responsible for object detection being
a computer vision model.
YOLOv5 has been found in 4 main versions. Small, medium, large and extra large
are the versions which come with version 5. These 4 versions have been known to
offer more accuracy as we go higher. All these versions take a different approach
and different amounts of time to be trained.
YOLO network has 3 main pieces. These three main pieces are called backbone,
neck and head.
The backbone works with the help of CNN. The backbone features different pixelated
images and these are clustered to train the system. The neck mixes up the images
and combines the images. Then the images are combined and passed forward and
then the object is detected. While the head works as head and predicts the steps
like a head would work.
The training process is done in 2 steps in this system :
Data augmentation is done to transform the base data. The model is then exposed
to a wide range of variations. The training is done separately.
The second step is loss calculation. Loss calculation is also really self explanatory.
YOLO calculates the total loss from different functions. The goal is to have max-
imum precision. These two steps help train the system and are really efficient in
that way. Since it only has two steps it is really easy to train while comparing it to
the other existing frameworks in the market.

17

The reason why YOLO is really widely used is because of few efficient functionalities.
It is really easy to install and can be installed without any hassles. Since Torch is
a lightweight library it is really easy to install. The training of YOLO is really fast
and can be done really easily. YOLO is extremely easy to use on mobile devices
that’s why it is widely used by developers.
That is why it has been used really widely all over the world and will be used as an
advanced framework in future as well.[31]

2.3 Pytorch Framework
Pytorch is an integration of Python and Torch. Python being the programming
language used in this case and Torch being the library used in this case has been
turned into a framework. It is an open source machine learning framework. Open
source considering torch being an open source library has given us immense privilege
to work without hesitation. Torch is used to produce deep neural networks. The
language in which torch has been developed is the Lua scripting language. This has
been working as a deep learning research platform for the developers for a long time.
The main objective of this framework is to build a bridge between prototype and
deployment. It quickens the process time of the research.
So the programming language in use in this framework is Python. Python being a
very dynamic programming language allows this framework to work in diverse func-
tionality. It is also possible to produce computation graphs using this framework.
The main benefit of this framework is that the developers don’t have to wait around
to finish the entire code to see what works for them and what doesn’t work for them.
It gives the opportunity to test out sections of codes as soon as it is written. The
whole code need not be written to test if the new portion added works or not. It
gives more opportunity to the developers to have less bugs as small portions of code
can be tested along the way.
This is not the only benefit that the PyTorch framework can give us. The PyTorch
framework has many more diverse features that benefit us. It is really easy to use
the PyTorch framework since it is based on Python which is widely known as an
easy to learn and easy to use language. It is really easy to debug because there
exists python tools in the marketplace. Open source library is also available which
enables easy access. Open neural network is also available. In short this framework
is really user friendly and enables us to work efficiently without much hassle.[29]

2.4 Computer Vision
Another field of artificial intelligence is computer vision. Computer Vision is a
technology that allows computers to deduce a meaningful interpretation of a still
or moving image. It takes any form of image as input and tries to comprehend the
meaning from the image based on the previous training it went through. The idea
of computer vision is watch, observe and comprehend.
The idea of computer vision is mimicking human vision. The concept of computer
vision came in generation trying to work out how humans brain and eye functions
together. How human eyes aren’t limited to seeing only. It infers and comprehends
and speculates. The eyes are well trained from the time a child is born. It sees

18

objects and corresponds meaning with what it is seeing. Computer vision is also
trying to do that. Whether an object is in motion or is stationary or if there are
errors in the image is what computer vision is trying to work on.
Machine training is how developers are trying to achieve this functionality. But its
capability will not be limited to the time to perceive images by camera or human
eyes. It will have to be faster than that of optic nerves because it will have to process
mass data in a seemingly insignificant amount of time and has to process the errors
in that frame. It is estimated to go ahead of human capabilities.
So the question is how computer vision works. Computer vision works on a simple
idea that it will be fed data and will be trained to recognize the meaning of the data
fed. Mass data will be given as input so that whenever a similar object comes into
vision the technology will be able to recognize what it means.
Taking an example of a car. It will be fed images of a car from all possible angles so
that whenever a computer sees a car it will be able to tell that this is a car. Video
information will also be fed to the system that will be able to say if the object is
moving or stationary or accelerating.
The technologies that have helped developers achieve this computer vision to some
extent is convolutional neural network (CNN) and the machine learning technology
called deep learning. So a deep learning algorithm works on the principle that if the
system is fed enough data it will be able to go through the data and will be able
to go through all data to correspond a meaning with the data. The algorithm is
a self learning algorithm. It teaches itself about the programme about recognizing
images.
While CNN breaks the whole image into readable pixels and gets an idea of what
the image is trying to be perceived as. It uses the labels to deduce mathematical
functions that help it figure out the image from the deduction. Neural networks run
CNN to see if it is correct or not.
Similar to the human eye, computer vision works to figure out the exact image,
distance, position of the object. This has been a really great help in the wide
horizon in the AI world.[36]

2.5 Object Detection
In the recent era and the over evolving software era deep learning has been a crucial
part of the Artificial intelligence area. AI is deeply rooted in our life now. Our day
to day life is entangled with AI. And among the areas of AI object detection is a
prominent sector. It concerns the area of deep learning and computer vision.
So object detection is as self explanatory as it gets. It’s a technology that detects
objects. Through deep learning this technology is able to detect any image. This
will go through extensive training to be able to detect the images. These images can
vary from inanimate objects like houses, cars to living objects like human beings,
cats, dogs. Object detection can figure out what the object is in the bounding
box. In object detection the object is detected considering its basic form and is
classified accordingly. To identify these objects the Softmax function is taken into
consideration.
Object detection can be both machine learning and deep learning based. In the
machine learning based object detection with help of Image based feature extraction

19

technique the images are extracted manually. Images of different objects are fed to
the AI and trained to detect the object.
Whereas on the other hand deep learning based object detection uses the pre existing
algorithms to extract the features automatically and train itself to learn and detect
images. Both ways come with its own sets of perks and cons.
Image classification is also an important part of object detection. In this case an
image is considered as an input. The image is fed to CNN. And the image will have
a correspondent class with images. The images will be categorized and classified
accordingly.
A notable problem is that an object is not only an object, in an image there can
be multiple objects so classifying them into a single class will not be possible. This
creates hindrance in the object detection technology. Two types of problems may
arise during object detection. Multiple images may exist in a single frame and the
second problem is the prediction of coordinate values of the bounding box object.
Object localization comes in handy in this case. In object localization the object that
is the main object in the image is localized and is detected. Where object detection
fails to come up with detection of a single object the object localization saves the
day. On the other hand, image classification works really differently. Where the
image localization and detection detects the object image classification shows us the
possibility of an object existing in an image.
Object detection is a really important feature in the field of Artificial intelligence.
It gives us a wide horizon to work with.[19]

20

Chapter 3

Model & Dataset

3.1 Dataset description
We have used a dataset that was created by RICO, a data driven design group
from the University of Illinois for their research. The RICO dataset contains 66,261
unique android app UI screenshots that was taken from 9,772 android applications.
Some categories were excluded such as media players and photo editors. These
9,772 android applications have an average rating of 4.1 stars on google play store.
In order to create this dataset, RICO downloaded 9,722 applications from google
play store and the screenshots were taken by 13 workers that were recruited from
UpWork in order to take screenshots. These workers were instructed to work on
individual applications for no more than 10 minutes and take screenshots of each
screen that each application offered.[7]

Figure 3.1: Summary of RICO dataset

During our training we found that, with a dataset above 2000 images, we were
getting “data-loader exit unexpectedly” error. Since our hardware was not powerful
enough to train this vast dataset offered by RICO, we had to reduce the number
of data taken into training and validating the model. Because of this hardware
restriction we reduced the dataset to 1,769 screenshots from the RICO dataset which
contained android core components and some composite components. And also
found that, with this hardware available to us, a dataset between 1,700-1,800 images
created optimal and steady results while training and validating the model. As a
result we worked with 1,769 images for our thesis purpose.

3.1.1 Data preprocessing
In order to use our dataset to train, at first we had to label each of the core and com-
posite components using LabelImg package which is available on GitHub. LabelImg

21

is a popular image annotation tool which was created by Tzutalin with additional
help of many other contributors. Even though this LabelImg package is no longer
actively being developed, this flexible image labeling tool has become a part of Label
Studio Community. (heartexlabs, n.d.-c)
We ran this LabelImg on our system and created a box on each of the components
that we wanted for our research. After putting a label on the components, a text
file was saved on the system which contained the serial number of the component
including the name that we provided for the component and the four x (max, min)
and y (max, min) coordinate values that represented that the box that was put on
the component for our model to train. An example is given below,

Figure 3.2: Labeling images using LabelImg package

After putting the labels on the above image we get a text file. An example of the
text file is given below,
After going through all 1769 images, we have labeled all core and composite compo-
nents that were found on the screenshots in order to train and validate our model.
The visual representation of this data after image labeling is given below,[35]

22

Figure 3.3: Data after Image Labeling

Figure 3.4: Visual Representation how labeling works

23

3.1.2 Feature selection
As for the core and some composite components that we have taken into consider-
ation were number picker, back button, settings button, add button, share button,
info button, three dot menu button, switch button, cross button, three bar menu
button, reload button, search button and check button. After labeling each of the
images for our training and validating our model, we get the following numbers of
core and composite components shown in the table below,

Name of the Component Numbers of component detected
Number Picker 43
Back Button 2101

Settings Button 153
Add Button 172

Share Button 113
Info Button 162

Three Dot Menu 420
Switch Button 87
Cross Button 222

Three Bar Menu 435
Reload Button 65
Search Button 253

Check Box 545

Table 3.1: Features

3.2 Model description
Yolov5 is a real time single stage object detection model built on single convolutional
neural network(CNN) architecture to detect object and classification cases in single
forward pass network. Which involves input taking an image and in the output
case giving the bounding boxes of the component and the class probabilities of
all the components detected in the image individually. Which makes the model
more efficient and because it is using cross scale feature pyramids, strong back bone
network and the use of anchor boxes the accuracy is very good. [26]

3.2.1 Single Stage Object Detector
For both object detection purposes yolov5 uses a single CNN Network on a single for-
ward pass and comprises Backbone, Neck and Head. Backbone implies a pretrained
network which reduces the spatial resolution while increasing the feature resolution
and takes the important characteristics representation from an image. To generalize
properly on different scale and size of a component and getting the feature pyramids
model neck is used. Finally, the most important part which increases the accuracy
by implementing the bounding boxes with confidence and index of the component
and where the final stage operation is being performed is the model head.
In case of Yolov5 head and neck is using PANet (Path Aggregation Network) and
SPP (Spatial Pyramid Pooling) and the backbone consist of the CSP(Cross Stage

24

Partial) method implemented in the Darknet53 Convolutional network called CSP-
Darknet53.[26]

3.2.2 Other important part for improved result
YOLOv5 uses Sigmoid Linear Unit (Silu) and sigmoid function as activation func-
tion. Silu is implemented for convolution operation in the hidden layer while sig-
moid function is used in the output layer. For Loss function BCE(Binary Cross
Entropy) and CIoU(Complete intersection over union) which is used respectively
for classes,object and location loss. There is also a focus layer which is used to im-
prove speed by reducing parameters and replacing the first three layers which makes
some changes in mAP(mean Average Precision). The grid sensitivity is eliminated
which means even if the component is at the edge the model can detect it which
was hard for the previous version of yolo.[26]

25

Chapter 4

Implementation and Result
Analysis

4.1 Implementation
In order to make sure that everything runs properly and smoothly there are some
pre-requisite like a proper environment setup with all the packages installed that
will ensure the system will work without any error and give meaningful results.

4.1.1 Hardware Specification
Hardware specification basically means the hardware we used to train our data and
carry out the experiment mentioned above is given below,
The GPU was used mostly for data training which was Zotac Nvidia RTX 2060
with 6.00 GB of VRAM. There was 32GB of DDR4 2400MHz RAM available. Our
system was powered by Intel Core-i7 8700K which is a 6 core, 12 thread processor.
Windows was used to implement the feedback and functional testing system and it
was installed in a 512GB M.2 SSD.

4.1.2 Environment Setup
In order to implement the proposed system the first thing that needs to be done is
make sure the environment is properly configured. For our case we have used python
3.9 in the conda environment to easily be able to install packages while isolating the
whole environment.

4.1.3 Package Installation
In order to run the system, some packages need to be installed for YOLOv5 to train
the custom models and for setting up the recommendation and functional system.
These additional packages ensure that the model we used YOLOv5 and our auto
recommendation and function testing works seamlessly. List of the packages and
how to install is given below,

26

Package for YOLOv5

First we will need to clone the YOLOv5 model from github (https://github.com/ul-
tralytics/yolov5.git) then in the YOLOv5 install all the packages listed in the
requirement.txt file.

Package for Recommendation Testing System

For our proposed system which gives auto recommendation and functional testing,
we need packages such as pygetwindow, numpy, pandas, math, matplotlib, csv,
opencv-python, ipywidgets, time, pyscreenshot, networkx.
Among these packages the most important packages are Opencv-python which is
used to show a real time window. Additionally, Matplotlib is generally used for
visualization. In order to control and manage the inputs, the ipywidgets package
is installed. We also needed to manipulate and read csv files, for that purpose
Pandas package is needed and installed. In order to show real time changes and
detection from the window Pyscreenshot package is needed for taking screenshots
from the active application window. As we are showing real time detection and
recommendation we need to choose the application the UI developer is using to
develop the UI and for that Getwindow is installed. And last but not the least,
Networkx is installed to generate graphs.

4.1.4 Custom Model Configuration
Though we are using the YOLOv5 model it was trained on different datasets and
different classes of components so we need to ensure that we can use this model by
doing necessary modifications for our use case.

YAML File Configuration

The YAML file ensures the whereabouts of training and validation images and their
corresponding labels and number of component classes and their name which is sup-
posed to be detected by the model. We have created a custom YAML file with the
location of our custom datasets training and validation folder with the 13 compo-
nents of classes we have chosen to detect and give assistance with.

Training Custom Model

Though YOLOv5 has few number of pre-trained models like YOLOv5n, YOLOv5s,
YOLOv5m, YOLOv5l, YOLOv5x etc they were trained using dataset where the
component classes we are using are missing so we need to create a custom model
according to our need by training the model according to our dataset.

Training on Custom Dataset Configuration

We have trained our custom model with 300 epoch with a batch size of 32 and
selected a pre-trained model of YOLOv5. In order to access the location of the
images, the custom yaml file has to be configured and to get the result faster we
have cached the training image data on the RAM and used the GPU.

27

4.1.5 Automation System
For an automation system we need to ensure that the custom trained model is
properly loaded, while grabbing the window screenshot. We need to make sure that
the unnecessary parts of the images are cropped as much as possible. The process
of the application which we are supposed to screenshot and show real time feedback
is correct, then the least confidence value which helps to make sure the component
detection is highest while false detection is lowest as possible, is tuned according
to which value gives the best result. Then the location file needs to be properly
loaded to make sure the system finds the file so that it can show the recommended
components location. Lastly, to re-run the application we need to ensure that the
real time window is closed beforehand.

4.2 Result Analysis
While researching for object detection models, we have come across some object de-
tection models that we could have used for the purpose of our research. Our entire
research is focused on how we could use object detection algorithms to do automa-
tion in the software development phase and save time during development. There
are various object detection algorithms such as faster R-CNN[3], mask R-CNN [8],
YOLOv3, YOLOv5, YOLOv4, YOLOv7, YOLOv8[5][25], SSD[4], SSD MobileNet
[23] and RefineNet[11] which falls under the category of 1-stage and 2-stage detector
respectively. Due to the fact that, 1-stage detector has a method that can solve clas-
sification and localization problems simultaneously than the 2-stage detector, it was
a better suited algorithm for our research. Despite the fact that Fast R-CNN was
popular and commonly used in the past, it has some inefficiency problems in both
learning and execution speed. In terms of YOLOv7, it is a bit complicated to set up
and takes lots of time which beats the main purpose of our research. YOLOv8 was
just recently released but it is still under extensive development to improve the fea-
tures but it has the potential to become the best object detection algorithms among
the YOLO models. In case of processing speed and accuracy, YOLOv5 is quite
faster than Fast R-CNN[6]. Even though the basic working principle of YOLOv5
and YOLOv4 is similar[15], YOLOv5 is an improvement of base YOLOv4 and in
terms of performance in precision, recall and average precision, YOLOv5 has proven
to be more effective and efficient compared to YOLOv3, YOLOv4 and Faster R-
CNN.[28][22] In terms of our thesis prospect, the best thing about YOLOv5 is that
it is very easy to set up in order to do object detection. Thus we have selected
YOLOv5 for our research purpose.

4.2.1 Comparative Analysis
YOLOv5 has 5 different versions n, s, m, l, x respectively. Extra small (nano), small
size, medium size, large size and extra large size model and among these variants of
YOLOv5 there is not much working principle differences except for the number of
parameter and for more the additional parameter is, more cuda memory is required
to train and slower it is to run.
For our use case, we have trained n(nano), s(small), and m(medium) size variants of
YOLOv5. In the case of l(large) and x(extra large) it requires too much resources

28

like time and gpu memory to train properly and as they will run much slower than
their counterparts which defeats the very purpose of our thesis which is to minimize
time usage. Thus, we did not use them.
In the hopes of getting better performance, we created variations of our dataset and
trained the n, s, l variants of YOLOv5. Variations of the dataset is,

• datasetvariationTVNB - 1468 Training image, 300 validation image with no
background image

• datasetvariationTVSB - 1415 Training image, 353 validation image with 102
background image

datasetvariationTVNB datasetvariationTVSB
Components Train components Val Components Train components Val Components

NumberPicker 39 4 36 7
Back 1763 338 1697 404

Settings 125 28 121 32
add 150 22 150 22

share 99 14 90 23
info 143 19 138 24

3dotmenu 363 57 350 70
switch 74 13 70 17
cross 205 17 199 23

3barmenu 362 73 350 85
reload 55 10 52 13
search 207 46 199 54
check 502 43 465 80

background 0 0 102 49

Table 4.1: Component division on Train and Validaion

We trained s, m , n models with the parameter image size of 640, batch size 32 epoch
300 and used device 0 which refers to training by using gpu and we got following
results in detection

Note: In nTVNB - n refers to YOLOv5 model and TVNB refers Dataset

29

Components nTVNB nTVSB sTVNB (Setected) sTVSB mTVNB mTVSB
NumberPicker 0.5 0.29 0.5 0.29 0.5 0.29

Back 0.99 0.99 1 1 0.99 1
Settings 0.75 0.78 0.75 0.81 0.75 0.81

add 0.59 0.68 0.86 0.68 0.95 0.77
share 1 0.96 1 0.96 1 0.96
info 0.84 0.92 0.84 0.92 0.95 0.83

3dotmenu 0.91 0.91 0.93 0.94 0.88 0.93
switch 0.77 0.71 0.85 0.76 0.77 0.82
cross 0.94 0.91 0.88 0.83 0.65 0.78

3barmenu 0.92 0.92 0.95 0.91 0.86 0.92
reload 0.6 0.46 0.4 0.38 0.4 0.46
search 1 1 0.83 0.94 0.85 0.93
check 0.51 0.75 0.53 0.72 0.53 0.76

Table 4.2: Confusion Matrix Results

Figure 4.1: Comparison Graph of YOLOv5 Variants

4.2.2 Selected Model Result Analysis
After carefully observing the result from the training it can be said that the YOLOv5s
model trained with datasetvariationTVNB dataset is giving us the best detection
result for our dataset. So we are going forward with it and using it in our system
for automation and testing purposes.

30

Trained Model Analysis

For our system to work properly we need the YOLOv5 model to properly detect
components. After using datasetvariationTVNB dataset on training the YOLOv5s
model, we see the best detection result for most of the components we have selected
for our case. Here is the confusion matrix of individual component detection for the
model,

Figure 4.2: confusion matrix of our custom model

System Overview

This is a step by step representation of our thesis from start to finish where we have
illustrated the Data processing (Collecting, Labeling, Splitting), Training and core
component of our thesis which is the system we have worked on to automate an
important and integral part of software development and testing.

31

Figure 4.3: System Overview

32

4.2.3 System Analysis
After ensuring that the model gives good enough component detection we give the
model as input in our system and the system will extract the names and coordinates
of the components which our system will use to do real time Detection, Recommen-
dation and functionality test with its graph.

Detection

Here in the detection process it takes the snapshot of the application window and
and detects its components using the model and shows it through our system.

Figure 4.4: Detection(Left side - the Application, Right side - Detection)

Recommendation

In the first figure we can see that there is no recommendation because according to
our system after detection and comparing the locations with the given recommended
location it has suggested there is no need make any changes in the UI
In the second figure it can be seen that the system is suggesting to change the posi-
tion of the components because it has found that after checking the recommended
location provided it is better to change the UI.

33

Figure 4.5: No recommendation Perfect case (Left side - the Application, Right side
- Recommendation)

Figure 4.6: recommendation Perfect case (Left side - the Application, Right side -
Recommendation)

34

Functionality Testing & Graph Generation

In the first figure we can see that there is no error found because the model has
detected all the components furthermore it was able to press all of them and the
components are working thus it explored every page that it was programmed to.
In the second figure there was an error found. It could happen in a few cases such as
a model detecting something other than a component as a component and pressing
it or the functionality of the component was not added and the UI developer can
trace through the graph to find where the first error occurred and fix it.

Figure 4.7: Functional Testing Error Check Result (No Error))

35

Figure 4.8: Functional Testing Error Check Result (Error Found)

36

4.2.4 Performance Analysis

Figure 4.9: Result

Figure 4.10: F1 - confidence curve

37

Figure 4.11: Precision Confidence Curve

Figure 4.12: Recall Confidence curve

38

Figure 4.13: Precision Recall curve

39

Chapter 5

Conclusion

5.1 Challenges
The most hardest challenges that we have faced while conducting our research was
dataset pre-processing. At first we were unable to find a suitable dataset that we
could use for our research purposes. We needed an android application screenshots
dataset. So that we could train the YOLOv5s variant of the YOLOv5 object de-
tection model that we have selected. Getting the dataset was not that much hard.
Although it took quite some time before we came across the RICO dataset, which
was suitable for our research purpose. The hardest part during our research was
to label the components from the dataset. The dataset was created and used by
RICO in their research where they try to understand the best practices for android
application design.[7] As the dataset were not labeled and we have focused on some
of the core and composite components, we had to label each images by hand using
the LabelImg package that was available in github which was so much challenging
because we had to go through images one by one and label them with core and
composite components. Another minor challenge that we faced was during training
the model. As we did not have that much resourceful hardware, we faced problems
while setting the batch size for training. It is recommended that, for better training
results, use the largest batch size. Smaller batch size creates poor batchnorm statis-
tics and which was recommended to avoid.[22][34] As a result, we have used batch
size 32 that was within the acceptable range of our hardware in order to train the
model.

5.2 Future Prospect
YOLOv5 recently has been used in many researches that deal with object detection
and has gained popularity since its release. For our research purpose we have only
considered android application UI development automation. But a rich and diversi-
fied dataset of any application can be used to train the model and use our system to
work on any kind of GUI and do automated testing during the development phase.
For any web application or website, our system can view recommendations and do
functionality testing on those application’s respective components. One of them can
be a test input box for a website or web application. If enough data can be feed into
the model to train it accordingly, with enough twerks in the coding part, our system
can do functionality testing on the text input box for UX. Moreover, in future, this

40

system can be developed to do further extensive functionality testing. Additionally,
after further growth this system can be turned into a modular system. Meaning
that additional features can be developed in future and can be added as modules as
development continues on our system. As one actively working part of our research
is giving object recommendations, our system can be used to give recommendations
on architectural designs after training the model with relevant dataset.

5.3 Conclusion
Software development has multiple phases, in which UI development and testing
takes a significant amount of time. The back and forth between UI developer and
the QA team can be reduced to a remarkable amount by making the UI testing
automated and also making it happen in real time. We aimed to achieve both of
these goals in this paper. We fed YOLOv5 screenshots of Android app UI to train
our model. By following our methodology UI developers will be able to write and
test code simultaneously for the application’s User Interface components placement
through which users interact with the application. Our system also enables UI
developers to evaluate if the components are working properly that they have written
so far without the need of checking everything later by manual testers. So, as we
have emphasized already our system is obtaining the results of UI bugs, which
traditionally get detected in a later testing phase. Thus, our system can assist
to deliver the same quality Android application with a decreased amount of time.
As a result this methodology will be beneficial for both industrial level Android
application developers as well as small companies who will be able to save time for
UI testing and allocate those resources where needed to develop applications more
efficiently.

41

Bibliography

[1] R. Gove and J. Faytong, “Identifying infeasible gui test cases using support
vector machines and induced grammars,” in 2011 IEEE Fourth International
Conference on Software Testing, Verification and Validation Workshops, IEEE,
2011, pp. 202–211.

[2] C.-Y. Hsieh, C.-H. Tsai, and Y. C. Cheng, “Test-duo: A framework for gener-
ating and executing automated acceptance tests from use cases,” in 2013 8th
International Workshop on Automation of Software Test (AST), IEEE, 2013,
pp. 89–92.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” Advances in neural information
processing systems, vol. 28, 2015.

[4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in European conference on computer
vision, Springer, 2016, pp. 21–37.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 779–788.

[6] L. Zhang, L. Lin, X. Liang, and K. He, “Is faster r-cnn doing well for pedes-
trian detection?” In European conference on computer vision, Springer, 2016,
pp. 443–457.

[7] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols,
and R. Kumar, “Rico: A mobile app dataset for building data-driven design
applications,” in Proceedings of the 30th Annual ACM Symposium on User
Interface Software and Technology, 2017, pp. 845–854.

[8] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp. 2961–2969.

[9] D. Adamo, M. K. Khan, S. Koppula, and R. Bryce, “Reinforcement learning for
android gui testing,” in Proceedings of the 9th ACM SIGSOFT International
Workshop on Automating TEST Case Design, Selection, and Evaluation, 2018,
pp. 2–8.

[10] R. Coppola, M. Morisio, and M. Torchiano, “Mobile gui testing fragility: A
study on open-source android applications,” IEEE Transactions on Reliability,
vol. 68, no. 1, pp. 67–90, 2018.

[11] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Single-shot refinement neu-
ral network for object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 4203–4212.

42

[12] R. Coppola, L. Ardito, and M. Torchiano, “Fragility of layout-based and visual
gui test scripts: An assessment study on a hybrid mobile application,” in Pro-
ceedings of the 10th ACM SIGSOFT International Workshop on Automating
TEST Case Design, Selection, and Evaluation, 2019, pp. 28–34.

[13] R. Coppola, M. Morisio, M. Torchiano, and L. Ardito, “Scripted gui testing
of android open-source apps: Evolution of test code and fragility causes,” Em-
pirical Software Engineering, vol. 24, no. 5, pp. 3205–3248, 2019.

[14] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and Z.
Su, “Practical gui testing of android applications via model abstraction and
refinement,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), IEEE, 2019, pp. 269–280.

[15] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.

[16] Y. Chen, M. Pandey, J. Y. Song, W. S. Lasecki, and S. Oney, “Improving
crowd-supported gui testing with structural guidance,” in Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems, 2020, pp. 1–
13.

[17] J. Eskonen, J. Kahles, and J. Reijonen, “Automating gui testing with image-
based deep reinforcement learning,” in 2020 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS), IEEE, 2020,
pp. 160–167.

[18] K. Ivanova, G. V. Kondratenko, I. V. Sidenko, and Y. P. Kondratenko, “Ar-
tificial intelligence in automated system for web-interfaces visual testing.,” in
COLINS, 2020, pp. 1019–1031.

[19] A. Patel, What is object detection? Jun. 2020. [Online]. Available: https://
medium.com/ml-research-lab/what-is-object-detection-51f9d872ece7.

[20] M. Xie, S. Feng, Z. Xing, J. Chen, and C. Chen, “Uied: A hybrid tool for gui
element detection,” in Proceedings of the 28th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2020, pp. 1655–1659.

[21] S. Di Martino, A. R. Fasolino, L. L. L. Starace, and P. Tramontana, “Compar-
ing the effectiveness of capture and replay against automatic input generation
for android graphical user interface testing,” Software Testing, Verification
and Reliability, vol. 31, no. 3, e1754, 2021.

[22] Z. Li, K. Lu, Y. Zhang, Z. Li, and J.-B. Liu, “Research on energy efficiency
management of forklift based on improved yolov5 algorithm,” Journal of Math-
ematics, vol. 2021, 2021.

[23] W. Rahmaniar and A. Hernawan, “Real-time human detection using deep
learning on embedded platforms: A review,” Journal of Robotics and Control
(JRC), vol. 2, no. 6, pp. 462–468, 2021.

[24] T. Su, J. Wang, and Z. Su, “Benchmarking automated gui testing for android
against real-world bugs,” in Proceedings of the 29th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2021, pp. 119–130.

43

https://medium.com/ml-research-lab/what-is-object-detection-51f9d872ece7
https://medium.com/ml-research-lab/what-is-object-detection-51f9d872ece7

[25] D. Thuan, “Evolution of yolo algorithm and yolov5: The state-of-the-art object
detention algorithm,” 2021.

[26] C. Imane, Yolo v5 model architecture [explained], Nov. 2022. [Online]. Avail-
able: https://iq.opengenus.org/yolov5/.

[27] Z. Lv, C. Peng, Z. Zhang, T. Su, K. Liu, and P. Yang, “Fastbot2: Reusable
automated model-based gui testing for android enhanced by reinforcement
learning,” in 37th IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2022, pp. 1–5.

[28] H. Wang, S. Zhang, S. Zhao, Q. Wang, D. Li, and R. Zhao, “Real-time de-
tection and tracking of fish abnormal behavior based on improved yolov5 and
siamrpn++,” Computers and Electronics in Agriculture, vol. 192, p. 106 512,
2022.

[29] K. Yasar and S. Lewis, What is pytorch? Nov. 2022. [Online]. Available: https:
//www.techtarget.com/searchenterpriseai/definition/PyTorch.

[30] P. Narasimman, Top 30 software testing tools for 2023, Jan. 2023. [Online].
Available: https://www.knowledgehut.com/blog/software-testing/software-
testing-tools.

[31] J. Solawetz, What is yolov5? a guide for beginners. Jan. 2023. [Online]. Avail-
able: https://blog.roboflow.com/yolov5-improvements-and-evaluation.

[32] Sdlc - overview. [Online]. Available: https://www.tutorialspoint.com/sdlc/
sdlc_overview.htm.

[33] Software testing overview. [Online]. Available: https://www.tutorialspoint.
com/software_engineering/software_testing_overview.htm.

[34] Ultralytics, Tips for best training results · ultralytics/yolov5 wiki. [Online].
Available: https : / / github . com / ultralytics / yolov5 / wiki / Tips - for - Best -
Training-Results.

[35] ——, Train custom data · ultralytics/yolov5 wiki. [Online]. Available: https:
//github.com/ultralytics/yolov5/wiki/Train-Custom-Data.

[36] What is computer vision? [Online]. Available: https://www.ibm.com/topics/
computer-vision.

44

https://iq.opengenus.org/yolov5/
https://www.techtarget.com/searchenterpriseai/definition/PyTorch
https://www.techtarget.com/searchenterpriseai/definition/PyTorch
https://www.knowledgehut.com/blog/software-testing/software-testing-tools
https://www.knowledgehut.com/blog/software-testing/software-testing-tools
https://blog.roboflow.com/yolov5-improvements-and-evaluation
https://www.tutorialspoint.com/sdlc/sdlc_overview.htm
https://www.tutorialspoint.com/sdlc/sdlc_overview.htm
https://www.tutorialspoint.com/software_engineering/software_testing_overview.htm
https://www.tutorialspoint.com/software_engineering/software_testing_overview.htm
https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results
https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results
https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Problem Statement
	Objective and contributions
	Thesis Structure

	Related Work
	Literature Review
	YOLOv5
	Pytorch Framework
	Computer Vision
	Object Detection

	Model & Dataset
	Dataset description
	Data preprocessing
	Feature selection

	Model description
	Single Stage Object Detector
	Other important part for improved result

	 Implementation and Result Analysis
	Implementation
	Hardware Specification
	Environment Setup
	Package Installation
	Custom Model Configuration
	Automation System

	Result Analysis
	Comparative Analysis
	Selected Model Result Analysis
	System Analysis
	Performance Analysis

	Conclusion
	Challenges
	Future Prospect
	Conclusion

	Bibliography

