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Abstract
Although smartphones have already become the de facto tool for environmental
health research for their ubiquity and portability, utilizing them in finding location-
specific aggregated air quality index based on PM2.5 concentration is little ex-
plored in the literature to date. In this paper, therefore, we vigorously analyze
the difficulties of predicting location-specific PM2.5 concentration from photos cap-
tured by smartphone cameras. Here, we particularly focus on Dhaka, the capital
of Bangladesh, considering its very high level of air pollution exposure to a huge
number of its dwellers. In our research, we develop a Deep Convolutional Neural
Network (DCNN) and train it using more than a thousand outdoor photos cap-
tured and labeled by us. We capture the photos at various locations in Dhaka,
Bangladesh, and label them based on PM2.5 concentration data extracted from the
local US consulate as computed by the NowCast algorithm. During training with
the dataset, our model learns a correlation index through supervised learning, which
improves the model’s ability to act as a Picture-based Predictor of PM2.5 Concen-
tration (PPPC) making it capable of detecting comparable daily aggregated AQI
index from a photo captured by a smartphone. Here, the computation necessary in
our model is comparatively resource-efficient, as our model subsumes a much smaller
number of parameters compared to most of the other alternatives. Moreover, our
experimental results show that our model exhibits more robustness, for location-
specific PM2.5 prediction than existing state-of-the-art models such as ViT (Vision
Transformer) and INN (Involutional Neural Network) as well as other popular mod-
els that are created based on CNN, such as VGG19, ResNet50, or MobileNetV2.

Keywords: Air Quality Index, Picture-based Predictor of PM2.5 Concentration
(PPPC), Deep Learning, Machine Learning.
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Chapter 1

Introduction

1.1 Motivation and Research Problem
Air pollution is the flow of pollutants into the atmosphere; more specifically, these
would be pollutants that are harmful to human health and the environment as a
whole. It is a mixture of particulate matter (PM), gasses, and vapor-phase molecules.
The most prevalent route of exposure to air pollution is the respiratory system. In
the case of dust pollutants, the size of particulate matter plays a crucial role in deter-
mining the environmental health risk. PM is categorized on the basis of aerodynamic
diameter. Thoracic particles (PM10) are defined as particles having a dimension of
fewer than 10 micrometers, fine particles (2.5 micrometers or less), and ultra-fine
particles (0.1 micrometers or less) [4]. Even millions of deaths are caused by air
pollution each year, reported by the World Health Organization1. Nowadays, nine
out of ten people breathe air that goes beyond the WHO’s recommended levels for
contaminants, and people in low and middle-income nations suffer the most due to
this. Air pollution is caused by a combination of solid particles and gases in the at-
mosphere. Particles can include car emissions, toxins from industries, dust, pollen,
and mold spores. Ozone, an inorganic gas, also contributes significantly to urban
air pollution, leading to a smog.
Air pollutants having aerodynamic diameter of 2.5um are particularly much more
dangerous as it can impair respiratory and cardiovascular functions which in the
end causes serious life-threatening disease in human body. People with heart or
lung conditions, especially older people and children, are particularly susceptible to
air pollution. The air within buildings and other structures may also be polluted
and have a negative effect on public health.

The 11th goal of the United Nations (UN) Sustainable Development Goals (SDG)
2 highlights the important role of having adequate, safe, and affordable living, and
basic services as well, and air quality is one of the surest measures of living standard,
especially in urban settings like Dhaka.
It is reported by the UN [17] that,

• Air pollution from different industries, power plants, waste plants, traffic, and
others caused 4.2 millions of death count in 2019.

1https://www.who.int/health-topics/air-pollution
2https://sdgs.un.org/goals/goal11
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• Since 2015, more than 117 countries are focusing towards measuring air quality
in a total of exceeding six thousands of cities.

• According to the new guidelines created by WHO, 99% of the people who live
in cities breathe polluted air in 2021.

• People from least developed countries (LDCs) and middle-income countries
suffer more by air pollution, which results 4.2 million deaths which are pre-
mature.

It is also mentioned, according to their target 11.6, it is targeted that by 2030, they
will reduce the adverse per capita environmental impact of places where commu-
nities live through giving intense focus toward air quality as well as other waste
management.
Every now and then, it becomes common knowledge for residents of one of the
world’s most densely populated cities, Dhaka, Bangladesh, that the city has been
classified as the worst in the world in terms of air quality. [43] Furthermore, Dhaka
was declared the most polluted city in the 2021 Air Quality Report [42], a continu-
ation of its ranking as the worst in 2020.

Climate change plagues our world now more than ever. Some of its effects include
extreme typhoons, drought, a rise in sea level, an increase in global temperature,
and tsunamis. As humans have contributed alone to this drastic change in climate
conditions, it bears on us to slow down this phenomenon. Our continuous usage of
non-recyclable materials and excessive use of plastics contribute heavily to the rapid
increase of climate change. The 13th goal3 of UN SDG concentrates on actions that
must be done in order to counter the effects of climate change, or at least slow down
its effect.

It is also mentioned, according to their target 13.3, it is targeted to ameliorate
awareness-raising on human and institutional capacity regarding the climate change,
which includes getting aware regarding the atmosphere.
The globe as a whole has been a witness to a distressing environmental phenomenon
known as urbanization and industrialization over the course of the most recent sev-
eral decades. Dhaka is not an exception to this pattern at all. These are contributing
to and hastening the deterioration of air quality, which has now reached the status
of a global catastrophe. Dhaka, Bangladesh, which is one of the most densely pop-
ulated cities in the world, has been ranked as the city with the worst air quality in
the entire world [43]. This fact is occasionally brought to the attention of residents
of Dhaka, and it eventually becomes common knowledge among them. In addition
to this, Dhaka is ranked as the world’s most polluting city in the 2021 World Air
Quality Report [42], which is an extension of its status as the most polluted city in
the 2020 World Air Quality Report. Dhaka has been struggling with issues related
to air pollution for quite some time now. Dhaka is consistently ranked in the top 10
of the most polluted cities in the world, even if it does not maintain its position at
the top of this list. It is common for air quality to degrade over the winter months,
although it tends to improve during the monsoon season.

3https://sdgs.un.org/goals/goal13

2
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Figure 1.1: SDG Goal 11 [46]

1.2 Research Objective
From the last decade onward, smartphones have become one of the most impor-
tant products in our everyday lives, which accompanies us wherever and whenever
needed, thanks to their powerful capabilities and a wide section of applications. In
some ways, smartphones have evolved into a true human sixth sense. We can now
readily capture images anywhere at any moment, analyze and film what is happen-
ing all around us, and then send and store them in private or public clouds over
commonly accessible connections (such as cellular data or WiFi) for personal access
or sharing. Considering how affordable it will be to supervise air quality in real-time
from an given image if the PM 2.5 can be detected rapidly as well as accurately.
Despite its significance, very few research works have been dedicated to this sort of
study up to this point.
Based on our study, we make these major contributions to this paper:

3



Figure 1.2: SDG Goal 13 [47]

• We estimate the PM2.5 concentration based on regression through custom
Deep CNN based architecture leveraging the power of smartphone images.

• We create a dataset of images and related PM2.5 based on Bangladesh, a
South-Asian country where PM2.5 Concentration is usually higher than aver-
age in the world.

It should be noted that our work computes aggregated AQI for the entire city as the
average difference between location-specific AQI, taken by a sensor and the average
AQI published by the local US Consulate is within 5-10% value of location-specific
AQI as reported by Auvee et al. [27]. Also, it addresses the 11th goal of SDG
and fulfills one of the crucial targets of its 13th goal, which is the improvement
of education, awareness-raising, and human and institutional capacity building on
climate change mitigation, adaptation, impact reduction, and early warning.
The following is the framework for the remainder of our thesis. We begin with a

4



Figure 1.3: Pedestrians cover their noses as dust shrouds a dilapidated part of
Rampura-Banasree Road from Dhaka

review of some of the most recent research studies related to this problem in Chapter
2. Then, we introduce and describe the dataset we work on in Chapter 3. Afterward,
we discuss the background of the models in Chapter 4. Then, we present the deep
CNN based process picture-based prediction of the PM2.5 concentration (PPPC)
approach as well as illustrate the workflow proposed in Chapter 5. Then, we execute
a major performance assessment in Chapter 6.

5



Chapter 2

Background

2.0.1 Related Works
There is very limited research on Picture-based Prediction of PM2.5 worldwide.
More specifically, there are works related to AQI classification based on images.

In recent years, we see growth in the development of technology and the use of
Machine Learning (ML). Alongside that, academics are increasingly using Artificial
Neural Networks (ANNs). Additionally, CNN is mentioned in a variety of paper-
related contexts. The authors continue by breaking down the DL design thoroughly
and begin to push forward toward efficient outputs for diverse issues including AQI
categorization.

Liu et al. [18] show that ML can be effectively used to predict PM2.5 using images.
They start with learning six attributes derived from images. DCP is applied to
forecast image transmission first, then picture contrast and entropy are analyzed as
characteristics. Furthermore, the impacts of the color of the sky and the position
of the sun on the estimate of PM2.5 concentration are addressed and utilized for
features. They collect the PM2.5 data from their local US Consulate which is pub-
lished on an hourly basis. However, there is a drawback on the dataset they worked
on, where it can be recognized as a skewed one. Chang et al. [10] use a SVR to
incorporate all of the information, for the purpose of forecasting PM2.5.

Nonetheless, the model is highly dependent on previously designated reference zones
with varying depths, which severely limits its application possibilities. Moreover,
the work is pretty limited to predicting from images taken by static cameras. In
addition, Gu et al. [28] begin by extracting entropy characteristics in the spatial
and transform domains. In addition, they develop naturalness statistics models for
the aforementioned two entropy characteristics by using a large number of images
recorded during a particular period of favorable weather. We can compute a relative
value that reflects the likelihood that a given image has a low PM2.5 concentration
by analyzing the probability of naturalness between the entropy features and the
statistical models. The probability measurement is then transferred to the estima-
tion of PM2.5 concentration using a simple non-linear logistic function. They also
collect their data from the local US Consulate of Beijing. Moreover, their dataset is
also seen as a skewed one.
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Auvee et al. [27] present an approach related to Air Monitoring System which pri-
marily relies on the Geographic Information System (GIS) and the Air Pollutant
Index (API) where they collect area-based AQI around Dhaka City. While working
on this, they report that the average value of PM 2.5, collected by the local US
Consulate is 193ppm whereas the PM 2.5 value of their collected data in different
places of Dhaka City is around 178ppm which is a difference of 7% which lends
credibility to our work.

The local US Consulate collects the AQI data based on Nowcast Algorithm. Nowcast
is an algorithm developed by the Environmental Protection Agency (EPA), United
States, to calculate AQI based on a weighted average of air particulate condensation
from the recent-most hours in a particular location 1. This system is given in g/m3
or ppb, in the AQI scale ranging from 0 to 500. It is employed for all recorded AQI
values on the airnow.gov website. The idea behind the nowcast is to provide the
“24-hour average” that should be applied when converting concentrations to AQI.
This is because the AQI scale indicates that each of the Health Concern Levels (i.e.,
Good, Moderate,... Unhealthy...) is valid under a 24-hour exposure. For instance,
188 AQI (Unhealthy) should be interpreted as “if I remain outside for 24 hours
and the AQI is 188 throughout those 24 hours, then the health consequence is Un-
healthy.” This is completely distinct from the statement “if the current AQI is 188,
it will be unhealthy for health.” 2

With the advent of time, the usage of Artificial Neural Networks (ANNs) and their
offshoots play an increasingly important role in both regression and classification
tasks. Additionally, Convolutional Neural Networks (CNNs) have found profound
applications in the modern research arena.

Zhang et al. [35] present a deep convolutional neural network model AQI classifica-
tion. Their model, an AQC-Net based on ResNet, extracts feature information from
landscape images captured by a camera and then categorizes them to estimate air
quality levels. A self-supervision module (SCA) is appended to this model and the
global context information of the feature map is then employed for feature recon-
struction by leveraging the interdependence between the channel maps to enhance
the interdependent channel maps and improve the ability of feature representation.
Moreover, they compile an outdoor air quality data set to facilitate the training and
evaluation of the model’s performance. As an extension of their previous work, [44]
present a real-time and image-based deep learning model named YOLO-AQI which
is a customized model based on YOLO.

Chakma et al. [21] present a fine-tuned deep convolutional neural network model,
which also can categorize natural images into different classes based on their PM2.5
concentrations. They also present a dataset of 591 images, whrere PM2.5 data is
collected from local US Consulate, in Beijing, China. They mention their model
as “imagenet-matconvnet-verydeep”. A drawback in their work is that they only
classify 3 classes which are Good, Moderate, and Severe.

1https://cutt.ly/NXphsOi [Retrieved from EPA]
2https://cutt.ly/oXhiImf
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Li et al. [16] come up with an approach where they classify air pollution from
images based on haze. They also present a dataset of 8,761 images, whrere PM2.5
data is collected from local US Consulate, in Beijing, China. In their approach, they
initially estimate the transmission matrix using the Dark Channel Prior (DCP) [8]
method. In parallel, they estimate the depth map based on Deep Convolutional
Neural Fields (DCNF) [19]. By combining the transmission matrix and the depth
map, they approximate the haze level of the photo.

Rijal et al. [25] propose another algorithm to solve this problem. The solution is
mainly an ensemble of deep neural networks-based regressors, which utilizes a feed-
forward neural network to merge PM2.5 predictions yielded by three convolutional
neural networks, VGG-16, Inception-v3, and ResNet50. They also present a dataset
of 1,460 images, whrere PM2.5 data is collected from local US Consulate, in Beijing,
China. They thereby arrive at the final PM2.5 prediction of the image. We also
notice that this work has a really skewed dataset which may have contributed to
creating biased output.

Sarkar et al. [40] investigate and highlight how the Covid 19 lockout affected PM2.5
pollution in the city utilizing “Ground based observation data.” Basically, they look
into the air quality in Dhaka from January 1, 2017, to August 1, 2017. Second,
the research begins in January and continues through Pre Covid (March 23), Covid
(March 24 to May 30), and Post Covid (May 31 to August 1). They demonstrate
that the annual formula for PM2.5 pollution was the same from 2017 to 2020. While
doing the study, a new concentration of -87.47 g/m3 was developed. Here, when
compared to earlier data, in this case, historical data showed that the significant
drops in PM2.5 during the Covid shutdown were detected at a rate that was 11.31%
lower than the absolute drop of 7.15 g/m3. Air is such a crucial component of the
environment; this study also alludes to health outcomes. But for that, more research
ought to have been conducted. Since only three years’ worth of data were used in
this analysis, more catalysts may have an impact on the PM2.5 level.

Using the traffic volume list and Ecotec mini 2.5 sampler, this study by Hossain
et al. [29] investigates the relationship between PM 2.5 concentration and mode of
transportation in the city of Dhaka. Due to the weather, Dhaka is suffering from
a significant amount of PM 2.5. Since the previous years, beginning in 2013, the
concentration in Dhaka has increased six times higher than Bangladesh’s NAAQS.
According to the findings of this study, one of the major reasons for air pollution is
increasing the number of automobiles in cities. Road categories that are mentioned
here; Vehicle free roads, mixed-use roads, motorized vehicle-dominated roads, and
predominant roads by non-motorized roads. Now, to organize this study 12 different
locations have been identified for data collection and as the result of 12-hour con-
centration the air quality ratio scale of: Moderate>caution>unhealthy. Moreover,
the research shows the PM2.5 concentrations in compared to mixed, motorized ar-
eas are on average higher than others with that, the maximum concentration was
found in Mirpur-10 with 172.2 ug/m3 whereas the minimum was in B.C Das street
40 ug/m3.
Additionally, the study demonstrates that the average PM2.5 concentrations in mo-
torized, mixed-use regions are greater than those in other locations. The highest
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concentration of ss was discovered in Mirpur-10 at 172.2 g/m3, in contrast to other
areas. This analysis essentially shows that Dhaka city is going to get worse. Due to
the fact that, after categorizing the calculation, it shows that the concentration on
motorized and mixed category roads is higher and is nearly 4 times higher than the
WHO and Bangladesh national norm, with an AQI of 100% becoming unhealthy
and others being labeled as caution and moderate. So now is the perfect moment
to prepare for the issue.

Ma et al. [24] present a hybrid convolutional neural network approach that is used
to estimate air pollution based on images. Moving forward, this method estimate
air pollution based on a single smartphone photo. Here, they use both an RGB
image and dark channel maps to simulate a hybrid Convolutional neural network.
Basically, in order to move forward with the work, they take the collected image
into consideration as their primary input. By doing so, they are able to address
the negative impacts of increasing depth and enhancing the network’s performance.
This effort is for the primary network; going on to the secondary network, a dark
channel map will be generated for the purpose of improving features with repre-
sentation. This method has been compared to other techniques both qualitatively
and numerically. In addition to image collection, data sets have been employed to
conduct experiments, and the best results have been obtained. Additionally, 1575
photos with various PM 2.5 values were gathered in this location in order to build
their network in fusion mode. In order to increase the accuracy of the classification,
they introduce the relationship between hazy images and the air quality factor of
various locations.

Bo et al. [23] present a technique for estimating PM2.5 from images that makes use
of the CNN Model together with two weather features. SVR and Deep Learning
algorithms are introduced in the study to blend picture and data to predict PM2.5
levels in the air. A ResNet model is utilized to predict PM2.5 levels for images,
and humidity and wind speed are employed as weather variables. In order to assess
PM2.5, the SVR model has now been coupled with Res-Net output. In contrast to
other architectures, the CNN explicit end to end architecture enables automatic ex-
traction of both low-level and high-level image features. This study’s methodology
demonstrates that extraction takes less time, and the stages of feature optimization
don’t result in any defects either. The experimental results demonstrate that the
strategy stated performs better and that weather factors can contribute to improv-
ing PM2.5 estimation accuracy.

Samsami et al. [30] present a computer vision-based method for classifying the
air quality level that is based on image processing and uses image analytics. Any
smartphone with a camera may be used to accurately examine by taking a picture
of the sky and collecting useful information from it. ImSkyset, which is essentially
a dataset with 3422 pictures, is used for this paper’s purposes. According to the
article, environmental pollutants lead to deteriorating air quality, which has an ad-
verse effect on the color of the sky as well. The three operators LBP, DCO, and
Gabor filter are discussed in more detail here since they are able to extract images
from photographs even when the variations in air quality are not very noticeable.
Moreover, the KNN produced 7 sub-features. Additionally, the use of categoriza-
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tion resulted in the production of 7 sub features for the KNN. The verification and
accuracy levels were assessed after completing all of them. And this result shows a
performance accuracy rate of about 82.02%. The results thus support the benefit of
utilizing image processing methods to measure air quality for the purposes of raising
public awareness.

In order to precisely estimate the PM2.5 and PM10 values of air pollution, Song
et al. [34] focus on the usage of a smartphone. As a result, they emphasize esti-
mation on a single daylight image in their suggested deep learning approach, which
integrates ResNet with LSTM. The author’s reference, in this case, was the equip-
ment used at official air quality monitoring stations. Moreover, this test result does
not change the value of PM2.5 and PM10 within a 500-meter radius. Additionally,
3024 images of the same structure that were shot both during the day and at night
have been saved. The ResNet-LSTM model construction is then suggested by the
researchers. After that, there is a discussion of Met-ResNet-LSTM, which is based
on ResNet-LSTM and has made an effort to consider the impact of weather on air
pollution. They also created ResNet-LSTM-SP and Met-ResNet-LSTM-SP, each
of which has a single short path. The image-based estimating method, as well as
ResNet-LSTM and Met-capacity ResNet LSTMs, perform better when detecting
any rapid changes in pollutant concentrations due to the short path. The results of
all trials and verification show that the proposed techniques and the three sections
perform exceptionally well with deep learning, ResNet, and all other convolution.
Additionally, the suggested method has less error than convolution.

Wang et al. [32] present that in order to learn the combined feature derived from
various areas of environmental photos, the research suggests the Double Channel
Weighted Convolution Network (DCWCN) crops learning technique. The research
mostly discusses learning about DCWCN and Self-learning weighted features. With
this, they create a dataset of environmental images with time and position infor-
mation to continue the technique. Thus, there are four main contributions to the
paper’s discussion. Here, an accuracy level of about 87% is found, and the method
indicated shows that it is highly successful and performs admirably in terms of both
mean absolute error and recognition accuracy, as was previously mentioned. Over-
all, the performance comes across well.

Saha et al. [39] work on the impact of the pandemic and the monitoring of Dhaka’s
AQI on the pandemic period in the study. The relationship between the Covid
19 Fatality Rate (CFR) and AQI from Bangladesh and India is discussed in this
passage. According to the report, this is the first time the AQI of Dhaka has been
monitored using the Internet of Things, or IoT.
They essentially track the AQI in Dhaka City using various gases, such as CO
and NO2, and to work with an Arduino-based Node-MCU and other sensors. In
addition to the WSN approach that is developed for AQI assessment both indoors
and outdoors, other processes were also listed. The ESP-32 WiFi module will upload
the data set to the server in this case so that it may be accessed from anywhere. They
contrast CO and NO2 emissions during a pandemic in this passage. Additionally,
the researchers develop a novel formula to lessen the bad effects of the pandemic.
Internet of Things (IoT) is essentially a network that appears to be a sensor that is
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connected. They also offer a framework for monitoring that depends on temperature,
humidity, information systems with high light levels, dispersed sensors, and more.
With all that, a dataset is constructed by keeping an eye out for carbon monoxide
isolated regions; this strategy encompasses a 100 sq. km. urban area.

2.0.2 How PM2.5 Affects Optical Image
In the air, PM influences an image in various approaches[18]. However, they are
emerged from light interactions alongwith the particles of air, primarily through light
scattering. It includes Rayleigh scattering and Mie scattering [1]. Light scattering
lowers light transmission in air, which is described by the Beer-Lambert equation.

t = e−βd (2.1)
Here, β is the medium extinction coefficient, which varies with particle size and
concentration, and d is the distance of light propagation. This equation illustrates
that PM concentration can be calculated through determining the extinction coeffi-
cients at various wavelengths. The extinction coefficient can be calculated from an
obtained picture using the equation 2.2, which is mentioned in many researches [3],
[6], [7], [12].
The preceding explanation does not explicitly account for color information, which
may potentially serve as crucial characteristics for PM estimates based on light
scattering considerations. When particles (especially air molecules) are much smaller
than the wavelength of light, Rayleigh scattering reigns supreme. It fluctuates with
wavelength (λ) in accordance with λ−4, which is responsible for the blue hue of
the sky. Mie scattering, on the other hand, happens when the size of the particles
is equivalent to the wavelengths of light, resulting in a white glare surrounding
the sun when particles are present in the air. The combo of Rayleigh and Mie
scattering affects the image’s luminance and color vibrancy. In contrast, the color
and brightness information provides information on particle concentration and size
and may be used to determine PM. In addition to light attenuation, the current
approach provides color information as a crucial feature point for PM assessment.

2.0.3 How Image Features can Represent AQI?
We predict the AQI from user photos using the following features, following the
approach of Liu et al. [18].

1. Transmission

2. Blue Colour of the Sky

3. Gradient of Sky Region

4. Image Contrast

5. Entropy

6. Humidity

Traditional image processing methods are used to extract these characteristics,
which are then integrated with a linear model.
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Transmission

This identifies image deformation and the amount of light that enters a camera after
being impacted by particles in the air, which can be characterized by Equation 2.2
[3], [6], [7], [12].

I(x, y) = t(x, y)J(x, y) + (1− t(x, y))A (2.2)

Here, the input hazy image is characterised by I. In addition, t is the scene-to-
camera transmission, J is the scene radiance, and A is the airlight color vector. As
seen in Fig. 2.1, the first component of Equation 2.2 is the instantaneous transmis-
sion of scene radiance into the lens, which consists of reflected light by scene object
surfaces and filtered by air before entering the camera. The second component
(1− t(x, y))A is referred to as airlight, which is the reflected light dispersed into the
camera by air molecules and PM [6], [7], [12]. Wang et al. [15] estimate attenuat-
ing of light using the abovementioned calculation equation. By examining ROIs at
various distances, the link between transmission value and PM density was studied
in this study [18]. Equation 2.2 assumes a given fixed atmospheric and lighting
conditions, in actuality which can change depending on the time of day, location,
and season of the sun. In addition to the climate and the location of the Sun, both
J and A rely on the distribution and concentration of PM. Using the principle of
dark channel, which implies the presence of some pixels with zero or extremely low
intensity for at least one-color channel in all outdoor photographs, the transmission
for a particular hazy image is determined. Using Equation 2.3, the dark channel is
computed for a haze-free image J .

Jdark (x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
(J c(y))

)
(2.3)

Here, J c is one of the color channels of J , and the localized patch which is posi-
tioned at x is characterized by (x). The sky or the brightest area can be utilized to
calculate the airlight, therefore the transmission can be obtained by:

∼ t(x) = 1− min
y∈Ω(x)

(
min

c∈{r,g,b}

Ic(y)

A

)
(2.4)

Here, Ic(y)/A is mainly the hazy image, which is normalized by the air-light A, and
the second term on the right represents the hazy image’s dark channel.
According to Liu et al. [18], a crucial assumption of the current model is that
the transmission decreases rapidly with increasing scene object distance from the
camera.

Blue color of the Sky

This characteristic is comparable to how we experience a polluted day in real life.
When the sky is gloomy, we consider the day to be polluted. The color blue was
calculated via RGB reduction.
The sky is blue on a clear day and gray or white on foggy or overcast days due to
light dispersion. The hue of the sky is determined by the average value of the blue
RGB channel component in the sky area.
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Figure 2.1: Radiance entering the smartphone camera is the total of light transmit-
ted from the subject and airlight from the sun after spreading by air, moisture, and
atmospheric particles [18]

Gradient of Sky

Due to cloud cover, the sky can look grayer in color and this characteristic is included
to account for the chance to add the feature. Now, making a mask of the sky region
and then calculating the region’s Laplacian helps to determine the gradient. Here,
the average gradient amplitude in the sky region determines how smooth the sky is.
The gradient would be high if the pollution level were high.

Entropy, RMS Contrast

To get PM concentration in air, another feature is Image Contrast. As a matter
of fact, picture contrast or visibility is related to how well a human can see the
air quality [2], [9]. Based on Equation 2.2 the effect of PM on image contrast can
be determined. As PM concentration increases, the airlight term (second term of
Equation 2.2) arises from light scattering by PM increasing rate. The Air light
lacks scene information, which is why PM causes the contrast in the image to drop.
Due to transmission decrease with the distance between an object and camera, the
airlight term contribution rises. Also, the distance got increased here. So, in short,
the more PM there is in the air, the less contrast there will be in the image.
These characteristics also provide information about the specifics of an image Now, if
the day is a polluted day then the details of the image will be missing. The contrast
of an image can be measured in a variety of ways. Using the RMS of a picture to
explain image contrast is the most used one. This method has been found to match
with human perception of image contrast [5]. The standard deviation of the image
pixel intensities is used to define RMS contrast, by the following Equation:

RMS =

√√√√ 1

MN

N∑
i=1

M∑
j=1

(Iij− avg(I))2 (2.5)
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Here, Iij is the intensity at (i, j) pixel of the image with size M × N , and avg(I)
is the average intensity of all pixels in the image. So, we can say that contrast
contains an inverse relation with PM 2.5. To estimate entropy, we use the following
Equation:

Entropy = −
M∑
i=1

pi log 2pi (2.6)

Here, pi is the probability where the pixel intensity is equal to i, and M is the
maximum intensity of the image. We can notice that, the image increasingly loses its
details whenever the PM concentration increases, and the image entropy decreases.
So we can conclude by saying, it has an inverse relationship to PM 2.5.

Humidity

Humidity is a component of meteorology. Study [48] shows that pollution levels
increase on humid days because PM 2.5 absorbs moisture and reduces visibility.

Since the majority of these characteristics have a linear relationship with PM 2.5,
they are input into a neural network with a linear activation function, as outlined
in Section 5.
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Chapter 3

Dataset

We create a custom dataset consisting of images and PM2.5 readings from about
that period that are collected inside Dhaka city, which is the capital of Bangladesh.
The images are from some point in time between the years 2020 and 2021. The
PM2.5 Concentration of that exact time or approximate time range near the time
the picture is taken is included in the dataset, which primarily consists of images
that are taken by people, the date and time that the picture is taken, the location
it is taken (within Dhaka City), and the date and time that the picture is taken.
The information on PM2.5 is obtained from the United States Consulate, which is
the location where the AQI is published and updated on an hourly basis1.
Due to the fact that this is an academic study exclusively, we have sent a Google
Form to the residents of Dhaka City, requesting them to submit only photographs
that they have taken themselves and in which at least half of the sky is visible, along
with their permission to do so. In addition to that, we gather data from our end
utilizing mobile phones that we have purchased ourselves.
After we have finished collecting the data, we then gather the PM2.5 levels at that
moment using a predetermined method. We separate the time range for photographs
that are taken in between a specified hour since the data that comes from the US
embassy is provided on an hourly basis. For example, we have PM2.5 data from
both 9 and 10 in the morning. Now, on that basis,

• If it is taken within 9:30 AM, we consider the PM2.5 of 9 AM for that picture.

• If it is taken after 9:30 AM and within 10 AM, we consider the PM2.5 of 10
AM for that picture.

Primarily, the dataset is comprised of 1,818 images. The images include a variety
of time periods, geographic locations, and PM2.5 concentrations.
The dataset includes a much greater variety of photographs, each of which is distin-
guished from the others based on the PM2.5 concentration. There are six distinct
PM2.5 criteria that are used to determine how severe the air quality index (AQI)
really is. In order to demonstrate the accuracy of our findings, we generate PM2.5
level estimates and plot them on an Air Quality Index (AQI) scale that has a color
gradient. This is the official standard scale that is used by the governments of all
of the different countries, and it has been in use for a considerable amount of time.
Each level has its own own distinct range from 0 to 50, and it always begins at 0.

1https://www.airnow.gov/international/us-embassies-and-consulates/
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Figure 3.1: Sample Image from Dataset (AQI = 63)

Air Quality Index
(AQI) Range Category Color

0-50 Good Green
51-100 Moderate Yellow Green
101-150 Caution Yellow
151-200 Unhealthy Orange
201-300 Very Unhealthy Red
301-500 Extremely Unhealthy Purple

Table 3.1: Air Quality Index Chart [11]
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Figure 3.2: Sample Image from Dataset (AQI = 125)
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Figure 3.3: Sample Image from Dataset (AQI = 293)

Figure 3.4: Histogram of PM2.5 of Our Dataset
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Figure 3.5: A snippet of Our Dataset
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Chapter 4

Model Background

4.1 Convolutional Neural Network (CNN)
In order to accomplish our job, we will be analyze the pixels out of the pictures
using convolution neural networks. CNN is used for image identification, regression
prediction and classification because to the high level of accuracy it has in various
applied areas. It is created to have compactness, efficiency, and a greatly reduced
network architecture for the partitioning of fine structures in volumetric pictures.
As a direct consequence of this, fundamental and adaptable components of existing
convolutional networks, such as enhanced convolution and surviving association,
need to be taken into consideration. In the majority of modern network topologies,
a completely convolutional technique is used.
In the field of deep learning, a convolutional neural network is a kind of artificial
neural network that analyzes data in the form of graphical representations. CNN
has established itself as the standard to follow when tackling any problem involving
images. They are far and wide above the competition in terms of accuracy. A
number of other applications, such as natural language processing and recommender
systems, make use of it as well. The most significant benefit that CNN has over
its earlier neural networks is that it can recognize essential qualities even without
the involvement of a human researcher. If a large number of pictures of different
commodities and animals are shown to it, it may figure out on its own the distinctive
characteristics of each category.
One of the most challenging features of using CNNs is the fact that, in contrast
to standard image applications, poor data preparation capabilities can result the
model perform worse. This is one of the most difficult components of employing
CNNs.
Additionally, CNN models are now capable of running on any device, making it
possible for them to reach a larger audience. Pooling techniques, sophisticated
convolution, and parameter sharing are all used in a CNN’s architectural process.
The use of a tensor as an input by CNN enables the network to better grasp the
spatial connections (the link between nearby pixels in an image) between pixels and
to perform better on more complex pictures.
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4.2 CNN Architecture
A typical CNN can consist of these three layers:
Initially, it will contain a convolutional layer. Then there will be a layer which will
pool the data in a certain manner. And finally, there will be a fully connected layer.

When the input image is supplied, CNN executes a sequence of convolution and
then pooling operations followed by a number of fully connected layers.

4.3 Convolutional Layer
Convolutional Layer basically implements a mathematical operation on input data
using its filter. It is considered the most crucial part of the whole procedure. Firstly,
the image is taken as input in the convolutional layer. Then it performs a mathe-
matical operation using its 3x3 kernel.

Generally, the convolutional operation takes place in the receptive field. As we have
used a 3x3 kernel, our receptive field was a 3x3 matrix as well. The kernel is slid
over the input to achieve a convolution and at each position, the sum of the result
of component-wise matrix multiplication is plotted on the feature map.

4.4 Activation Function
It is basically a type of function which helps to determine whether a neuron/node
should be activated or not, under some specific mathematical circumstances. It
usually decides whether the input from a previous node is important or not and
whether it should be added to the network based on some mathematical operations.

4.4.1 ReLU Activation
Non-linearity must be present in any neural network in order for it to be effective.
The ReLU activation function receives the result of the convolution operation. So
instead of the sums, the final feature maps are the ReLU functions applied.
To achieve non-linearity, ReLU activation is applied to the feature map. ReLU
activation takes the feature map and replaces all negative values with 0; if the
value is greater than 0, it remains unchanged, according to the equation below and
represented in Figure 4.1.

f(x) = max(0, x) (4.1)

4.4.2 Linear Activation
This function is often called as identify function which is proportionate to the input.
It just returns the value which is inputted, according to the equation below and
represented in Figure 4.2. For a regression based problem, linear activation function
is used in the final output layer.
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Figure 4.1: ReLU Activation Function Plot

f(x) = x (4.2)

4.5 Pooling
In the pooling layer, the dimension of the feature map is reduced. Pooling is done
on the feature map. In pooling at first, a spatial neighborhood which is a 2 pixel by
2-pixel window is taken. We can take any size of the window for pooling.
Here we have taken 2× 2 windows for pooling. We take the largest value from the
pooling window of the feature map and ignore the rest of the 3 elements. Through
this process, we are preserving the important features. In pooling, the redundant
pixels are canceled out and the important pixels are preserved. So through pooling,
we get to reduce the size of the feature map which makes our program more efficient.

4.5.1 MaxPooling Layer
Using this layer, we can get the maximum values out of a specific region of the
feature map of a given data. After taking the data, the output will contain the most
significant characteristics of the previous feature map. It is shown to be significantly
better to perform than average pooling for different computer vision tasks.
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Figure 4.2: Linear Activation Function Plot

4.6 Hyperparameters
There are three crucial hyperparameters to choose from:

4.6.1 Filter
Filter is a window that scans the image. A filter is used to judge which feature do
a pixel belong to. Does it belong to an arc, straight line, diagonal, etc.? One filter
could be responsible for detecting arcs within an image, another could be responsible
for diagonal lines, etc. Filters, also known as kernels, scan the image region after
another. The region size is determined by the window or kernel size.

Filter size:

We commonly utilize 3× 3 filters, however depending on the purpose, 5× 5 or 7× 7
filters are also used. There are other 1 × 1 filters, which will be discussed in a
separate post. They may appear unusual at first glance, but they have interesting
applications.

Filter count:

The filter count can be changed. It consists of two powers that can range from 32
to 1024. More filters show a much more powerful model, however, the risk rises of
overfitting due to the count of higher parameters. Generally, at first, we start our
proceedings with a definite number of filters in the first layer and eventually increase
the number of filters as we approach deeper into the network.
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Figure 4.3: How MaxPooling Works [49]

4.6.2 Stride
In convolution, stride indicates the number of pixels we can move in each convolu-
tion. When we apply convolution, there is a filter window which we can move by 1
pixel (by default) in either the x or y-direction. This is called a stride of 1 by 1. We
can apply a stride of 2 by 2 which means the filter window will move in either x or
y direction by 2 pixels. The striding is 1 by 1 by default.
We apply a filter matrix to the input image and we get an output feature map
having a reduced size. This process of reducing the size of the input image is called
padding. Thus through the padding, we reduce the size of the input image and get
a featured map having a reduced size.

Figure 4.4: How Stride Works

4.6.3 Padding
The word “padding” is important in the context of convolutional neural networks
(CNNs) since it describes the number of additional pixels that are added to a picture
while the image is being processed by the CNN kernel. If, for instance, the padding
in a CNN is configured to have a value of zero, then each and every pixel value that
is subsequently added will also have a value of zero. We make extensive use of the
padding that is available to us.
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4.6.4 Zero Padding Layer
This layer basically adds a border of pixels with zeros. The zeros will be on the
edges of a given image. Figure 4.5 illustrates if we pad our input with a border
of zero valued pixels, what the resulting output size may get after convolving our
input. The method of zero padding is one technique that enables us to maintain the
size of the data that was first entered.

Figure 4.5: How Zero Padding Works [50]

4.7 Fully Connected Layer
Fully Connected Layer is the core of feed forward neural networks. The next few
tiers of the network are made up of layers that are completely linked to one another.
The output of the final pooling or convolutional layer is the input to the fully
connected layer. This layer is the last step in the learning process. This output is
first made flattened, and then it is sent into the layer that is fully connected.

4.8 Dropout
Dropout serves as a safeguard against the overfitting of the white training model.
While training, dropout will occasionally remove neurons from the population.
When this is done, it contributes to the overall resilience of the network.

4.9 ResNet-50
Residual Networks also known as Res-Nets learn residual functions depending on
layer inputs instead of unreferenced functions. Residual nets permit these stacked
layers to fit a residual mapping. They create a network by piling convolutions on top

25



Figure 4.6: Dropout

of each other; for example, a ResNet-50 has fifty layers composed of these blocks.
Formally, we let the arrayed nonlinear levels fit a further mapping of by denoting
the desired sequence as. The original mapping is reshaped into. There is empirical
evidence that these connections are easier to optimize and can benefit from higher
depth.

4.10 VGG-19
The VGG network architecture was introduced first at 2014 [13]. VGG19 is a VGG
model type that has total of 19 layers, 16 of them are convolution layers, 5 are
MaxPool layers, 3 are fully-connected layers, and finally remaining 1 is the SoftMax
layer. It carries over and improves mostly on ideologies out of its previous versions,
and it uses the deep Convolutional neural layers in order to increase and improve
accuracy. It could load a pre-trained version of the network from Image datasets
which trained on more than a million pictures. It has been pre-trained to divide
the pictures into 1000 segmented categories which include different components,
stationery, and a variety of animals. As an outcome, the network has learned a
rich classification model for a diverse set of images. The network accepts images
with a resolution of 224 by 224.It are an example of traditional Convolutional Neural
Network architecture. It was founded on a study of how to strengthen such networks.
The network employs small 3 x 3 filters, and is characterized by its simplicity, with
just pooling layers and convolutional layers as additional components. It can be
used in a variety of ways, as suitable classification architecture for a large amount of
datasets, for instance. Weights are easily available in other frameworks like Keras,
so they may be explored with or utilized about any purpose the user wants.

4.11 InceptionV3
InceptionV3 is a Convolutional Neural Network architecture [14] that incorporates
Smoothing of Labels that is factorized in 7 x 7 convolutions. It also uses an auxiliary
classifier to produce Information label lower down the network onward with batch
normalization for layers in the side head. If Inception is compared and contrasted
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Figure 4.7: ResNet50

with VGG-Net, the networks of Inception have verified to be more computationally
well- planned and significantly better structured, both in terms of the number of
parameters propagated by the network and the economic cost provoked for both
memory and other resources. In order to make alterations to an Inception network,
it should be done extremely cautiously to make sure that the computational benefits
are not lost. If an InceptionV3 model is considered, various systematic approaches
have been suggested to slacken the constraints for a handier model adjustment. Fac-
torized convolutions, regularization, dimension reduction and parallelized computa-
tions are some of the approaches used. An InceptionV3 architecture is progressively
constructed one step followed by the other. At first, it is the use of Factorized
Convolutional which aids in decreasing the computational efficiency by decreasing
the number of parameters included in a network. Moreover, it keeps a check on the
productivity of a network. The second step is a smaller convolution which operates
by replacing bigger convolutions with smaller ones leading to more rapid training.
If Asymmetric convolutions are considered, a 3 x 3 convolution can be substituted
by a 1 x 3 convolution preceded by a 3 x 1 convolution. The number of parameters
will rise by a tiny amount if a convolution of 3 x 3 is substituted with a convolution
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Figure 4.8: VGG19

of 2 x 2. A smaller CNN is deployed in the auxiliary classifier between the layers
and adds losses to the main network during the training. Finally, to cut the volume
of the Grid, pooling operations are employed.

28



4.12 EfficientNetB7
EfficientNet is the name given to the architecture [31] of a convolutional neural
network in which the resolution, breadth, and depth are scaled consistently using a
compound coefficient and a scaling algorithm. In the context of EfficientNet, unique
model scaling strategies are implemented. Despite its simplicity, this strategy is
highly effective. EfficientNet has a relatively basic architecture in which a baseline
network is utilized to do the neural architecture search, an automated method for
building neural networks. Due to its structure, both accuracy and efficiency are
enhanced and improved to a large amount. EfficientNet tends to provide superior
results compared to other models, and the overall number of FLOPs is drastically
reduced. There are a variety of EfficientNet frameworks, with varying degrees of
effectiveness and precision. EfficientNet is much smaller than other models with
comparable ImageNet accuracy. The ResNet50 model, as shown in the Keras ap-
plication, has a total of 23,534,592 parameters, yet it still surpasses the smallest
EfficientNet model, which has just 5,330,564 parameters. Mobile inverted bottle-
neck MBConv, which was initially introduced in MobileNetV2, is the fundamental
building block of EfficientNet. By combining direct shortcuts between bottleneck
layers with depthwise separable convolution, which reduces computation by almost
a fold, we may link a substantially less number of channels than expansion layers.

4.13 MobileNetV2
MobileNetV2 is a convolutional neural network approach [26] that is improved for
cell phones. It is the second kind of technology that enables the picture-handling
functionality of various well-known mobile apps. The design has likewise been in-
stalled towards systems like Tensor-Flow Lite. Versatile organizations should cau-
tiously adjust signs of progress in PC vision and with the constraints of portable
conditions, profound learning overall. Web indexes, for example, Google have been
delivering updates to the Mobile Nets engineering consistently, consolidating the
absolute most original thoughts in the profound learning space. It depends on an
altered remaining design, with lingering associations between bottleneck layers. As
a channel, the moderate upgrade layer utilizes lightweight profundity astute con-
volutions. The engineering of MobileNetV2 by and large contains the underlying
completely functional regarding a convolution layer with 32 channels, there are 19
leftover bottleneck layers. The essential guideline behind MobileNetV2 is that the
model’s moderate information sources and yields, while the internal layer exem-
plifies the model’s ability to change from lower-level ideas, for example, pixels to
more prominent descriptors like picture classes. At last, easy routes, as customary
remaining associations, take into account quicker preparing and more prominent
precision, and exactness.

4.14 Vision Transformer (ViT)
The Transformer is mainly introduced by Vaswani et al. [22] and Dosovitskiy et
al. introduce the concept of Vision Transformer [33]. They are image classification
models built on the principles of Transformers. When an image is sent as input,
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the architecture divides that image into patches of specified size. Here, each patch
is linearly embedded, positions are re-embedded, and the final vector sequence is
sent to a conventional Transformer encoder. Adding an additional “classification
token” to the sequence, which is learnable is the conventional method for doing
classification.

Figure 4.9: Vision Transformer Patching Approach

Figure 4.10: Vision Transformer Architecture

4.15 Involutional Neural Network (INN)
Convolution is the foundation of the majority of contemporary neural networks for
computer vision. A convolution kernel is channel-specific and spatially neutral. This
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prevents it from adapting to diverse visual patterns in relation to distinct spatial
places. In addition to location-related issues, the receptive area of convolution makes
it difficult to capture protracted spatial connections.
Li et al. [37] reconsider the features of convolution in order to overcome the
aforementioned problems. The authors propose the location-specific and channel-
independent “Involution kernel”. Due to the operation’s location-specific character,
the authors assert that self-attention comes under the Involution design paradigm.
To infer the concept of Involutions properly, we have to look at the process of
convolution. Consider a tensor X with dimensions H, W , and Cin as an input.
We take a collection of Cout convolution kernels with K, K, Cin shapes. With the
multiply-add operation between the input tensor and the kernels, the output tensor
Y possesses the dimensions H, W , and Cout.
In Figure 4.11, Cout = 3 which produces an output tensor with the shapes H, W ,
and 3. The convolution kernel is independent of the spatial position of the input
tensor, rendering it location-independent. Alternatively, each channel in the output
tensor is based on a distinct convolution filter, making it channel-specific.
The goal is to establish an operation that is both channel-agnostic and location-
specific. It is difficult to implement these precise qualities. With a fixed number of
Involution kernels (for each spatial point), variable-resolution input tensors cannot
be processed.
The authors have proposed constructing each kernel based on specified spatial po-
sitions in order to resolve this issue. This technique should facilitate the processing
of variable-resolution input tensors. Figure 4.12 illustrates this method of kernel
creation. Here, K × K ×C filters are generated, where C is the number of chan-
nel groups. Instead of employing a single filter and broadcasting it overall C input
channels, we generate C filters and broadcast them into each of the C input channels.

Figure 4.11: Convolution Process
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Figure 4.12: Involution Process
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Chapter 5

Research Methodology

In-depth discussions of our approach to do data pre-processing, our proposed algo-
rithm for PPPC, and the suggested model’s structure are provided in this section.

Figure 5.1: Workflow of Our Proposed Approach

Figure 5.2: Outdoor Image Analysis and Estimation Approach to Predict PM [18]

To solve the problem, first of all, we take pictures of the people of Dhaka and
ourselves and the AQI of that time and date, which is elaborately described in
Section 3. After that, we do some data analysis based on that.
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5.1 Data Preprocessing
Our dataset is made up of photos with varying resolutions, however, our proposed
model demands a fixed input dimensionality. As a result, as said in the earlier
section, we downsample the photos to a fixed resolution of 200 × 200. Given a
rectangular image, we first rescale it so that any unwanted pixels that take up around
50% of the image are omitted, and the new resolution of the image is 120 × 200.
We do not conduct any extra pre-processing on the photos. As a result, we train
our network using the pixels’ raw RGB values. We part our dataset into two parts
initially. One part containing 90% percent of our data is used for training then the
rest 10% part are equally distributed to be used for testing. From the 90%, we take
10% for validation.

5.2 Proposed Model Architecture
The architecture of our network is summarized in Figure 5.3. It contains 9 learned
layers — one zero-padding, five convolutional, and two fully-connected.
The proposed model begins with inputting an image which consists of total three-
channels. They are taken from the dataset, and scaled to a resolution of 120× 200
pixels. We initially use ZeroPadding2D layer with padding of (3,3). Then five
Conv2D layers are used which consists a kernel of (3,3) size. Afterward, MaxPooling
layers are employed at the end of the Conv2D layers which has a pool size of (2,2)
in order to minimize the layers’ computational cost. Also, a default stride has been
applied for the convolutional layers.
For the activation function, we choose Rectified Linear Unit (ReLU) as an activation
function as the gradient is unsaturated, resulting significantly faster calculation of
stochastic gradient descent (SGD) comparing other activation functions, including
widely used functions like Sigmoid / Tanh function. Next, we transform the values
into a 1D array and begin adding fully connected (FC) layers to the CNN with 128
nodes. To avoid overfitting in the model, we utilize a 10% dropout after the Dense
layer to the final output layer in our experiment. The linear activation function is
used as a network classifier at the output layer. It is a simple straight-line activation
function in which our function is proportionate to the weighted sum of neurons or
input. Linear activation functions can have a wider range of activations as options,
and a positively sloped line may enhance the activation level as the input rate
increases.
Table 5.1 shows the optimum parameters applied in different datasets for the pro-
posed Deep CNN model.

Hyperparameter
Image Input Size Epoch Batch Size Learning Rate Dropout Rate Parameters

120 x 200 350 8 0.000001 10% 4,849,601

Table 5.1: Hyperparameter of Our Proposed Model

After some experimentation, this is the most optimum architecture we have found
to solve this problem. The framework we propose has the most minimized number
of parameters as well as performs the best. Hence, it uses comparatively fewer
computing resources.
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Layer Shape of Output of Parameters
Zero Padding 2D Layer (None, 126, 206, 3) 0

Conv2D Layer (None, 124, 204, 32) 896
Batch Normalization (None, 124, 204, 32) 128

Conv2D Layer (None, 122, 202, 64) 18,496
Batch Normalization (None, 122, 202, 64) 256

2D Max Pooling (None, 61, 101, 64) 0
Conv2D Layer (None, 59, 99, 128) 73,856

Batch Normalization (None, 59, 99, 128) 512
2D Max Pooling (None, 29, 49, 128) 0
Conv2D Layer (None, 27, 47, 256) 2,95,168

Batch Normalization (None, 27, 47, 256) 1,024
2D Max Pooling (None, 13, 23, 256) 0
Conv2D Layer (None, 11, 21, 512) 11,80,160

Batch Normalization (None, 11, 21, 512) 2,048
2D Max Pooling (None, 5, 10, 512) 0

Flatten (None, 25600) 0
Dense (None, 128) 32,896

Dropout (None, 128) 0
Dense (None, 1) 129

Table 5.2: Number of Parameters and Shape of Output from Different Layers of
Proposed Architecture [Here, Conv2D = 2D Convolutional]
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Chapter 6

Experimental Evaluation

Following the design of our proposed architecture, we test our model using different
standard metrics for regression-based tasks and compare it to many current deep
learning architectures. Our major goal is to arrive at a paradigm that yields the
optimal outcome, irrespective of the computing resources required.

6.0.1 Experimental Setup
All other popular CNN models, including our proposed Deep CNN model, are
trained and tested using Tensorflow, Keras, Pillow, and OpenCV Python libraries.
For the study, Python 3.8 is used alongside Tensorflow 2.9, Keras 2.9, and OpenCV
4.5. The models are trained and evaluated on two different devices; one with
an NVIDIA RTX 2070 with 7.5 TeraFLOPs of performance and another with an
NVIDIA RTX 3080TI GPU which has 34.1 TeraFLOPs of performance.

6.0.2 Experimental Findings
Commonly, three performance measures are kept in consideration while analyzing
the prediction results to evaluate the performance of the proposed model: MAE,
MSE, RMSE, and R2. The metrics are represented as follows:

MAE =
1

n

n∑
t=1

|Fp − Ft| (6.1)

MSE =
1

n

n∑
t=1

(Fp − Ft)
2 (6.2)

RMSE =

√√√√ 1

n

n∑
t=1

(Fp − Ft)
2 (6.3)

where Fp is the predicted value and Ft is the actual value.

R2 = 1−
∑N

i=1 (yi − y′i)
2∑N

i=1 (yi − avg(y))2
(6.4)

where avg(y) is the average forecast value, y′
i is the h forecast value, and yi is the ith

observed value, i = 1, 2....N . R-squared has a maximum value of one, which shows
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Figure 6.1: MSE Loss

MSE RMSE MAE R2

1782.08 42.22 29.68 0.387

Table 6.1: MSE, RMSE, MAE, and R2 Value for Proposed Model

the best possible match, and its value rises as the degree of agreement between the
observed value and the projected value grows.
After doing research on our problem, we discover that our model shows an MSE of
1782.08, an RMSE of 42.22, an MAE of 29.68, and a R2 of 38.7 percent when it is
put through its tests, as shown in Table 6.1. The value of R2 that we are able to
get indicates that 39% of the data matched our regression model. If the difference
between the anticipated PM2.5 data and the observed PM2.5 data is less than fifty,
then the forecast may be regarded as satisfactory. This is because a PM2.5 value
difference of fifty or less is regarded as a close prediction. In addition, we find that
the correlation coefficient of the model is 0.6304, which, when considered in light of
the data from the actual world, is an acceptable correlation. We present a scatter
plot of predicted vs observed PM2.5 values based on the 182 test samples in Figure
6.4. The plot proves how similar the measurements are here. Our achieved value
of correlation coefficient is more than 0.5 which means when one variable changes,
the other variables change in the same direction. The coefficient of determination,
abbreviated as R2, is most often interpreted as a measure of how well a regression
model fits the data that was observed. Also, the model takes a runtime of 2140.25
seconds.
To verify our model, we also run k-Fold Validation using our dataset where k=10.
After running our model through the folds, we observe that the loss difference is less
than 10%.
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Figure 6.2: RMSE Loss

Figure 6.3: MAE Loss
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Figure 6.4: Correlation of PM2.5 Index (Estimated VS Observed)

After evaluating our model, as no method in the literature can be used directly
for performance comparison with their reliance on different datasets, we compare
it with some deep learning architectures available, including ResNet-50, VGG-19 ,
InceptionV3, EfficientNetB7, and MobileNetV2 that use a pre-trained weight of the
ImageNet dataset. From Table 6.2, we observe most of these architectures use larger
amount of parameters in total whereas the proposed architecture employs far fewer
parameters. Again, if we compare with MobileNetV2 which has a lesser amount of
parameters than our approach, our approach shows significantly better results than
MobileNetV2. Here, we can see negative R2 values of other models and it is usually
negative when the chosen model does not follow the trend of the data.
When we observe some output images, we see that, when the noise amount is the
least, it gives the closest prediction value, in comparison to the ground/observed
value. Again, if we look into some pictures, for instance, Figure 6.8, it gives a wrong
prediction value due to the noise amount. For many images, it gives to give a close
value when the noise amount is huge. Again, in Figure 6.10, it gives an incorrect
prediction since there are some colorful pixels which hamper the prediction.
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Figure 6.5: Output 1 [Medium Error]

Figure 6.6: Output 2 [Low Error]
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Figure 6.7: Output 3 [Low Error]

Figure 6.8: Output 4 [High Error]
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Figure 6.9: Output 5 [Low Error]

Figure 6.10: Output 6 [High Error]
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Figure 6.11: Output 7 [Low Error]

Deep Learning Architectures Parameters (in Millions) MSE RMSE MAE R2

ResNet-50 23.6 2840.57 53.30 40.23 0.03
VGG-19 20 8034.04 89.63 74.15 -1.78
InceptionV3 21.8 5243.73 72.41 55.16 -0.80
EfficientNetB7 64 2945.95 54.28 41.35 -0.01
MobileNetV2 2.2 2746.39 52.41 40.09 0.05
ViT 21.7 3304.33 57.48 44.66 -0.14
INN 0.032 25397.24 159.37 149.93 -7.79
Ours 4.8 1782.08 42.22 29.68 0.387

Table 6.2: Comparison after Training Different Deep Learning Architectures in Our
Dataset (Here, Epoch=350 for Each Model)
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6.1 Baseline Testing
To get the best model possible, we tweak our model with a few approaches, bringing
changes in:

• Different Numbers of Nodes in Final Dense Layer before Output Dense Layer

• Different Learning Rates

• Different Batch Sizes

6.1.1 Different Numbers of Nodes in Final Layer before Out-
put Dense Layer

We test our model in nine different types of pre-output dense layers.

• 128

• 2

• 4

• 16

• 32

• 64

• 96

• 256

• 512

After testing the model and tweaking this, we can see a better test result in 256
nodes, considering MAE, MSE, RMSE, Correlation Coefficient, Average Difference
from True Value, Near Percentage, and R2. But in terms of runtime, 32 nodes show
the best result.
In Figure 6.19, we get the percentage of images can be considered as truly close to
actual value since a difference of 50 is considered to be in the same type of class.
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Figure 6.12: MAE in Different Numbers of Nodes (Lower, The Better)

Figure 6.13: MSE in Different Numbers of Nodes (Lower, The Better)
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Figure 6.14: RMSE in Different Numbers of Nodes (Lower, The Better)

Figure 6.15: Correlation Coefficient in Different Numbers of Nodes (Higher, The
Better)
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Figure 6.16: R2 in Different Numbers of Nodes (Higher, The Better)

Figure 6.17: Rumtine in Different Numbers of Nodes (Lower, The Better)
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Figure 6.18: Average Difference from True Value in Different Numbers of Nodes
(Lower, The Better)

Figure 6.19: Near Percentage in Different Numbers of Nodes (Higher, The Better)
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6.1.2 Different Learning Rates
We test our model in six different types of learning rates.

• 1e−06

• 1e−05

• 0.0001

• 0.001

• 1e−07

• 1e−08

After testing the model and tweaking this, we can see a better test result in 1e−05,
considering MAE, MSE, RMSE, Correlation Coefficient, Average Difference from
True Value, Runtime, and R2. But in terms of Near Percentage, 1e−05 show the
best result.

Figure 6.20: MAE in Different Learning Rates (Lower, The Better)

In Figure 6.27, we get the percentage of images can be considered as truly close to
actual value since a difference of 50 is considered to be in the same type of class.
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Figure 6.21: MSE in Different Learning Rates (Lower, The Better)

Figure 6.22: RMSE in Different Learning Rates (Lower, The Better)
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Figure 6.23: Correlation Coefficient in Different Learning Rates (Higher, The Better)

Figure 6.24: R2 in Different Learning Rates (Higher, The Better)
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Figure 6.25: Rumtine in Different Learning Rates (Lower, The Better)

Figure 6.26: Average Difference from True Value in Different Learning Rates (Lower,
The Better)
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Figure 6.27: Near Percentage in Different Learning Rates (Higher, The Better)
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6.1.3 Different Batch Sizes
We test our model in seven different batch sizes.

• 8

• 2

• 4

• 16

• 32

• 48

• 64

After testing the model and tweaking this, we can see a better test result in 16,
considering MAE, MSE, RMSE, Correlation Coefficient, Average Difference from
True Value, and R2. But in terms of runtime, 8 shows the best result and when it
comes to near percentage, both 4 and 16 perform really close.

Figure 6.28: MAE in Different Batch Sizes (Lower, The Better)

In Figure 6.35, we get the percentage of images can be considered as truly close to
actual value since a difference of 50 is considered to be in the same type of class.
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Figure 6.29: MSE in Different Batch Sizes (Lower, The Better)

Figure 6.30: RMSE in Different Batch Sizes (Lower, The Better)
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Figure 6.31: Correlation Coefficient in Different Batch Sizes (Higher, The Better)

Figure 6.32: R2 in Different Batch Sizes (Higher, The Better)
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Figure 6.33: Rumtine in Different Batch Sizes (Lower, The Better)

Figure 6.34: Average Difference from True Value in Different Batch Sizes (Lower,
The Better)
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Figure 6.35: Near Percentage in Different Batch Sizes (Higher, The Better)
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MSE RMSE MAE R2

1659.48 40.74 29.63 0.43

Table 6.3: MSE, RMSE, MAE, and R2 Value for The Changed Model

Figure 6.36: MSE Loss Curve of The Tweaked Model

6.2 Post-Implementation of Best Parameters from
Baseline Test

Here, we keep the architecture same. But we change the best parameters of learning
rates, batch sizes, and number of nodes of the dense layer before the Output Dense
Layer.
Learning Rate = 0.00001
Batch Size = 16
Number of Nodes = 32
After running for same epochs, we see that it performs faster and better in terms of
numbers but the difference between training loss and validation loss is higher than
the proposed model which is a concerning issue and comparing with the proposed
model, it is less stable than proposed one.
When observing the resultant data, we see 84% of the predicted values have 50 or
fewer PM2.5 value differences than the actual value. we find that the correlation
coefficient of the model is 0.6582.
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Figure 6.37: RMSE Loss Curve of The Tweaked Model

Figure 6.38: MAE Loss Curve of The Tweaked Model
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Chapter 7

Discussion

In the preceding sections, we present our results on PPPC utilizing deep learning
methods.
Our dataset is less skewed which is a crucial characteristic of a real-world dataset.
Our achieved R2 value is greater than 0.3 which is representative of real-world data.
Also, our model, unfortunately, does not work well for noisy pictures. Moreover, it
may not provide the expected result if the test image is taken outside Dhaka City
since our training data is generated exclusively from the city.
Since we have a lower amount of test data while running the correlation coefficient
test, our correlation coefficient value also results lower than expected.
When observing the resultant data, we see 29.69% of average error in between pre-
dicted value and ground value. Here, we follow the equation below, where n =
number of the test samples of the dataset = 182.

Error = (
n∑
1

(Actual-Predicted) )/n (7.1)

We also see 81% of the predicted values have 50 or fewer PM2.5 value differences
than the actual value. We keep 50 as a threshold for this because if the difference
is less than 50 AQI, the impact on the environment can be considered similar.
As we work on other models, we first run them without any kind of pre-trained
weights. After we run the models, we discover an intriguing feature of the situation.
It has come to our attention that, apart from ResNet-50, every model that we
evaluate is unable to even train correctly despite being given the same amount of
epochs (350), which leads to inaccurate forecasts. Every model that is put through
its test without weight pre-training predicts a value of 0 for every single outcome
based on the test dataset.
Unlike larger models, our smaller model with five Conv2D blocks, Batch Normal-
ization and MaxPooling adequately extracts the features for solving our problem.
In order to simplify the model and avoid overfitting, we add another dropout layer
at the end with a 10% dropout rate. Zero-padding is used to correlate to the data
frame’s time-limited assumption and more zero-padding results in the denser in-
terpolation of the frequency samples around the unit circle. There is a common
misconception that zero padding in the time domain results in greater spectral res-
olution in the frequency domain. In fact, we can construct networks more easily
if we keep the height and width constant and pay less attention to the tensor di-
mensions when moving from one layer to another. Without padding, the size of
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the volume would shrink too rapidly. By keeping information at the edges, padding
ends up enhancing performance. MaxPooling, in addition to preventing overfitting,
reduces the computational cost by reducing the number of parameters to learn.
Unlike other examined models that employ Average Pooling and choose smooth fea-
tures, our model’s usage of MaxPooling enables it to predict outcomes with more
accuracy. We restrict the number of nodes in the Dense layer because employing a
very deep fully-connected layer would be redundant since it would deliver the same
performance but with more parameters.
While testing it on attention-based models, DCNN outperforms both ViT and INN.
ViT and INN both have different learning approaches. ViT identifies patches and
tries to find patterns from them, making it superior for tasks such as object detection
or semantic segmentation. But in our problem, the whole image as a whole contains
information, not a specific part of it, which makes ViTs [33] unsuitable. Moreover,
even though ViTs are being used in regression based tasks recently [20], [38], it does
not perform as expected for this specific task. On the other hand, INNs are location-
specific and channel-agnostic [37]. While our task at hand is not specific to any color
channels, the task of AQI recognition from images is spatially agnostic, since AQI is
not computed from any certain location of the image, or should not be offset by the
presence of any objects. There is no specific information in any particular segment
of the images from which both ViT and INN look for information from. This is why
DCNN works better than both ViT and INN. Also, even though this is yet quite
unexplored if INN can perform well in regression-based tasks, we take the approach
to work on that as an initial work and we can even see that, INN performs the worst
out of every models we ran for this task.
Even though ViTs are reported to be relatively more resilient than DCNNs, DCNNs
outperform ViT in this problem, as ViTs struggle when they have to extract any
indistinct feature from an image. They are also more susceptible to contrast corrup-
tion as per Filipuk et al. [41], which is a common source of noise in detecting AQI
from images as human-made constructions appear in contrast to the surrounding
ambiance. Moreover, Chen et al. [36] report that ViTs are more sensitive to noise
and outliers.
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Chapter 8

Limitation and Future Work

8.1 Limitations
When we work with the data, we notice that there are certain circumstances where
the processing does not work well. For example, when the image has a direct reflec-
tion of the sun or when a bright sun is present in the picture, it distorts the picture
with excessive brightness, making it harder for the model to predict. In addition,
due to the poor picture quality at night, visibility is often inadequate. This exper-
imental model focuses only on daytime air quality monitoring (until evening) and
cannot be declared acceptable for nighttime usage. Also, the data of each pixel car-
ries significance toward the result. Therefore, cameras which clicks lower-resolution
images may provide some unexpected results since the pictures may contain noise.
Noisy data in this case can heavily impact a negative outcome. Again, since every
photo has been clicked using smartphones and many smartphones nowadays focus
on computing the approximate image rather than taking the absolute photons, it
may change some pixels which can impact toward wrong results [45]. Furthermore,
images taken through smartphones are mostly focused to be “social-media ready”,
to be able to be uploaded to social media as soon as the image gets clicked; without
any sort of editing, which focuses on changing the brightness and contrast of the
actual scene of that area which also can be negatively impactful.

8.2 Future Work
Our future work plan includes converting the model to be used as a transfer learning
model and implementing the model as a mobile app since our work totally focuses
to be implemented in real life. Moreover, we will continue collecting more photos
along with the PM2.5 of that exact location using AQI detection sensors from various
contexts (e.g., cities, rural regions) from different time ranges and different state-
of-the-art models will be tested to get improved results. Also, some comparisons
depending on different weathers can be done. Furthermore, we will focus on how
images can be inputted better into Deep Learning Model to solve this task.
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Chapter 9

Conclusion

It is a complex field of research due to the fact that it requires knowledge of the
changes in the visibility of various objects of varying depths. Assessing the PM2.5
index based on an image requires such a degree of expertise. This, in turn, calls for a
significant level of knowledge on the subject matter of the picture. By using a Deep
Convolutional Neural Network (CNN) model, we develop a method that is capable of
forecasting PM2.5 concentrations from pictures as part of the scope of this project.
The images are shot in such a way that the sky can be seen in each and every one of
them, constituting at least fifty percent of the whole image. After that, the images
are used as the input, and the bottom fifty percent of the picture is cropped in order
to remove the component of the picture that does not feature the sky. After that,
the improved image is loaded into the representation that was advised. We conclude
that the saturation of a picture can have a substantial influence on the accuracy with
which one may detect the PM2.5 concentration from an image as a consequence of
our observations and analysis. It is one of the main reasons why we come to this
conclusion. Therefore, on the basis of this information, we run CNN architecture in
supervised mode, with the model obtaining a picture as well as the AQI over the
time period during which the image is taken. This allows us to better understand
the relationship between the two. We examine the recommended method using a
dataset we have built expressly for this purpose. The findings reveal that CNN
can be used to predict PM2.5 from photos and enhance estimate accuracy. This
is accomplished by increasing the number of observations included in the model.
In addition to the process that is being discussed, we are also building an image
collection of PM2.5 concentrations. There are now 1,818 images in this collection,
and each of those photographs has a PM2.5 value corresponding to it. Also, after
running our dataset in different architectures, including state-of-the-art approaches,
we see that Deep CNN outperforms all of them.
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