
License Plate Recognition

by

Mohammed Abrar Ahasan Chowdhury
23141055

Soyelim Al Rozaik
23141056

Mahedi Hasan Shanto
18301185

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University

May 2023

© 2023. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Mohammed Abrar Ahasan Chowdhury
23141055

Soyelim Al Rozaik
23141056

Mahedi Hasan Shanto
18301185

i

Approval

The thesis/project titled “License Plate Recognition” submitted by

1. Mohammed Abrar Ahasan Chowdhury (23141055)

2. Soyelim Al Rozaik (23141056)

3. Mahedi Hasan Shanto (18301185)

Of Spring, 2023 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on May 22, 2023.

Examining Committee:

Supervisor:
(Member)

Mr Annajiat Alim Rasel
Senior Lecturer

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Sifat E Jahan
Lecturer

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Abstract

In today’s ever-growing technological society, Automatic License plate Recognition,
ALPR, has many implications for solving traffic-related applications and transporta-
tion planning. Identifying cars in pursuit or stolen cars, controlling automatic park-
ing access, registering missing vehicles from last found footage, and in many more
hazardous or unpredictable situations, ALPR helps to identify and extract license
plate information from surveillance footage. Thus in improving and making ALPR
efficient, many techniques have been introduced with algorithms playing an essential
part for vehicle surveillance systems, although many challenges are seen in correctly
computing and recognizing license plates under different environmental conditions.
In this research, we work with different algorithms for understanding Bangladeshi
license plates, analyze the algorithms’ efficiency in various environmental conditions
or unlikely situations, and compare them with our model, which currently is giving
97% accuracy, to find the most suitable for recognizing them.

Keywords: License Plate Recognition, Tensorflow, OCR, OpenCV, EasyOCR.

iii

Table of Contents

Declaration i

Approval ii

Abstract iii

Table of Contents iv

List of Figures vi

1 Introduction 1
1.1 Motivation . 1
1.2 Pre-Processing . 1
1.3 License Plate Detection . 2
1.4 Character Segmentation . 2
1.5 Character Recognition . 2

2 Problem Statement 4

3 Research Objective 6

4 Literature Review 7

5 Dataset 11
5.1 Data Pre-Processing . 12
5.2 Explanation of Image Preprocessing Steps 13

5.2.1 Bilateral Filtering . 13
5.2.2 Unsharp Masking . 13
5.2.3 Conversion to Grayscale . 13
5.2.4 Adaptive Histogram Equalization 14
5.2.5 Sharpening Filter . 14

6 Model 16
6.1 Model Architecture . 17
6.2 Training and validation of the Model 20

6.2.1 Train and Validation Split . 20
6.2.2 Data Augmentation . 21
6.2.3 Model Fitting . 22

iv

7 Result 24
7.1 Train and Validation Accuracy . 24
7.2 Test Accuracy . 24
7.3 Evaluation . 25

7.3.1 OUR MODEL . 26
7.3.2 TESSERACT . 26
7.3.3 EASYOCR . 27

7.4 Result Verification . 28
7.5 Challenges and Future Works . 29

8 Conclusion 31

Bibliography 34

v

List of Figures

2.1 Bangladeshi License Plate Variation 4
2.2 Surveillance Footage Quality Example 5

5.1 Using blender in recreating license plate 11
5.2 Image Before Pre-Processing . 13
5.3 Image after Pre-Processing . 14
5.4 Data Variation . 15

6.1 The flow chart of our proposed model for ALPR 16
6.2 Object Detection and Cropping the Region 17
6.3 Model Architecture . 20

7.1 Our Model Test Accuracy . 26
7.2 Tesseract Test Accuracy . 26
7.3 EasyOCR Test Accuracy . 27
7.4 Predictions on 5 random Images . 28
7.5 Problem between 1 and 9 . 29

vi

Chapter 1

Introduction

1.1 Motivation

Bangladesh is a densely populated country with around 170 million people. Being
on the road is a big part of daily life. And ensuring safety is a major concern. Before
Automatic License plate recognition (ALPR), in various scenarios, detecting the li-
cense plate was a hand-held human job, with machines unable to pursue the task.
Combatting vehicle crimes was quite hard due to image acquisition from surveillance
videos being in low resolution. In Bangladesh, road accidents are one major problem
that costs many lives every year. However, these problems are slowly being solved
with the emergence of ALPR. Moreover, For many traffic-related applications, vehi-
cle license plate identification and detecting systems are essential, including stolen
vehicle recovery, traffic congestion monitoring, airport entrance tracking, speed con-
trolling, and automatic parking lot access management [6]. In Bangladesh, the
license plates are pretty different from other countries; they consist of Bengali let-
ters and are ordered in two rows. Moreover, vehicles are increasing drastically, so
traffic is quite hard to fight. ALPR technology can cope with the number of vehicle
hijacks, kidnappings, or causing irregularities in traffic rules every year. More-
over, many more criminal or federal investigations can be sped up with the help of
the emergence of ALPR. Since not many research is done to fine tune ALPR for
Bangladeshi License Plates. Our goal is to create a model to be efficient in detecting
and recognizing the characters in the license plate. To be able to achieve it, there
are quite a few techniques for detecting License plates where usually four modules
are used:

1. Pre-Processing

2. License Plate Detection

3. Character Segmentation

4. Character Recognition

1.2 Pre-Processing

Pre-Processing involves images acquired to be pre-processed for the license plate for
easier detection. The pre-processing module usually involves Grayscale conversion,

1

Median Filtering, and edge enhancement [19][13]. Many other researchers also use
Geometric operations or binarization processes during pre-processing. In short, the
image is processed for visual perception and has eased in computational processing.
Pre-processing helps in removing useless information in the image and focuses on
license plate optimization. The pre-processing takes care of a few tasks: removing
the background noise, deblur the image, and removing reflection [20]. Several neural
network approaches have been used to these pre-processing techniques, notably to
generate more precise images and to accelerate image convergence. Once the pre-
processing is done, the image is checked to locate the license plate.

1.3 License Plate Detection

License Plate Detection is the second module that helps to identify or localize where
the license plates are situated in the image, there might be multiple license plates,
and all should be localized and detected. A popular real-time object detection
algorithm is You Look Only Once (YOLO), which can identify numerous items
within a single frame shot. This algorithm is an essential feature of the system since
it detects the portion of the plate that contains the license plate numbers [17]. Since
the whole image has a vast number of surroundings data, edge detection is used for
the localization of the number plate. Different techniques are used to extract the
license plate from the image. Morphological technique [8] is used to extract the
license plate by detecting the plate size, which is rectangular. Extraction is done
on the image where the localized license plate is cropped and sent to the next step,
character segmentation [6].

1.4 Character Segmentation

This module is where the characters from the received license plate from the previous
module are extracted by segmentation process. Firstly, The license plate is converted
into a binary picture, after which the letters are separated into segments to extract
the characters individually [6]. After the characters are retrieved after segmentation
then, they are individually recognized.

1.5 Character Recognition

Character Recognition involves various steps like character normalization, feature
extraction, and character classification and recognition [12]. In summary, character
recognition is the last module of license plate recognition. Character recognition
is stated to be the most essential phase throughout identification phase since it
determines the model’s accuracy and recognition rate. This phase is dedicated to
recognizing the information of license plate which are numbers and characters [6]
[14]. The normalization process transforms the symbols into a block before the
recognition phase. After that extra white spaces are removed from the cropped li-
cense plate. The license plate character pictures extracted from the cropped image
are identified at this stage.

2

Each of these modules needs to be highly accurate. Many researchers use differ-
ent algorithms to find the optimal solution using neural networks, complex image
processing, and machine learning processes.

3

Chapter 2

Problem Statement

Researchers encounter several challenges regarding the automatic recognition and
detection of license plates. We have looked at a few prominent issues here.

The very first issue is different variations in license plates. Bangladeshi license plates
are pretty different from the rest of the world, with the license plate being differ-
ent in size and Bangla text rather than English. Bangladesh has two license plates
under the Bangladesh Road Transport Authority (BRTA) law. One is for private ve-
hicles (white background), and the other is for trading vehicles (green background).
Because of the language being different to the rest of the world, where many re-
searches are done for recognition, a few factors must be considered when working
with Bangladeshi license plate recognition.

Figure 2.1: Bangladeshi License Plate Variation

Another issue has been the poor quality of vehicle license plates in the captured
video frames from the surveillance footage. From factors like weather conditions
and the time of the day, the video frame from the footage may vary quite drasti-
cally, and retrieving the characters and localizing the license plate from the image
with various surrounding conditions may become quite difficult. Surveillance footage
being in low resolution, the detection of the license plate and segmenting the texts
to recognize them further becomes severely challenging, so different algorithms with
the help of Deep Neural Networks have come forward to solve these.

Developing sequential coordination approaches based on image and video processing
techniques is expected to solve these problems. Techniques such as computer vision
object tracking and segmentation, finding the license plate region, recognizing and
pinpointing the number and its color, and so on may be included in this processing
sequence. When it comes to dealing with challenges and hurdles, many algorithms
are pretty robust. Nonetheless, not much research has been done on Bangladeshi

4

Figure 2.2: Surveillance Footage Quality Example

license plates, especially in conditions where some outside factors obstruct informa-
tion in the license plates. As a result, these problems need research.

In figure 2.2 it can be seen that from low resolution images from CCTV footage
the information on the license plate becomes pretty unclear to identify. As a result,
including many other possible causes for license plate to be unclear or hidden, we
are positive in training our model feeding as many images as possible for resolving
this problem and finding the best algorithm to achieve that.

Therefore, the question that this research is trying to answer is:

Which algorithm and technique in ALPR are the most reliable and efficient un-
der harsh and unpredictable circumstances?

5

Chapter 3

Research Objective

The first question we asked is which way is the most efficient for automatically rec-
ognizing the license plates of vehicles. However, this question has been asked several
times and implemented throughout the years. Nevertheless, specifically, our objec-
tive is to find the best approach and create the most efficient and advanced model
that would be able to detect license plates in conditions in which other models face
issues in times when the license plate is quite not visible, supposedly obstructed due
to environmental disturbance or ambiance. This paper will test the most popular
algorithms used in the detection, segmentation, and recognition of license plates in
scenarios where the pieces of information in the license plate are not clearly visible.
Hence, we will be creating our own model to test and get the most accuracy.

This research would be diving deep into creating a whole annotated dataset con-
taining the labels with license plates that are blurry and hazy similar to real life
surveillance footage and try to find the best approach that would be able to iden-
tify even with the addition of such anomalies. This research will present a dataset
containing 3,82,359 images of computer generated Bangladeshi license plates. The
goal is to create such an enormous dataset that will help the model to learn from
combinations and patterns of sequence of number through the labels provided so
that the numbers are predicted correctly.

6

Chapter 4

Literature Review

The automatic license plate detection system has been a vital part of research for
several years. Many researchers throughout the world have attempted in perfecting
it using various efficiency and reliability methods. Almost the majority of these sug-
gested methods are inapplicable to Bangladeshi license plates. Since the majority
of the methods previously researched are area, language, and license plate specific.
Prior studies on Bangladeshi car license plates have also been completed, but rela-
tive to other countries, they are pretty negligible.

In [21], the author heavily emphasized eliminating redundant noise from the photos
localization process of the vehicle license plate. They employed a technique using a
frequency domain mask to eliminate the rainfall drops in front of the license plate, a
contrast enhancement technique, a Radon transformation to rectify the tilt, and an
image entropy-based technique to filter out the license plate areas. They improved
recognition accuracy by 94%.

In [5][11], Gisu Heo et al. propose a new license plate extraction algorithm named
the double chance algorithm, Line grouping (LG), and Edge Density (ED). The
first technique extracts and classifies line segments based on geometrical criteria. It
correctly recognizes a rectangle at the plate’s edge. The image is denied unless no
rectangle group was created in the step of Line Grouping. However, The rejected
picture is given a second opportunity using the Edge Density approach. The sec-
ond method identifies plate areas with the densest vertical edges. The verification
technique is used to evaluate the double chance framework. The character segmen-
tation module is used in the verification process. Through the implementation of
the double chance strategy with verification and a real-life database acquired from
a surveillance camera, the accuracy of this paper is almost 99.5% which is quite
reliable in a real-world application. Similarly, Yule Yuan et al. in [22] introduced a
license plate recognition method based on a line density filter and a cascaded license
plate classifier.

The authors in [32] suggested a license plate recognition system by merging a super-
resolution approach with Alexie. The total accuracy of their suggested technique was
98.2%, but since the training and testing were done on comparatively less amount of
data (training = 500, testing = 200), the model tends to be not reliable and suitable
for the application in the real world.

7

Gee-Sean Hsu et al. [16] suggested a detection system based on the blob detec-
tion method called Maximally stable extremal regions, MSER for license plates.
This detector is used for the character segmentation process. Farhad Faradji et al.
[4] identified the Edges first in the input images. The vertical projections of the
edge image are then chosen. the environmental ambiance in the backgrounds can be
chosen as suitable zones mistakenly due to having vertical edges in structures. To
avoid this issue, the researchers designed the compact factor. Comparing the struc-
ture the authors used the difference of those unimportant structures in the images
having broad vertical edges, whereas a license plate has narrow vertical edges. This
characteristic is applied to the compact factor. It is used to determine the bright-
ness of pixels in rows and the local maximum that determines the viable candidate
region. Like much other research, the use of Morphological based technique is used
to remove plates.

In [12], the author worked to detect license plates for Bangladeshi vehicles using
neural networks. They implemented a lossless image segmentation process called
chain code. The license plate is extracted using the Sobel filter. The binary image
is scanned horizontally and vertically for character segmentation, and connected
components are analyzed. Different-sized colored images are used in the JPEG for-
mat as a dataset, where 300 images are taken for testing. The images were taken
under various lighting and backdrop environments. Experiments demonstrate that
the algorithm performs well regarding license plate extraction and character seg-
mentation. This work was developed with MATLAB 7.0. The extraction of license
plates yielded an 84% success rate, whereas character recognition yielded an 80%
success rate. The extraction of license plates is influenced by dark areas, reflections,
and shadows. Actual license plates could not be retrieved accurately due to poor
illumination. When two characters are connected, the character segmentation phase
fails. Character feature extraction is critical to the performance of the ALPR system.

In [26], the authors suggested license plate identification using the scale adaptive
method. The research done in [26] builds on the work of Torralba et al. [7] and
uses to calibrate the system for license plates using the foundation of [7]. In [17][19],
the authors tested various techniques for detecting license plate detection. In [19],
Varsha et al. implemented the histogram-based method which helped in the detec-
tion rate to be quite efficient with 97.75% accuracy, while the morphological method
is better for recognition rate with 90.75% accuracy. The paper suggested that for
efficiency regarding computational time, the morphology method to be better than
other methods. They used a template-matching algorithm for the recognition of
characters. Characters are matched with the ones available in the database, and
the scores are matched. MATLAB2008a was applied to determine computational
time. In [28], Sadique et al. review various works related to license plate recog-
nition and show which paper stacks up to be efficient. It is concluded that [27],
[25],[26],[23], and,[22] performed to be pretty efficient because of using multiple li-
cense plate datasets. Therefore, if an image contained multiple license plates, the
system was efficient in detecting them. In [25], Hui Li et al. used three convolutional
neural networks (CNN) models to identify text, remove false positives, and recognize
text. Artificially created information is applied in [11] to make the model adaptable

8

for many images. The technique in [26] focuses primarily on the scale-adaptive fea-
ture, keeping the license plate several distances from the camera. However, it fails
to explicitly evaluate the issue of a license plate having a slanted orientation. The
authors in [27] used OCR in detecting the License plate in unconstrained scenarios
where the information on the license may be blocked or disrupted. The technique in
[22] is similarly unsuitable for recognizing slanted license plates as it focuses solely
on completion time, managing noisy images, and identifying numerous license plates
in one image. Numerous tough datasets are utilized in [25],[18], and [23] to train
the model to be less noise-sensitive. The algorithms in [25] and [23] enhance the
data with image translation, rotation, and affine modification to make the system
effective for identifying slanted license plates.

In [15], The author presented an innovative strategy for license plate identifica-
tion. They applied text-line construction in this approach. Firstly, license plate
placement will be selected by the result of text-line construction. Then, the authors
used the locally best adaptive thresholding for the images to be converted to black
and white for more precise license plate localization. Afterward, the technique of
vertical projection is given for character segmentation and extracting the statistic
characteristic with the information retrieved. The multilevel classification RBF neu-
ral network is used for the result to be accurate. Like Bangladesh, research on the
Iranian license plate is also scarce. In [10], The author has proposed a new reli-
able, real-time solution for morphology and template matching based license plate
identification system. The system’s primary phase is separating the picture from
the digital image captured under various conditions. Firstly, the image is assembled
for identification, and after that, a morphology-based algorithm is used to locate
the image for the license plate. The shape of the rectangular license plate provides
the morphological operator’s foundation. Character segmentation is done using a
morphological process. It eliminates all minute, interconnected components. After
that, the dilation operator separates each character from the others. Additionally,
character segmentation is done utilizing partition scanning. The template matching
technique is used along with the image correlation method to recognize the charac-
ters from the individual segments of characters received from the previous phase.

In [30], applying Connected Component Analysis (CCA) for segmentation, the au-
thors suggested a system where they have also implemented the CNN model for
recognizing the characters. This combined technique yielded an accuracy of 96.91%.
Their detection method, however, is static and highly unsophisticated. Xiangjian
He et al. [9] applied horizontal and vertical projection analysis for the character
segmentation process. In order to recognize license plates, Nooruddin et al. [33]
suggested combining color characteristics with MinPool and MaxPool features.
Applying the Hough Transform, which is used to detect lines, circles, or curves,
Yuangang Zhang et al. [2] created character segmentation. The Hough Transform
was used first to determine the plate region’s horizontal borders, which aided in
segmenting the characters with significant rotation. Combining vertical projection
analysis and the previously known plate model character segmentation was achieved.
In [18], Amin et al. suggested a method that combines OCR for the Bengali lan-
guage. They used Edge Detection like used in [33]. The authors also applied Hough
Transformation for license plate localization to detect text information similar to

9

that of [2]. They are not remarkably accurate, and the technique is not consistent
although binary thresholding was implemented. Feng Yang et al. [3] devised a
region-growing method for character segmentation. For segmentation, in [1], the
authors applied connected component image processing.

In [24], the authors applied YOLOv3 and then a CNN model called ResNet-20
with around 1500 pictures in the dataset for the localization model. They have
also included 6400 individual character images for the recognition model. Their
reported accuracy was 92.7%. However, because their algorithm was solely for the
Dhaka Area. As a result, it cannot be applied to other cities.

In [29], the YOLOv3 model was implemented for locating and detecting the license
plate information by the authors. They used a limited dataset that only included
1050 pictures of private cars. They assert a 99.5% accuracy rate. Since trading
vehicle license plates are not included in their dataset, their argument is utterly
refuted. Additionally, they assessed accuracy using the license plate as a complete,
binary form.

In [31], the authors have worked to search for the best technique for automatic
license plate detection. The authors developed the most effective solution to this is-
sue by combining seven distinct strategies in 2 phases. The most intriguing outcome
thus far came from applying the YOLOv4 model to both the text recognition and
license plate localization stages. This system has improved its text recognition and
license plate localization accuracy using the YOLOv4 model by 99.37% and 96.31%,
respectively. Although, the model is primarily trained on photos taken in bright
conditions for the license plate localization step. Thus, this technology might not
work as planned in nighttime conditions.

In [33], The authors suggested using color histograms in conjunction with the Min-
Pool and MaxPool functions to locate and identify license plates. To study how
various color spaces affected the recognition process, the detection algorithm was
tested in a variety of color spaces. Based on numerous criteria, the suggested and
constructed system obtained elevated amounts of accuracy in the identification phase
and is extremely efficient.

10

Chapter 5

Dataset

The most significant contribution of this research would be the dataset. Currently,
the number of datasets available for Bangladeshi License plates is scarce and for
training a model to its full potential a dataset comprising of good amount of train-
ing and testing data is needed to get better accuracy. Generally we see images of
license plate taken is captured of a vehicle from the front using mobile phone, which
is highly unrealistic when compared to real life problem.

Figure 5.1: Using blender in recreating license plate

This research used blender to create a low-resolution model of the license plate.
The idea of creating low-resolution and quite pixelated is due to real-life scenarios
where image captured from surveillance footage causes a lot of quality degradation.

11

This research uses python scripting to generate 382,359 license plates for Dhaka
Metropolitan starting from 01-0001 to 39-2358. The intention is to create a diverse
dataset of blurry images for the model to train on.

The dataset consists of its own annotation files which contains the label and bound-
ing box of the region of interest, which is the bottom row of the license plate, or the
registered number for that vehicle. The annotations are used while training.

This dataset consists of a total of 382359 jpg images excluding their annotations. In
total, our model has been trained with 267651 training images and tested on 114708
total images. The most important part of this dataset for making it relevant is its
size and also the labels in the .xml file for the annotations which helps in the training.

Table 5.1: The Dataset features

Sets Features Sizes Shapes
TRAIN Images 267,651 (250, 150, 1)

Labels 267,651 (6, 10)
ROI 267,651 (1, 4)

TEST Images 114,708 (250, 150, 1)
Labels 114,708 (6, 10)
ROI 114,708 (1, 4)

When generating each image file the annotations are also generated for each of the
images using the blender python script.

5.1 Data Pre-Processing

As previously mentioned, the dataset that this research is contributing consists of
blurry images, which are an example of real world situation. But before feeding the
images for training. The images are needed to be pre-processed.
There are various problems when dealing with this kind of dataset, due to immense
pixelation, the numbers cannot be detected easily. That is the reason before training
and testing, the images in the dataset are required to be pre-processed. The pre-
processing steps we used for every image are described below:

1. Apply bilateral filtering using cv2.bilateralFilter to remove noise while
preserving edges.

2. Apply unsharp masking using cv2.GaussianBlur and cv2.addWeighted to
enhance edges.

3. Convert the image to grayscale using cv2.cvtColor.

4. Apply adaptive histogram equalization to increase contrast in darker regions
using cv2.createCLAHE and clahe.apply.

5. Apply a sharpening filter using cv2.filter2D.

12

Figure 5.2: Image Before Pre-Processing

5.2 Explanation of Image Preprocessing Steps

5.2.1 Bilateral Filtering

Bilateral filtering is a non-linear filter that aims to reduce noise while preserving
the edges in an image. It considers both the spatial distance and pixel intensity
differences when applying the filter. The cv2.bilateralFilter function takes the input
image and applies the bilateral filter with specified parameters, such as the filter
size, color sigma, and space sigma. By using bilateral filtering, the code reduces
noise in the image while maintaining the sharpness of the edges.

5.2.2 Unsharp Masking

Unsharp masking is an image sharpening technique that enhances the edges and
details in an image. It involves creating a blurred version of the original image and
then subtracting this blurred image from the original to obtain the high-frequency
details. The cv2.GaussianBlur function applies Gaussian blurring to the image,
effectively creating the blurred version. The cv2.addWeighted function combines
the original image with the negative of the blurred image to obtain the enhanced
edges and details. By applying unsharp masking, the code enhances the edges and
details in the image, making them more prominent.

5.2.3 Conversion to Grayscale

Converting the image to grayscale simplifies the subsequent processing steps and
reduces the computational complexity. Grayscale images have a single channel
representing the intensity or brightness of each pixel. By converting the image
to grayscale, the code reduces the color information while retaining the essential
grayscale information required for further processing.

13

5.2.4 Adaptive Histogram Equalization

Adaptive histogram equalization is an image enhancement technique that improves
the contrast in images, particularly in darker or low-contrast regions. It divides the
image into small regions called tiles and applies histogram equalization separately
to each tile. The cv2.createCLAHE function creates a CLAHE (Contrast Limited
Adaptive Histogram Equalization) object with specified parameters, such as the
clip limit and tile grid size. The clahe.apply method applies the adaptive histogram
equalization to the grayscale image using the created CLAHE object. By applying
adaptive histogram equalization, the code enhances the contrast in the darker regions
of the image, making them more visually distinguishable.

5.2.5 Sharpening Filter

A sharpening filter enhances the edges and details in an image, making them more
pronounced. The code applies a specific sharpening filter known as a kernel using
cv2.filter2D. The kernel used in this case is a 3x3 matrix that enhances the edges
by subtracting the surrounding pixel values from the central pixel value and then
multiplying by 9. By applying the sharpening filter, the code further enhances the
edges and details in the image, making them more noticeable.
These steps in the image pre-processing pipeline help improve the quality, clarity,
and contrast of the images, making them more suitable for subsequent analysis or
recognition tasks. Each step has a specific purpose and contributes to enhancing
different aspects of the image, such as reducing noise, enhancing edges, improving
contrast, and increasing the overall sharpness.
These steps in the image preprocessing pipeline help improve the quality, clarity,
and contrast of the images, making them more suitable for subsequent analysis or
recognition tasks. Each step has a specific purpose and contributes to enhancing
different aspects of the image, such as reducing noise, enhancing edges, improving
contrast, and increasing the overall sharpness. As a result, combing every one of
these pre-processing step, we get our final image like this:

Figure 5.3: Image after Pre-Processing

As a result, now the dataset consist of better quality images which are ready to be

14

trained, Moreover, for the model to not be biased over one single type of image,
we are using two orientation of the image initially. Which is images captured from
a different angle so that while detecting the characters, the model can learn from
characters from different orientation. This research also implements data augmen-
tation, which will be discussed in the models section.

Figure 5.4: Data Variation

After the pre-processing the data are split into 4 folders; Train images, Train anno-
tations, Test images and test annotations. For further computation it was necessary
to split the data early on since the dataset is quite huge. The train-test split was
done by 0.3, keeping 70% in train set and 30% in test set.

15

Chapter 6

Model

After the collection of datasets, the pre-processed images are used as input for the
model along with their bounding box region and label which afterward are trained
and tested on. Usually, in terms of the quality of the source, it should be taken with a
pinch of salt, considering the fact that low-quality cameras are used for surveillance.
That detection for the license plates is not that much to worry about, whereas the
character recognition part becomes complicated.

Figure 6.1: The flow chart of our proposed model for ALPR

The following steps have been followed in order to create our model:

1. Taking input from the datasets.

2. Training Object Detection Model on the dataset

3. Detecting or Localizing the license plate from the image

4. Processing the data according to its accuracy, quality, and sharpness.

5. Retrieving the text using OCR

6. Generate formatted output

16

This research used TensorFlow for object detection and training the model since it is
the most reliable out of all. We are training our Bangladeshi license plate with their
annotations, and on average while testing 100% of the time the license plate region
was easily identified as the license plate from the image having no issues. However,
this research focuses on the Bengali character recognition more than that of license
plate localization. Tensorflow itself can localize license plates easily, whichever type
of license play it may be. But for recognizing Bengali characters from a license plate
is the main challenge.

Figure 6.2: Object Detection and Cropping the Region

Pre-processing of the image has been done after cropping since we saw many ex-
amples of them becoming pixelated after cropping. Since in our model, we will be
cropping to get the license plate region, we apply pre-processing after the cropping
as implementing pre-processing after cropping the image would result in delivering
a clearer output of the region. This research used different pre-processing algo-
rithms and adjusted them according to our needs. As a result, the OCR has become
considerably better than before. We used various OpenCV which is a library of
programming functions for the computer vision for pre-processing. Moreover, the
input images are resized to 250x150 pixels for faster computation.

6.1 Model Architecture

This research did not use any transfer learning, whilst creating a model from scratch
to be able to recognize Bangladeshi Characters. The model uses 21 layers. We also
worked with various pretrained models like ResNet50 and InceptionV3 but for more
leverage on working with our dataset, for this research we intended on working using
our own model. The layers in our model is described below:

1. Input Layers:

• input images: This layer represents the input images with shape (250, 150, 1).
The image size is chosen to be resized to 250x150 pixels with a single

17

channel (grayscale) because it captures enough details while keeping the
computational complexity manageable.

• input labels: This layer represents the input labels with shape (6, 10).
From the annotations folder, the labels are extracted from the ¡text¿
region of the xml file. Since there are 6 digits in the license plate, each
digit can have 10 possible classes (0-9). The labels are converted to their
one-hot encoded representation is used to represent each digit’s class.

• input Region of interest: This layer represents the input bounding
boxes with shape (1, 4). For every image, there is a bounding box region
which is available in the xml file as well and this bounding box is used
to determine where the label exists in the training image. Here, a single
bounding box is used to specify the region of interest in the image where
the license plate is located. The bounding box coordinates consist of four
values (x min, y min, x max, y max).

2. Preprocessing Layers for Images:

• Rescaling: This layer scales the pixel values of the input images between
0 and 1 by dividing them by 255. This rescaling is performed to normalize
the pixel values and bring them into a consistent range, which can improve
model convergence and performance.

• AveragePooling2D: This layer performs average pooling with a pool size
of (2, 2). The purpose of this layer is to downsample the images and
reduce their spatial dimensions. By taking the average value within each
2x2 patch, it captures the most important features and reduces the com-
putational complexity of subsequent layers.

3. Convolutional Layers for Images:

• Conv2D: This layer applies a 2D convolution operation with 32 filters
of size (3, 3) and ReLU activation function. Convolutional layers are
commonly used in image processing tasks to extract relevant features
from the input images. The choice of 32 filters helps the model learn
different visual patterns and textures at various spatial scales.

• MaxPooling2D: This layer performs max pooling with a pool size of (2, 2).
Max pooling is used to downsample the feature maps obtained from the
convolutional layers. By selecting the maximum value within each 2x2
patch, it retains the most prominent features while reducing the spatial
dimensions.

4. Fully Connected Layers for Labels:

• Flatten: This layer flattens the input labels into a 1D vector. It trans-
forms the structured label representation into a flat feature vector that
can be connected to subsequent layers.

• Dense: This layer is a fully connected layer with 64 units and relu ac-
tivation function. It learns a representation of the label information by
applying matrix multiplication to the flattened labels and learning the
weights and biases associated with each unit.

18

5. Concatenation of Outputs:

• The outputs from the convolutional layers and the fully connected layer
for labels are concatenated using the concatenate layer. This step com-
bines the information from both branches of the model, leveraging the
features extracted from the images and the learned label representation.

6. Additional Layers for Bounding Box:

• Flatten: This layer flattens the input bounding box coordinates into a
1D vector. Similar to the flatten layer for labels, it transforms the struc-
tured bounding box representation into a flat feature vector for further
processing.

• Dense: This layer is a fully connected layer with 64 units and ReLU
activation function. It learns a representation of the bounding box infor-
mation by applying matrix multiplication to the flattened bounding box
coordinates and learning the associated weights and biases.

7. Concatenation of Bounding Box Output:

• The output from the previous dense layer for bounding box and the
concatenated output from the previous step are concatenated using the
concatenate layer. This step combines the bounding box information
with the concatenated output, allowing the model to incorporate spatial
information about the location of the license plate.

8. Output Layer:

• Dense: This layer is the final output layer with 10 units and softmax
activation function. It produces the predicted probabilities for each digit
class (0-9) in the license plate. The output shape is ‘(6, 10)‘, correspond-
ing to the 6 digits and 10 possible classes for each digit.

• Reshape: This layer reshapes the output from (60) to (6, 10). by applying
a dense layer with 60 units and softmax activation. The purpose of this
reshaping is to ensure that the output has the correct shape to match the
label representation.

9. Model Compilation:

• The model is compiled using the adam optimizer, which is an adaptive
learning rate optimization algorithm. It adjusts the learning rate based
on the gradients of the model parameters, enabling efficient training.

• The loss function is set to categorical crossentropy, which is suitable
for multi-class classification tasks with one-hot encoded labels. It mea-
sures the dissimilarity between the predicted probabilities and the true
labels.

• The model is evaluated based on the accuracy metric, which calculates
the percentage of correctly classified samples.

19

Convolutional and fully linked layers are combined in the model architecture to cap-
ture both picture features and label information. The model combine both spatial
and label-based information thanks to concatenation. The input images are en-
hanced and normalized in the preprocessing layers, which helps the model train and
produce precise predictions.

Figure 6.3: Model Architecture

6.2 Training and validation of the Model

6.2.1 Train and Validation Split

The model training was a big challenge to deal with since the dataset is comprised
of 267,651 images. As a result this research uses batches to train all the images. The
batch size is set to 256. We used number of folds for cross-validation: num folds
= 5, which that we will be performing 5-fold cross-validation, dividing the dataset

20

into 5 subsets for training and validation. It involves splitting the data into multiple
subsets (folds) and training and evaluating the model on different combinations
of these subsets. learning rate schedule(epoch) is a function that takes the epoch
number as input and returns the learning rate for that epoch. The maximum number
of epochs is set to 50, which clarifies that the model will be trained for up to 50
epochs. The learning rate schedule is used to adjust the learning rate during training.
In this example, it starts with a learning rate of 0.001 for the first 10 epochs, then
reduces it to 0.0001 for the next 10 epochs, and further reduces it to 0.00001 for the
remaining epochs.

kf = KFold(n splits = num folds) (6.1)

This line creates a KFold object with the specified number of folds. The loop that
follows will iterate over each fold, splitting the dataset into training and validation
sets accordingly. For the data to be more random we used

shuffled indices = np.random.permutation(len(trainimages)) (6.2)

Which generates a random permutation of indices for the training images. The
purpose of shuffling is to ensure randomness in the training and validation sets for
each fold. The x train and y train consists of the images and labels for the training
set while the validation counterpart consists for the validation For steps per epoch
we used

steps per epoch train = len(x train)//batch size (6.3)

steps per epoch val = len(x val)//batch size (6.4)

To calculate the number of steps that will be taken per epoch during training and
validation. It is determined by dividing the total number of training/validation
samples by the batch size. The training and validation datas are not directly fit in
the model, but data augmentation is used to augment the data for uniqueness.

6.2.2 Data Augmentation

The training images are preprocessed and enhanced with data using the Image-
DataGenerator class from Keras. It offers numerous possibilities for enhancing and
modifying the photos, which aids in the generalization and performance of the model.
Several data augmentation parameters are set to introduce variations in the training
images, making the model more robust to different patterns and viewpoints. These
parameters include:

Training Data Generator:

• Rescaling: Rescales the pixel values of the images by dividing them by 255,
bringing them into the range of 0 to 1.

• width shift range and height shift range: Randomly shifts the images
horizontally and vertically by a fraction of their total width and height, re-
spectively (here, 0.1).

• rotation range: Randomly rotates the images by a specified angle (here, 10
degrees).

21

• sheer range: Applies random shearing transformations to the images within
a certain range (here, 0.2).

• zoom range: Randomly zooms into the images by a factor within a specified
range (here, 0.2).

• horizontal flip: Randomly flips the images horizontally.

• vertical flip: Does not flip the images vertically.

• fill mode: The strategy to fill in newly created pixels during augmentation.
Here, ’reflect’ is used, which reflects the image content at the boundaries.

Passing Training data:

• train image dir: The directory path containing the training images.

• target size: The dimensions to which the images are resized during loading
(here, (250, 150)).

• color mode: The color mode of the loaded images. Here, ’grayscale’ is used,
indicating that the images are converted to grayscale.

• class mode: The type of labels to generate for the images. Here, ’categorical’
is used, indicating that the labels are one-hot encoded categorical values.

For resource limitations, not all images are fed with all the 8 types of data aug-
mented changes, while every image is selected to randomly choose any 2 of the data
augmentation process and thus can help to create a vast diverse dataset which will
help to reduce the lack of generalization.

These data augmentation are done in a way keeping in mind that the bounding box
region is updated for every single augmentation. The combination of the Image-
DataGenerator and flow from directory allows for efficient loading, augmentation,
and preprocessing of training images on-the-fly. The data generator provides a con-
tinuous stream of augmented images and their corresponding labels, which is then
used for training our deep learning model.

6.2.3 Model Fitting

Before the model fitting there are few parameters this research paper used to ensure
that, the model is getting the best accuracy with the minimum loss. We defined
various callback functions that can be executed at various stages during training.
Here, three callbacks are defined:

Defining callbacks:

• ModelCheckpoint: It saves the best model based on the validation loss during
training.

• EarlyStopping: It stops the training if the validation loss does not improve
for a certain number of epochs.

22

• LearningRateScheduler: It adjusts the learning rate based on the provided
schedule.

Using these values the model is then trained keeping two lists, val losses and val
accuracies. and After all the folds are complete the model gives us the best accuracies
and minimum losses for each of the folds. Then the fold with the best output is saved
as the best model.h5. The model is trained with the one hot encoded labels with the
images and their corresponding bounding box. The desired output we intend are
printing the Bengali characters in serial, the outputs are first generated as binary
encoded which are decoded to English or Bengali depending on the preference.

23

Chapter 7

Result

7.1 Train and Validation Accuracy

After training using 267,651 images of license plates in multiple batches using 50
epochs as maximum, the model is giving the following result:

Table 7.1: Train and Validation Performance

Metrics Train Validation
Accuracy 96.73% 94.70%

Loss 0.1715 0.2010

We can see that the model is performing well by giving around 95% training and
validation accuracy with loss being almost around 1.3 ranging from as low as 0.8.
These accuracy values indicate how well the model is performing on the training and
validation datasets, respectively. A higher accuracy indicates better performance,
as the model is making more correct predictions. To ensure that the model is not
overfitting, we used data augmentation to diversify the input train images.

7.2 Test Accuracy

After training, we load and save the best model and then the prediction step began,
where the unprocessed license plates are fed to the prediction. Due to test set
containing 114,708 images, the predictions were done in batches and for all images
two lists had been created. One list comprises of the ground truth label which is
retrieved from the annotations file and the another list contains the predicted labels.

accuracy = np.mean(ground truth labels == predicted labels) ∗ 100 (7.1)

As a result, we get the testing accuracy which checks the ground truth labels for its
corresponding predicted labels and give us the following accuracy when tested on
10 batches with each batch having the size of 11,470.
Here we can see on average the model is about to predict with a score of 96.14%.
The model successfully detect the license plate and retrieves the license plate num-
ber sequence.

24

Table 7.2: Batch-wise Performance

Batch Accuracy
1 95.97%
2 96.19%
3 95.91%
4 96.10%
5 96.44%
6 96.49%
7 96.28%
8 95.94%
9 96.01%
10 96.09%

Finally to evaluate more in depth we check the precision and recall and the F1 score
for our model and we saw that they are performing well. The performance on this
model is not only tested on our test set generated by blender but also a dataset taken
from kaggle which had around 2000 images to verify if our model is overfitting or not.

Table 7.3: Performance Metrics

Metric Value
Precision 0.97
Recall 0.96
F1-score 0.93

7.3 Evaluation

After the training and evaluation, we have found the following results

Train Accuracy: 0.9673
Validation Accuracy: 0.94.70
Test Accuracy: 0.9614
Precision: 0.97
Recall: 0.96
F1-score: 0.93

These evaluation metrics provide insights into the model’s performance. The train
accuracy indicates that the model correctly classifies 96% of the samples in the train-
ing set. The validation accuracy of 95% suggests that the model generalizes well
to unseen data.The precision score of 0.97 signifies that when the model predicts a
positive class, it is accurate 97% of the time, indicating a low rate of false positives.
The recall score of 0.96 implies that the model identifies 96% of the positive samples
correctly, indicating a low rate of false negatives.The F1-score of 0.93 combines pre-
cision and recall into a single metric, providing a balanced measure of the model’s

25

performance. It indicates that the model achieves a good trade-off between preci-
sion and recall, considering both false positives and false negatives. Overall, these
evaluation metrics demonstrate that the model performs well with high accuracy,
balanced precision and recall, and a good trade-off between these measures.

This research also used Easy OCR and Tesseract to see if in these harsh blurry
conditions if the characters in the license plates are recognized successfully.

7.3.1 OUR MODEL

Our model has proven to be reliable on images taken from multiple sources. Pre-
dicting on the test set has given us the accuracy of 96.14%. But we also tested on
different random blurry license plates to check the accuracy.

Figure 7.1: Our Model Test Accuracy

7.3.2 TESSERACT

Tesseract is a well-known optical character recognition (OCR) engine that has be-
come well-known for its capacity to transform pictures with printed or handwritten
text into machine-readable text. It also supports Bengali Language. But when we
tested Tesseract on our license plate to recognize the characters out of them, it was
unable to recognize them.

Figure 7.2: Tesseract Test Accuracy

26

7.3.3 EASYOCR

The process of extracting text from photos is made simpler by the optical character
recognition (OCR) library EasyOCR, which is accessible and user-friendly. Users
that want to integrate OCR capabilities into their apps or workflows will find it to
be simple and intuitive to utilize. EasyOCR provides a user-friendly interface while
still producing precise and trustworthy text recognition results. Bengali is one of the
many languages supported by EasyOCR. This language flexibility enables users to
process text in a variety of scripts and character sets, making it appropriate for use
in multilingual contexts and international applications. EasyOcr was quite accurate
on predicting the license plate but it struggled in few characters.

Figure 7.3: EasyOCR Test Accuracy

As a result, we can see our model is working better on blurry or hazy images of
license plates.

27

7.4 Result Verification

We tested our training accuracies for our model and also ResNet50 on around 50
epochs for 5 folds and found the following results:

Table 7.4: Train Accuracies of our Model vs ResNet50

Model Train Accuracy
Our Model 96.73%
ResNet50 98.21%

For both training we used data augmentation and used Adam as the optimizer and
loss function was Categorical Cross Entropy. Moreover we tested using EasyOCR
and also Tesseract.

Table 7.5: Input Images and Classification Results

Model Input Images Successful Unsuccessful
Our Model 114,708 110,323 4,385
Tesseract 114,708 11,652 103,056
EasyOCR 114,708 96,701 18,007

We took 5 random samples, displayed their real label from their corresponding
annotation files, predicted using our model and then shown the predicted label.

Figure 7.4: Predictions on 5 random Images

Here, the model is successfully predicting the output as what appear on the license
plate, the output is in encoded format, which we use decode to translate to English,
it can also be translated to Bengali as well.

As a result we see our model to be working well with various test images provided. To
consider the images being unbiased we also used data generator to bring uniqueness
to the train images, after that our model started perfroming well.

28

7.5 Challenges and Future Works

In the course of our research, we conducted tests on a dataset consisting of 114,708
images. Among these images, we encountered difficulties in accurately detecting a
subset of around 4,385 images. As a result, our model achieved an overall accuracy of
96.14%. Going deeper to the cause and checking the images which were unsuccessful
and the reason for those we checked the two lists we had, the ground truth label list
and the predicted list, and when checking the indexes which are not similar we see
majority of the indexes had 1 and 9 together. And if a single label being predicted
has only one digit out of place we are considering it to be wrong.

Figure 7.5: Problem between 1 and 9

Here, although our model predicted few characters correctly unlike Tesseract, yet
there are few more challenges to overcome. To investigate the reasons behind these
detection failures, we delved deeper into the unsuccessful cases and scrutinized the
corresponding images. Our analysis revealed a specific challenge in distinguishing
between the number 9 and the number 1 in Bengali. These two digits exhibit signif-
icant visual similarities, making it challeng- ing for our model to correctly identify
them.

The identification of the number 9 and 1 is crucial in various applications, and the
model’s struggle in differentiating them poses a notable obstacle. Addressing this

29

challenge and improving the model’s capability to accurately predict these digits in
the future will be a valuable area of focus for our research and development efforts.

Also we want to work on the top row which is the metropolitan or city, due to limi-
tations in resources we could not add more images containing various other divisions
of Bangladesh or serial number and used license plate containing serial Ga () only
of Dhaka Metropolitan. We want to expand our works with multiple metropolitan
areas and also work on recognizing each character of a single metropolitan.

We also intend, on making even more robust dataset containing anomalies like dust,
rainfall, light splash, moving vehicle swoosh effect and much more on each of the
images when generating and target on making a dataset with over 10 combinations
of effects on a single license plate without the inclusion of data augmentation.

As of now we are hoping our work will contribute in bringing a free publicly avail-
able dataset on which many other researchers can work and make the license plate
detection better.

30

Chapter 8

Conclusion

Automatic License Plate Recognition is significant to research as we are always on
the road every day of our life. It is used for both searching and security purposes,
and in many crucial situations, ALPR can be a lifesaver. Despite extensive research,
there is always a wide range of options that have not yet been addressed. However,
our tests will be inaccurate and unreliable if our neural network models do not pro-
duce valid results. Therefore, we must carefully employ efficient techniques at the
appropriate moment and place. Our genuine belief is that our paper will compare
various ALPR algorithms on Bangladeshi License plates and contribute a valuable
paper with a vast and information driven dataset that other researchers can use.
Additionally, we want to advance and broaden the research on both Deep and Con-
volutional neural networks. The final goal of this research would be to inform the
research community with our comprehensive analysis of these approaches as well as
to extend the reach of comparative studies between the techniques used in license
plate recognition for various purposes and how each of these algorithms and our
model functions in recognizing the license plate efficiently in various environmental
conditions.

31

Bibliography

[1] S.-Z. Wang and H.-J. Lee, “Detection and recognition of license plate charac-
ters with different appearances,” in Proceedings of the 2003 IEEE International
Conference on Intelligent Transportation Systems, vol. 2, 2003, 979–984 vol.2.
doi: 10.1109/ITSC.2003.1252632.

[2] Y. Zhang and C. Zhang, “A new algorithm for character segmentation of
license plate,” IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat.
No.03TH8683), pp. 106–109, 2003.

[3] F. Yang, Z. Ma, and M. Xie, “A novel approach for license plate character
segmentation,” Jun. 2006, pp. 1–6. doi: 10.1109/ICIEA.2006.257234.

[4] F. Faradji, A. Rezaie, and M. Ziaratban, “A morphological-based license plate
location,” vol. 1, Sep. 2007, pp. I–57, isbn: 978-1-4244-1437-6. doi: 10.1109/
ICIP.2007.4378890.

[5] G. Heo, M. Kim, I. Jung, D.-R. Lee, and I.-S. Oh, “Extraction of car li-
cense plate regions using line grouping and edge density methods,” Dec. 2007,
pp. 37–42, isbn: 0-7695-3045-1. doi: 10.1109/ISITC.2007.79.

[6] S. Ozbay and E. Erçelebi, “Automatic vehicle identification by plate recogni-
tion,” 2007.

[7] A. Torralba, K. Murphy, and W. Freeman, “Sharing visual features for multi-
class and multiview object detection,” IEEE transactions on pattern analysis
and machine intelligence, vol. 29, pp. 854–69, Jun. 2007. doi: 10.1109/TPAMI.
2007.1055.

[8] C.-N. Anagnostopoulos, I. Anagnostopoulos, I. Psoroulas, V. Loumos, and E.
Kayafas, “License plate recognition from still images and video sequences: A
survey,” Intelligent Transportation Systems, IEEE Transactions on, vol. 9,
pp. 377–391, Oct. 2008. doi: 10.1109/TITS.2008.922938.

[9] X. He, L. Zheng, Q. Wu, W. Jia, B. Samali, and M. Palaniswami, “Seg-
mentation of characters on car license plates,” Oct. 2008, pp. 399–402. doi:
10.1109/MMSP.2008.4665111.

[10] H. Kasaei, M. Kasaei, and S. Kasaei, “New morphology-based method for
robustiranian car plate detection and recognition,” International Journal of
Computer Theory and Engineering, vol. 2, pp. 264–268, Jan. 2010. doi: 10.
7763/IJCTE.2010.V2.150.

[11] P. R. Sanap and S. P. Narote, “License plate recognition system-survey,” AIP
Conference Proceedings, vol. 1324, no. 1, pp. 255–260, 2010. doi: 10.1063/1.
3526208. [Online]. Available: https://doi.org/10.1063/1.3526208.

32

https://doi.org/10.1109/ITSC.2003.1252632
https://doi.org/10.1109/ICIEA.2006.257234
https://doi.org/10.1109/ICIP.2007.4378890
https://doi.org/10.1109/ICIP.2007.4378890
https://doi.org/10.1109/ISITC.2007.79
https://doi.org/10.1109/TPAMI.2007.1055
https://doi.org/10.1109/TPAMI.2007.1055
https://doi.org/10.1109/TITS.2008.922938
https://doi.org/10.1109/MMSP.2008.4665111
https://doi.org/10.7763/IJCTE.2010.V2.150
https://doi.org/10.7763/IJCTE.2010.V2.150
https://doi.org/10.1063/1.3526208
https://doi.org/10.1063/1.3526208
https://doi.org/10.1063/1.3526208

[12] A. Ghosh, S. Sharma, M. N. Islam, S. Biswas, and S. Akter, “Automatic license
plate recognition (alpr) for bangladeshi vehicles,” Global Journals Inc. (USA),
vol. 11, pp. 69–73, Dec. 2011.

[13] H. Kolour, “An evaluationof license plate recognition algorithms,” Interna-
tional Journal of Digital Information and Wireless Communications (IJDIWC),
vol. 1, pp. 247–253, Jan. 2011.

[14] A. Nagare and S. Bhatia, “License plate character recognition system using
neural network,” International Journal of Computer Applications, vol. 25, p. 4,
Jul. 2011. doi: 10.5120/3147-4345.

[15] B. Shan, “Vehicle license plate recognition based on text-line construction
and multilevel rbf neural network,” JCP, vol. 6, pp. 246–253, Feb. 2011. doi:
10.4304/jcp.6.2.246-253.

[16] G.-S. Hsu, J.-C. Chen, and Y.-Z. Chung, “Application-oriented license plate
recognition,” Vehicular Technology, IEEE Transactions on, vol. 62, pp. 552–
561, Feb. 2013. doi: 10.1109/TVT.2012.2226218.

[17] D. A. Sinhal, “Comparative study of different techniques for license plate
recognition,” Journal of Advanced Computing and Communication Technolo-
gies, vol. 1, pp. 1–5, Dec. 2013.

[18] M. R. Amin, N. Mohammad, and M. A. N. Bikas, “An automatic number
plate recognition of bangladeshi vehicles,” International Journal of Computer
Applications, vol. 93, pp. 24–27, 2014.

[19] M. V. K. Hadke and P. K. Ajmera, “Comparative study of license plate recog-
nition,” International journal of engineering research and technology, vol. 3,
2014.

[20] N. Ibrahim, E. Kasmuri, N. Jalil, M. Adili, S. Salam, and R. Nawawi, “License
plate recognition (lpr): A review with experiments for malaysia case study,”
Middle East Journal of Scientific Research, vol. 14, Jan. 2014. doi: 10.7321/
jscse.v3.n3.15.

[21] S. Azam and M. M. Islam, “Automatic license plate detection in hazardous
condition,” J. Vis. Commun. Image Represent., vol. 36, pp. 172–186, 2016.

[22] Y. Yuan, W. Zou, Y. Zhao, X. Wang, X. Hu, and N. Komodakis, “A robust
and efficient approach to license plate detection,” IEEE Transactions on Image
Processing, vol. PP, pp. 1–1, Nov. 2016. doi: 10.1109/TIP.2016.2631901.

[23] H. Li, P. Wang, and C. Shen, “Toward end-to-end car license plate detection
and recognition with deep neural networks,” IEEE Transactions on Intelligent
Transportation Systems, vol. PP, Sep. 2017. doi: 10.1109/tits.2018.2847291.

[24] S. Abdullah, M. M. Hasan, and S. M. S. Islam, “Yolo-based three-stage net-
work for bangla license plate recognition in dhaka metropolitan city,” 2018
International Conference on Bangla Speech and Language Processing (ICB-
SLP), pp. 1–6, 2018.

[25] H. Li, P. Wang, M. You, and C. Shen, “Reading car license plates using deep
neural networks,” Image and Vision Computing, vol. 72, Mar. 2018. doi: 10.
1016/j.imavis.2018.02.002.

33

https://doi.org/10.5120/3147-4345
https://doi.org/10.4304/jcp.6.2.246-253
https://doi.org/10.1109/TVT.2012.2226218
https://doi.org/10.7321/jscse.v3.n3.15
https://doi.org/10.7321/jscse.v3.n3.15
https://doi.org/10.1109/TIP.2016.2631901
https://doi.org/10.1109/tits.2018.2847291
https://doi.org/10.1016/j.imavis.2018.02.002
https://doi.org/10.1016/j.imavis.2018.02.002

[26] M. Molina-Moreno, I. González Dı́az, and F. Dı́az-de-Maŕıa, “Efficient scale-
adaptive license plate detection system,” IEEE Transactions on Intelligent
Transportation Systems, vol. PP, pp. 1–13, Aug. 2018. doi: 10.1109/TITS.
2018.2859035.

[27] S. Montazzolli and C. Jung, “License plate detection and recognition in un-
constrained scenarios,” Sep. 2018.

[28] M. F. Sadique and S. M. R. Haque, “A comparative study of license plate
detection and recognition techniques,” Dec. 2019. doi: 10.1109/ICCIT48885.
2019.9038583.

[29] N. Saif, N. Ahmmed, S. Pasha, et al., “Automatic license plate recognition sys-
tem for bangla license plates using convolutional neural network,” TENCON
2019 - 2019 IEEE Region 10 Conference (TENCON), pp. 925–930, 2019.

[30] M. Hossain, A. Suvo, A. Ray, M. Malik, and M. Mridha, “Number plate recog-
nition system for vehicles using machine learning approach,” Feb. 2020.

[31] S. Hossain, M. Z. Hassan, and M. Masba, “Automatic license plate recognition
system for bangladeshi vehicles using deep neural network,” Dec. 2021, isbn:
978-981-16-6635-3. doi: 10.1007/978-981-16-6636-0 8.

[32] N. Munna, M. Ahsan, M. Based, and J. Haider, “Intelligent system for vehicles
number plate detection and recognition using convolutional neural networks,”
Technologies, vol. 9, p. 9, Jan. 2021. doi: 10.3390/technologies9010009.

[33] S. Nooruddin, F. A. Sharna, and S. M. M. Ahsan, “A bangladeshi license
plate detection system based on extracted color features,” Apr. 2021. doi:
10.1109/ICCIT51783.2020.9392672.

34

https://doi.org/10.1109/TITS.2018.2859035
https://doi.org/10.1109/TITS.2018.2859035
https://doi.org/10.1109/ICCIT48885.2019.9038583
https://doi.org/10.1109/ICCIT48885.2019.9038583
https://doi.org/10.1007/978-981-16-6636-0_8
https://doi.org/10.3390/technologies9010009
https://doi.org/10.1109/ICCIT51783.2020.9392672

	Declaration
	Approval
	Abstract
	Table of Contents
	List of Figures
	Introduction
	Motivation
	Pre-Processing
	License Plate Detection
	Character Segmentation
	Character Recognition

	Problem Statement
	Research Objective
	Literature Review
	Dataset
	Data Pre-Processing
	Explanation of Image Preprocessing Steps
	Bilateral Filtering
	Unsharp Masking
	Conversion to Grayscale
	Adaptive Histogram Equalization
	Sharpening Filter

	Model
	Model Architecture
	Training and validation of the Model
	Train and Validation Split
	Data Augmentation
	Model Fitting

	Result
	Train and Validation Accuracy
	Test Accuracy
	Evaluation
	OUR MODEL
	TESSERACT
	EASYOCR

	Result Verification
	Challenges and Future Works

	Conclusion
	Bibliography

