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Abstract
Neurodegenerative disorders are diagnosed through undergoing brain MRI, CT scans,
genetic testing, and various laboratory screening tests which are often tedious, time-
consuming and beyond the means of most people’s financial capabilities and some-
times health unconducive. To remedy this, we proposed an efficient deep learn-
ing approach to detect neurodegenerative diseases, for instance, Multiple Sclerosis,
Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Alzheimer’s disease using
retinal images. Efficient convolutional neural network-based architectures are used
to classify brain diseases. The system enables the detection of brain diseases from
retinal images rather than brain images effectively. Through the proposed system,
we are able to proactively detect such disorders simply through retinal scans which
are faster and simpler compared to the scanning of the brain itself which requires
expensive and sophisticated equipment. We conducted our research on a dataset
containing retinal cross-sectional images of 21 Multiple Sclerosis patients and 14
healthy individuals. Our model achieved 100% accuracy in classifying all healthy
and diseased individuals from retinal scans.

Keywords: Neurodegenerative; Multiple Sclerosis; Retinal Images; Deep Learning;
Convolutional Neural Network; Optical Coherence Tomography;
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Chapter 1

Introduction

1.1 Neurodegenerative Disease
The term “Neurodegenerative Disease” is used to collectively refer to the set of dis-
eases that cause functional or structural damage to neurons located in the central or
peripheral nervous system. Such degeneration of neurons eventually results in phys-
ical or cognitive impairment. Alzheimer’s disease, Parkinson’s disease, and Multiple
Sclerosis are common types of neurodegenerative diseases that affect millions of peo-
ple worldwide. Most of these diseases don’t have any known cure, and so slowing
down their progress is the only treatment available today. However, symptoms of
these diseases don’t become apparent until a considerable amount of neuron cells
have deteriorated. Furthermore, the diagnosis of these diseases is typically done by
Magnetic Resonance Imaging, Positron Emission Tomography, or Computed Tomog-
raphy scan, all of which are time-consuming and expensive. As a result, researchers
have been looking for alternatives to detect the presence of neurodegenerative dis-
eases in a more accessible and cheaper way. One of them is to look at the brain
through the eye via a technology known as Optical Coherence Tomography (OCT)
which is used for cross-sectional ophthalmic imaging. It has revolutionized the field
of eye evaluation, particularly retinal evaluation. It is a non-contact imaging tech-
nology that produces cross-sectional pictures of tissue at high-resolution [10]. As a
result, it is particularly useful in organs where standard microscopic tissue identifi-
cation by biopsy isn’t possible, such as the human eye. OCT gives in vivo pictures
without causing any damage to the tissue being examined, since it is fully noninva-
sive. Image visualization in real-time and at video rate is possible because of fast
scanning rates and signal processing through OCT as well. Because of the non-
invasive and more accessible nature of OCT, it is a perfect candidate to be used in
the diagnosis of neurodegenerative diseases.

1.2 Research Problem
The traditional methods of diagnosing most neurodegenerative diseases like Multi-
ple Sclerosis and Alzheimer’s disease require scanning of the central nervous system
which consists of the brain and the spinal cord. These scans are typically done using
MRI, CT scans, or PET which are complex and time-consuming. Moreover, these
scans are quite expensive and their cost is beyond the reach of many patients. Since
most of these diseases have no cure, getting them diagnosed as early as possible is
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a top priority in order to slow down their further progression. So, the development
of a cheaper and faster technique is necessary in order to provide the facility of
neurodegenerative disease diagnosis to the masses. We propose Optical Coherence
Tomography (OCT) as a potential diagnostic tool for the rapid diagnosis of neurode-
generative diseases as it is fast, cheap, and more accessible than the aforementioned
methods. Here, the cross-sectional view of retinal layers is used as a biomarker for
detecting these diseases. Several previous studies have also shown how people suf-
fering from different neurodegenerative conditions have a reduction in the thickness
of certain layers of the retina. As the retina is considered to be an extension of the
central nervous system, any neurological change have also been reported to manifest
in the retina as well [17]. So scanning the retina can be an easy and non-invasive
way of detecting the presence of neurodegenerative diseases and this is the reason
why we propose the method of using OCT to diagnose them.

1.3 Research Objectives
The main goal of our research is to develop a method of detecting neurodegenerative
diseases using OCT scans of the patients, where we will use the thickness of retinal
layers as a biomarker as suggested by various previous studies. This research also
has the following objectives:

1. Put the use of different deep learning algorithms to predict the presence of a
neurodegenerative condition.

2. Establish a comparison between the performance of various deep learning mod-
els in accomplishing the task.

3. Provide an appropriate explanation of the model’s prediction by the means
of explainable AI that will help in the process of verification of the model’s
accuracy.

2



Chapter 2

Related Work

Ever since the arrival of OCT, it has left many researchers fascinated with its abil-
ity to show the retinal tissue layer by layer accurately and wondered how it may
contribute to the further development of neurological studies. Several past studies
have indicated the link between the atrophy of retinal layers and neurodegenera-
tive diseases. These researchers tested different methods under different scenarios
to demonstrate how neurological functions in the brain also manifest in the retina.
The following sections give an overview of a couple of such studies.

2.1 Cross-sectional / Thickness Observations
Most studies performed cross-sectional thickness observations. Through a cross-
sectional approach, it is easier to differentiate various retinal layers compared to
horizontal and longitudinal ones.

First of all, the research work [10] proposed that the inner plexiform layer and
the ganglion cell layer thickness of the retina can be used to predict the nerves
of patients suffering from MS. They used Spectralis OCT scan data from 204 MS
patients and 138 control to perform logistic regression in order to correlate MS pro-
gression with retinal layer thickness. They found a noticeable amount of atrophy in
the RNFL, ganglion cell layer, inner nuclear layer, and inner plexiform layer in MS
patients.

Secondly, a study conducted in [11] assessed the thickness of the RNFL in indi-
viduals suffering from MS by using OCT scans. The study included 31 individuals
with confirmed MS and 31 disease-free subjects. OCT parameters showed significant
variations between the two groups, with the MS group having a reduced thickness of
certain retinal layers. The researchers used Pearson’s correlation coefficient to find
out the relation between the thicknesses of RNFL, EDSS score, disease duration,
and several other variables. The research team found out that MS had lower RNFL
thickness compared to the control subjects.

Third, the purpose of the research done on paper [1] was to examine the relation-
ship between the RNFL thickness and visual function of the eyes with the help of a
functional biomarker for nerve cell loss in MS. The investigation was designed in a
cross-sectional manner. To conduct this research, they took data from 90 patients
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suffering from MS and 36 healthy individuals. The authors used OCT to determine
the density of RNFL. They found that MS patients had a considerable amount of
reduction in RNFL. Also, MS with ON patients showed more reduction of RNFL
compared to non-ON MS patients.

Fourth, regarding the [15] paper study, the objective of the authors was to determine
whether OCT-measured INL density changes with age and disease symptoms in in-
dividuals with progressive MS. The authors tested lots of variations in the pRNFL,
GCIPL, and INL retinal layers among 84 individuals suffering from P-MS and 36
healthy individuals. All patients were segmented as per age. The researchers found
that P-MS patients had lower pRNFL as well as GCIPL thickness. Moreover, older
P-MS patients aging more than 51 had shown reduced thickness of the INL com-
pared to younger patients.

Fifth, in [17], the researchers implemented a system to diagnose MS in the early
stages using a CNN to classify swept-source OCT imaging data from 48 control and
MS patients each. These images contained complete retina, retinal nerve fiber layer,
two ganglion cell layers and choroid. They made use of a deep convolutional gener-
ative adversarial network to grow their dataset and selected features before training
the CNN model. Their method represents an improvement in the detection of early
state MS by correlating the retinal thickness through the use of CNNs.

Finally, again, the research team from paper [4] used OCT to assess axonal loss
in the RNFL in individuals with MS, both with and without a history of ON. This
study included 50 MS patients and 25 healthy individuals who were age and sex-
matched. All RNFL parameters assessed by OCT showed substantial differences
between MS and healthy eyes. According to their research, the metric with the
biggest variations across different groups was the thickness of RNFL in the tem-
poral quadrant. They found that people suffering from MS had an overall lesser
thickness of RNFL than healthy individuals and this trend was prevalent in both
MS with ON and MS without ON patients.

2.2 Horizontal / Longitudinal Observations
Although not as common as the cross-sectional thickness approach, it provides a
fresh perspective.

Firstly, the objective of the study [7] was to demonstrate the relationship between
RNFL thinning and visual loss by longitudinal examination of MS patients. Using
OCT, approximately 1005 patients were measured as baseline and 299 patients were
followed in 6-month increments. The longitudinal study that was performed showed
not only a steady decrease in RNFL thickness, but also an increase in visual acuity
over time. The study also showed a significant correlation between RNFL thinning
and decreased visual acuity.

Secondly, the research paper [9] worked on evaluating relationships of MS with
all gathered retinal layers from OCT scans. They extracted usable horizontal scan
data by performing surface & deeper paramacular retinal and peripapillary RNFL
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scans, and then classifying individual layers. This paper analyzed data gathered
from 95 MS patients and 91 healthy individuals of similar age and sex. They found
notable atrophy in the INL and similar thinning in the pRNFL, retinal ganglion cell
layer, and inner plexiform layer. Their results affirmed the existence of correlation
between the disease severity and the thickness of retinal layers.

Lastly, the objective of the study conducted on [8] was to examine various retinal
layer thicknesses of MS patients having no history of optical neuritis using Cirrus
HD-OCT scans. The study gathered all pRNFL, central and average macular thick-
ness data from 60 eyes of affected MS patients and 32 eyes of healthy individuals.
They found a major reduction in average macular thickness and a meaningful corre-
lation between average macular and RNFL thickness of MS patients. The findings
are consistent with already existing studies, but also dictate the reduction of thick-
ness in the RNFL in patients with multiple sclerosis even without optic neuritis
presence. This study experimented only on horizontal scan data excluding longitu-
dinal features.

2.3 OCT compared with Traditional Apparatus
Several studies have compared OCT with MRI, HRT, and other conventional de-
vices and methods.

Firstly, the paper [3] used not only retinal OCT images but also MRI brain imaging
to associate MS and RNFL thickness. MRI was used to detect the inflammation
part and OCT was used to detect the neurodegeneration part of MS. 30 MS patients
were tested using OCT and of that, 18 patients again were tested using MRI. The
paper found a strong relation between RNFL thickness measured by OCT and that
of brain imaging characteristics found by MRI scans in MS patients. Moreover,
comparing the results, they pointed out the significant potential of OCT in terms
of detecting MS.

Second, the research group from [5] compares the results obtained from both OCT
and HRT scanning technologies in order to measure the RNFL thickness in patients
suffering from MS as well as to figure out the relationship between thickness change
in the RNFL with cognitive alongside physical disability. The BRB-N test was used
for evaluating the cognitive state, and OCT alongside HRT was employed for mea-
suring the thickness of RNFL on 52 MS patients and 18 healthy individuals. They
found that the atrophy of RNFL was associated with physical, as well as cogni-
tive disability in patients suffering from MS. The researchers also compared OCT
and HRT results of the retinal nerve fiber layer in order to see if these approaches
are equal for monitoring MS patients or if they provide supplementary information
regarding disease activity. It was found that only OCT image data had a decent
correlation between RNFL thickness and physical disability. They also observed
that patients suffering from cognitive impairment had lower RNFL thickness than
non-cognitively impaired MS patients.

Third, the aim of the study conducted in [2] was to use OCT to test whether
RNFL thickness has any relationship with MS. The researchers followed 61 MS pa-
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tients and 29 matched controls with neurological assessments such as clockwork and
ophthalmologic assessments including OCT controls on a regular basis over time.
The research team performed multiple linear and logistic regression using SPSS 13
software. A reduction in the thickness of RNFL thickness was observed in patients
MS patients. In addition, they also found that gray and white matter volumes de-
termined by MRI correlated with the baseline thickness of RNFL.

Fourth, in [6], the researchers examined how disease duration effects RNFL in people
not receiving disease-modifying treatment. The authors examined the link between
RNFL loss and illness time in unmanaged MS patients to see if it was related to
corticospinal pathway malfunction. Vision tests were performed on 52 participants
using OCT and 60 patients either went through vision testing or took part in a
verified telephone interview so that their EDSS scores could be determined. The
researchers used Spearman’s correlation coefficient in order to determine the corre-
lations between OCT parameters, EDSS scores, and several other variables. It has
been found that in the patients with symptomatic MS, RNFL loss is linked to illness
time and EDSS scores and authors suggest that OCT might be a valuable method
for obtaining the impact of disease and neurodegeneration on the CNS in clinical
trials and application.

Finally, the purpose of the study conducted in [13] was to examine the link between
IRL loss and cognitive disability in MS patients. This research was conducted on 217
sufferers and 59 healthy controls. Besides, medical examinations, retinal OCT, and
memory tests were all performed on the participants. The authors claim that men-
tally curtailed individuals showed a substantially lower mean pRNFL and mGCIPL
density than MSON. The significant correlation between atrophy of the retinal layers
and the cognitive disability across multiple cognitive domains in MS-ON patients
suggests the usefulness of OCT in diagnosing MS.

2.4 Other than MS
Some studies also found association of RNFL loss with Parkinson’s disease & Alzheimer’s
disease along with MS.

For example, the research team working on [12] conducted an experiment on 150
individuals who were suffering from Alzheimer’s disease with 75 control subjects and
used Spectralis OCT in order to segment different retinal layers. In order to deter-
mine the correlation between Alzheimer’s disease progression and retinal atrophy,
they used a test called MMSE, which is an exam of 30 points that reflects the status
of overall cognitive decline in AD suffering patients. In this research, they found
noteworthy reductions in RNFL, GCL, outer nuclear layer, and inner plexiform layer
thickness in AD patients.

6



Chapter 3

Research Methodology

3.1 Work Plan
In order to detect neurodegenerative diseases from OCT Scans, a decent dataset
containing images of both healthy people and neurodegenerative disease-affected
individuals is needed. The dataset has to be labeled. Since we are dealing with a
binary classification problem of distinguishing between the OCT images of healthy
and diseased patients, the images of the dataset can simply be organized in two
folders representing these two categories. Then, the automatic labeling tools found
in popular libraries like TensorFlow can be used to easily label our dataset. After
the dataset acquisition, necessary pre-processing of the images must be done which
may include resizing, segmentation, enhancement, etc. Then, the dataset will be
split for training and testing purposes. In our case, we have used 8:1:1 split for
dividing our dataset in training, testing and validation sets. Then, the training data
was fed into different deep learning models.

Figure 3.1: Work Plan

We used VGG-16, VGG-19, InceptionV3, Xception, EfficientNetV2L and MobileNet
architecture to train 6 different models using our training dataset. Transfer learning
was employed to optimize the training process, where we fetched pretrained models
of aforementioned architectures that contained ImageNet weights and then further
trained and fine-tuned these models using our own data. After training all the six
models, we selected top 3 best performing models among them and ensembled their
outputs to make sure that any type of bias from any particular model has been
eradicated. After the ensembling was done, we also developed an explainable model
that shows which part of the input images are drawing the neural network’s attention
most. As neural network-based deep learning models are quite complicated, the
reasoning behind the output generated by them may not be apparent to the users
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and so verification and trust in the model will be quite hard. We solve this problem
by including explainable AI in our approach that will help the users to further
analyze and verify the prediction generated by the other three models. The process
can be represented by figure 3.1.

3.2 Used Architecture
We employed 6 architectures in our research, VGG-16, VGG-19, InceptionV3, Xcep-
tion, EfficientNetV2L and MobileNet.

3.2.1 VGG-16
VGG-16 is an altered version of Visual Geometry Group (VGG) model having 16
layers. It consists of 13 convolution layers having 3x3 kernels and 3 fully con-
nected layers. It makes use of 5 2x2 max-pooling and a SoftMax function. The
hidden layers make use of ReLu as an activation function because of its efficiently in
computationally demanding tasks and lower probability of vanishing gradient issues.
Although VGG-16 is very performant, it is significantly slower to train and its larger
parameters lead to problems of exploding gradient

Figure 3.2: VGG-16 Internal Architecture and Layers

3.2.2 VGG-19
VGG-19 is yet another modified version of Visual Geometry Group (VGG) model
having 19 layers. It consists of 16 convolution layers having 3x3 kernels and 3 fully
connected layers. It makes use of 5 2x2 max-pooling and a SoftMax function. VGG
achieves more in less time having less parameters by using 3x3 filters instead of
conventional 7x7 convolutional filters.

Figure 3.3: VGG-19 Internal Architecture and Layers
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3.2.3 InceptionV3
InceptionV3 is the superior and optimal version of the inceptionV1 model developed
by Google. Its architecture is resistant to overfitting of the data and achieves higher
accuracy with better computational efficiency due to having fewer parameters. It
has 42 layers in total. While having a deeper network and more layers compared to
its previous versions, it doesn’t lose its speed and it boasts a very low error rate.

Figure 3.4: InceptionV3 Internal Architecture and Layers

3.2.4 Xception
Xception is heavily inspired from Inception model and replaces Inception modules
with depthwise separable convolutions. This architecture includes the same param-
eter count and achieves more performance by properly utilizing them. While the
Inception model makes use of ReLU non-linearity, Xception refrains from adding
any non-linearity and outperforms every contemporary model.

Figure 3.5: Xception Internal Architecture and Layers

3.2.5 EfficientNetV2L
The signifying characteristics of EfficientNetV2 is its fast training with smaller mod-
els due to having better parameter efficiency compared to older models. A mix of
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training-aware neural network search and scale was used to achieve both its faster
training speed and parameter efficiency. Thus, EfficientNetV2 models train much
faster than contemporary models while being about 7x smaller, but suffers from
drop in accuracy the faster it gets.

3.2.6 MobileNet
MobileNet is yet another CNN model by Google aimed at bringing efficient computer
vision in devices focused on mobility. Although it consists of 4.2 million parameters,
its size can be adjusted at the cost of accuracy. To achieve its characteristic porta-
bility, it made use of depthwise separable convolutions instead of standard ones. As
its size are generally small, MobileNet models rarely overfit the data but its accuracy
takes a dip.

3.3 Ensemble
Through ensemble models, we can reduce prediction error and bias towards a partic-
ular model by model averaging. Also, we don’t have to select any particular model
and therefore reduce risk of data volatility. We chose the 3 best performing models,
namely VGG-19, Xception and EfficientNetV2L to be ensembled. Out of the mul-
tiple averaging methods, we employed weight based averaging, where weights were
assigned to each model on their order of importance.

Figure 3.6: Ensemble: VGG-19, Xception and EfficientNetV2L

3.4 Explainable AI (XAI)
We employed Gradient-weighted Class Activation Mapping (Grad-CAM) for im-
plementing our explainable model. Grad-Cam uses the weight changes in the last
convolution layer of convolutional neural networks and is able to visualize which
part of the image is drawing the model’s attention and contributing to its predic-
tion though a heatmap [14]. In our case, we applied the same weighted ensembling
process for the explainable model to reflect what our final model actually sees while
making the predictions.

10



3.5 Confusion Matrix
Our research employed Confusion matrix for measuring the performance of different
models. This approach is appropriate for supervised machine learning algorithms
and models, especially in case of uneven data-set. This set of matrices depicts a table
listing correct and incorrect classifications. The following four values can appear in
a confusion matrix

1. True Positive as TP

2. False Positive as FP

3. True Negative as TN

4. False Negative as FN

Few metrics based upon confusion matrix values to visualize performance of classi-
fier are as follows:-

Accuracy is measured by the number of properly categorized sample data to the
total amount of data. Equation 3.1 shows the formula for calculating accuracy.

Accuracy =
TN + TP

TN + TP + FN + FP
(3.1)

Recall is the measure of true positive rate. It can be calculated by using equation
3.2.

Recall =
TP

FN + TP
(3.2)

The measure of positive predictive value is called Precision. Equation 3.3 shows the
method of calculating precision.

Precision =
TN

TN + FN
(3.3)

F1-score is the measure of harmonic average of recall and precision. It can be
calculated by using equation 3.4.

F1− score =
2 ∗ recall ∗ precision
recall + precision

(3.4)
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Chapter 4

Implementation

4.1 Data-set
Finding OCT Data for multiple sclerosis patients have been a challenging task
since most of the previously done research in this topic used closed source datasets.
Thankfully, Yufan et al. released a dataset in [16] which contains OCT images of 35
individuals in total, of whom 14 are healthy subjects and 21 are MS infected. The
OCT images were captured using Spectralis OCT System from The Johns Hopkins
Hospital, Baltimore. For each of the subjects, 49 B-Scans were captured. Hence,
for each individual 49 images exist in the dataset which makes the number of total
available images 1715.

4.2 Data Classification
Before building our models, we divided that dataset into 3 sets for the training, val-
idation and testing. The training set was used to fit the dataset to the models. The
validation test was for providing feedback to the models throughout the training
process in order to tune the internal parameters. Finally, unbiased evaluation of the
models was done using the testing set.

We used an 8:1:1 split for dividing our dataset into these three sets. As a result,
approximately 80% of our dataset was used for training, 10% for validation and 10%
was reserved for testing. In every set, the images were divided in two classes. The
classes were ’normal’ for healthy controls and ’ms’ for the patients who are suffering
from multiple sclerosis. The size of each set is presented in table 4.1

Table 4.1: Dataset Classification

Class Training
Set

Validation
Set

Testing
Set

Total

Normal 548 68 70 686
MS 823 102 104 1029
Total 1371 170 174 1715
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4.3 Data Pre-processing

4.3.1 Resize
The original images in our dataset had a dimension of 1024x496 pixels. So, in
order to optimize our dataset, we reduced their dimension to 224x244 pixels though
resizing. We used the same dimension for all the models that we’ve used in our
research. For the resizing purpose, the built-in functions of the TensorFlow library
were used.

4.3.2 Normalization
The original images had pixel intensity values ranging from 0 to 255. In order
to reduce computational complexity of the training and testing process, we have
applied normalization of the images by dividing each pixel value by 255. Thus, the
intensity value for all pixels fell within the range of 0 to 1, thus greatly reducing the
computational complexity.

4.3.3 Augmentation
Deep Neural Networks are quite data hungry, and the size of the overall dataset plays
a significant role in determining their performance. So, we used data augmentation
to increase the amount of available data for our models. In our case, we used ±5
degrees rotation and -20% to +10% of brightness variation factor for generating new
data samples. All the augmentations were done using built-in functions provided in
the TensorFlow library.

13



Chapter 5

Result and Analysis

5.1 Result
For our purpose of classifying the OCT images of healthy and MS patients, we
used six models in our analysis. They were trained using VGG-16, VGG-19, In-
ceptionV3, Xception, EfficientNetV2L and MobileNet architectures. After training
through transfer learning and fine-tuning our models for 30 epochs, we evaluated
them through our testing dataset. All the six different architectures that we trained
yielded different results in our testing process when it comes to classifying OCT im-
ages of healthy and multiple sclerosis subjects. Although their performance varied
from one architecture to another, all of them were able to gain accuracy above 90%.

5.1.1 Learning Performance Curve Analysis

VGG-16
When it comes to the training process of VGG-16, we observed a gradual increase in
accuracy and disease in loss. As figure 5.2 indicates, after approximately 25 epochs,
our mode’s accuracy went above 95% and remained similar for the following epochs.
The loss became nearly 0% at epoch 27 and remained such for the next epochs. At
the end of 30 epochs, the model’s training and validation accuracy and loss curves
became consistent. It seems that the various convolutional layers of the model is
indeed helping it to detect features quickly from the OCT images, and the small
filter size of 3x3 is also helping for the overall optimization.
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Figure 5.1: VGG-16 Loss Curve

Figure 5.2: VGG-16 Accuracy Curve

VGG-19
As figure 5.4 shows, the accuracy rate of our model reached closed to 100% near
epoch 25 and remained steady after that for both training and validation processes.
The loss function became almost zero and after a slight peak near epoch 25 as well
and stayed so with small fluctuations.
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Figure 5.3: VGG-19 Loss Curve

Figure 5.4: VGG-19 Accuracy Curve

MobileNet
When it comes to MobileNet, the training accuracy went above 95% right after 20
epochs as evident by figure 5.6. The validation accuracy however didn’t catch up
with training but still managed to exceed the 90% mark. The training loss curve
of MobileNet reached closed to 0 at the end of the training process, whereas the
validation loss went as down as 20%. It looks like MobileNet’s focus on optimization
and reduction in computational complexity is causing such loss of accuracy.
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Figure 5.5: MobileNet Loss Curve

Figure 5.6: MobileNet Accuracy Curve

InceptionV3
Our InceptionV3 based model also showed decent performance in both training and
validation process. The model gained above 90% accuracy for both training and
validation. As shown in figure 5.7, the model’s loss for both training and validation
went as low as 10%.
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Figure 5.7: InceptionV3 Loss Curve

Figure 5.8: InceptionV3 Accuracy Curve

Xception
As figure 5.10 demonstrates, our Xception based model reached closed to 100%
accuracy just after 10 epochs for both training and validation. It’s losses also went
as low as 10% around the same time.
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Figure 5.9: Xception Loss Curve

Figure 5.10: Xception Accuracy Curve

EfficientNetV2-L
The EfficientNetV2L based model showed decent performance and was outperformed
only by VGG-16 and VGG-19. As shown in figure 5.12, the model reached near 100%
accuracy just after 25 epochs for both training and validation. The losses also went
down close to 0% by that time.
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Figure 5.11: EfficientNetV2-L Loss Curve

Figure 5.12: EfficientNetV2-L Accuracy Curve

5.1.2 Analysis of Confusion Matrix
Although all the six architectures that we applied were able to gain above 90%
accuracy for our training dataset, we needed to evaluate them using our testing
dataset that none of the models had seen before. In order to evaluate them, we have
used a confusion matrix to plot both their correct and incorrect predictions. We
judged the models though this evaluation process in order to select the top three
best performing ones that we finally used for the ensembling process.

VGG-16
The confusion matrix of the model trained with VGG-16 is shown in figure 5.13.
Here, we can see that the among 104 OCT images of multiple sclerosis patients,
the model was able to correctly classify all of them. When it comes to images of
healthy subjects, the model incorrectly classified one of them as an MS patient while
correctly classifying the rest of the 69 images.
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Figure 5.13: VGG-16 Confusion Matrix

VGG-19
Figure 5.14 shows the confusion matrix of the model trained with VGG-19. We can
see that the model was able to correctly classify all the images and made no errors.

Figure 5.14: VGG-19 Confusion Matrix

MobileNet
The MobileNet based model was able to show decent performance on our testing
dataset, as evident by figure 5.15. It was able to correctly classify all 104 MS
patients. Out of 70 OCT images of healthy individuals, it misclassified 4 of them as
MS patient.
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Figure 5.15: MobileNet Confusion Matrix

InceptionV3
The InceptionV3 based model struggled a bit compared to other models, as it
wrongly classified 8 healthy subjects as MS patients and 1 MS patient as healthy.
Thus, out of total 174 testing samples, it had 9 wrong classifications in total as
shown in figure 5.16.

Figure 5.16: InceptionV3 Confusion Matrix

Xception
The testing performance of Xception reflect that of its training and validation per-
formance, as it was outperformed only by the VGG based models. It correctly
classified all the healthy subjects as shown in figure 5.17. Among 104 images of MS
images, however, it misclassified 2 of them as healthy.
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Figure 5.17: Xception Confusion Matrix

EfficientNetV2-L
The EfficientNetV2-L model’s performance was also decent as evident by figure 5.18,
the model only had 4 misclassifications in total among the 174 test samples.

Figure 5.18: EfficientNetV2-L Confusion Matrix

5.2 Result Comparison
All the six different architectures that we trained yielded different results in our
testing process when it comes to classifying OCT images of healthy and multiple
sclerosis subjects. We considered categorical accuracy (3.1), recall (3.2), precision
(3.3) and f1-score (3.4) as our evaluation parameters. The results of our evaluation
are provided in table 5.1
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Table 5.1: Comparison Between The Performance of Different Models

Arch. Precision Recall F1-Score Accuracy
VGG-19 100.00% 100.00% 100.00% 100.00%
VGG-16 99.52% 99.29% 99.40% 99.43%
Xception 98.61% 99.04% 98.81% 98.85%
Efficient-
NetV2-L

97.61% 97.61% 97.61% 97.70%

MobileNet 98.15% 97.14% 97.59% 97.70%
InceptionV3 95.60% 93.80% 94.52% 94.83%

5.3 Ensembling
It is evident by table 5.1 that VGG-19 is the best performing model for the dataset,
followed by VGG-16. Xception and EfficientNetV2-L also showed impressive results
and hence they occupied the third and fourth place respectively. Though they
individually yield impressive results, different architectures have different biases.
Moreover, just because one model is performing well on our dataset doesn’t mean
it will attain that performance on OCT images gathered from different machines
and of different qualities. So in order to create a generalized and bias free model,
we ensembled the top 3 best performing architectures. Since VGG-19 and VGG-
16 are structurally very similar and VGG-19 outperformed VGG-16, we decided to
skip VGG-16. So, we ensembled the outputs produced by VGG-19, Xception and
EfficientNetV2-L based models. After considering different ensembling mechanisms,
we decided to go with weighted ensembling that allowed us to adjust the preference
of each of the base models by assigning weights to their outputs. In our case, we
assigned 40% preference to VGG-19’s output. The rest 60% of preference was divided
among Xception and EfficientNetV2-L equally. The ensembled model performed well
as shown in figure 5.19. The model correctly classified all the images of our testing
dataset.

Figure 5.19: Ensembled Model Confusion Matrix
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5.4 Explainable AI (XAI)
Although our ensembled model gained 100% accuracy in terms of classifying all
the OCT images, the reasoning behind its predictions are not apparent to us. As
mentioned before, we want the models to look anomalies in the retinal layer portion
of the OCT images for making their prediction. In order to verify that the model is
paying attention to where we want it to, we have implemented an explainable model
using the Grad-CAM approach.

Figure 5.20: Input (Healthy). Figure 5.21: Grad-CAM Output.

Figure 5.22: Input (Healthy). Figure 5.23: Grad-CAM Output.

Fig. 5.20 and 5.22 depicts OCT images of healthy individuals that were fed into our
final ensembled model. Fig. 5.21 and 5.23 shows the Grad-CAM output produced
by those inputs. From the above images, can see that the model is indeed paying
considerable amount of attention near the retinal layers, but no significant activity
is happening overall. However, the situation changes when it encounters the OCT
images of MS patients, as evident by the figures shown below. Here, fig. 5.24 and
5.26 shows OCT images of MS patients and fig. 5.25 and 5.27 shows their Grad-
CAM outputs. We can see that, a lot of activities are happening in the retinal layer
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region, which indicates that some anomalies exist in that part of the OCT image.
As a result, the model is able to distinguish OCT image of healthy individuals and
multiple sclerosis patients.

Figure 5.24: Input (MS). Figure 5.25: Grad-CAM Output.

Figure 5.26: Input (MS). Figure 5.27: Grad-CAM Output.

Therefore, it can be concluded that our model is indeed paying attention to different
retinal layers featured in the OCT images, extracting their features for predicting
whether an OCT image is from a healthy individual or Multiple Sclerosis patient.
So, the retinal layers are indeed working as a biomarker for detecting MS according
to our proposed model.
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Chapter 6

Conclusion

The significance of Optical Coherence Tomography (OCT) in detecting neurode-
generative disorder is huge and requires due attention. Unlike traditional imaging
technologies like MRI and CT scans, OCT is economical, faster, and intelligible. To
detect neurodegenerative diseases, we suggested an efficient deep learning approach.
The system uses retinal images instead of brain images and utilizes the combined
effectiveness of multiple models in accordance with explainable AI. Due to the ease
with which symptoms can be detected early on, our approach allows us to actively
look for neurodegenerative diseases instead of responding to them.

Through the proposed system, we can detect life-altering brain diseases in their in-
fancy using OCT and improve their quality of life through early treatment. Since the
accuracy of our model is demonstrated both by evaluation parameters and explain-
able AI, it has the potential of paving the way to the diagnosis of neurodegenerative
diseases like Multiple Sclerosis that impacts different retinal layers. Its effectiveness
can be further improved by training it with larger dataset composed of OCT images
from different machines and different demographics. Due to lower costs associated
with OCT, it will be within reach of almost everyone, regardless of their financial
condition.
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