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Abstract
Sickle Cell Disease is a monogenic genetic disorder which often leads to various
repercussions affecting multiple vital organs simultaneously. However, the treat-
ment for Sickle Cell is diverse and often varies from patient to patient, but several
background studies revealed the progression and symptoms of Sickle Cell can be
predicted to a great extent based on a patient’s genetic mutation type in the HBB
gene. Moreover, such research regarding genetic mutation prediction can be seen in
other fields of medicine such as cancer, but in the case of Sickle Cell it is scarce. Fur-
thermore, other limitations include complexity and unavailability of genetic testing,
limited clinical data available and privacy concerns regarding medical information
of patients. Hence, our study aimed to build a Federated Siamese Bidirectional
LSTM to predict the Sickle Cell genotype from clinical data, in case of sparse and
decentralized data. Consequently, a Sickle Cell clinical dataset with 216 instances
and 4 different genotype class labels was pre-processed accordingly to train and
evaluate the model performance. The dataset was then used to create pairs with
corresponding similarity scores and the Siamese Bi-LSTM was trained for several
epochs to compute similarity between two instances. The data was divided among
client devices in case of federated, while the Siamese Bi-LSTM trained locally to
update the global model and the test data was then used to assess their perfor-
mance. Thus, based on the performance analysis the Siamese Bi-LSTM achieved
accuracy of 90.45% with f1 score of 90.66% and the Federated Siamese Bi-LSTM
model (FFSB-LSTM) achieved accuracy of 88.25% and f1 score of 88.57% show-
ing significant improvement compared to the baseline KNN and Logistic Regression
models.

Keywords: Sickle Cell, Clinical Data, Genotype, Federated Learning, Few-Shot
Siamese, Federated Siamese Bidirectional LSTM
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Chapter 1

Introduction

Sickle Cell Disease is among the lethal monogenic genetic diseases which is respon-
sible for the deaths of numerous children and adults around the world, especially in
the African continent. Moreover, the varying symptoms of Sickle Cell Disease and
its damage to various organs simultaneously such as brain, lungs, liver or kidney
makes the genetic disease even more deadly. The most common causes of death
include extreme pain, kidney failure or stroke [1]. Even though those with Sickle
Cell trait tend to survive longer, the rise of complications are always varying, sudden
and could pose serious threat to a person’s life if not anticipated early. Moreover,
Genetic mutation is the change found in the genome sequence which might cause
abnormality in a person, in this case it is the mutation in the Haemoglobin Subunit
Beta (HBB) gene that is the fundamental cause of inheriting the Sickle Cell disorder.

The numerous research studies conducted on Sickle Cell Disease and its conse-
quences, resulted in the development of better testing, detection and prevention
to a great extent. Additionally, tests like HPLC exist for detection of Sickle Cell,
but genetic testing is still required to confirm SIckle Cell in a person or child. Fur-
thermore, the Sickle Cell complications and symptoms are dependent on the type
of Sickle Cell genotype to a great extent [2]. However, it is observed that physical
tests available for the identification of the type of genetic mutation have their own
limitations and constraints, which includes, unavailability in many regions of Africa
and other countries, false positives, invasive tests and many more [2]. Hence, in a
lot of these cases vital information regarding a Sickle Cell patient and their future
complications remains unattainable. Additionally, several research studies regarding
cancer and other genetic disorders have shown the implementation of deep learning
models to predict genetic mutation from some sort of clinical data. However, such
studies are hardly observed in the field of Sickle Cell even though the prediction of
genetic mutation can provide valuable information.

The other major issue in case of genetic disorders, including Sickle Cell, remains to be
a shortage of clinical data due to several reasons, such as not recording data centrally,
lack of enough patients willing to submit their clinical information etc. Moreover,
the issue of privacy concern, decentralized data, and medical data inaccessible to the
public are also prevalent in the field of Sickle Cell Disease. Hence, our study pro-
poses a model to address the issue of predicting genetic mutation using deep learning
along with limited and decentralized data by combining the concepts of Few-shot
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Siamese and Federated Learning, using a Bidirectional LSTM model, which will be
called Federated Few-Shot Siamese Bi-directional LSTM (FFSB-LSTM). Further-
more, LSTM is often used for sequential data but our research hopes to discover its
capability of capturing dependencies and complex patterns within structured or tab-
ular data. Therefore, the aim of this particular research study will be the prediction
of genetic mutation from clinical data of Sickle Cell patients using the Federated
Siamese Bidirectional LSTM network.

1.1 Problem Statement
Sickle Cell is a severe genetic disease which is polypharmacy in nature, that means
the genetic disorder gives rise to multiple diverse symptoms affecting various vital
organs simultaneously including brain, lungs and kidney. Hence, a single patient
requires several different treatments throughout their lifetime, but such situations
can be avoided or the risk can be minimised if the future symptoms can be predicted
at an early stage and treated accordingly. Consequently, knowledge regarding the
genetic mutation of a Sickle Cell patient in the HBB gene can provide vital infor-
mation about the complications that might arise in the future, since a lot of these
symptoms are highly correlated with the type of mutation [3]. Even though the
most common method of identifying the genetic mutation is conducting a genetic
test, such tests often pose certain limitations which restrict its widespread use such
as in the African continent where Sickle Cell is more prevalent. The limitations
include its unavailability in all medical centres and false positives leading to retest-
ing making the procedure expensive and time consuming. Moreover, emotions play
a role when genetic testing is required, since it is observed that parents often do
not approve when the concerned patient is their child [4]. Therefore, knowing the
genetic mutation in the HBB gene responsible for the Sickle Cell genetic disease can
be significant for a patient in terms of early detection and treatment, but the limita-
tions regarding genetic testing often constricts the possibility of gaining knowledge
about the genotype in patients.

Research studies regarding the prediction of genetic mutation from clinical data is
prevalent in case of cancer studies where genotype is a significant factor like Sickle
Cell. The papers [5] and [6] discuss techniques and deep learning models achieving
great accuracy while predicting the genotype from H&E images in case of breast
cancer and liver cancer respectively. However, such studies and implementation of
automated deep learning models to predict genetic mutation is rarely observed in
case of Sickle Cell, even though these factors are highly significant in comprehending
a particular Sickle Cell affected patient’s situation and developing treatment for the
future, known as precision medicine. Moreover, in the domain of genetic diseases,
like Sickle Cell in our case, there lies the issue of data shortage and dataset inacces-
sibility due to several reasons. There is a shortage of data for reasons which include
genetic diseases are not as common as other prevalent ones or the spread of Sickle
Cell disease is most often noticed in the African continent where data recording
and collection is scarce to some extent. Hence, to tackle this issue of data shortage
we will be implementing Few-Shot Siamese techniques to our deep learning model,
where we aim to build an effective genotype prediction model using a small amount
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of data. Furthermore, the data collected by different organizations and hospitals
regarding Sickle Cell patients is often not accessible by the public, since there are
security issues and privacy concerns. Thus, the concept of federated learning which
utilizes decentralized data to train a global model by training local models at client
and receives only the weight and parameters, could solve the issue of data inacces-
sibility due to privacy concerns to a great extent. Consequently, the advent of deep
learning in such a sector will progress further studies regarding gene therapy and
personalized treatment since medical professionals can predict certain aspects of a
Sickle Cell patient at an early stage.

Additionally, our research aims to build a Few-Shot Siamese Bidirectional LSTM
deep learning model called FFSB-LSTM for the prediction of genotype from tabular
or structured data of Sickle Cell patients, even though LSTM models are meant
for sequential or time-series data and not for non-sequential tabular data as in our
case. However, we will be using the LSTM to compute the similarity between two
rows of data with each consisting of multiple features. Hence, any conventional
technique to compute similarity between two rows or vectors such as distance met-
rics(Euclidean/Manhattan), K-means clustering or embedding methods would only
determine the similarity based on the feature values and not consider the complex
relationships or dependencies between the features. However, LSTM is capable of
computing similarity between two instances based on their values and also by cap-
turing the temporal dependencies or complex patterns within the features. Hence,
our research also aims to deduce the credibility and efficiency of Bidirectional LSTM
while computing similarity between two instances from a structured dataset.
Therefore, the problem statement can be established as:
How effective will a Federated Siamese Bidirectional LSTM model be
when predicting genetic mutation from clinical data of Sickle Cell pa-
tients?
Thus, the above discussion reveals a research gap in the field of Sickle Cell studies
where it is possible to predict the genotype using deep learning models with limited
data, which is the fundamental target of this study. Moreover, the introduction
of deep learning in the field of medical science will only make the process more
precise and efficient by helping the medical professionals instead of substituting
them. Consequently, the prediction of genotype will lead to the development of
more effective personalised treatments, early detection and act as an aid to medical
professionals before opting for other physical testing methods.
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1.2 Research Contributions
The research aims to predict the genetic mutation of Sickle Cell patients from clinical
data using our proposed Federated Siamese Bidirectional LSTM (FFSB-LSTM), in
order to develop effective personalized treatments in future based on the outcome,
early detection and aid clinicians in deciding whether further physical testing is
required. Thus, the study consists of multiple aspects and domains each with its own
objectives, while also fulfilling the ultimate goal of predicting genotype. Therefore,
the research contributions can be established as:

1. We implemented our proposed model to predict the genotype of Sickle Cell
from clinical data, in order to aid medical professionals for determining future
complications and appropriate treatments, where genetic testing is not viable.

2. We introduce our proposed model combining the concepts of Few-Shot Siamese
and Federated Learning, the Federated Few-Shot Siamese Bidirectional LSTM
(FFSB-LSTM), to handle and train using both limited and decentralized data
protecting patient privacy.

3. Our research study explored the capability of Bi-LSTM when learning tem-
poral dependencies and complex relationships between features from non-
sequential data of a structured dataset.

4. Training and testing our proposed FFSB-LSTM model on a small dataset
with 216 instances and 4 unique genotype classes regarding Sickle Cell clinical
data showed substantial improvement in performance from baseline KNN and
Logistic Regression models, with FFSB-LSTM achieving 88.25% accuracy and
88.57% f1-score.
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Chapter 2

Literature Review

The background study for our research revealed that work regarding the prediction
of genotype in the case of Sickle Cell is rare, even though it has significance. Thus,
this section focused on reviewing papers based on different aspects of our study,
including SIckle Cell Disease, significance of genotype in Sickle Cell and related
works where studies concerning genotype prediction done for other diseases such as
Cancer is discussed.

2.1 Sickle Cell Disease
Sickle cell disease (SCD) is a collection of inherited disorders regarding blood, char-
acterized by abnormal hemoglobin, which is caused by mutation in Hemoglobin
Subunit Beta (HBB),a gene that codes for proteins [1]. The mutation in HBB leads
to abnormal hemoglobin Hbs. Usually, red blood cells(RBC) are disc-shaped, how-
ever incase of SCD , the presence of Hbs causes RBCs to become crescent/sickle
shape and become rigid. This in turn causes blockages in blood vessels by sticking
on its walls resulting in problems in blood flow, and can even cause tissue or organ
damage. Between 300,000 and 400,000 neonates are estimated to be affected globally
each year, where the majority of the cases are in the sub-Saharan African Region [1].
There are many types of SCDs ranging from Severe, Moderate, Mild to Very Mild
[7]. The different characteristics depending on gene mutation and occur in different
geographical regions, (for example Severe SCD - eastern Mediterranean region &
India). One of the most common clinical complications is acute pain. Individuals
with SCD can also experience neurocognitive dysfunction, retinopathy, pulmonary
hypertension, Anaemia Leukocytosis,chronic pain and other complications in preg-
nancy [1]. Early diagnosis is very important to improve survivability rate, and steps
such as newborn screening, post neonatal testing have been taken in Europe, USA
and India [1]. However, these programmes have been a challenge to implement in
low-income countries in Africa.Till this date, reports have suggested that no African
country has implemented a national screening programme for SCD, where this is a
region to have reported 75% of the births with SCD worldwide [1].Although some
evidence supports the use of blood transfusions and hydroxycarbamide in some sit-
uations, SCD clinical care is still at a very basic level, and there are medications
that have yet to be produced which would particularly target the pathophysiology
of this disease [7].Gene therapies are seeming to become a viable option however it
is very expensive and would be very difficult for aiding low-income regions [7].

5



2.2 Genetic Mutation
Genotype is the genetic composition of an individual while the phenotype is the
visible physical characteristics which result from an individual’s genotype .Most
frequently occuring genotypes that causes SCD are, Hb SS, Hb SC,Hb Sβ+- tha-
lassemia and Hb Sβ0- thalassemia.The severity and frequency of clinical complica-
tions is dependent on genotype as it differs between different genotypes of sickle cell
disease. Symptoms tend to be more severe in SS and Sβ0- thalassemia and milder in
SC disease with the exception of proliferative sickle retinopathy (PSR) [3]. If clinical
complications are compared between people having Hb SC or Hb Sβ+-thalassemia
mutation and people having Hb SS mutation, the Hb SS mutation results in lower
hemoglobin values and more hemolysis indicators [8]. As a result, people with Hb
SS are more prone to diseases like ulcers, stroke, vaso-occlusive episodes, and early
death.Moreover, depending on the molecular β-thalassemia gene mutation and the
level of HbA generated, sickle cell Sβ+- thalassemia possesses a very wide clinical
spectrum. Avascular necrosis that affects individuals with all kinds of sickle cell
genotypes tends to manifest earlier in individuals with Hb SS disease, potentially
leading to greater morbidity and reduced quality of life [8]. Along with genotype,
geographic areas more susceptible to malaria also increase sickle cell disease severity
[8]. Lastly, the author concludes with the remarks that genetic mutation which can
cause variation in phenotype needs to be known for better prediction of medical
complications severity in Sickle Cell disease [8].

The most prevalent method of identifying a certain genetic mutation is through
genetic testing, but the papers [9] and [4] discuss the limitations of genetic testing
in various situations. According to the paper [9], there are multiple disadvantages
of genetic testing such as the tests still have a high rate of false positives and the
results are also sometimes unclear which often results in retesting and makes the
process more expensive. Moreover, there are ethical limitations to genetic testing
and sometimes individuals are uncomfortable with such testing methods [9]. Fur-
ther, the limitations are also discussed in [4] which states a person’s emotions often
influence their decision of accepting a genetic test. Furthermore, the paper raises
the issue of availability of such genetic testing in various regions and hopes these
techniques will become more easier to access in the future.

2.3 Related Works
The study [5] focuses on the creating a deep learning model in order to predict the
genetic mutation in the BRCA gene from Histopathology Images to prevent breast
cancer in patients. According to the paper [5], predicting the genetic mutation in
BRCA1/2 can provide valuable information regarding the future risk of developing
breast cancer and hence patients can opt for gene therapy for early prevention. Their
dataset included H&E images from two medical centers in China and the total of 222
H&E images were collected from the two datasets. Moreover, the study developed
a deep CNN model of ResNet on whole-slide images to predict the genetic mutation
in breast cancer. Thus, their model showed a 95 percent confidence interval and the
paper stated it was successful in predicting the genetic mutation in gBRCA from
images alone using the deep learning model developed.
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The paper [6] also develops a deep learning model in order to classify and deter-
mine genetic mutation from Histopathology Images in Liver cancer. According to
the paper [6], Hepatocellular carcinoma (HCC) is one the severe types of liver can-
cer, which is often detected at terminal stages when recovery becomes difficult and
painful. However, identifying the genetic mutations which cause HCC can become
one of the ways to prevent severe cases through early detection and targeted treat-
ment [6]. Hence, the paper trains a deep learning neural network, known as incep-
tion V3 developed by Google, on 491 histopathological images collected from the
Genomic Data Databases. Additionally, the model was trained to predict ten most
common genetic mutations that are considered responsible for HCC, which includes
CTNNB1, FMN2 or ZFX4. Moreover, the paper states the performance of the clas-
sifier as high with a 95 percent confidence interval at distinguishing tumor from
healthy liver. Furthermore, the performance of genetic mutation prediction, based
upon Matthew’s correlation coefficient, showed a 96 percent accuracy, which was
equivalent to the expertise of a 5-year experienced pathologist. Therefore, the pa-
per [6] concluded with the remarks that such deep learning models could aid medical
professionals in predicting various diseases or genetic mutations for early prevention
and targeted treatment.

The research article [10] discusses the importance of examination of histopathology
images for evaluating lung tumors extensively and predicting gene mutations.More-
over, Adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are most com-
mon variant of lung tumor so they require skillful pathologist to differentiate them
[10]. Additionally, predicting gene alterations from histopathology images with low
cost would help cancer patients to get better treatment. Consequently, they built
and trained a deep CNN network known as Inception V3 to classify LUAD, LUSC
and also predict gene mutation in which the image is taken as the input.They col-
lected data from the Genomic Data Commons database containing 1,634 whole-slide
images, 1,176 tumor tissues and 459 normal tissues [10]. According to the paper
[10],their model was able to predict six most frequently found gene mutations in
LUAD which are STK11, EGFR, FAT1, SETBP1, KRAS and TP53 from images
and their AUC ranged from 0.733 to 0.856.Moreover,their model performed better
than existing works and also their results were similar to pathologist’s evaluations.
Hence, the paper [10] concluded with observations that deep learning models can
be used to aid pathologists in classification from images and also predict gene mu-
tation which would help patients to receive better personalized treatment according
to their individual’s genotype.

In the paper [11], have developed a deep learning model which can predict EGFR
mutation from CT images.According to them EGFR prediction is important because
it can assist doctors in providing treatments for Lung Adenocarcinoma (LA) and
their method of prediction using CT image is inexpensive and easily accessible. They
have used 14926 CT images of tumors to train their model and 1.28 million images
from ImageNet dataset for transfer learning [11].When their deep learning model is
trained by a CT image it predicts the chance of the tumor caused by EGFR mu-
tation and also the characteristics due to the mutation.Furthermore, they observed
the response by filter after giving image as input which helped them to derive the
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attributes filtered by the filter. Their model performed with 95% of confidence inter-
val with AUC of 0.81 and the results outperformed other existing works. Therefore,
they believe that as CT image is easily accessible and frequently done by LA pa-
tients with the help of deep learning models EGFR mutation can be predicted easily.

The paper [12] also used deep learning models in their research to predict EGFR
along with KRAS mutation from CT images to bring advancement in personalized
treatment for lung cancer patients. According to the paper [12], lung cancer has
the highest death rate compared to other cancers. Hence, personalized treatment
is crucial for lung cancer treatment as it improves recovery rate but in it requires
classifying gene mutation.To train their model they used training dataset containing
363 patients gathered from their partner hospital and the validation dataset consist-
ing 162 patients from The Cancer Imaging Archive (TCIA).In this study [12], they
developed a multi-channel and multi-task deep learning (MMDL) model in which
multi-channel helped the multi-task deep learning (MMDL) model to distinguish
the lumps extensively.They compared their results with existing studies performed
using commonly used models to predict the EGFR and KRAS mutation. In the
training dataset, their proposed model had AUC and accuracy of 86.56%, 79.43%,
for EGFR mutation, which was higher than other traditional models. For KRAS
prediction their model had higher scores of AUC and accuracy with 78.97%, 72.25%.
Moreover, in the validation dataset their model outperformed other models in both
cases of mutation prediction with AUC, accuracy of 81.29%, 75.06% for EGFR and
74.23%, 69.64% for KRAS mutation. According to the research [12], their method
of predicting gene mutation with a deep learning model from CT image is cost effec-
tive, fast, convenient and also gives better results than existing works which would
benefit lung cancer patients.

Pancreatic cancer is one of the fatal cancers and the death rate is high [13].They
have used 107 images of pancreatic cancer patients to predict the p53 mutation and
programmed death ligand 1 (PD-L1) status. The features were chosen by Mann-
Whitney U test and random forest function and they have extracted image features
which helped to develop their model for mutation prediction [13]. Their model had
AUC of 0.795 for p53 and AUC of 0.683 for programmed death ligand 1 (PD-L1)
status. Moreover, the concept of radiogenomics was used for other cancers except
pancreatic cancers and this prediction can contribute in developing personalized
medicine.

Glioblastoma(GBM) is a rapidly growing brain tumor which affects nearby brain
tissues by invading them [14]. The aim of this research was to effectively predict
Isocitrate Dehydrogenase 1 (IDH1) mutation in GBM using different machine learn-
ing techniques with the aid of Quantitative Radiomic Data, which could aid with
new data from multiparametric magnetic resonance imaging (MRI). Mutation of
the IDH1 gene is said to arise in about 12% of the GBM cases. Noninvasive tech-
niques for the precise prediction of IDH1 mutation status have received a lot of
attention since they can be used without incurring the expense of testing or the risk
of surgery. So, the purpose of this work was to predict IDH1 mutation status using
machine learning-based classification models based on preoperative MRI character-
istics. For data collection, a group of 88 cases dated between May 2010 and June
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2015 were chosen from the Department of Neurosurgery’s data registry, following
some specific set of predetermined criterias, and all patients were treated follow-
ing the same treatment regimen to keep consistency. After that MRI images were
obtained, and apparent diffusion coefficient (ADC) images were deduced. Then, vol-
umetric segmentation and ROI analysis were done based on the MRI image outcome.
Furthermore, statistical analysis was done based on the results where Chi-squared,
Fisher exact tests were used. Wilcoxon rank sum test was done for deducing dis-
similarities in continuous variables between IDHmut and IDHwt groups. Lastly,
Label (IDHmut/wt) and features information extracted from inputs images were
passed through a classification algorithm consisting of 8 machine learning classi-
fiers: Support Vector Machine (SVM),K- Nearest Neighbour (KNN), Decision Tree,
Adaboost, Random Forest, Naive Bayes, Gradient Boost and Linear Discriminant
Analysis. For training the classifier sample size was 88 with 5 K-fold, whereas for
testing sample size was 35, which was independently created from another registry.
Among all the machine learning classifiers KNN performed the best both during
training (87.3% and 81.3% accuracy respectively) while Naive Bayes performing the
worst in training (70.3% accuracy) and Linear Discriminant Analysis testing (66.3%)
[14].The current study’s findings demonstrate that quantitative radiomic data may
accurately predict the molecular status of GBM, and that machine learning tech-
nologies can be applied to increase prediction accuracy.

An crucial biomarker for the detection and analysis of glioma is isocitrate dehydro-
genase (IDH) gene mutation [15]. Convolutional neural networks (CNN) provides
decent performance in IDH mutation prediction, but it is unable to learn from net-
work and geometric data (non- Euclidean data). The aim of this research was to
develop a multi-modal learning framework to extract attributes from the focal tumor
picture, tumor geometrics, and global brain networks using three different encoders.
Anatomical MRI data was collected from 407 glioma patients , where 20 patients
were used for training a self-supervised learning model [15]. The remaining 387
were split into testing and training with a 7:3 ratio. The training models were then
reevaluated with 117 patients data independent of the previous ones. At first , a self-
supervised learning method was used which aided in the creation of brain networks
from anatomical multi-sequence MRI. After that, creation of hierarchical graph at-
tention for the brain network encoders was accomplished which helped in retrieving
tumor-related properties of the brain network. Furthermore, bi-level multi-modal
contrastive loss was designed to align with tumor-related network attributes with
focal tumor attributes over the domain gap. At last, a population graph including
the multi-modal data and forecast the genotype of the patients was created. The
learning framework showed promising results when compared with the modern up to
date models. All their study showed promising results; it was later discussed that it
has some limitations such as the scarcity of training data due to glioma being rare,
and their dataset being imbalanced of the IDH mutant. However, it was concluded
that their findings outperformed traditional CNNs, but further development is still
needed to improve accuracy by involving larger dataset.
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Chapter 3

Dataset

3.1 Data Collection
The dataset selected for this particular research has been collected from the study
[16], which physically obtains the clinical data and HBB genotype of 217 children
infected with Plasmodium falciparum from Jaramogi Oginga Odinga Teaching and
Referral Hospital in Western Kenya between 2018 and 2019.Moreover, the study
cohort included patients who were from 1 years old to 16 years old and about
50% of the data being males and the rest being females. Even though the study
focused on Kenyan children with Sickle Cell, it can be observed that the study
population is diverse with varying characteristics. Additionally, for each patient 16
different medical aspects were tested and identified, which means the dataset has 217
instances with 19 features or columns including their gender and age. Furthermore,
the reasons for selecting this particular dataset can be established as follows:

1. Several medical aspects for each patient have been tested and recorded, which
will aid for an in-depth analysis of our prediction model

2. Four different types of genotype in HBB gene combining all Sickle Cell patients
is available in this dataset. Hence, diverse targeted labels are present in one
dataset

3. The dataset has no missing values, which means significant imputation or
assumption will not be required

4. The study populations’ age is very diverse, the gender distribution being close
to 50% and all the patients belong to the same country. Thus, the impact of
external environmental factors and demographics will be minimum

Moreover, according to [17], the data recorded for the patients has been collected by
conducting physical medical tests. For instance, the genetic mutation was identified
through genetic testing using Taqman SNP Genotyping Assay and rest of the medical
features were mostly collected from blood samples of the Sickle Cell patients. For
instance, Haematological values such as red blood cell count, white blood cell count
or mean cell volume were determined from the blood samples. Consequently, the
hemoglobin level or platelet count were deduced from the blood smears of the study
cohort. Hence, the medical features are relatively simple to identify since only blood
samples were required except for the HBB genotyping. Therefore, the dataset used
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in our research is a tabular or structured dataset arranged with various medical
features and the subsequent HBB genotype of the study cohort.

Figure 3.1: Dataset with clinical data and HBB genotype

3.2 Dataset Features
There are 19 clinical and demographics features in the dataset. The features with
their full form are represented in the table below:

Table 3.1: Dataset Features

Feature Number Feature Full Form of features
1 Months Months
2 SEX SEX
3 WBC White Blood Cell Count
4 LYM% Lymphocytes
5 MON% Monocyte
6 GRAN% Granulocyte
7 RBC Red Blood Cell Count
8 MCV(FL) Mean Cell Volume
9 HCT Hematocrit Values
10 MCH(Pg) Mean cell Haemoglobin
11 MCHC Mean cell Haemoglobin Concentration
12 RDW Red Cell Distribution levels
13 HB Haemoglobin level
14 THR Thrombocytopenia
15 MPV Mean Platelet Volume
16 PCT Procalcitonin levels
17 PDW Platelet Distribution Width
18 Pf. Infect Plasmodium falciparum
19 Sickle Cell Genotype Sickle Cell Genotype
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The dataset contains demographic features like age/months and gender/sex along
with clinical features identified from blood samples of the Sickle Cell patients. Con-
sequently, the feature Sickle Cell Genotype will be the target label from the dataset
for our research.

The paper [16], [17] and various other studies assert that the type of genetic mu-
tation has a significant impact on most of the symptoms or medical complications
in case of sickle Cell and could provide valuable information regarding the future of
these patients, especially the children. Moreover, according to [16], the differences
in several Haematological aspects is comparable with the type of HBB genotype
in a patient as revealed in their study. For instance, anaemia is more prevalent in
children with the genotype HBSS along with malaria and red blood cell count and
haemoglobin levels are inversely proportional to the red blood cell width in case
of the patients possessing HBSS genotype for Sickle Cell. Similarly, the study [17]
reveals significant relation between the type of genotype and other clinical aspects
including white blood cell count, monocytes or red blood cell count. Furthermore,
the medical features besides genotype in the dataset are also correlated amongst
themselves since most of the values are derived from blood smears of the patients.

Thus, the above mentioned papers assert the significance of genotype in case of
Sickle Cell disease along with the correlation between haematological features and
genotype. Hence, the dataset used for this study provides adequate clinical and
demographic features to build a model for the prediction of genotype in Sickle Cell
patients, while also studying the underlying complex relationships between the fea-
tures and type of genetic mutation.

3.3 Exploratory Data Analysis
Initially, the dataset was analysed where it was observed that there are 217 in-
stances and 19 columns, with no null values in any of the columns. Moreover, the
two columns ‘Pf.infect’ and ‘Sickle Cell Genotype’ are categorical columns, which
will require encoding when pre-processing the dataset. Furthermore, a detailed
multi-class analysis of the Sickle Cell genotype column revealed that there are 5
unique genetic mutation classes in the column such as Homozygous HbAA/HbAA,
Heterozygous HbAA/HbSS, Homozygous HbSS/HbSS, Homozygous HbAA/HbSS
and Heterozygous HbSS/HbSS. The number of instances for each genotype is shown
in table below:
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Table 3.2: Number of instances in each genotype

Genotype Number of instances

Homozygous HbAA/HbAA 148

Heterozygous HbAA/HbSS 43

Homozygous HbSS/HbSS 23

Homozygous HbAA/HbSS 2

Heterozygous HbSS/HbSS 1

Additionally, the genetic mutations are provided in the form where the first and sec-
ond mutation are separated by ‘/’, since each genetic mutation is from one copy in
the HBB gene. Analysing the number of instances in each genotype reveals that the
genotype Heterozygous HbSS/HbSS has only one instance and should be dropped
since there is no significant data available for this genotype. Moreover, the genotype
Homozygous HbAA/HbAA is the normal HBB genotype and not Sickle Cell, which
was added in the dataset as reference, while the rest of the genotypes represent the
genetic mutation in HBB gene in case of Sickle Cell.

Figure 3.2: Dist Plot of Numerical Features
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Moreover, the above dist-plots depict density with respect to the data distribution
for each of the numerical features. Hence, observing the distplots it can be deduced
that data distribution for most of the numerical columns have a gaussian distribu-
tion, which means the distribution is somewhat symmetric about the mean of the
data. Thus, it would be better to scale the dataset using a standard scaler since
most of the columns have normal distribution of data.

Figure 3.3: Box-plot of the columns with most outliers

Therefore, analysing the box-plots of the features with the label column Sickle Cell
genotype reveals that a few of the columns have outliers within them, which might
cause biases when training the models. Furthermore, the columns ‘WBC’, ‘MON%’
and ‘RDW’ contain the most outliers as depicted in the figure above. As a result,
the outliers will be required to be removed during dataset pre-processing in order
to avoid any sort of biases while training the models.

Figure 3.4: Bar-Graph for imbalance in the label column

Additionally, the above bar chart reveals that there is imbalance within the geno-
types present in the label column Sickle Cell Genotype and could hamper the train-
ing of the models if the imbalance is not removed. Observing the bar graph, it
can be deduced that Homozygous HbAA/HbAA has majority of the instances and
Homozygous HbAA/HbSS along with Heterozygous HbSS/HbSS make up the mi-
nority class of the dataset. Thus, the identified imbalance will be removed during
pre-processing of the dataset.
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3.4 Dataset Pre-Processing
Several pre-processing techniques are applied on the dataset, in order to clean the
data and make it usable for implementing the machine learning and deep learning
models. Moreover, Python was used to conduct the dataset analysis, data pre-
processing and the model analysis.

The initial dataset analysis revealed that the genotype Heterozygous HbSS/HbSS
has only one instance and would not provide adequate data for training and test-
ing of the models. Hence, the instance with genotype Heterozygous HbSS/HbSS
is dropped from the dataset and the updated shape becomes 216 instances with 4
unique genotype classes. Consequently, the categorical features such as ‘Pf.infect’
and ‘Sickle Cell Genotype’ can not be processed by the deep learning models unless
converted to numerical values. Hence, encoding techniques like label encoder from
the sklearn library were used to map certain categorical features. As a result, the
binary values in ‘Pf.infect’, which are negative and positive were mapped to 0 and
1 respectively. On the other hand, the label classes in the ‘Sickle Cell Genotype’
column were mapped as follows:

Table 3.3: Sickle Cell Genotype Column Mapping

Label Classes Mapping

Heterozygous HbAA/HbSS 0

Homozygous HbAA/HbAA 1

Homozygous HbAA/HbSS 2

Homozygous HbSS/HbSS 3

In the next step, the columns ‘months’ representing the age of the children were
dropped from the dataset since it has no correlation with the output label genotype.
Additionally, during data analysis it was noted that few of the columns had outliers
among them and so the outliers were identified for the numerical columns using the
z-score formula, which is:

z − score =
x−mean

standard deviation
(3.1)

The instances with a z-score value greater than 2 or less than -2 were established
as outliers, since these values fall outside 95% of the data in that particular column
and these outliers were substituted using the KNN imputer from the sklearn library
was used with a k value of 2 and the distance function being Euclidean function,
which will compute distance from the nearest 2 values without null and estimate
for the numerical imputation. Furthermore, the dataset analysis showed imbalance
with the genotype label classes and to remove such imbalance the SMOTE technique
from the imbalanced learn library is used, which will create synthetic data for the
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minority classes based on the nearest neighbours and create equality among all the
label classes for proper training of the models. Hence, the after affect of smote is
visualized in the following bar graph:

Figure 3.5: Genotype class label after resampling

In the end, the preprocessed dataset had 17 medical features for training and testing
of the models in order to predict the genotype class. Furthermore, the dataset will
be split into train and test with the ration 70:30 respectively along with label class
being set as stratified. Moreover, to prevent biases towards a particular feature, the
dataset was scaled using the standard scaler from sklearn library, which will fit on
the train data and transform both the train and test data with the equation:

x− scale =
x−mean

standard deviation
(3.2)

Therefore, the above mentioned techniques were applied to pre-process the dataset
and make it viable for model implementation.
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3.5 Dataset Correlation

Figure 3.6: Heatmap showing correlation between features of the dataset

The dataset features had medical correlation as discussed above, but to visualize
the correlation of the features with the label in the dataset, a heatmap was pro-
duced along with the correlation values. Consequently, observing the label Sickle
Cell genotype, it has strong correlation with the rest of the features mostly being
positively correlated. Furthermore, it can also be observed that the features also
have correlation amongst themselves, which will be beneficial for the LSTM model.

17



Chapter 4

Methodology

Figure 4.1: Top level overview of proposed FFSB-LSTM
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Initially, the research study is established by identifying a problem statement, stating
research objectives and reviewing different published papers related to this partic-
ular study. In the next step, the dataset is collected from a published paper which
contains the clinical data of 216 Sickle Cell patients along with information regard-
ing their genetic mutation type and other clinical features.

Consequently, the dataset required in-depth analysis where correlation between the
features is established along with analyzing the null values, gender distribution and
the multi-class analysis of genotype label column. Moreover, further analysis regard-
ing outliers and imbalance in genotype class is identified using python. Moreover,
the dataset is pre-processed using various techniques, which includes encoding cate-
gorical features, outlier removal and KNN imputation using z-score values and using
SMOTE to create synthetic data to tackle the issue of imbalance in genotype label
classes.

Additionally, the study aims to predict the Sickle Cell genotype from the clinical
features using Siamese Bi-LSTM and Federated learning along with two machine
learning models KNN and Logistic Regression as the Baseline models to compare.
Hence the dataset was split into train and test according to ratio 70:30 and scaled
using the standard scaler.

In the next step, the train data will be used to train the two machine learning
baseline models KNN and Logistic Regression along with our custom deep learning
models SIamese Bi-LSTM and Federated Siamese Bi-LSTM to compare their per-
formance in predicting the Sickle Cell genotype from the clinical features and their
ability to adapt in case of limited and decentralized data.

As part of our result analysis, the models’ performance will be analyzed based on 4
performance criteria, namely accuracy, precision, recall and f1. Moreover, the confu-
sion matrix is also produced for each case. Therefore, the discussed methodology is
followed for this particular study regarding the prediction of genetic mutation using
clinical data of Sickle Cell patients.
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4.1 Models

4.1.1 K-Nearest Neighbor
K Nearest Neighbor (KNN) is an algorithm based on supervised learning that can
be both used for classification and regression analysis. What KNN tries to do is to
correctly classify the data points in the test set by computing the distance between
the test data point and train points. Cosine Similarity, Euclidean distance and
Manhattan distance are some of the most implemented distance functions. Now
in case of classification problems, the KNN algorithm computes the probability
of the test data point being in the classes of K training data where K represents
all the points which are closest to the test data. Then based on the maximum
probability the prediction class will be selected. On the other hand, in case of
regression problems the test data will be the mean of the ‘K’ selected training data
points [18].
For instance, the Euclidean distance function can be stated as:

D(a, b) =

√√√√ n∑
i=1

(bi − ai)2 (4.1)

a, b = Euclidean points
n = the dimension n-space

The KNN classifier imported from sklearn for this study had a k value of 5 and the
Euclidean distances computed were considered uniform weights for all the points.More-
over, the KNN model has been used due to its simplicity, ability to handle multi class
labels and yielding high accuracy in classification problems. Additionally, the KNN
algorithm is also used for imputation in this particular study where it calculates the
distance from k nearest points to estimate the missing value.

Figure 4.2: KNN visualization in binary classification and imputation [18]
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4.1.2 Logistic Regression
Logistic Regression is a machine learning technique or algorithm used for both re-
gression and classification tasks, but most of the time it is used for classification
problems. The binary response variable belongs to any of the classes. With the
aid of dependent variables, it is used to predict categorical variables. Consider that
there are two classes, and it is necessary to determine which class a new data point
would go under. Then, using algorithms, probability values between 0 and 1 are
calculated. For instance, whether or not it will rain today. In logistic regression,
the sigmoid curve is the result of passing the weighted sum of the input through
the sigmoid activation function. The logistic function, a sigmoid function, has the
shape of a ”S” and converts any real value to a number between 0 and 1. A sigmoid
function’s output is classed as either 1 or 0, depending on whether it is greater than
or less than 0.5. Y will be expected to be 0 if the graph ends negatively and vice
versa.
The Sigmoid function can be established as follows:

f(a) =
1

1 + e−a
(4.2)

f(a) = Sigmoid function
a = Real value

Moreover, Logistic Regression is one of the best classification algorithms since our
dataset is comparatively small with multiple classes, the algorithm usually prevents
overfitting and better accuracy even for small datasets.

Figure 4.3: Graphical representation of the Sigmoid function [19]
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4.2 Few Shot Siamese Learning

Figure 4.4: Basic Siamese Network [20]

Few Shot Siamese learning is a type of Few shot Learning Technique where models
can be trained from a small amount of information in a dataset, typically less than
the amount required to train a machine learning or deep learning model properly
[21]. For better understanding, in case of traditional supervised learning approach
test samples are generally from known classes and are never seen before.However in
case of few- shot learning the query samples are from unknown classes. Generally
this is used in image classification where the aim is not to let the model recognize
images in the training set but to follow a “learn to learn” approach. In simple terms,
while training the model for image classification, the model is presented with one
or a few images of an object, let’s say different animals as support sets , and tasked
to classify any query image (of a particular animal) correctly, which it had been
revealed to the model before. The idea here is to find the similarity and difference
between the query image and support set images to be able to correctly classify the
image. Support sets can be defined as a small set of labeled images. If the support
set has k number of classes where each class has n samples, it is called k-way n-shot
support set. While doing few shots learning the, the prediction accuracy depends
on the number of ways and shots, i.e k & n value. For example if compared between
4-way 1-shot learning and 8-way 1-shot learning, 4-way would have higher accuracy.
Even though the concept of few shot learning is more prevalent in the domain of
image classification, it can also be implemented for other forms of data such as
structured or sentences in NLP.
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Figure 4.5: Siamese Network Similarity Computation [22]

Siamese Network is a type of neural network which is designed in such a way that
it accommodates in learning similarity or dissimilarity between paired inputs. Con-
sisting of two or more identical subnetworks (same architecture and weight), these
are connected at the output layer where the similarities are computed from the
given pairs for inputs. There are few methods on how the Siamese Network can be
trained, one of them is the very basic approach of pairwise similarity. Here feature
vectors of the input pairs are passed through a siamese network where similarity
scores are calculated and parameters are readjusted to minimize the loss. Similarly
score closer to 1 resembles that the input images or instances are similar whereas
similarity score closer to 0 resembles that the inputs are dissimilar. Another method
is the Triplet loss method, where we randomly choose an image randomly from the
support set and name it as “anchor”. Next, we choose another image from the same
class we choose the anchor image from and call it a positive sample. After that
another image is selected from another class which is identified as a negative sam-
ple. The 3 image feature vectors are passed through the Siamese Network, where L2
normalized distance is calculated between the 2 pair (anchor and positive sample,
anchor and negative sample, which is in turn helps us to find the loss function and
aid in minimization of the loss function, as the model keeps training.

4.3 LSTM Architecture

4.3.1 Long Short Term memory (LSTM)
Long Short Term Memory (LSTM) Network can be stated as an extension to the
architecture of the RNN network to solve the issue of vanishing gradient, where the
network can not backpropagate the gradient updates or optimization information
to the initial or input layers since it keeps decrementing with each passing layer
[23]. Hence, RNNs’ are not capable of capturing long term dependency or complex
patterns when the data sequence is long, input has high dimensionality or the input
sequence has too many features and as a result, it impacts the performance of the
network as whole. On the other hand, the architecture of LSTM makes it capable
to learn complex hidden patterns and dependencies within high dimensional data
using the concept of cell state, which acts like a long-term memory for the LSTM
network. The basic LSTM network architecture can be visualised as follows:
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Figure 4.6: Basic LSTM Architecture [24]

In the above figure, the LSTM is spread out in time, since the processing of LSTM is
done based on timesteps and the above figure shows 3 timesteps. Moreover, in each
timestep, the state of 3 fundamental gates are computed within the LSTM unit,
namely Forget gate, Input gate and Output gate. Hence, Xt represents the input in
that particular time step and ht is the output, which is this timestep’s hidden state
that is passed on as a parameter to the next timestep.

Therefore, in order to update the forget gate, which is the decision whether to keep
the current cell memory or erase it, the current input multiplied with the relevant
weights is summed with the previous timestep hidden state and passed through a
sigmoid function, which will convert the value within the range from 0 to 1. Con-
sequently, if the value is 0 the cell memory is erased and it is kept if the value is 1
from the sigmoid function.

In the next step, the state of the input gate is computed, which decides whether the
current input is relevant enough to be stored in the cell memory. The computation
is done by multiplying the hidden state and current input with their corresponding
weights, then passed through a sigmoid function. Subsequently, the weight multi-
plied value is also passed through a tanh function and then the output of the sigmoid
and tanh gates is multiplied to determine the new state of the input gate. Further-
more, the tanh function compresses a value between -1 and 1 with the following
formula where x is the input value:

tanh(x) =
(ex − e−x)

(ex + e−x)
(4.3)

Finally, the state of the output gate is determined by passing the current cell mem-
ory through tanh function and the current input through sigmoid function and the
outputs from tanh and sigmoid gates are multiplied to produce the new state of the
output gate, which is also the hidden state for the next time step. Hence, updating
the three fundamental gates completes one timestep for the LSTM network and with
each timestep the network keeps learning new patterns and dependencies with the
input sequence.
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Furthermore, the above description explains the architecture of a single unit in
LSTM, but in reality several such interconnected units are processed simultane-
ously to produce an output with the values of all the hidden states from the units.
Therefore, LSTM is capable of learning long term dependencies along with complex
hidden patterns within the data features or sequences and output the encoded vector
with the values of the hidden states and parameters.

4.3.2 Bidirectional LSTM
The Bidirectional LSTM is the extension of the LSTM network architect where the
same is input sequence is processed by the network from the forward direction and
backward direction simultaneously to produce two sets of hidden state representa-
tion, which is then concatenated to produce the final output vector with the hidden
states values [25]. Furthermore, one of the LSTM networks in the Bidirectional
LSTM will process the input staring from the initial time step and move forward,
but the backward LSTM network will process the input starting from the last time
step and move towards the first time step updating its parameters learning from
both past and future timesteps simultaneously. As a result, the output hidden state
vector dimension will be doubled from that of the LSTM network, which is depen-
dent on the number of units present in the network.

Hence, the fundamental advantage of implementing the bidirectional LSTM involves
the network learning and updating its parameters with a deeper understanding of
the complex relationships between the features in the input sequence which the uni-
directional LSTM might have missed. However, such networks can lead to cases
of overfitting and might require proper hyperparameter tuning to produce optimal
results.

4.3.3 Lambda Layer (L1-Distance Computation)
The lambda layer from the keras library provides the opportunity to build layers
for our model with self-coded expressions and formulas, which can be added to the
built model architecture for further ease and compatibility. Hence, in this case the
lambda layer is used to compute the element-wise L1-distance or the Manhattan dis-
tance between the two different encoded hidden state representation output from the
Bidirectional LSTM network. Therefore, the L1-distance formula can be established
as:

L1−Distance = |x1 − x2| (4.4)

Here,
L1-Distance = the element-wise absolute difference between x1 and x2

x1 = hidden states represented as vector
x2 = hidden states represented as vector
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4.3.4 Dense Layer
Dense layer in context of LSTM or any neural network denotes that the units in this
dense layer will be connected with all the output neurons from the previous layer.
Hence, it is called the dense layer due to its deep connection with the previous
layer and the purpose of this particular layer is to provide the final output in the
dimensions required by multiplying the input with learned weights and adding a bias
term before passing it to the activation function. Similar to other layers the dense
layer has units and an activation function. For instance, if the output is binary then
the dense layer will have 1 unit with sigmoid as the activation function since the
output will be within 0 and 1.

4.3.5 Sigmoid Activation Function
The sigmoid activation function translates any input value within the range 0 and 1.
Hence, the sigmoid function is beneficial in cases where the output will be similarity
score between 0 and 1 or the output will be the probability of a certain outcome or
event. Moreover, the sigmoid is used within the LSTM unit to compute and update
the states of the forget, input and output gates. The formula used to perform the
sigmoid operation can be established as:

σ =
1

(1 + e−x)
(4.5)

Here,
σ = Sigmoid output within [0,1]
x = input to the function

4.3.6 Adam optimizer
In deep learning models, optimizers play a vital role in enhancing model’s perfor-
mance by reducing loss. Adam optimizer is acquired from adaptive moment estima-
tion because the algorithm is designed in such a way that adam optimizer utilizes
approximation of first and second moments of gradient to adjust the learning rate
for different variables of the network [26]. Moreover, adam optimizer function is de-
veloped by incorporating the concepts of AdaGrad and RMS prop algorithm which
are extensions of Stochastic Gradient Descent(SGD). The formula for bias correction
and update in Adam optimizer are [26] :
Bias correction formula for 1st moment:

m̂t =
mt

1− βt
1

(4.6)

Here,
m̂t = 1st moment
βt
1 =hyperparameter

Bias correction formula for 2nd moment:

v̂t =
vt

1− βt
2

(4.7)
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Here,
v̂t = 2nd moment
βt
1 =hyperparameter

Updating weight:
θt+1 = θt −

α√
v̂t + ε

m̂t (4.8)

Here,
θt = weight
α=step size
ε= mitigate zero division

4.3.7 Loss Function
Loss function can be used to understand the performance of a model. If the model
can predict outcome properly or approximately to actual results the loss value will
be smaller. On the other hand, if the model performs badly in predicting then
the loss value will be higher. As our Siamese model will determine the similarity
and dissimilarity between two rows Binary Cross Entropy loss function is used in
which 0 denotes dissimilar and 1 denotes similar. Hence, the loss is determined by
calculating the deviation between the actual value and predicted outcome.

4.4 Federated Learning
Federated learning is a machine learning method or technique that allows several
clients to collectively train a model based on its own dataset while maintaining the
privacy of their respective user data [27]. It uses the approach of dividing the data
among clients to handle privacy issues while maintaining the ability to build pre-
cise models. According to Martineau, federated learning provides a technique that
allows us to develop new applications by training different models without the need
of centralizing the data in one place [28].

The fundamental objective of Federated learning is that data can be stored on in-
dividual users’ devices and yet be used to train machine learning or deep learning
models, instead of using the traditional method of using centralized dataset [27]. For
instance, Given that protected health information cannot be exchanged as freely as
other businesses due to HIPAA and other laws, the healthcare sector is one of those
that can gain the most from federated learning. Thus, this strategy is especially
significant in situations when extremely sensitive data, like patient records cannot
be shared or held centrally. Hence, there is no issue regarding data privacy. In this
manner, the development of AI models can benefit from vast amounts of hetero-
geneous data from various healthcare databases and devices while being compliant
with laws [29].

The basic concept of Federated Learning is, the model training process or the dataset
must be divided into a few smaller sub-tasks, each of which is given to a different
user device. Next, the outcomes of these sub-tasks are then sent back to the central
server. Additionally, these sub-tasks are then forwarded to the devices, where they
are executed on the local data. The server then aggregates or averages the weights
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and parameters from each device in order to update the global model. Moreover,
there are three variations of this decentralized training approach, where the primary
model in horizontal federated learning is trained on comparable datasets, second the
data are complementary in vertical federated learning; movie and book evaluations,
for instance, are integrated to predict a person’s musical tastes. Finally, federated
transfer learning involves training a model that has already been trained to accom-
plish one task, such as detecting automobiles, on a different dataset to perform
another task, such as, recognizing cats [28].

Figure 4.7: Federated Learning Architecture [30]

The advantages of Federated Learning can be established as:

1. Increased Accuracy: The model’s accuracy is increased by using training data
from several devices to create a more diverse and representative dataset

2. Decreased Computational Power: The heavy load on the central server is
reduced by dividing the data and training to client devices, which in order
makes the overall training effective by spreading the computation to local
devices.

3. Maintain Privacy: Data is still stored locally, decreasing the possibility of
data breaches and hampering user privacy. Users can opt to participate in the
model training process and have control over their data.

4. Data Security: This federated learning technique uses secure communication
methods and proper encryption to guarantee the privacy and integrity of the
data by keeping the data in local devices only.
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5. Relevance in Real-World: The decentralized data used in federated learning
more accurately depicts actual environments, improving the model’s effective-
ness in real-world applications.

6. Collaborative Training: Federated learning effectively uses collaborative model
training efforts between various clients without hampering the privacy of their
data.

7. Scalability: Federated learning can be used in situations where there are a
large number of user devices since it allows for the wide-scale training of models
without the need for centralized data storage.

These benefits make federated learning an efficient approach for machine learning
in situations where maintaining data privacy is significant and contribute to its
growing popularity in various industries research domains. Federated learning is a
crucial method for furthering machine learning in a privacy-conscious world despite
these difficulties. Natural language processing, picture identification, and health
care are just a few of the uses it has already seen. Federated learning will probably
gain popularity as a machine learning approach as more organizations begin to
understand the value of data privacy.

4.5 FFSB-LSTM Working Principle

4.5.1 Training
Initially, the train data after split is used to create pairs of similar and dissimilar
instances based on the genotype class label to train the Siamese Bi-directional LSTM
network to compute the similarity between two instances from the dataset. For
each of the genotype classes, an equal number of similar pairs with target 1.0 and
dissimilar pairs with target 0.0 are created. Since, for each class nC2 Similar pairs
can be created, where n is the number of instances in one class label, the pairs
dataset is comparatively larger than the original dataset and adequate to train an
LSTM model. Therefore, the pairs dataset would have the following format, where
f represents a feature value and target is the similarity score:

Table 4.1: Pairs Dataset to Train Bi-LSTM

patient_input1 patient_input2 target

[f1,f2,f3,f4,............,fk] [f1,f2,f3,f4,............,fk] 1.0

[f1,f2,f3,f4,............,fk] [f1,f2,f3,f4,............,fk] 0.0

[f1,f2,f3,f4,............,fk] [f1,f2,f3,f4,............,fk] 1.0

... ... ...

... ... ...

[f1,f2,f3,f4,............,fk] [f1,f2,f3,f4,............,fk] 0.0
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Subsequently, our proposed FFSB-LSTM model would have the following funda-
mental architecture or work flow:

Figure 4.8: FFSB-LSTM Model Architecture

Initially, the input sequence with k clinical features is reshaped to the format of a
3D-tensor with shape (batch-size, time-steps, sequence-length). Hence, the shape of
each input sequence becomes (1,k,1), with each feature representing one time-step
and as a result the BI-LSTM will process each feature in a single time-step learning
complex patterns between the features. Each pair from patient_input1 and pa-
tient_input2 is fed in the Bi-LSTM separately as two inputs. Thus, for each input
the Bi-LSTM will run k timesteps and produce an output of shape (1,n), with n
hidden state representations based on its learning of the input sequence, named En-
coded Vector since the model will have n-units. The two encoded vectors from the
two inputs will then be passed to a lambda layer, which will compute the element-
wise difference between the vectors and output the L1-Distance vector with shape
(1,n). Consequently, the distance vector is passed to the last Dense layer, which will
first multiply the vector with its learnable weights of shape (n,1) and add a bias term
to the scalar value of shape (1,1). This value is then passed through the sigmoid
function to translate it within the range [0, 1], which represents the similarity score
between the two inputs.
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Hence, after the first iteration the model will compute the Binary Crossentropy loss
by comparing with the true similarity values given during training and based on the
loss value it will optimize the internal parameters and weights during backpropaga-
tion using the Adam optimizer which uses stochastic gradient descent. Thus, the
model will then run for several epochs on the whole training pairs dataset, updating
its parameters after each batch of train data.

Additionally, in the case of Federated Siamese BI-LSTM, the same model is wrapped
as the global model with little changes to hyperparameters such as units or batch-
size and sent to the client devices. Moreover, the train data is randomly and equally
divided among the clients, with each receiving about equal instances of data from the
original dataset. Next, the global FFSB-LSTM model is sent to the client devices
and each client will then create its own pairs dataset and train the custom Siamese
BI-LSTM model for several epochs with computing loss function to optimize using
Adam optimizer and update the global model by averaging the parameters from the
clients after each round. Additionally, the global model will send back the updated
global model weights to the client models before each round. As a result, the global
model will only receive updates on internal parameters and weights but the training
on data will occur at client level.

4.5.2 Testing
The Siamese Bi-LSTM model built can compute similarity between two instances
of data, but the prediction will be classification of the genotype label with unique
classes. In order to predict the genotype, first a support set is created, which in this
case will be the train data. The support set is the data with the genotype column,
with which the model will compare the test data to to predict the genotype class.

Hence, a test row with k features and unknown genotype is sent to the trained
Siamese Bi-LSTM model, which will compute the similarity score between the test
row and all the other rows in the support set based on its learning of the complex
hidden relationships within the features. The top 10 rows or instances in the support
set with most similarity with the test instance are selected and a voting method is
applied to these top 10 rows, where the genotype class with most votes is selected
from the support set as the prediction for the given test instance.

Furthermore, Sickle Cell genotype prediction is done for all the instances in the
test data and then the true genotype labels for the corresponding test data along
with the predictions from the model is used to compute the performance metrics
accuracy, precision, recall and f1-score.
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Chapter 5

Implementation and Result
Analysis

5.1 Proposed Model Specifications

5.1.1 Siamese Bi-directional LSTM
The Siamese Bi-directional LSTM network is built using python and the tensorflow
keras library according to the specifications required for our model. The Siamese
Bi-directional LSTM built for our study will be trained to compute the similarity
between two instances of the Sickle Cell dataset for prediction of the genotype.
Thus, the model had multiple layers and the hyperparameters were tuned and set
as per our requirements as follows:

1. A Bi-directional LSTM layer with 150 units along with dropout and recurrent
dropout set to 0.2 to prevent overfitting

2. A lambda layer to compute element-wise difference between the two outputs
of LSTM layer

3. Final Dense layer with 1 unit and sigmoid activation

4. Adam optimizer to update the internal parameters and weights during back-
propagation

5. Binary Crossentropy loss function to compute the loss of the model during
training

6. Batch size will be 32

7. Training the model for 30 epochs

The dataset initially had 216 instances, which was then pre-processed and SMOTE
was applied to remove genotype class imbalance from the dataset. Hence, after
SMOTE the dataset had equally divided instances among the 4 classes and was
further split into train and test based on the ratio 70:30. Consequently, the train
data with 414 instances is then used to create the pairs dataset with 16000 similar
and dissimilar pairs and the dataset will be used to train the Siamese Bi-LSTM with
each input shape being (1,17,1) since there are 17 features. Moreover, output of the
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Bi-LSTM layer will be of shape (1,300) vector of hidden representations since it has
150 units in both forward and backward direction. Hence, the model will be trained
for 30 epochs with batches of 32, while being optimized using the Adam optimizer
based on the Binary Crossentropy loss function value, according to the architecture
discussed in the model working principle section.
Hence, the model summary can be established as:

Figure 5.1: Siamese Bi-directional LSTM model summary

5.1.2 Federated Few-Shot Siamese Bi-directional LSTM
The Siamese Bi-directional LSTM is then also implemented along with the concept
of federated learning to tackle the issue of both limited and decentralised data.
Furthermore, the tensorflow federated framework was used to implement federated
learning in our study. Therefore, the Bi-directional LSTM network had the following
specifications in case of Federated Siamese Bi-directional LSTM:

1. A Bi-directional LSTM layer with 200 units

2. A lambda layer to compute element-wise difference between the two outputs
of LSTM layer

3. Final Dense layer with 1 unit and sigmoid activation

4. Adam optimizer with learning rate 0.01 to update the internal parameters and
weights during training client devices

5. Binary Crossentropy loss function to compute the loss of the model during
training

Moreover, the specifications set for the federated learning aspect are as follows:

1. Train data will be split between 3 clients randomly

2. Batch size will be 64
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3. Training each client model for 30 epochs

4. Train the model for 40 rounds with each round as one step for global model

Hence, the train data with 414 instances is equally divided among the 3 clients,
with each receiving 138 instances randomly. The global model Siamese Bi-LSTM is
initialized and the initial model weights are broadcasted to the clients. The clients
will create pairs dataset from their own respective data in order to train their local
models for 30 epochs with batch size of 64. Furthermore, the input shape will be
(1,17,1) representing a single time-step for each feature, but the output of Bi-LSTM
layer will be (1,400) since the layer has 200 units in this case. Moreover, the data
flow to the next lambda and dense layer is discussed in the model working principle
section. Additionally, Adam optimizer with a slightly larger learning rate of 0.01 is
used to optimize the local models based on the loss function since each client has a
smaller number of instances in this case.

Thus, after training the local model for 30 epochs in one round, the clients will send
back the updated model weights to the global model, which will average the weights
and broadcast again the updated global weights for the next round.Therefore, the
above specifications were set for the training of the FFSB-LSTM model and then
analyze the performance based on the test data evaluation.

5.2 Performance Metrics

5.2.1 Confusion Matrix
Confusion Matrix is used to determine the performance of the classifier [31]. The
confusion matrix is a NxN matrix and gives the summary in terms of predicted
values and actual values.In binary classification, the matrix is of 2x2 and for multi
class classification,the row and column depends on the number of class labels. As a
result, the performance metrics can be calculated from the confusion matrix. The
column represents the predictions of the model and the rows represent the actual
value.

Figure 5.2: Confusion Matrix for Multi-Class Classification [32]

34



Here,
TP:True Positive
TN: True Negative
FP: False Positive
FN: False Negative

5.2.2 Accuracy
Accuracy can be established as the performance metrics to compute the performance
of the algorithm. It represents the ratio of true predictions made out of the total
predictions done and visualized in percentage.

Accuracy =
True Positive+ True Negative

True Positive+ True Negative+ False Positive+ False Negative
(5.1)

5.2.3 Precision
Precision is another performance indicator of a model and shows the percentage of
true predictions predicted by the model.It is the proportion of true positives and
total number of positive outcomes predicted.In case of multi class classification, the
term ‘weighted’ is assigned to average. Thus, precision is calculated for each label
separately and then the weighted average is computed based on the number of true
rows for each label

Precision =
True Positive

True Positive+ False Positive
(5.2)

5.2.4 Recall
Recall is the ability of a model to predict positive outcomes.It is the ratio between
positive predicted outcomes and all actual positive classes.In case of multi class
classification, the term ‘weighted’ is assigned to average. Thus, recall is calculated
for each label separately and then the weighted average is computed based on the
number of true rows for each label

Recall =
True Positive

True Positive+ False Negative
(5.3)

5.2.5 F1 Score
F1 score is the harmonic mean of precision and recall.As it is calculated by the
harmonic mean, the value depends on the precision and recall score of the model
and also helps to compare models.

F1 = 2 · Precision ·Recall

Precision+Recall
(5.4)
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5.3 Result Analysis
The test data is used to analyze the Siamese Bi-directional LSTM and Federated
Siamese Bi-directional LSTM based on the bagging method discussed above, along
with the two baseline models KNN and Logistic Regression, using the performance
metrics accuracy, precision, recall and f1 score. Since, the test data was from the
main Sickle Cell dataset after resampling, it will consist of 178 instances.

In case of Sickle Cell Genotype, the classes are: {‘Homozygous HbAA/HbAA’:1,
‘Heterozygous HbAA/HbSS’:0, ‘Homozygous HbSS/HbSS’:3, ‘Homozygous
HbAA/HbSS ’:2}

5.3.1 K-Nearest Neighbour

Figure 5.3: KNN Confusion matrix

The above figure depicts the number of instances successfully and unsuccessfully
classified by KNN, which shows a total of 124 out of 178 instances being classified
properly. Furthermore, the model could not predict the class labels 0 and 1 properly.
Moreover, the accuracy along with precision, recall and f1 score for the model while
predicting genetic mutation was 69.66%, 69.48%, 69.66% and 65.98% respectively.
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5.3.2 Logistic Regression

Figure 5.4: Logistic Regression Confusion matrix

The accuracy along with precision, recall and f1 score for the model Logistic Re-
gression while predicting genetic mutation was 67.42%, 67.48%, 67.42% and 66.99%
respectively. Consequently, the confusion matrix reveals LR successfully predicted
120 out of 178 instances. Additionally, the LR model had difficulty predicting 0, 1
and 3 genotype class labels.

5.3.3 Siamese Bi-Directional LSTM

Figure 5.5: Siamese Bi-LSTM Confusion matrix
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The accuracy along with precision, recall and f1 score for the model Siamese Bi-
LSTM while predicting Sickle Cell genetic mutation was 90.45%, 91.36%, 90.45% and
90.66% respectively. Additionally, the Siamese Bi-LSTM model had great success
in predicting all 4 genotype class labels to achieve great scores. Consequently, the
confusion matrix reveals Siamese Bi-LSTM successfully predicted 161 out of 178
instances.

5.3.4 Federated Siamese Bi-Directional LSTM

Figure 5.6: FFSB-LSTM Confusion matrix

The above figure reveals the number of instances successfully and unsuccessfully
classified by FFSB-LSTM, which shows a total of 157 out of 178 instances being
classified properly. Furthermore, the model could predict all the class labels to a
great extent compared to the machine learning models. Moreover, the accuracy
along with precision, recall and f1 score for the Federated Siamese Bi-LSTM while
predicting genetic mutation was 88.20%, 89.82%, 88.20% and 88.57% respectively.
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5.4 Overall Performance Comparison

Table 5.1: Performance comparison between models

Models Accuracy Precision Recall F1

KNN 69.66% 69.48% 69.66% 65.98%

Logistic regression 67.42% 67.48% 67.42% 66.99%

Siamese Bi-LSTM 90.45% 91.36% 90.45% 90.66%

Federated Siamese Bi-LSTM 88.2% 89.82% 88.2% 88.57%

Figure 5.7: Performance comparison Bar-Chart
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Based on table 5.1. and fig 5.7.,the performance of the baseline machine learning
models KNN and Logistic Regression can be stated as moderate since they have
accuracy and f1 score in the range 65% to 70%. Consequently, it proves that limited
data, even after SMOTE resampling, was not adequate to train the machine learn-
ing models even though the algorithm of these models usually make them efficient
in classification tasks.

On the contrary, the proposed FFSB-LSTM along with Siamese Bi-LSTM model in
our study performed substantially better compared to the baseline models when pre-
dicting the Sickle Genotype even from limited and decentralised data. The Siamese
Bi-LSTM achieved an accuracy of 90.45% and f1 score of 90.66%, which is slightly
better than the Federated Siamese Bi-LSTM with accuracy of 88.20% and f1 score
of 88.57%. Moreover, the performance scores reveal that the Siamese Bi-LSTM im-
plementation is effective at learning underlying complex patterns and dependencies
even from structured non-sequential dataset while computing the similarity scores.
Therefore, the performance analysis asserts that our proposed Federated Siamese
Bi-LSTM model was successful to a great extent in predicting Sickle Cell genotype
from a limited and decentralised dataset.
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Chapter 6

Conclusion

Sickle Cell is a chronic genetic disorder which progresses with time and becomes
life-threatening as it gradually affects other organs such as liver, lung, kidneys etc.
Furthermore, the progression of Sickle Cell can be predicted to a great extent based
on the type of genetic mutation of a patient in the HBB gene, but the medical test
available for these factors often pose multiple restrictions and limitations. More-
over, the issue of limited data and patient clinical data privacy-security concerns
motivated us to implement a Federated Siamese Bi-directional LSTM. The Siamese
Bi-LSTM was trained on data pairs to compute the similarity between instances,
while the data was divided among clients in the case of federated learning, to de-
velop a supervised model for the prediction of Sickle Cell genotype. Hence, the study
used a Sickle Cell clinical dataset of 216 children in Africa with 4 different genotype
classes to evaluate the performance of the developed Federated Siamese Bi-LSTM
(FFSB-LSTM) model. The performance analysis reveals that baseline models like
KNN had a max accuracy and f1 score of 69,66% and 65.98%. However, our Fed-
erated Siamese Bi-LSTM model showed substantial improvement at predicting the
genotype by achieving an accuracy of 88.20% and f1 score of 88.57%. Additionally,
the Siamese Bi-LSTM model without federated learning could achieve 90.45% test
accuracy by training on the Sickle Cell dataset. Furthermore, the results assert that
the Bi-LSTM model was successful in capturing the hidden patterns and relation-
ships within the clinical features for non-sequential tabular data while computing
similarity. Therefore, our research built a Federated Siamese Bi-LSTM to predict
the genetic mutation of Sickle Cell patients from clinical data.

Therefore, our research study is limited to the implementation of only one kind of
Few-Shot technique and so the future work based on our current model Federated
Siamese Bi-directional LSTM to predict the Sickle cell genotype from limited and
decentralised clinical data, could be the implementation of a different Few-shot
algorithm such as Model Agnostic Meta Learning(MAML) or Relational Network,
instead of a Siamese network. Moreover, the concept of Heterogeneous Federated
Learning can also be introduced, where the data among the clients have different
structure and features or might have model heterogeneity. Furthermore, custom
optimizers, loss functions or layers can be built for the LSTM model to improve the
accuracy and f1 scores further.
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