
Construction of 3D Environment from
2D RGB Images and Depth Information

by

Redwanul Islam Shakir
19101052

Sarwar Hossain
19101187

Mehrab Mohsin Khan
19101378

Md Ishtiaq Enam Mayaz
19101112

A thesis submitted to the Department of Computer Science and
Engineering in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science And Engineering

Department of Computer Science and Engineering
Brac University

May 2023

© 2023. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Redwanul Islam Shakir
19101052

Sarwar Hossain
19101187

Mehrab Mohsin Khan
19101378

Md Ishtiaq Enam Mayaz
19101112

i

Approval
The thesis/project titled “Construction of 3D Environment from 2D RGB Images
and Depth Information” submitted by

1. Redwanul Islam Shakir(19101052)

2. Sarwar Hossain(19101187)

3. Mehrab Mohsin Khan(19101378)

4. Md Ishtiaq Enam Mayaz(19101112)

Of Spring, 2023 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science and Engineering on May 30,
2023.

Examining Committee:

Supervisor:
(Member)

Mr. Rafeed Rahman
Lecturer

Department of Computer Science and Engineering
BRAC University

Co-Supervisor:
(Member)

Md. Ashraful Alam, PhD
Assistant Professor

Department of Computer Science and Engineering
BRAC University

ii

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
BRAC University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
BRAC University

iii

Abstract
Modern operations have introduced a new class of highly functional applications,
redefining what can be built in a given amount of time. 3D modeling is required
to resolve several shortcomings in outdated processes and enhance design team effi-
ciency. Modern 3D modeling should be able to deliver design depth that 2D drawings
or designs cannot. Furthermore, it should also allow engineers to experiment with
physical components of a design without being constrained by physical constraints.
This research paper proposes and demonstrates a 3D Construction method for cre-
ating a 3D Mesh by acquiring depth and color dataset from a real object using the
Microsoft Kinect Sensor and HD Camera, which can then be extracted to applica-
tions such as game engines like Unity or other designing applications for the creation
of the reference plane and, ultimately, the three-dimensional Environment Model.

Keywords: 3D-Model; 2D-Images; RGB; Depth; Microsoft Kinect; IR Camera; HD
Camera; Construction; Sensors; Distance Vectors; three-dimensional Environment

iv

Acknowledgement
Firstly, all praise to the Almighty Allah for whom our thesis have been completed
without any major interruption.

Secondly, to our Supervisor Mr. Rafeed Rahman Sir and our Co-Supervisor Dr.
Md. Ashraful Alam Sir for their kind support and advice in our work. They helped
us whenever we needed help.

And finally to our parents without their throughout support it may not be possible.
With their kind support and prayer we are now on the verge of our graduation.

v

Table of Contents

Declaration i

Approval ii

Abstract iv

Acknowledgment v

Table of Contents vi

List of Figures vii

1 Introduction 2
1.1 History of 3D Modelling . 2
1.2 Problem Statement . 3
1.3 Research Objectives . 3
1.4 Research Benefits . 3

2 Detailed Literature Review 5

3 Work Plan 9

4 Model Implementation & Analysis 10
4.1 Description of the Model . 10
4.2 Description of the Data . 12
4.3 Preliminary Analysis . 13

5 Construction of the Mesh 15
5.1 Point Cloud . 15
5.2 Introducing offset to depth . 16
5.3 Filtering and cleaning the points . 17
5.4 Mesh Construction and Refinement 17
5.5 Mesh Comparison with and without offset 18

6 Conclusion 19

Bibliography 21

Appendix A Code Snippet 22

vi

List of Figures

3.1 Flowchart Diagram of Work Plan . 9

4.1 RGB Image . 10
4.2 Grayscale Depth Image . 10
4.3 Raw Data from Dataset . 12
4.4 Scatter Plot of Data (Top View) . 13
4.5 Scatter Plot of Data (Side View) . 14
4.6 Scatter Plot of Data (Front View) . 14

5.1 Front and Top view of Point Cloud Visualization 15
5.2 Front and Top view of Point Cloud Visualization after adding offset . 16
5.3 Front and Side View of Mesh visualization 17
5.4 Top view of mesh with offset(right) and without offset(left) 18

vii

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

2D Two-Dimensional

3D Three-Dimensional

AE Auto-Encoders

CAD Computer- Aided Design

ICP Iterative Closest Point

IR Infrared

IRT Infrared Thermography

NY U New York University

RGB Red, Green & Blue

RGB −D Red, Green, Blue - Depth

SDK Software Development Kit

V 3DOR Voxel-based 3D Object Reconstruction

V AE Variational Auto-Encoders

V FX Visual Effects

1

Chapter 1

Introduction

1.1 History of 3D Modelling
Starting from the 1950s, the computer-generated visuals were created by computer-
aided design (CAD) software utilizing the limited 2D graphics technologies they had.
The use of computerized 2D drawings and blueprints has expedited and enhanced
the planning process. The idea and implementation of 3D computer-generated im-
agery dates back to the 1960s. The aforementioned graphics were employed within
gaming contexts.

The advancement of 3D modeling software occurred during the 1970s. Individu-
als may generate progressively intricate three-dimensional models through the ap-
plication of diverse techniques and approaches. The possibility of obtaining data
from various sources was feasible due to the program’s capabilities. At present, 3D
printers enable individuals to transform their digital designs into tangible three-
dimensional objects.

During the 1980s, the film and television industries were introduced to 3D modeling
through ”The Adventures of André and Wally B.” This occurred concurrently with
the release of the initial 3D-animated motion picture. Auto CAD and 3D Studio
Max came out to help designers model the objects and environments.

In the next decade, there was a development of 3D modeling tools, like Blender,
for personal computers and video games. These tools contributed to the change in
3D modeling architecture. Later, this widespread 3D modeling gave birth to virtual
and augmented reality, which emerged during the 2000s.

3D modeling now has a massive number of applications that include animations,
cinematography, architecture, gaming and more.

2

1.2 Problem Statement
Beginners usually struggle to create 3D mesh due to their technical complexity. This
makes 3D construction difficult for beginners as it requires a lot of work and atten-
tion to detail and also being unfamiliar to the field, hence it takes a lot of time.
Making 3D meshes rapidly is difficult for most designers. The Computer-Aided
Design (CAD) software that is now available lacks the adequate capabilities to ac-
curately map the quantitative measurements of objects found in the environment.
Hence, the process of creating a 3D model involves a very large share of manual
labor when linking specific points, approximately modeling curves and surfaces, and
applying textures to surfaces[12]. 3D modeling demands expensive software and
tools. This might be an impediment for beginners in 3D modeling.

1.3 Research Objectives
New approaches and algorithms are needed to build more accurate and efficient 3D
models. Automating 3D model generation saves time and allows for detailed rep-
resentations of massive items and surroundings. New ways for collecting, process-
ing, and displaying enormous volumes of data, 3D models, and real-time rendering
are needed to provide interactive experiences for Virtual and Augmented Reality,
Gaming, Robotics, and other industries. Technology, information, and demand for
three-dimensional meshes necessitate these approaches. Technology must develop
for 3D engagement. Phone cameras can recreate real-world scenes. Faster 3D model
creation, editing, and viewing.

We aim to make 3D model development more accurate, efficient, and automated,
and we want to create novel methods to store and include massive quantities of
data so our models may be utilised in more situations. These will help us create
pragmatic and useful models.

1.4 Research Benefits
Numerous sectors, including gaming, robotics, architecture, and social media plat-
forms, are placing a growing emphasis on diversified, elevated 3D content[14]. How-
ever, aesthetic modeling abilities and specialized technological expertise are required
for the time-consuming manual generation of 3D products. With the use of 3D
models, engineers and designers can spot and fix flaws before they lead to major
blunders. For the benefit of architects, urban planners, and engineers, they may
also model and reproduce real-world objects and settings. Video game characters,
environments, and VFX may all benefit from 3D assets.

Moreover, in order to better comprehend and treat complex biological and healthcare
systems[12], researchers may employ 3D assets to construct simulations and visu-
alizations. Augmented and virtual reality applications in the fields of education,
entertainment, and training rely on 3D models to generate convincing surroundings
and interactions with the real world. Robots may be designed and tested in virtual

3

worlds using 3D models that imitate their movements and interactions. The use of
3D meshes in the design and planning stages of building projects has allowed ar-
chitects and engineers to better envision the final result and spot possible problems
before work even starts.

Therefore, 3D assets are frequently utilized to boost efficiency and lower costs in a
number of industries for the reason that they enable greater perception, construction,
and assessment ahead of the actual execution of a solution being carried out. This
may be accomplished by making provision for enhanced analysis of a proposal prior
to being successfully implemented in a system.

4

Chapter 2

Detailed Literature Review

In this section, we will explore various research papers pertaining to previous works
done on 3D model creation, devices and techniques used, in order to obtain an un-
derstanding of our research field elaborately.

Kinect is equipped with a Red, Green, and Blue (RGB) Camera in addition to an
Infrared (IR) Emitter and camera[3]. They are able to record colorful images as
well as the depth of each pixel in the environment that is being seen. These data
include information about the visual appearance of the frames as well as its geome-
try. They work well together and enable activities that would be challenging, if not
inconceivable, if relied solely on visual representations. As a consequence of this,
the data that is gathered by the Kinect (RGB & Depth) has an architecture that
produces a new method of processing visuals that is referred to as RGB-D Image.
A camera capable of capturing RGB light was used to create the colorful picture.
The measuring of depth is carried out with the assistance of an infrared emitter
and camera. However, the Kinect depth has various issues, such as noise and holes,
which need some more complex filtering strategies.

This research[11] presents a novel neural network architecture that makes use of deep
learning in order to do gait recognition using Kinect in a way that is both reliable
and effective. The performance of the classifier is improved as a result of the training
of the proposed neural network model using view- and pose-invariant feature vectors
of dynamic joint relative cosine dissimilarity and joint relative triangular area. The
iterative usage of the Adam optimization strategy may reduce the deterioration of
the objective function. The suggested model is examined in contrast to a variety
of different alternative models, some of which include the hyperbolic tangent ac-
tivation function and the rectified linear unit activation function, amongst others.
In particular, a comparison is made between the more conventional approaches to
machine learning and the several gait detection systems that have been created in
more recent times. The deep learning neural network that was recommended, when
trained using the presented geometric attributes, attained the highest possible level
of accuracy.

Furthermore, the introduction of Intel’s RealSense D400 Series depth imaging tech-
nology marks a significant step forward since it provides a collection of low-cost,
user-friendly 3D cameras that can be used in various environments[15]. In addition,

5

this cutting-edge technology is offered in an extensive range of adaptable hardware
configurations, for understanding the convenience and the efficiency with which de-
velopers may create 3D vision applications using the Intel RealSense Software De-
velopment Kit (SDK). The application makes use of depth information in order to
provide real-time data on the actual size of objects in a video stream that was cap-
tured by a RealSense depth cameras. The program used computer vision packages
that are widely used, such as OpenCV, in conjunction with deep learning methods
for the purposes of object localization and identification.

According to this article[6], the use of infrared thermography to determine how dif-
ferent items and surfaces are heated has proliferated across several sectors. If spatial
information on the temperature distribution is provided using several infrared ther-
mography (IRT) images collected by a 2D thermal imager to pinpoint the precise
location of a heat source in 3D, the approach may be further extended to 3D applica-
tions. Thermal imaging collects data on temperature and other physical properties
in three-dimensions. In order to accurately capture the shapes and colors of the
environments under study, a color camera was used. The technique creates a 3D
model from the thermal pictures using silhouette volume intersection. To evaluate
the quality of the reconstructed 3D models, researchers contrasted the entropy tech-
nique and Otsu’s approach, both of which rely on reprojection scoring. Reprojection
rating is used to objectively compare the various methods’ efficacy and precision.

This research[12] provides a temperature-based 3D reconstruction approach which
uses multimodal blended images and Structure from Movement and Multi-view
Stereo. Automated analysis of radiometric data to eliminate infrared interferences,
boost false-color contrast, and multimodal co-registration under controlled condi-
tions yielded infrared visuals. Quantitative investigations using IR and visible-light
modalities aid sophisticated processing like 3D reconstruction, which is crucial in bi-
ological research. An efficient method of image fusion is able to extract information
from the source data and include it in the combined images without introducing
artifacts that might compromise the accuracy of the results. Excellent visible-light
photographs and infrared images were required in order to reconstruct surfaces suc-
cessfully in a significant and accurate manner. For the purpose of treating diabetic
feet and making diagnoses, automatic processing of IR radiometric for 3D surface
reconstruction of the foot was presented. This was shown using a temperature
measurement. It eliminates the need for human processing and processes all data
and picture arrays according to the same segmentation criteria, hence reducing the
amount of time required and eliminating the possibility of user interpretation.

In the following paper[8], a quality Vector generative model of an object is uti-
lized to both create a new 3D model and also enable perception from a 2D image.
The study presented the TL-embedding network, which combines an autoencoder
to guarantee a dynamic representation with a convolutional network to provide a
predictable one.The extraction of 3D models and voxel prediction from 2D images
are only two of the many jobs that are made possible as a direct consequence of this
development. After applying convolution and deconvolution layers to encode the 3D
voxel map to a low-dimensional domain, the autoencoder decodes a datapoint to a
3D mapping. The autoencoder ensures embedding so objects may be reproduced.

6

In order to train the TL-embedding network, it is required to have both 2D RGB
photos and the 3D voxel maps that correspond to them. This is the case through-
out the training phase of the network. Displaying CAD models against a diverse
selection of random settings was used to generate voxel maps. This was done since
there is such a little quantity of this data that is currently accessible.

The topic of this study[7] is the reconstruction of a 3D model from a single picture,
and Point cloud coordinates, which is an easy-to-understand format, are how the
final product is presented to the user. The developed architecture is a conditional
shape sampler that is capable of predicting several realistic 3D point clouds from an
input picture, despite the unconventional output form and the inherent discrepancy
in shape for an input image. This is the case despite the fact that the output form
is unconventional and the shape of an input image is inherently inconsistent. The
point set generator architecture, which implements the point set prediction network,
and the distance metric between point sets are the essential models that are em-
ployed in the generation of 3D models. Nevertheless, the most difficult aspects of
working with this model are coming up with a way to represent unordered data
using a three-dimensional point cloud and determining how best to handle certain
ambiguities.

The Voxel Coloring Algorithm used in this study[2] necessitates a large amount of
storage space for its calculation and voxel array, and it is not always successful
in concealing an object’s sharpness. Simpler and more powerful computers have
contributed to the rise in popularity of volumetric reconstruction methods for 3D
reconstruction. The consistency metric is crucial in Photo-Consistency based recon-
struction. When we use threshold-based methods like original consistency check and
adaptive consistency check, The quality of the image that is rebuilt is significantly
impacted by the threshold value that we choose to utilize in the reconstruction pro-
cess. There is still another method for evaluating voxel consistency that does not
depend on a threshold value, and that method is the histogram consistency check.

In another similar work[13], the use of autoencoders (AE) and variational autoen-
coders (VAE) models for voxel-based 3D object reconstruction (V3DOR) from a
single 2D picture is proposed for improved accuracy. From a single 2D picture, the
encoder of both models learns an appropriate compressed latent representation, and
the decoder creates the matching 3D model. There are three primary phases to the
suggested technique. To begin, the encoder is fed the input 2D picture and uses it to
learn the geometrical constraints in compressed form. Second, the latent represen-
tation of the input picture is acquired during encoding in the basic AE method. In
contrast, the proposed 3D-VAEN method computes mean and standard deviation
encoded vectors from input data during the encoding step. Third, a decoding pro-
cedure is executed to transform the acquired encoded information into a 3D model.
For each of the two methods that have been presented, decoding works in the same
way. The suggested method’s quality is shown via the usage of IOU as a criterion
of assessment. Unfortunately, satisfactory results from cross-data-set validation are
not to be anticipated.

7

As proposed by this article[1],The affine deformation of the object that is seen in
the observable picture under a weak perspective may be used to help quantify the
degree to which a 2D image differs from a 3D model. This can be done by assign-
ing a specific degree to the difference. Existing measurements that are derived in
image space (image metrics), as well as metrics that are generated in transforma-
tion space (transformation metrics), can quantify the distance that separates the
observed picture from the view of the item that is closest to it. Image metrics and
transformation metrics both quantify this distance. The transformation metric that
was used in the study may either be utilized to evaluate the image metric or directly
examine the degree to which models and graphics are similar to one another. Both of
these options are available to the researcher. In addition, the Alignment algorithm
is a technique that examines the comparability of models and pictures based on the
fewest feasible correspondences that exist between the two different kinds of media.
This approach is known as the Minimum Correspondence Approach. Even though
the use of few correspondences is advantageous for object recognition in polynomial
time complexity while mitigating partial occlusion, it frequently leads to inaccura-
cies in the calculation of the distance between models and images.

Using laser scanning, geometric computer vision, and photogrammetry, this arti-
cle[9] outlines generic methods for 3D data acquisition. It is possible to combine the
created point clouds by making use of the most recent advancements in laser scan-
ning, computer vision, photogrammetry, and statistical inference. For the purpose
of capturing on-site 3D data on buildings and urban design, traditional terrestrial
data collection and 3D modelling techniques, such as laser scanning and photogram-
metry, are used. This allows for the creation of 3D building models that have fully
textured surfaces. First, they need to be georeferenced with the assistance of control
data, and then they need to be connected together. Through the use of vanishing
lines and points, it is possible to manually reproduce the posture of the camera by
using the interactive modelling approach, which is an extremely effective technique.
This quest is made easier by the availability of numerous software packages for 3D
modelling and processing units that are of higher quality.

Moreover, this study[14] suggests a novel approach to developing a high-quality gen-
erative model in three dimensions. As part of its computation, our model generates
meshes and uses a fast (differentiable) graphics renderer. With the help of GET3D,
regular 3D graphics engines can generate textured models. During training, the 3D
model is rendered as 2D high-resolution images via a differentiable rasterizer. A 3D
SDF and texture field were generated using two hidden codes. After that, networks
of non-linear mapping nodes were developed. These templates control the creation
of 3D shapes and textures. The model can produce shapes with any topology, high-
quality textures, and many geometric elements, making the creation of 3D material
accessible to a wider audience. A.I. However, in order to train, 2D silhouettes were
used, and cameras were placed strategically. All of the evaluations of GET3D were
conducted using simulated data. Models textured using GET3D are analyzed using
pre-existing ShapeNet and Turbosquid datasets.

8

Chapter 3

Work Plan

To implement the proposed theory we decided to go through the following steps to
get the desired data and adjust it according to our need to construct and refine a
3D mesh before implementing it in a game engine or CAD.

Figure 3.1: Flowchart Diagram of Work Plan

9

Chapter 4

Model Implementation & Analysis

4.1 Description of the Model
We used Processing 4 to frame capture 2 images from Kinect 1414 of XBox360 using
the library kin4win32. The Kinect of Microsoft is a discontinued device[3], therefore
we had to use 3rd party softwares and libraries to connect and get the data from
the Kinect. The two frames (RGB & Grayscale depth image) we used out of many
of our test models taken from NYU-Depth V2[4] dataset are shown below:

Figure 4.1: RGB Image Figure 4.2: Grayscale Depth Image

The images are slightly out of sync. The first task is to get them aligned. We can
use face detection to align the images[5] or manually crop them to align.

We extracted the raw RGB values of both images. The image is a grayscale image
and it provides all the RGB values of 1 pixel as the same value. The value is
between 0 to 255, farthest to closest, is also called depth value. The minimum range
of the kinect is 80cm and maximum is 400cm[3]. The range is 320cm, the difference
between maximum and minimum. The maxdepth is the maximum range of the
kinect sensor. The following formula shows the depth calculation:

z = maxdepth− range ∗ depthvalue
256

(4.1)

10

The i, j are the position of the pixel in 2D, focal is the actual focal length of the
depth sensor, xResolution is the resolution of the image on x-axis and yResolution
is the resolution of the image on y-axis. The following formulae are required for the
calculation:

x =
i− xResolution

2

focalx
(4.2)

y =
j − yResolution

2

focaly
(4.3)

Thus, the x, y, z of the 3D environment is calculated via a very simple equation.
This algorithm has a running time of O(n) where it runs the number of times that
equals the total number of pixels.

11

4.2 Description of the Data
The data we managed to pull out consists of x,y,z coordinates of each point to be
drawn in unity along with the RGB raw values and raw depth value providing a
raw RGB-D dataset with processed x, y, z coordinates. If the image is 640x480, the
dataset will contain 640 times 480 data, which is 3,07,200 pixels with their color
value and point coordinates. The data looks like the following:

Figure 4.3: Raw Data from Dataset

12

4.3 Preliminary Analysis
After obtaining the coordinate values, we did an analysis to test the data by scat-
tering the data on a 3D plane using matplotlib. The 3D visualization was what we
were expecting. The following diagrams demonstrate the scatter plot of the data.

Figure 4.4: Scatter Plot of Data (Top View)

13

Figure 4.5: Scatter Plot of Data (Side View)

Figure 4.6: Scatter Plot of Data (Front View)

14

Chapter 5

Construction of the Mesh

5.1 Point Cloud
All the RGB values are taken into an array and the x,y,z, are taken into another
array which is called points. We use Open3D[10] to draw the geometry, make the
mesh and also do some post processing. This is a library that helps to develop
programs that deal with 3D. Open3D contains sets of python and C++ algorithms
that help process the point cloud and to visualize them.

A point cloud was created using Open3D geometry. The x, y, z points and RGB
color values are added to the point cloud. The point cloud can be visualized using
Open3D’s visualization and one example is shown in Figure 5.1:

Figure 5.1: Front and Top view of Point Cloud Visualization

15

5.2 Introducing offset to depth
It can be seen in Figure 5.1 that the front view is quite detailed while the top view
looks like a set of lines. This is because of the low accuracy of the sensor. This will
impact negatively while creating a mesh. To overcome this, an offset is introduced
to the depth which will smoothen the depth. The value is between 0 to 255, farthest
to closest, is also called depth value. The minimum range of the kinect is 80cm and
maximum is 400cm[3]. The range is 320cm, the difference between maximum and
minimum. The randint(10) takes a random integer from 0 to 10. Offset is calculated
by the following formula:

offset =
range ∗ depthvalue
256 ∗ randint(10)

(5.1)

z = z ± offset (5.2)

This offset displaces some points by a random small proportion of depth per bit
on the z-axis. This causes the linings in the point cloud to smoothen. Here is the
visualization after introducing offset:

Figure 5.2: Front and Top view of Point Cloud Visualization after adding offset

16

5.3 Filtering and cleaning the points
Filtering and cleaning is done by Open3D. The neighbors of the points are cleaned
by removing statistical outliers. The cloud is downsampled using voxel downsam-
pling. Then radius outliers of the point neighbors are filtered. The normals of the
downsampled cloud is estimated using KDTreeSearchParamHybrid of Open3D, and
afterwards the normals are oriented along the tangent of the plane. A filtered cloud
point is obtained that is ready to be constructed to a mesh.

5.4 Mesh Construction and Refinement
Surface Reconstruction from Open3D is used on the filtered cloud point with normals
to make a triangle mesh. A few post processing is done on the mesh to clean it.
Laplacian smoothing and taubin smoothing is done on the mesh. Duplicate and
degenerate triangles are removed, duplicate vertices are removed and non manifold
edges are removed. Finally, after all the refinements are done, the mesh is ready to
be displayed and saved to be used later for different purposes. The visualization of
Open3D is now used to visualize the mesh:

Figure 5.3: Front and Side View of Mesh visualization

17

5.5 Mesh Comparison with and without offset
The comparison is shown below in Fig 9. The mesh without offset has more lines
like structure present at specific displacements in the depth (z) axis, making it less
like the original object. Meanwhile the mesh with offset added to depth shows a
significant improvement and the mesh looks more refined although including this
offset causes it to lose a few details.

Figure 5.4: Top view of mesh with offset(right) and without offset(left)

18

Chapter 6

Conclusion

After the collection of data, pre-processing, analysis and mesh creation, we can see
that the proposed theory of producing a 3D environment from just a RGB image
and its corresponding Grayscale Depth image is feasible. RGB image can be taken
by any ordinary camera while the depth image can be taken by a Kinect or Lidar or
IR camera. Our depth calculation approach might be used to determine the depth
of each pixel in order to produce a three-dimensional representation. This method
makes the process of making standard 3D objects and environments considerably
faster and simpler. More improvements can be done to the mesh by using a depth
and RGB sensor of higher resolution and better focal length. Taking more photos
from various angles and applying registration on all the meshes using ICP(Iterative
Closest Point) may result in a finer and more accurate mesh.

The sensors needed are available to most of the smart mobile phones around, like
phones these days usually have cameras more than 40 megapixel and some phones
come with Lidar sensor, one of the best depth sensors. They will be able to replicate
an environment just that easily with very high render quality.

To conclude, it can be said that this proposed theory will be of great help to 3D
artists, game developers, AR and VR developers and architects.

19

Bibliography

[1] R. Basri and D. Weinshall, “Distance metric between 3d models and 2d images
for recognition and classification,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 18, no. 4, pp. 465–479, 1996. doi: 10.1109/34.
491630.

[2] K. Susheelkumar, V. Semwal, S. Prasad, and R. Tripathi, Generating 3d model
using 2d images of an object, Jan. 2011.

[3] L. Cruz, D. Lúcio, and L. Velho, “Kinect and rgbd images: Challenges and
applications,” 2012 25th SIBGRAPI Conference on Graphics, Patterns and
Images Tutorials, pp. 36–49, 2012.

[4] P. K. Nathan Silberman Derek Hoiem and R. Fergus, “Indoor segmentation
and support inference from rgbd images,” in ECCV, 2012.

[5] R. Min, N. Köse, and J.-L. Dugelay, “Kinectfacedb: A kinect database for face
recognition,” Systems, Man, and Cybernetics: Systems, IEEE Transactions
on, vol. 44, pp. 1534–1548, Nov. 2014. doi: 10.1109/TSMC.2014.2331215.

[6] C.-Y. Chen, C.-H. Yeh, B. Chang, and J.-M. Pan, “3d reconstruction from
ir thermal images and reprojective evaluations,” Mathematical Problems in
Engineering, vol. 2015, pp. 1–8, Aug. 2015. doi: 10.1155/2015/520534.

[7] H. Fan, H. Su, and L. J. Guibas, “A point set generation network for 3d object
reconstruction from a single image,” 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2463–2471, 2016.

[8] R. Girdhar, D. F. Fouhey, M. D. Rodriguez, and A. K. Gupta, “Learning a pre-
dictable and generative vector representation for objects,” ArXiv, vol. abs/1603.08637,
2016.

[9] D. Fritsch and M. Klein, “3d and 4d modeling for ar and vr app develop-
ments,” in 2017 23rd International Conference on Virtual System Multimedia
(VSMM), 2017, pp. 1–8. doi: 10.1109/VSMM.2017.8346270.

[10] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D data
processing,” arXiv:1801.09847, 2018.

[11] A. Bari and M. Gavrilova, “Artificial neural network based gait recognition
using kinect sensor,” IEEE Access, vol. PP, pp. 1–1, Nov. 2019. doi: 10.1109/
ACCESS.2019.2952065.

[12] R. Bayareh Mancilla, B. Tấn, C. Daul, et al., “Anatomical 3d modeling using
ir sensors and radiometric processing based on structure from motion: Towards
a tool for the diabetic foot diagnosis,” Sensors, vol. 21, p. 3918, Jun. 2021.
doi: 10.3390/s21113918.

20

https://doi.org/10.1109/34.491630
https://doi.org/10.1109/34.491630
https://doi.org/10.1109/TSMC.2014.2331215
https://doi.org/10.1155/2015/520534
https://doi.org/10.1109/VSMM.2017.8346270
https://doi.org/10.1109/ACCESS.2019.2952065
https://doi.org/10.1109/ACCESS.2019.2952065
https://doi.org/10.3390/s21113918

[13] R. Tahir, A. B. Sargana, and Z. Habib, “Voxel-based 3d object reconstruction
from single 2d image using variational autoencoders,” Mathematics, vol. 9,
p. 2288, Sep. 2021. doi: 10.3390/math9182288.

[14] J. Gao, T. Shen, Z. Wang, et al., Get3d: A generative model of high quality
3d textured shapes learned from images, Sep. 2022. doi: 10.48550/arXiv.2209.
11163.

[15] Hickeys, Kinect for windows - windows apps. [Online]. Available: https://learn.
microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows.

21

https://doi.org/10.3390/math9182288
https://doi.org/10.48550/arXiv.2209.11163
https://doi.org/10.48550/arXiv.2209.11163
https://learn.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows
https://learn.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows

Code Snippet

Conversion to RGB-D Data

RGB = cv2.imread(’RGBImage.jpg’)
depth = cv2.imread(’DepthImage.png’)
x=[]
y=[]
z=[]
RGBD=[len(depth)][]
for i in range(len(depth)):

for j in range(len(depth[i])):

depthbit=depth[i][j][0]
z_Calc=depthCalculation(depthbit)
x_Calc=(i-len(depth)/2)/focal
y_Calc=(j-len(depth[i])/2)/focal
x.append(x_Calc)
y.append(y_Calc)
z.append(z_Calc)
data=[RGB[i][j][0], RGB[i][j][1], RGB[i][j[2],
x_Calc, y_Calc, z_Calc]
RGBD[i].append(data)

22

Depth Calculation

def depthCalculation(depthbit):
workingRange=maxRange-minRange
depthPerBit=workingRange/256
z=maxRange-(depthbit*depthPerBit)+offset(depthPerBit)
return z

Offset Calculation

def offset(ofRange):
rand=random.randrange(-10,10)
if rand==0: return rand
ofs=ofRange/rand
return ofs

23

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	Introduction
	History of 3D Modelling
	Problem Statement
	Research Objectives
	Research Benefits

	Detailed Literature Review
	Work Plan
	Model Implementation & Analysis
	Description of the Model
	Description of the Data
	Preliminary Analysis

	Construction of the Mesh
	Point Cloud
	Introducing offset to depth
	Filtering and cleaning the points
	Mesh Construction and Refinement
	Mesh Comparison with and without offset

	Conclusion
	Bibliography
	Appendix A Code Snippet

