
Application Of CNN Based Architectures in Detection of

Distracted Drivers

by

Irfana Arafin
22241181

Md Mahirul Islam
18101347

Syed Ittisaf Tazwar
18301137

Nilay Shuvra Das
22241166

Sabrina Tabassum Anika
19301111

A Final thesis Report submitted to the Department of Computer Science and
Engineering

in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
August 2022

© 2022. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Irfana Arafin

22241181

Md Mahirul Islam

18101347

Syed Ittisaf Tazwar

18301137

Nilay Shuvra Das

22241166

Sabrina Tabassum Anika

19301111

i

Approval

The thesis/project titled “Distracted Driver Detection Using Deep Learning” sub-
mitted by

1. Irfana Arafin (22241181)

2. Md Mahirul Islam (18101347)

3. Syed Ittisaf Tazwar (18301137)

4. Nilay Shuvra Das (22241166)

5. Sabrina Tabassum Anika (19301111)

Of Summer, 2022 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on August 23, 2022.

Examining Committee:

Supervisor:
(Member)

Faisal Bin Ashraf

Lecturer
Dept. of Computer Science and Engineering

Brac University

Co-Supervisor:
(Member)

Dr. Md. Khalilur Rahman

Associate Professor
Dept. of Computer Science and Engineering

Brac University

ii

Program Coordinator:
(Member)

Name of Program Coordinator

Designation
Department

Brac University

Head of Department:
(Chair)

Name of Head of Department

Designation
Department of Computer Science and Engineering

Brac University

iii

Abstract

Distracted driving is known to be one of the most significant reasons behind the
occurrence of traffic accidents. Moreover, the phenomenon of the occurrence of
road accidents due to distracted driving has been increasing at a high rate in recent
years. Previously, different machine learning and neural network-based approaches
were taken to find out the best possible way of detecting distracted driving. This
work proposes an effective interpretation which is to detect the distraction of drivers
through a Deep Learning approach through the implementation of several Convo-
lutional Neural Network (CNN) based architectures. The results presented in this
research is to confirm the better accuracy and success rate of the Deep Learning
approach to detect distracted driving behaviors demonstrating the potentiality of
this method to help measure unusual driving performance. The proposed custom
CNN model not only ensures an impressive accuracy but also it’s ability to interpret
the proper regions of interests on two datasets of distracted driving.

Keywords: Deep Learning; Machine Learning; Distracted Driving; ; Prediction;
Decision tree; Linear Regression Analysis

iv

Acknowledgement

All praise to the Great Allah for whom our thesis has been completed without any
major interruption.
Firstly, our research is solely dedicated to all the families that suffered from loss of
their beloved family member due to occurrence of distraction while driving
Secondly, to our supervisor Faisal Bin Ashraf Sir for his kind support and advice
in our work. It is only his guidance that helped and motivated us to successfully
present this work.
And finally to our parents without their throughout support it may not be possible.
With their kind support and prayer we are now on the verge of our graduation.

v

Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract iv

Dedication v

Acknowledgment v

Table of Contents vi

List of Figures ix

Nomenclature x

1 Introduction 1
1.1 What is Distracted Driving? . 1

1.1.1 Attributes of Distracted Driving 1
1.1.2 Limitations of Detecting Distracted Driving 2
1.1.3 Use of Deep Learning in Distracted Driving Detection 3

1.2 Problem Statement . 3
1.3 Research Objectives . 6
1.4 Paper Orientation . 6

2 Background 8
2.1 Convolutional Neural Network . 8
2.2 Foundational Elements of CNN . 9

2.2.1 Input Layer . 9
2.2.2 Convolution Layer & Kernel 9
2.2.3 Activation Function . 10
2.2.4 Strides . 10
2.2.5 Padding . 11
2.2.6 Pooling Layer . 11
2.2.7 Dense Layers . 12

2.3 Training Model . 13
2.3.1 Loss Functions . 13
2.3.2 Optimizer: Adam . 13

vi

2.4 Splitting Dataset . 13
2.5 Overfitting & Underfitting . 14

3 Literature Review 16
3.1 Research Using Several ML Models 16
3.2 Detection Using CNN Based Architectures 20
3.3 Major Findings and Scope of Research 25

4 The Dataset 26
4.1 Data collection . 26
4.2 Data Analysis . 27
4.3 Data Pre-Processing for Models . 28

4.3.1 Making Sub-Dataset . 28
4.3.2 Data Augmentation . 28

5 The Models 30
5.1 Transfer Learning Model . 30

5.1.1 Resnet50 . 31
5.1.2 ResNet50V2 . 32
5.1.3 VGG16 . 32
5.1.4 Inception-ResNetV2 . 33
5.1.5 InceptionV3 . 34
5.1.6 Xception . 35
5.1.7 DenseNet201 . 36
5.1.8 MobileNet-V2 . 37

5.2 Convolutional Neural Network Models 38
5.2.1 3-Layer CNN Model Architecture 38
5.2.2 6-Layer CNN Model Architecture 39

5.3 Model Evaluation . 41
5.3.1 Confusion Matrix . 41
5.3.2 Accuracy and Loss . 41
5.3.3 Training Vs Validation Accuracy 42

6 Result Analysis 44
6.1 Analyzing Confusion Matrix, Accuracy & Loss 44

6.1.1 Dataset Version - 2 . 44
6.1.2 Dataset Version - 1 . 47
6.1.3 Original Dataset . 48

6.2 Analyzing Training Accuracy-Loss Vs Validation Accuracy Loss . . . 50
6.3 Parameters Of Models . 55
6.4 Interpretability Of Model . 56

6.4.1 Interpretability of 3-Layer CNN 57
6.4.2 Interpretability of MobileNetV2 58
6.4.3 Interpretability of 6 Layer CNN 59
6.4.4 Comparison . 60

6.5 Proposed CNN Model Result In SFD3 Dataset 62
6.6 Comparison of Proposed Model With Previous Related Works 64

7 Discussion 66

vii

8 Conclusion 68

Bibliography 71

viii

List of Figures

1.1 Distraction Effected Traffic Crashes 2015-2019 [24] 2
1.2 Basic representation of the proposed model 4
1.3 The traditional way for detecting driver drowsiness [14] 5
1.4 Overview of Proposed Model . 6

2.1 Basic Convolutional Layer Architecture 8
2.2 One of the stages of the convolution process. 9
2.3 One of the stages of the convolution process. 10
2.4 Stride 1 With Padding & Resulted Feature Map. 11
2.5 Stride 2 Without Padding In Feature Map Of Fig X. 11
2.6 Stride 2 without Padding In Feature map of Fig X. 12
2.7 Avg-Pooling Vs Max-Pooling. 12
2.8 Division of Dataset in Train, Test and Validation Subsets 14
2.9 Underfitting And Overfitting Flowchart 15
2.10 Graphs of Overfitting Vs Underfitting Vs Robus Situation 15

3.1 Proposed Model of [22] . 17
3.2 Proposed solution in [13] . 18
3.3 An overview of the proposed solution in [25] 18
3.4 An overview of the proposed solution in [28] 20
3.5 Result Analysis in [22] . 21
3.6 Overview of Training Loss in small CNN in [11] 22
3.7 Overview of Result Analysis in [10] 23
3.8 Overview of Result Analysis in [25] 24
3.9 Overview of Result Analysis in [19] 24
3.10 Overview of Result Analysis in [28] 25

4.1 Different classes of Dataset Howdrive 3D : Driver Distraction Dataset 26
4.2 Images for all classes of SFD3 Dataset 27
4.3 Images After Augmentation . 29

5.1 Dataset Segmentation for Training and Testing Models 30
5.2 Architecture of ResNet50 . 31
5.3 Architecture of ResNet50 . 32
5.4 Architecture of VGG16 . 33
5.5 Architecture of Inception-ResnetV2 34
5.6 Architecture of InceptionV3 . 34
5.7 Architecture of Xception . 35
5.8 Architecture of DenseNet201 . 36

ix

5.9 Architecture of MobileNetV2 . 37
5.10 Architecture of 6 Layer Custom CNN 40

6.1 Confusion Matrix of all models on Dataset-V2 46
6.2 Confusion Matrix of all models on Dataset-V1 48
6.3 Confusion Matrix of all models on Original Dataset 50
6.4 Training Vs Validation Accuracy-Loss Graphs of Implemented Models

On Dataset-V2 . 52
6.5 Training Vs Validation Accuracy-Loss Graphs of Implemented Models

On Dataset-V1 . 53
6.6 Training Vs Validation Accuracy-Loss Graphs of Implemented Models

On Original Dataset . 54
6.7 ROI Identified For 3 Layer CNN . 57
6.8 ROI Identified For MobileNetV2 . 59
6.9 ROI Identified For 6 Layer CNN Model 60
6.10 Comparision Among Models . 62
6.11 6 Layer CNN Validation-Training Accuracy Loss Graph In SFD3

Dataset . 62
6.12 6 layer CNN Confusion Matrix In SFD3 Dataset 63
6.13 6 layer CNN ROI Identification in SFD3 Dataset 63

x

Chapter 1

Introduction

1.1 What is Distracted Driving?

Activities that cause distractions by diverting drivers’ attention from driving are
stated as distracted driving. Such activities may include usage of cell phones while
driving, consuming food or drink, communicating with others and so on. It has been
proved in several studies that messaging while driving can increase the risk of facing
an accident to multiple times.[24]. According to [24], in 2020 the number of fatalities
in distraction-affected crashes was 3142 which was 8.1 percent of all fatalities. It
claimed 2,628 lives in 2018 and caused 3,003 deaths in 2017. Furthermore, it has
been found that approximately 280,000 injuries per year. In 2018 around 276,000
were severely injured, which increased in 2017 by 9000. In 2016, the rate of injuries
inclined again and around 295,000 people suffered due to distracted driving[23].
.
Only In the U.S, around 3,477 people died and 391,000 people were severely harmed
in 2015 due to distracted driving. [26]Such risky behavior poses danger to both
drivers and pedestrians. Distracted driving causes approximately 3,000 deaths per
year. In 2019, distraction-affected crashes were reported in 9% of death crashes and
15% of injury crashes, with 6% of the drivers engaged in those fatal crashes being
reportedly classified as distracted. [[23],[24]]

1.1.1 Attributes of Distracted Driving

Drivers’ distractions may be caused by numerous reasons. However, some significant
ones have been identified after several research studies. Here, Figure: 1.1 shows the
rise in road accidents caused by the lack of attention of the driver.

1

Figure 1.1: Distraction Effected Traffic Crashes 2015-2019 [24]

Interruptions while driving can be categorized into three subcategory:

• 1. Visual distractions: Visual distractions denote tasks in which the driver
needs to glance away from the road.

• 2. Manual distractions: Manual distraction occurs when drivers need to do
tasks using their hand so they need to take a hand off from the steering wheel.

• 3. Cognitive distractions: Tasks that divert the driver’s mind can be denoted
as Cognitive distractions. [26].

Some of the everyday tasks that were identified to meet all these three subcategories
are texting on phone, drinking, glancing behind, talking to passengers, applying
makeup, etc. Using mobile devices during driving is one of the most common forms
of distracted driving. With each new revolution to innovation in our transportation
system and Automobile industry, there is a higher possibility of checking out at a
screen and getting distracted by losing concentration from driving.
According to WHO, the usage of cell phones can higher the possibility of conducting
an accident caused by distraction up to four times.[18] National Occupant Protection
Use Survey (NOPUS) observes that usage of electronic devices while driving has a
higher possibility of leading to accidents. The availability of smart gadgets such
as cell phones, and radios have introduced us to additional factors that induce
significant threats of road crashes led by distraction [2].

1.1.2 Limitations of Detecting Distracted Driving

The focus of this dissertation is appropriately assessing distraction while driving
which has been proven to be very crucial. There are some segments that need to
be maintained while driving a vehicle. Those are, physiological parameters, vehicle
driving state, and vision.[16] A driving behavior detection system must meet two

2

conditions. First, regardless of the detecting method used, measurement devices
should have no effect on the drivers. Although physiological parameter techniques
can reach great precision, such measurements need a large number of sensors, which
may cause the driver to get distracted. Secondly, lag occurrences of present driving
behavior monitoring technologies are a matter of concern as well.

Nowadays, there are two types of detection methods used for distracted driving de-
tection such as traditional detection techniques and Deep Learning based detection
techniques. After reviewing some articles and papers, we found that these methods
have some downsides. Traditional technology is not capable of distinguishing more
than one distracted driving behavior at once. For example, Eating and talking over
the phone at the same time can not be detected at once. Thus, the two get identi-
fied individually which effects the accuracy severely. To identify drivers’ behaviors
where they might be using cellular devices while driving, there are monitoring meth-
ods where signals coming from a phone gets tracked continually. However, The signal
monitoring method also involves putting an antenna in a fixed place so that the sig-
nals coming from a phone of that certain vehicle can be monitored even if the vehicle
is in a moving state. By using a directional antenna on the road at a fixed position,
from the signal source, it determines whether the mobile phone of the moving vehicle
is in an active state or not. [16] However in this process, the chances of getting a
false detection result is very high because of the detection complexity. The reason
is, this process only detects whether a phone is in call state inside a vehicle or not.
It’s unable to distinguish that the user of the phone is a driver or passenger or both.
There is another way to solve this problem but it will be a lengthy process. The
detection method mentioned above has a complex structure, is slow to detect, and
cannot be employed in practice.[16] Other methods that are based on deep learning
for distracted driving detection are the most popular and also the most used. But
it also has some problems. Like it needs powerful computing units to train.

1.1.3 Use of Deep Learning in Distracted Driving Detection

The use of Deep Learning in vision related tasks is increasing day by day as Deep
learning techniques can improve the accuracy significantly. Because of technological
progress of recent years it is possible for real-time algorithms to be able to accurately
detect the activities that are causing distraction and also assist to alert the driver to
avoid accidents. Alongside, several improved deep learning classification techniques
and detection algorithms can be used after breaking down the problem into several
smaller segments. In several researches, Convolutional Neural Network(CNN) were
used in such way which ultimately helped to improve the accuracy. Also, improved
richer datasets can make DL algorithms achieve better accuracy in many terms. [22]

1.2 Problem Statement

The focus of this dissertation is appropriately analyzing drivers’ abnormal behavior
by detecting manual distraction using Deep Learning based approaches. A webcam
can be installed above the dashboard of cars with the purpose of recording the
movements of the Driver which later on can extract RGB frames. A combination

3

of Deep Learning models will be developed as the candidate detector after using
those RGB-channel frames as inputs. We intend on presenting a real-time system
to be implemented on smart vehicles to be able to recognize and distinguish such
interruptions. This system can be employed to warn drivers ahead of time to prevent
accidents by identifying distractions. In Figure 1.2 the formal representation of our
basic model has been presented.

Figure 1.2: Basic representation of the proposed model

It depicts a high-level view of the approach suggested in this study. The goal is
to demonstrate Deep Learning’s capacity to detect Distracted Driving after being
trained with a large enough dataset.
In the Automotive industry, a significant amount of investment is made annually in
the mechanization of vehicles so that driving a vehicle feels more secure and more
efficient to everyone. Automated driving needs to ensure effortless adaptation be-
tween the automation system and the driver. Therefore, in such terms, distraction
identification may play a role as an important feature to ensure a smooth transition
between the driver and system [20]. Then again, such discovery frameworks can help
regulation authorization to recognize interruptions on highway utilizing cameras. We
envision ensuring proper detection of Manual, Cognitive and Visual distractions of
drivers to provide a more reliable transportation experience for everyone which will
ultimately help to avoid unwanted road tragedy.
So far, different approaches have been made to enable accurate distraction identifi-
cation. Mass use of Convolution Neural Network(CNN) has been made to recognize
distracted behaviors. Research that has been made over the last seven years, in the
field of distracted driver detection has been categorized into four categories [13].
Those are Cell Phone Usage Detection where they offer an SVM-based model for
detecting cell phone use while driving. A front visual image of a driver’s face is
featured in their dataset. Secondly,in UCSD’s LISA works a vision-based evaluation

4

scheme has been described that requires two Kinect cameras to detect drivers’ ac-
tivity from front and back.[1] Their method is to extract information from wheel
handling scheme to detect three different forms of disruptions. Thirdly, the South-
east University Distracted Driver Dataset includes distracted driving dataset with
front visual image of a driver’s body which can cover his side face and hand and also
the driving seat. This way, additional actions such as whether the driver is gripping
the steering wheel, shifting gears, eating, and chatting on a cell phone can be cap-
tured by a camera. [1] It presents the contourlet transform for feature extraction
which later on is compared to the performance of Random Forests (RF), K-Nearest
Neighbors (KNN), and Multilayer Perceptron (MLP) classifiers. Lastly, vast use of
StateFarm’s Distracted Driver Detection Dataset was seen in detection of distracted
driving. This dataset has been the first publicly accessible dataset on Kaggle for
distraction classification where they identified 10 major activities that causes dis-
traction. Those formed 10 different classes to be distinguished as distracted driving
[13].

In [14], by operating a combination of both Deep Learning and Computer Vision, the
system was able to identify drivers’ drowsiness while driving. The system rang the
caution bell whenever the driver was detected to be drowsy(Figure 1.3), and then
image recognition was completed using an enhanced version of basic Convolutional
Neural Network model. It was used to improvise the recognition of the location of
the face and eyes in a proper manner in order to improve the detection results while
lowering the percentage of false positives and negatives.

Figure 1.3: The traditional way for detecting driver drowsiness [14]

If the facial gesture identification feature is added to our previously introduced basic
model(Figure-1.2), then the driver’s facial landmarks, as well as the movement of
his eyes and mouth can be continually tracked using a camera. In that case, we will
be able to detect all Manual and Visual distractions. The advanced version of our
basic proposed model is presented in Figure 1.4.

5

Figure 1.4: Overview of Proposed Model

1.3 Research Objectives

A conventional technique must be established following standard procedures to be
able to accurately detect distractions while driving using Deep Learning Models.
Data from numerous sources should be merged into driver distraction detection sys-
tems constructing a cooperative sensing system to synchronize data sets, connect
relevant features and combine them to detect or perform classification which is one
method to fulfill this requirement [5]. Through the use of our desired Deep Learning
models, we intend to be able to minimize computing complexity while maintaining
high accuracy which is indeed needed in real-time-based implementation.

We seek our Deep Learning Models to achieve significantly higher performance and
accuracy by detecting both Manual and Visual distractions while in most research
only one segment was seen to get prioritized in terms of Distracted Driving classifi-
cation. To gain such state-of-art accuracy our extracted image needs to be fed into
merged combination state DL models.

1.4 Paper Orientation

Chapter 1, primarily introduces us to the definition of Distracted Driving and its
significance in our livelihood. Several essential factors for the occurrence of driver
distraction detection are discussed in this section, particularly distracted indications
and its attributes, some basic classification techniques, and individual variances.
The characteristics of the type of distraction have an impact on the selection of these
attributes. Therefore, Chapter 2 summarizes the topics that needed to be learned to
perform the necessary implementations in this work. Whereas, Chapter 3 provides
literature review of researches that have been made in Distracted Driving Detection.
Chapter 4 gives an describes the dataset used in this research. Hence the models
that have been implemented in the dataset and their architecture has been described
in Chapter 5. Chapter 6 demonstrates the results obtained after implementation of
those models. Chapter 7 describes the probable causes of obtained performance from
the proposed model and Chapter 8 concludes while summarizing the entire work and
it’s potential. Finally, there is a bibliography at the conclusion that identifies all of

6

the sources and publications that were mentioned in this paper.

7

Chapter 2

Background

2.1 Convolutional Neural Network

Convolutional Neural Networks have delivered leading-edge findings in the spectrum
of pattern recognition-related domains, including speech recognition and image pro-
cessing. It is a Deep Learning method which takes image inputs in terms of tasks
related to image processing while assigning distinct aspects and objects in the im-
age, such as, weights and biases which allows it to distinguish different aspects or
features among those images after several processing. In this manner, every layer of
a CNN learns several features, which are basically numerous sets of weights connect-
ing it to the former layer. An image merely consists of a matrix of pixel values, and
therefore the mathematical process of Convolution involves combining two primary
functions to generate a third one.

Figure 2.1: Basic Convolutional Layer Architecture

A Convolutional neural network typically consists of three prime layers which are a
convolutional layer, a pooling layer, and a fully connected layer, also known as dense
layers. Traditional neural networks work more like fully connected layers where all
nodes are connected which ultimately results in a massive increase of parameters and
computational complexity increases too. CNN introduces convolution layers with
non-linearity and pooling layers due to which this issue reduces drastically. The
architecture of the model gets flexible too. Some of the popular CNN architectures
are LetNet, AlexNet.

8

2.2 Foundational Elements of CNN

2.2.1 Input Layer

This layer contains the input image which can be a 3D RGB image that is a three
channeled image made up of the colors red, green, and blue. It may also be in a
grayscale form, which is single-layer two - dimensional image. The construction of
the anticipated kernel shapes reveals the primary distinction between the input ar-
rangements. When the images are in 3-channeled form or RGB, the input dimension
is N x N x 3, where N resembles image size. In this work, the image dimension has
been kept as, 224 x 224 for all models that has been implemented, while implement-
ing in RGB form, resulting in an input shape of 224 x 224 x 3.

2.2.2 Convolution Layer & Kernel

When the neural network receives raw pixel inputs, adding more neurons in hidden
layers may increase the parameter amounts drastically. To drop the size of connec-
tion instead of using fully connected layers it is possible to look into local regions
of the image instead of the whole. Whereas, to reduce parameters we can keep the
local connection weights fixed for the entire neurons of the next layer. This way
weights will remain same for next chosen layers. Therefore, it again drops many
extra parameters, and reduces the number of weights. Convolution layers give us
the opportunity to detect and recognize features regardless of their positions in the
image. A kernel is a matrix of values that is processed by the input in order to
retrieve key information.

Figure 2.2: One of the stages of the convolution process.

Convolutions can be of one-dimension, two-dimension, or three-dimensions. Two-
dimensional matrix kernels are used by 2D convolution layers. There are several

9

numbers of nodes that all focus on the same region of the picture, therefore learning
more than just one 2D Kernel’s weights is necessary. Each node in row performs
attempts to understand several kernels that are composed of various weights which
will eventually reveal various characteristics of the image.

In the Figure above, a 3 x 3 kernel that has different weights assigned to it, is applied
on an image with 2 x 2 zero padding. Then a maxpool operation is performed with
stride of 1 resulting in an output image that has not shrunk. Whereas, a filter, on
the other hand, is a combination of many kernels, each paired with a certain input
channel. The difference between filters and kernels is, filters have one dimension
more than of kernels. For instance, 2D convolutions use 2D kernels and filters will
be 3D.

Figure 2.3: One of the stages of the convolution process.

2.2.3 Activation Function

The activation function of last layer solely depends on the task of the model. For
example, in terms of binary classification there are some activation functions and for
multiclass classification there are different sort of activation functions. For binary
classification and multiclass multi-class classification usually Sigmoid is used. For
Multiclass- single class classification we use softmax. For our problem Softmax has
been used as an activation function.

2.2.4 Strides

The space between two consecutive kernel positions is termed as a stride which is 1
by default. However, occasionally the feature maps are down sampled using a big-
ger kernel size. Stride is used as one of the methods to reduce parameters of CNN
architecture. In CNN, each layer is associated with filters, thus each layer extracts
different features from the input. Meanwhile, there are chances that while looking
at the regions of the input, there are overlaps among multiple layer’s nodes. Those
overlaps can be manipulated by the use of strides in convolution layers. Through
strides not only issues of overlapping can be solved but also the size of output may
be reduced.

If stride is implemented, the output shape of the feature can be calculated with
equation 2.1.

O = 1 + N−F
S

(2.1)

Here, O resembles the output size, N denotes to image dimension, Filter size is F
and S points to number of strides implemented.

10

Figure 2.4: Stride 1 With Padding & Resulted Feature Map.

2.2.5 Padding

Due to the convolution step, information that may exist in the very edge of the
image, may never be attained as this is gained every time the filter slides. This way
there are always chances of that information getting ignored through each convolu-
tion step. To solve this issue, zero padding has been proposed. Due to stride even
though the input shrinks, it is possible to keep information intact by the use of zero
padding.

Figure 2.5: Stride 2 Without Padding In Feature Map Of Fig X.

If padding is implied, the output equation will be,

O = 1 + N+2P−F
S

(2.2)

Where P represents the number of zero padding that has been used in the convolution
layer.

2.2.6 Pooling Layer

In order to down sample feature map size in order to establish a translation invari-
ance that identifies minor shifts and deformation and lessens the number of learned
parameters, the pooling layer is used. Through max-pooling it is possible to re-
duce the complexity for further layers. Convolutional neural networks usually show
impressive results in deep learning, particularly in the image-processing domain.
Max-pooling divides the image into rectangular sub-regions and only delivers the
maximum value of that sub-region, with no impact on the number of filters. The
most common max pooling is stride of 2 and filter size of 2x2. When the pooling is

11

performed in the red 2×2 blocks it moves 2 steps each time while focusing on the
image’s green part. This means that stride 2 is used in pooling. As we see in Figure
Y, the feature map is divided within patch sets from which the greatest value from
each patch is chosen and the remaining get eliminated and max pooling is preferred
for this pooling operation.

Figure 2.6: Stride 2 without Padding In Feature map of Fig X.

On the other hand, average pooling is when in order to construct a down sampled
feature map, the average value across regions of a feature map is calculated. Fig-
ure 2.7 below showing the feature map resulting after being implementation of 2x2
maxpool and 2x2 average pool. The difference of calculation among max pooling
and average pooling can be seen here.

Figure 2.7: Avg-Pooling Vs Max-Pooling.

2.2.7 Dense Layers

The convolutional layer and pooling layers outputs have connections with one or
multiple fully connected layers and in this way each input and output has connec-
tion by a weight that is learnable. The characteristics need to be retrieved by the

12

convolution layer before the pooling layer down sampled it once, then they generate
final outputs similar to probabilities for classification after being forwarded to the
layers that are fully connected. The amount of nodes in this layer is dependent
on the quantity of classes. As stated above, following each layer comes a nonlinear
function, such as ReLU.

2.3 Training Model

The sole purpose to train a model is to achieve a blend of distinctive kernels in
the convolution layer and weights for the layers that are fully connected which
will generate end products that differ as little as possible from the labeled dataset
used. The neural networks that have concealed layers and loss function and gradient
descent optimization are trained and back-propagation is the primary approach for
that.

2.3.1 Loss Functions

The operation that estimates actual output and the network output difference with
the help of forward propagation and marks it as the cost, is called the loss function.
Cross-entropy for categorization into many classes and the regression’s mean squared
error to continuous value are the most commonly used loss function. There are
several types of loss functions. Binary loss function is used when the model needs
to classify among two classes. In that case, often Binary cross entropy is used as a
loss function. However, for multi-class problems such as ours, we need to use loss
functions that work in multi-class situations. In our research, we used a categorical
loss function as we have 10 classes.

2.3.2 Optimizer: Adam

Adam is a highly advanced adaptive learning rate optimization technique for deep
neural network training which is a combination of two optimization algorithms,
Root Mean Square Propagation and SGD with momentum [6]. To identify different
learning rates for every parameter, its algorithms make use of adaptive learning
rate approaches which work impressively in cases of sparse gradients. Adam was
developed with the goal of integrating the strengths of AdaGrad. For each weight
in the neural network, Adam adjusts the learning rate using estimates of the first
and second moments of the gradient [6].

2.4 Splitting Dataset

The most important area whether it’s of machine learning or it’s of deep learning
methods is the sets of data and the ground truth labels. As a matter of fact, any
such approaches or models must meet these requirements to be effective. There
are several image sources regarding distracted driving that are publicly available.
But to become useful to a specific cause, it requires data sets with certain ground
truth labels and requires careful attention. Training, validation and test are the
3 categories of datasets. Loss values are estimated using forward propagation and

13

learned parameters in the training set and then use backward propagation to update
it back to the network. The fine-tuning of hyper-parameters and model selection is
done throughout the training process using the validation set. From figure 8, the
completed model or network is executed on a test set and the final result is evaluated
at the very end. Here, we can notice that the evaluation sets are kept different from
the test sets because the fine-tuning of the hyper-parameters of the training model
is done based on its performance on the evaluation set.

Figure 2.8: Division of Dataset in Train, Test and Validation Subsets

2.5 Overfitting & Underfitting

When a function is too accurately matched to its particular data points, it is a case
of overfitting which is a common phenomenon. Overfitting occurs when the model
has a high variance, indicating that besides learning about the vital information
regarding training data, it also learns the irrelevant data or noise specific to the
dataset. As a result, even though the model is seen performing great while training
the data it may not do as great while evaluating the model with unseen data and
performs inaccurate predictions[12]. There are some certain ways to avoid overfit-
ting issues while training data. For instance, as mentioned earlier, small amounts
of data on training sets may lead to overfitting and to avoid that, the training data
size can be increased. Another reason for overfitting is, proceeding training with
imbalance data, which refers to training the model with different classes where the
amount of data to be trained for each class are significantly unequal. Vice versa
to the situation of less training data, a model’s architecture should be constructed
or selected considering the data that needs to be dealt with. Moreover, in terms of
CNN dropouts of a certain percentage may also be specified to reduce overfitting.
Dropout is a regularization strategy whereby randomly chosen activations are set to
0 during the training to minimize the sensitivity of the model to particular weights[3].

Therefore, underfitting is an issue when the model produces poor results in both
training and testing phases. Underfitting occurs when a model cannot learn sufficient
information from the training data, which lowers performance and results in incor-
rect predictions. This concept is quite opposite to overfitting. Similar to overfitting
there may not be a single reason behind a model being underfitted. Underfitting
may occur due to several factors. For instance, if the constructed architecture of a
model is too simple compared to the provided dataset, then the model is unable to

14

Figure 2.9: Underfitting And Overfitting Flowchart

learn from those data points. As a solution to this, the model should be constructed
depending on the provided data. Another solution is to set an early stopping, which
may not be feasible at times as it leaves the possibility of the model ignoring later
epochs where it might have achieved better accuracy and learning.

Figure 2.10: Graphs of Overfitting Vs Underfitting Vs Robus Situation

In our work, all of the models have been trained using the training and validation
portion of the dataset and the model has been evaluated using the test portion. To
avoid any probable chances of overfitting, it has been ensured that every class of the
dataset has been balanced. Along with that, dropout has been as well which will be
broadly discussed in the Chapter-5.

15

Chapter 3

Literature Review

Distracted driving is a huge problem in recent times. It causes. In the past, we used
to identify distracted drivers by noticing their inability to maintain lane position,
sudden swerving for no apparent reason, not being able to keep a relatively constant
speed, sudden breaking in reaction to normal traffic stops, or ignoring traffic signs.
But these methods are not that effective compared to convolutional neural networks.

3.1 Research Using Several ML Models

ResNet50, Inception-V3, Xception are the pre-trained models used in this paper
[22]. They were trained in the dataset (ImageNet). After that, transfer learning was
employed to fine-tune feature concatenation modules that are used to deeply fuse
retrieved features in cooperative Convolutional Neural Network(CNN). Features of
vector’s weights were trained by the feature classification.

The paper [11] focuses on resolving the problem of overfitting. There are several
methodologies like CNN, VGG16, VGG19, and InceptionV3. In the case of small
CNN, the training result is substantially more than the validation result and that
causes overfitting. Adding a large number of layers can solve this problem but then
the computational cost would be very high. Additionally, utilizing an ensemble of
several models rather than a single model will produce improved results. So, instead
of using one single model, they use 3 models. The final prediction result comes from
averaging these predictions of these 3 models.

Another dissertation [9] describes a three-step procedure. The first one is a specifi-
cation for a road segment. It forecasts the driver’s ability to maintain the center line
and speed limit. For each driver, the predictor is trained without secondary activity
and training data is gathered. The anticipated driver performance is then compared
to the secondary task performance, and the discrepancies between the two are deter-
mined. Finally, the Federated Learning (FL) evaluator normalizes two independent
variables using linguistic principles to create a uniform variable Distracted Driving
(DD), which identifies the DD level in percentage.

This paper [10] discusses procedures such as the original VGG16 architecture and
improved VGG16 architecture. To avoid overfitting the training data, they alter
the VGG-16 architecture for this job and utilize numerous regularization strategies.

16

The proposed method beats existing techniques of distracted driver identification in
the literature on this dataset, with an accuracy of 96.31 percent.

The VGG-16 architectural model is used in the following paper [17] which always
uses 3x3 filters with the same padding in pooling layers 2x2 with a stride of two.
Softmax is used as a dense layer activation, while Stochastic Gradient Descent (SGD)
is used as a network. Object identification, fine-grained classifications, facial traits,
and localization are all common uses for Mobilenet. Transfer learning is another ap-
proach employed in this paper. Furthermore, it is a machine learning strategy that
focuses on saving info obtained from clearing up an issue and using that knowledge
to another problem.[13]

Now we see the use of the EfficientDet model for detection purposes [22]. Picture
frames are taken from video and translated into textual labels associated with image
categorization and detection categories. With five variations, the EfficientDet model
is employed for detection. To develop actual predictions and obtain state-of-the-art
outcomes, the model is set for recognizing the items, ROI parts participating in the
distracting tasks. It should be noted that five different EffecientDet versions were
employed in all. Furthermore, three detection models were used to train the dataset:
EfficientDet, Yolo-V3, Faster Region-based Convolutional Network (R-CNN). Here
EfficientDet has the highest Mean Average Precision (MAP), as we can see.

Figure 3.1: Proposed Model of [22]

The proposed solution in this paper[22] proposes an ensemble of CNN as a solution.
Raw photos (five picture sources) were used to train the convolutional neural net-
works. Alex Net, InceptionV3, a ResNet, and a VGG-16 were trained using those
five picture sources. For such networks, they fine-tune an ImageNet model called
transfer learning. Later on, a genetic algorithm is used to assess the total of all
networks’ outputs, then provide the final class position.
Each frame required a detector for face, hand and skin segmentation. Networks that
have been trained for every output image of skin, face and hands were AlexNet and
an InceptionV3. (i.e., results into 10 neural networks where each of these networks
has 5). By predicting the weighted sum of the softmax layers, the class distribution
was predicted. And, Genetic Algorithm was used to learn the weights. [13]

In another paper[25] three well-known CNN models have been compared to tra-

17

Figure 3.2: Proposed solution in [13]

ditional handcrafted features for automatically detecting whether the drivers are
engaging in distracting behaviors or not based on images from a dashboard camera.
Using the Softmax layer as a classifier, ResNet-152 produced the best accuracy of
85%, which is higher than VGG-16 accuracy and AlexNet. In addition, using SVM
classifiers on the extracted features for the last layers of the CNN models did not
increase the accuracy.

Except for mobile phones and the category of external distractions, this study[24]
lists sources of distraction. NHTSA and its data consumers, according to its method-
ology, must be aware of the disparities in definitions of distraction and inherent limits
in data collection for distraction-affected collisions, as well as the con- sequent in-
juries and deaths. This document’s appendix offers a table that defines the coding
for distraction-affected accidents for FARS and GES, as well as a de- scription of
the distracted driving data’s limitations.

In another paper [25] shows how HSDDD, which is built on a three-tiered design,
works. The first tier does feature extraction. The second tier involves feature con-
catenation. In the third layer the second layer will provide an output that will be
used as an input. After completing training, distracted driving behavior is catego-
rized by several KNN and SVM variations.

Figure 3.3: An overview of the proposed solution in [25]

The following is the structure of the paper [4] the definition of driver distraction is
offered in Section 2 of the article, based on current literature discussion. The third
section will briefly cover the machine learning approaches used to model a driver
distraction. In Section 4, the experimental setup will be shown. Meanwhile, Section

18

5 summarizes the key findings. Finally, Section 6 tries to critically evaluate these
findings by comparing them to the most important findings of previous studies in
this field, highlighting differences, innovations, shortcomings, and potential future
actions

This paper[4] uses deep learning and computer vision to identify driving tiredness.
The system uses a camera to capture photos of the driver. After performing digital
image processing on the collected picture, the driver’s conduct was examined and in-
ferred. The technology was split into two parts. One is where it detects if the driver
is nodding, and another is sleepiness detection. While performing detection that if
the driver wore sunglasses then that was not being detected. Avoiding a scenario was
the aim of nodding detection. However, the method of Sleepiness/Drowsiness detec-
tion was to assess the duration of the driver keeping his eyelids closed. The driving
system uses a variety of sensors to identify and combine multilayer sensations. The
CNN model was used to accomplish picture recognition. The advanced CNN model
was used to estimate the location of the face and eyes since eye prediction, face pre-
diction, and hand prediction are the three main components of the driving behavior
detection system. This improved detection results while reducing false positive and
negative rates. Installing a camera on the dashboard also uses YOLO-based deep
learning technologies to identify the behavior of the driver. YOLOv3-tiny 3l was
an enhanced version of YOLOv3-tiny that was designed to improve small object
recognition. In an 8:1:1 ratio, the categorized data sets are separated in training,
validation, and testing sets.

This paper [21] suggests utilizing deep learning to identify driver attention, but it
will focus on real-time deployment. It will accomplish this by first training a deep
learning model on a local PC before delivering it to embedded devices. In addition,
real-time metrics will be measured and improved. To make a real-time deployment
easier, the feature for detecting distraction must be kept simple, hence this study
will employ a driver pose as its feature.

This paper [27], shows a Long Short-Term Memory(LSTM)-based (DBRPNN) which
has been introduced to identify driving distraction through prediction. Time at-
tributes and vehicle at- tributes were added together to get the final accuracy. The
Neural Network model that was seen in this work predicts the risk of distraction.
FPM was used in classification of different features where the neural network also
utilizes the risk factor to identify the worst possible extent of upcoming danger.
That output is fed into the Memory Module that gets extended to the phase where
use of LSTM takes place in this segment because basic Recurrent Neural Network
(RNN) falls behind in achieving accuracy in this task. At last, PM is utilized in
successfully calculating and converting the output of LSTM to Possible Risk factor.
The results show that DBRPNN has an uplifted accuracy and it has large prospects.

In this paper[19] their key element of the suggested framework is the segmenting of
the parts of the human body. It’s used on the raw RGB image. Because of that the
irrelevant objects get removed easily and effectively and also detects the necessary
body parts of the driver. After that, the classification model receives the resultant
image. Here, firstly the segmentation steps of the human body parts are discussed,

19

and then there’s a description of the classification models and the training models
that were used to complete the classification of these images.

Here,[28] a new method has been proposed in order to identify the following issues.
They come up with a brand-new network architecture that features the Conv and
Transformer block. The Conv block was utilized to retrieve local features in the
image and for gathering the global information of the image transformer was used.
The ResNet and the Vision Transformer(ViT) structures are referred to in this tech-
nique. Whereas this transformer block’s architecture corresponds towards the ViT,
CNN’s architecture uses the ResNet network architecture. The ViT approach di-
vides each picture as a patch which includes location embedding to create a series
of tokens. With this technique, vectors with parameters are extracted and given
pictorial imagery using cascaded transformation blocks.

Figure 3.4: An overview of the proposed solution in [28]

The following describes how the network functions as a whole:

• In the pose guidance module, from the segmentation of image we get a sub-
image along with the driver and the elements that fall within his range of
interactions.

• After that, this sub-image is an input to the Vit-Conv Module which has Conv
and transformer blocks. Through their combination global and local features
and image’s feature map are extracted.

• Finally, the extracted feature map is an input into a simulation module and
then the image classifications result at the inference stage is recorded.

3.2 Detection Using CNN Based Architectures

These papers basically aim to accurately identify behaviors of distracted driving
and provide a mechanism for assessing the secondary tasks (like chatting on a cell
phone) using a Hybrid Convolutional Neural Network Framework (HCF). It also

20

proposes solutions to detect the distraction of drivers to avert possible accidents
using different convolutional neural network (CNN) models.

They introduced a hHybrid CNN Framework (HCF) in this paper [22] to identify the
behaviors of distracted driving. Three cooperating pre-trained CNN models extract
features at various sizes. The parameters were received by pre-training ResNet50,
InceptionV3, and Xception models on ImageNet. These parameters were immedi-
ately transferred to their detection job. The properties of the dataset of the State
Farm differ from the dataset of ImageNet. Due to that reason it is mandatory to
fine-tune pre-trained models so that it is able to fit the dataset of State Farm. The
recommended HCF training technique is: For the pre-trained ResNet50, from the
start to layer 151, weights were frozen and only those weights that range from layer
152 to the top layer were trained. After that, in InceptionV3, the weights were
frozen for layer 0 to 171, and only the weights of layer after 171 to the top layer
were trained. Finally, in Xception, pre-trained weights ranging from layer 0 to 116
were frozen and weights after that to the top layer were trained. They employed the
(Multi Threshold-based Remora Optimization)MTRO method during training. The
initial rate of learning and the batch size of image was set to respectively 0.001 and
64. Dropout was used to reduce overfitting. To finish the feature classification, a
softmax classifier is employed. The final output is the probability which corresponds
to the ten different distracted driving behaviors in the State Farm dataset. The fea-
tures are then combined to produce the feature maps. The fully linked layer is then
trained to define each type of distracted behavior. They use dropout technology
during the training phase. It prevents the training model from becoming overfit to
the training data. The results of distracted detection regions are highlighted with
the use of (Class Activation Map)CAM. The results reveal that the proposed HCF
performs well in identifying the distracted driving behaviors and has an accuracy of
96.74% in classification.

Figure 3.5: Result Analysis in [22]

In this paper[11], , works with a simple. SGD optimizer is built using 0.01 learning
rate and momentum of 0.9. The photographs are modified to avoid overfitting and

21

the model is run for a total of 20 epochs. The model gives the following output:
After 20 epochs, the accuracy of training reaches 91.20% and validation accuracy is
54.45%.

Figure 3.6: Overview of Training Loss in small CNN in [11]

The results shown here [11] denotes that the compared to validation accuracy train-
ing accuracy is much higher which implies overfitting.

In this paper, [11] Based on these findings, it became clear that the training accuracy
is quite significantly greater than the validation accuracy. Even though it was an
overfitting model, a dropout layer was used to solve the overfitting problem. They
have to employ Google Cloud Platform for training purposes in this article. As not
enough GPUs were available, they chose a batch size of 32. The model was unable
to perform well with the initial learning rate which was 0.001. AS a result, they had
to increase the learning rate up to 0.0001. They chose to train VGG-16 but only the
top block. Then, they removed VGG-16’s last Softmax layer and the Global Average
Pooling Layer replaced it. Then, to overcome overfitting, as always, a dropout layer
was added. Then, the final prediction values were generated by a fully connected
layer. The results show that this model’s validation accuracy reached around 80 to
83% after being trained for 2 to 4 epochs. Because the train- ing data was so little,
the model overfitted. They chose to develop an ensemble of VGG-16 models to over-
come overfitting. Thus, a second VGG-16 model of 64 batch size was used for the
training. This time the validation accuracy was approximately 75 to 77%. VGG-19
was treated in the same way. Now for INceptionV3 which consists of 313 layers, an
ImageNet database was used. In the distracted driving situation, only the top two
blocks are trained. Adams Optimizer was used to build this model. However, when
SGD optimizer was used instead if Aadm Optimizer, with the same learning rate,
gave superior results. Batch normalization is known as a pre-processing procedure.
Because in this case the weights of the top layers were initialized arbitrarily, so only
they were trained in the beginning. Other models are non-trainable in this step.
The validation accuracy achieved here is 0.73. As overfitting is a major worry in
this topic, it was discovered in this paper that employing a combination of several
models will generate improved results than using only a particular model. So, the

22

final prediction values were obtained by calculating the average of the results of the
combined models. The log loss value for the best VGG-16 model was 0.8157. Simi-
larly, VGG-19 had a log loss value of 0.9632 and InceptionV3 had 1.0972. Combined
log loss value was 0.795.

In one paper[10], a model of ImageNet which is pre-trained is used to initialize
weight. The weights of each and all layers are modified in relation to the dataset.
All of the hyperparameters have been fine-tuned after extensive testing. For training
Stochastic Gradient Descent with the use of learning rate, a decay rate and a mo-
mentum value. The batch size was 64 and the epoch count was 100. Training and
testing required high specifications. Thus, the graphics card was NVIDIA P5000
memory was 16 GB RAM. Frameworks have been created by Theano and Keras.In
the training set, VGG-16 gives full accuracy and in tests it gives approximately 95%.
Batch normalization can take this accuracy to around 97%. To process enough pho-
tos every second, the VGG-16 needs high memory and with a nearly 90 percent
reduction in parameters while maintaining accuracy. On the test set, they scored
an accuracy of 96.31%.

Figure 3.7: Overview of Result Analysis in [10]

In this paper[22], while creating larger networks, EfficientNet outperforms earlier
object detection models in terms of speed and success rate the parameters get in-
creased all at once. EfficientDet’s progress is extremely valuable to object detection
research and application development. The average accuracy of this model is nearly
100% (99.16). When compared to other models, this model gives higher accuracy
than any other models. So, according to the tests and researchers, this is the best
distraction detection model. HOG is a feature descriptor that concentrates on the
object’s shape and structures. There are 2 sorts of feature fusions in their suggested
method and the performance is measured through this. They employed KNN (K-
Nearest Neighbor) and SVM (Support Vector Machine) variations of two different
classifiers. There are in total 6 SVM versions. They are cubic, quadratic, linear,
coarse, medium and fine Gaussian. On the other hand, KNN has 4 versions which are
cosine, coarse, medium, fine. According to their analysis of their trials, performance
and the number of features is proportionate until a certain point. After that the
improvement pace also goes down. Efficient and accurate prediction graphs for 100,

23

250, and 500 features using variations of KNN and SVM classifiers. SVM-based
classifiers have an accuracy range of 54.7% to 94.8% for 100 features. SVM-based
classifiers have an accuracy range of 38.1 percent to 95.1 percent for 250 features.
For 500 features, the range varies from 28.8% and 95.1%. For KNN, the accuracy
range is 56.9% to 95.5% for 100 features and 250 features, the accuracy range is
from 37.6% to 95.8%. So, every time the number of features increases the range of
accuracy also increases. Except for the linear SVM, which has the fastest prediction
rates for 100, 250, and 500 features, the prediction speeds of KNN versions are often
faster than SVM variants.[25]

Figure 3.8: Overview of Result Analysis in [25]

[htbp] This paper[19] analyzes the segmentation of parts of the human body and
then describes the training and classification model and methods that were used
for classification on the segmented image. VGG-19 and Inception-v3 are the two
CNN models that have been explored in their study. Pre-trained model VGG-19 is
made up of 19 layers and has quite small receptive fields (3×3).It was known for
large-scale image recognition and was among the well-known models that were sub-
mitted to the ILSVRC-2014 challenge.Convolutions, average and maximum pooling,
concatenations, dropouts, and fully connected layers of symmetric and asymmetric
building are some of the building blocks that make up the other model known as In-
ceptionV3. This model makes heavy utilization of batch normalization and applies
these to activation inputs. The Softmax function is used to calculate the loss. The
results after the re-implementation of the VGG-16 along with its regularization and
Resnet and GoogleNet networks on their dataset are as following:

Figure 3.9: Overview of Result Analysis in [19]

This paper[28] compares our suggested approach for assessment with a number of
other currently existing methods. They only consider the recommendations and
standards of ViTConv as the benchmark and while their finalized version of the
model combines every other module. For the dataset of StateFarm, they evalu-
ate different types of postures’ images of the driver while driving. Their standard
approach has an accuracy rate of 94.7%.SPACE Additionally, the whole model is
97.9% accurate, which performs far better than every existing state-of-the-art tech-
nique and boosts the base accuracy by 3.2%. Compared to other approacher, their
method allows to notice the desired region of interest while using ViT-Conv in SFD3
dataset, which helps to detect different driving patterns.

24

Figure 3.10: Overview of Result Analysis in [28]

3.3 Major Findings and Scope of Research

After a thorough review of previous publications that applied both machine and
deep learning models to identify distracted drivers, there were four key discoveries
that would serve as the foundation for this paper:

• The dataset[15] in this paper[22] only contains photos from the driver’s right-
handed part. Given the aforementioned constraints, we will examine driving
style from other camera directions. In the future, we aim to reduce calculation
time and parameter count not only to recognize driver’s distraction but also
to avoid distracted driving.

• In this paper[11] final output can be generated using KNN nearest match of
the given sample considering the average of the probabilities [7]. Utilizing
ResNet- 50 and -152 CNN models better results can be accomplished in this
problem as these models are mostly known for their capability in terms of
image classification problems. Better results can be achieved if unnecessary
segments can be removed from sample images.

• We can decrease parameters and the time it takes to compute them [10]. So
we would like to build a system that can identify both visual and manual
distractions which is the major goal of our research.

• By incorporating new sensory modalities [22], may suggest enhancing the dis-
traction detection system. For instance, we may employ a mike to capture
the volume and noise in the car. That will detect different distracted driving
ways. Also enhancing the models after including dynamic details.

• This domain[8] may be further investigated using cutting-edge techniques such
as quantum computing. [25]

• We can design our unique CNN architecture to determine decent ROI. [19]

25

Chapter 4

The Dataset

Due to the advancements of Automobile industry, detection of distracted drivers has
received massive attention from researchers and organizations who are particularly
interested in classifying distracted driving and normal driving. Because of this
numerous data have been collected by various researchers. However, not all datasets
are publicly available. Kaggle organized a competition with the goal of collecting
sufficient data for this task.

4.1 Data collection

HOWDRIVE 3D : Driver Distraction Dataset: With the purpose of studying
distracted driving phenomenon, collected data by having drivers practice various
driving behaviors within a car. This experiment was conducted through 9 drivers
where everyone was instructed to carry out the 10 selected tasks independently.
These 10 tasks are 10 classes of the dataset that help us to identify distracted driv-
ing and normal driving. For each class there are around 450 images of each driver
and in total 9 drivers contributed to making of a single task. Every recording session
conducted had different conditions based on the time of the day, clothes they wore,
cars they used etc. The data was initially gathered in video format, then divided
into 1080x1920 individual frames. An average of approximately 38 thousand images
were collected after the manual assessment.

Figure 4.1: Different classes of Dataset Howdrive 3D : Driver Distraction Dataset

26

State Farm Distracted Driver Dataset (SFD3): This dataset won the com-
petition organized by Kaggle which has 10 classes. and every class contains ap-
proximately 2000 images of dimension 320 x 240. In the field of distracted driving
classification, this has been one of the most popular data that has been used in
various researched. This dataset was utilized to test our proposed model apart from
Howdrive Distracted Driver Dataset.

Figure 4.2: Images for all classes of SFD3 Dataset

4.2 Data Analysis

For this work we chose Howdrive Distracted Driver Dataset that contains 38000
frames in total. The dataset divided into several categories (10 classes) of distracted
driving behaviors named from c0 to c9. All these classes contained information
about the different types of distraction and the number of times these distractions
occurred during all these sessions. They were categorized into these- Safe driving,
Texting with right hand, Talking on Phone-Right hand, Talking on Phone-Right
hand, Texting with left hand, Adjusting radio, Drinking, Fixing hair/doing makeup,
Reaching behind, Talking to passenger.

classes C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Activity Safe
Driv-
ing

Texting-
left
hand

Texting-
right
hand

Talking
on the
phone-
left
hand

Talking
on the
phone-
right
hand

Opera-
ting
the
radio

Drink-
ing

Reach-
ing
behind

Fixing
hair and
makeup

Talking
to pas-
senger

Number of
Images

3879 3792 3959 3807 4018 3853 3629 3849 3791 3750

Table 4.1: Table of class and images

27

4.3 Data Pre-Processing for Models

Prior to using images in models, they must be pre-processed to guarantee that there
are no biases or contradictions in the predictions made by the models due to the
nature of the data.

4.3.1 Making Sub-Dataset

At the early stages of model implementation, the large dataset can be the reason for
massive time consumption and heavy computational cost. That’s why the original
dataset has been divided into two sub-dataset versions where Dataset Version-1
contains half images per class compared to the original dataset and Dataset Version-
2 contains around one-tenth of images compared to the original dataset.

Activity Safe
Driv-
ing

Texting-
right
hand

Talking
on
the
phone-
right
hand

Texting-
left
hand

Talking
on the
phone-
left
hand

Opera-
ting
the
radio

Drink-
ing

Fixing
hair and
makeup

Reach-
ing
be-
hind

Talking
to pas-
senger

Classes C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Original
Dataset

3879 3792 3959 3807 4018 3853 3629 3849 3791 3750

Dataset
V1

1035 1011 1056 1015 1072 1028 968 1027 1011 1000

Dataset
V2

552 549 593 594 590 525 550 535 579 563

Table 4.2: Table of Sub-Datasets

4.3.2 Data Augmentation

As stated in the earlier section, the dataset has been made smaller for the ease of
implementation process. However, when a neural network model is trained on a
small dataset, the model often shows a tendency of overfitting the model by memo-
rizing the data. The lesser samples are provided for training, the more models tend
to do overfitting. Thus, before being fed into the model the dataset needs to be
pre-processed with several data augmentation techniques.

1. Resize to 224x224 pixels: From the original pixelsimages were scaled down
to 224x224 pixels so that the complexity of working with a large array of pixels
can be minimized.

2. Zoom: Applied 0.2 zoom range.

3. Brightness Range: Brightness range has been kept (0.9,1.5) to slightly
darken the image.

4. Height shift: Height shift was applied in images for a clear view.

5. Width shift: Height shift was applied in images for a clear view.

6. Rotation: The images were rotated anticlockwise by 10 degrees.

28

Figure 4.3: Images After Augmentation

29

Chapter 5

The Models

After performing necessary pre-processing on the dataset, it is ready to be imple-
mented on a model. Later on, we divided the entire dataset into three subsets.
Using SciKit-Learn’s test-train-split() method, the dataset was split into 80:20 ratio
for training, testing respectively. Then 10% of the training set has been used for
validation which is also 8% of the total dataset. The training subset is used to train
this portion of the dataset based on the model it has been fed into and the test
subset is used to evaluate the result based on its learning after the chosen data has
been trained by the model. The parameter “random-state” has been set to make
sure that the data assigned to our train and test subsets is set randomly. [22]Also,
the “Stratify” parameter has been specified to have a balanced number of examples
for each class label. Figure-3.1 represents the segmentation of the dataset used for
testing and training before implementing on the model.

Figure 5.1: Dataset Segmentation for Training and Testing Models

5.1 Transfer Learning Model

Transfer learning enables use of pre-trained models which resolves the issue of the
massive computational cost and time resources required to develop models for large
datasets. The transfer learning models that have been used in this work were trained

30

on the ImageNet dataset, an image database organized according to the WordNet
hierarchy in which each node of the hierarchy is depicted by hundreds and thousands
of images. Transfer learning is often used in deep learning due to the substantial
resources needed to train deep learning models. Among the three kinds of methods of
using transfer learning models, fixed feature extraction was used. In order to use the
pre-trained model as a feature extractor, the fully connected layer is removed while
the weights in the feature extraction layer remain frozen. After implementation of
several models through the TensorFlow library, only best performing models were
selected for further processing.

5.1.1 Resnet50

Resnet50 architecture contains 50 layers among which 34 are convolutional, 1 is
maxpool and 1 average pool layer. There are 5 stages in the ResNet-50 architecture,
each containing a convolution and an identity block and 3.8 x 109̂ Floating points
operations. Each identity block and convolution block have three convolution layers.
ResNet performs identity mapping via shortcut connections that bypass one or two
layers to avoid the increased inaccuracy that results from simply adding layers to
an existing network. This skip-connection technique helps to reduce the issue of
vanishing gradient. There are around 23 million trainable parameters in the ResNet-
50.

Figure 5.2: Architecture of ResNet50

1. A convolution with a kernel size of 7 * 7 and 64 different kernels all with a
stride 2.

2. Max pooling with stride size of 2.

3. Convolution layers with 64 1x1 kernels, 64 3x3 kernels and 256 1x1 kernels.
These three layers are repeated 3 times which sums up to 9 layers in this step.

4. Convolution layers with 128 1x1 kernels, 128 3x3 kernels and 512 1x1 kernels.
These are then repeated 4 times.

5. Convolution layers with 256 1x1 kernels. This step repeats 4 times, giving us
12 layers in this step.

6. Convolution layers with 256 1x1 kernels, 256 3x3 kernels and 1024 1x1 kernels,
which too are repeated for 6 times creating a total of 18 layers.

7. Convolution layers with 512 1x1 kernels, 512 3x3 kernels and 2048 1x1 kernels,
repeated 3 times. giving a total of 9 layers.

31

8. An average pooling layer connected to a fully connected layer containing 1000
nodes having a softmax function at the end. Which again makes 1 layer.

For this research, while connecting to the final output layer with 1 node and softmax
activation function, 256 hidden nodes with ReLu hidden nodes and dropout of 0.5
were set. Now the model has Total parameters of 24,144,826 Trainable parameters
are 527,114. The model was compiled using Adam optimiser while setting learning
rate as 0.001, as loss function categorial-crossentropy was set and accuracy as metric.
Various parameters were used while training and testing the model. However, the
best accuracy was achieved after training the model for 10 epochs, while keeping
155 steps per epoch.

5.1.2 ResNet50V2

ResNet50V2 is a modified version of ResNet50 that is usually seen performing better
than ResNet50 on the ImageNet dataset. In ResNet50V the propagation formulation
of the connections between blocks has been altered. This version of ResNet50 uses
the pre-activation of weight layers instead of post-activation removing the path of the
input to output in the form of identity connection and applied Batch Normalization
and ReLU activation as input before performing convolution operation.

Figure 5.3: Architecture of ResNet50

For this research, the model was compiled using Adam optimiser. Categorial-
crossentropy was set as loss function and again, accuracy as metric. After using
several parameters for training and testing the model, the best accuracy was achieved
after training the model for 5 epochs, while keeping 254 steps per epoch.

5.1.3 VGG16

VGG16 is a type of CNN (Convolutional Neural Network) often used for object
detection and classification algorithms. It is a widely used technique for classify-
ing images and is simple to employ with transfer learning. This model is able to
significantly reduce the number of weight parameters. This may also be viewed as
a regul[16]arization of the 7 x 7 convolutional filters that makes those fit through
the 3 x 3 filters, with added non-linearity in between by using ReLU activations.
By doing this, the network’s propensity to over-fit during the training diminishes
massively.

32

Figure 5.4: Architecture of VGG16

1. A convolution layer with 64 3x3 kernels, with a stride of 1, and repeated 2
times.

2. A convolution layer with 128 3x3 kernels, with a stride of 1, and repeated 2
times.

3. A Convolution layer using 128 filters 3x3 kernels, repeated 2 times

4. A convolution layer with 256 3x3 kernels, with a stride of 1, and repeated 3
times.

5. convolution layer with 512 3x3 kernels, with a stride of 1, and repeated 3 times.

6. A convolution layer with 512 3x3 kernels, with a stride of 1, and repeated 3
times.

7. A MaxPool layer of 3x3 kernel size and stride of 2 after each group of convo-
lution layers.

8. 2 fully connected layers with 4096 hidden nodes.

9. fully connected output layer with 1000 hidden nodes, followed by a softmax
activation layer.

Before connecting to the output layer with sigmoid activation function, flattening
the previous outputs to a one-dimensional vector has been done. The last fully
connected layer has been replaced by a fully connected layer with 64 hidden nodes
using ReLU activation and dropout 0.5. This allowed to build a model with almost
11,965,578 trainable parameters and around 17 million non-trainable ones [17]. After
making changes in several parameters the maximum average results after training
the entire model for 5 epochs with the default steps per epoch of 155, repeating it
for 4 times.

5.1.4 Inception-ResNetV2

Inception-ResNet-v2 is a convolutional neural based model that is trained on images
from the ImageNet database. In the Inception-ResNet model, batch-normalization
is used only on top of the traditional layers. Each Inception block has a filter 1 × 1
convolution without activation that scales up the dimensionality of the filter before
matching the depth of the input. Inception-ResNet-v2 has 164 layers. The dimen-
sions of the input from the previous layer and the output from the inception module

33

must match for this to function. Therefore, for Inception-ResnetV2 factorization
is crucial to match dimensions. The network by default receives a 299*299 pixel
picture as input, and it generates outputs of a list of estimated class probabilities.
It is constructed using both the Residual connection and the Inception structure.
In addition to avoiding the degradation issue because of the deep structures, using
residual connections shortens training time.

Figure 5.5: Architecture of Inception-ResnetV2

Similar to previous models, this model was also compiled using Adam optimiser
keeping the learning rate as 0.001. We have set categorial-cross-entropy as loss
function and accuracy as metric. After many trials and errors, the best accuracy
was obtained after training the model for 20 epochs, while keeping 190 steps per
epoch.

5.1.5 InceptionV3

The layer depth of the convolutional layer InceptionV3 is 48. This model achieved
more than 78.1% accuracy on the dataset of ImageNet in terms of image recogni-
tion. Convolutions, average and maximum pooling, concatenations, dropouts, and
fully connected layers of symmetric and asymmetric building are some of the build-
ing blocks that make up InceptionV3. The model makes substantial use of batch
normalization, which is applied to activation inputs and computes the loss using
Softmax. The architecture of this model is the same as InceptionV1.

Figure 5.6: Architecture of InceptionV3

The inception V3 is just the advanced and optimized version of the inception V1
model. The Inception V3 model used several techniques for optimizing the network

34

for better model adaptation. They are:

1. Factorized Convolutions: It monitors the network efficiency and lessens the num-
ber of parameters used in a network and as a result, the computational efficiency
gets reduced.

2. Smaller Convolutions: It takes less time to train when the smaller convolutions
are used in place of bigger convolutions. For example, if two 3x3 filters are used
instead of a 5x5 filter the 3x3 filters will have 3x3 + 3x3 = 18 parameters whereas
the 5x5 filter would’ve had 5x5 = 25 parameters.

3. Asymmetric Convolutions: In this case, let, a 3x3 convolution has been sub-
stituted by a 1 x 3 convolution and 3 x 1 convolution. But if it’s replaced by a
2x2 convolution, the number of parameters becomes significantly more than in the
proposed asymmetric convolution.

5.1.6 Xception

The Xception model is Extreme Inception which is an inspired form of the Incep-
tion model of CNN. It consists of deep and extensive convolutional layers working
parallelly. The Xception model is 71-layer deep.

Figure 5.7: Architecture of Xception

The architectures are described below:

The model has two different levels with three convolutional layers on both of these
levels. One of these levels has a single layer.

The output is divided into three pieces by this layer before moving on to the next
set of filters.

The filter of the first level is a single convolutional level of 1x1. The next level uses
3x3 filters and three convolutional levels.

The architecture of this model is loaded with convolutional layers that are separable
based on the depth. The training of the pre-trained version of this model is done

35

using millions of images from the database of ImageNet. In addition, this model
offers rich utility representations for a variety of images and can categorize hundreds
of different item categories. This model excels in categorization and identification
of images.

5.1.7 DenseNet201

As the name suggests, DeseNet201 convolutional network is 201 layers deep. From
the ImageNet database, the networks’ pre-trained version which has been trained
on more than a million images can be loaded and this model will be able to classify
objects like animals, pens etc 1000 other objects. This gives the network rich feature
categorization for a lot of different types of images. The input size of the image is
224 by 224.

Figure 5.8: Architecture of DenseNet201

The DeseNet201 architecture is given below.

For each composition layer, Pre-Activation Batch Norm (BN) and ReLU, then 3×3
Conv are done with output feature maps of k channels.

To reduce the model complexity and size, BN-ReLU-1×1 Conv is done before BN-
ReLU-3×3 Conv.

1×1 Conv followed by 2×2 average pooling are used as the transition layers between
two contiguous dense blocks.

Feature map sizes are the same within the dense block so that they can be concate-
nated together easily.

At the end of the last dense block, a global average pooling is performed and then
a softmax classifier is attached.

36

5.1.8 MobileNet-V2

MobileNetV2 consists of 53 convolutional layers that makes it a very effective and
efficient feature extractor for object detection and segmentation. It has higher clas-
sification accuracy with fewer parameters.

Figure 5.9: Architecture of MobileNetV2

Architecture:

1. It has 2 types of blocks- a residual block with 1 stride and a block for downsizing
with stride 2.

2. Three layers for each block.

3. First layer is 1×1 convolution with ReLU6.

4. Convolution in the second layer is based on the depth.

5. The third layer is another 1x1 layer like the first layer but does not have any
non-linearity. According to some arguments, the deep networks only have a linear
classifier on the output domain’s non-zero volume part when ReLU is used again.

6. Expansion factor is defined as “t” and t=6 for all the primary experiments. For
example, if the number of input channel is 64, the internal output will have 64 x t
= 64 x 6 = 384 channels

37

5.2 Convolutional Neural Network Models

Building a unique CNN was one of the key goals of this study. While training the
Transfer learning model we have noticed that we achieve highest accuracy if the
model is trained with fewer parameters. As we have discussed previously, most of
the transfer learning models have a large amount of parameters. The goal was to
create inexpensive, simplistic models that required fewer training parameters but
had improved accuracy than the pre-trained models that we’ve employed in this
study. We constructed two unique CNN models in order to achieve this objective.

5.2.1 3-Layer CNN Model Architecture

The custom 3 layer CNN model that was built and trained has an architecture as
follows :
1. A convolution layer that includes 64 3x3 sized kernels, with a default stride ,
ReLU activation, outputting shape of 224x224x64 and 1 zero padding. The output
parameter for this conv2D layer is ((3*3*3)+1)*64 = 1792

2. A Maxpool2D layer with 2x2 size that has a default stride of 2 with an output
shape of 112x112x64.

3. A Dropout of 10% has been implemented to avoid overfitting.

4. A convolution layer with 64 3x3 sized kernels including default stride while ReLU
is the activation function, giving us an output shape of 110x110x64. And the output
parameter for this conv2D layer is ((3*3*64)+1)*64 = 36928.

5. A 2x2 sized maxpooling layer, with default stride of 2 was applied giving us an
output shape of 55x55x64.

6. A dropout of 10% has been implemented again.

7. A convolution layer with 64 3x3 kernels, with a stride of 2, ReLU activation and
an output shape of 53x53x64. And the output parameter for this conv2D layer is
((3*3*64)+1)*64 = 36928

8. A 2x2 size Maxpool2D layer with a default stride has been implemented which
gives us an output shape of 26x26x64.

9. A dropout of 10% has been implemented.

10. A flatten layer has been added to convert the 2D outputting matrix into a linear
vector.
9. A dense layer with 10 nodes along with softmax activation was implied, out-
putting only 1 value for class prediction. This is the output layer of our model.

38

Optimizer Adam

Loss Function Categorical Cross Entropy

Activation Function Softmax

Batch Size 32

Dropout 10%

Total Parameters 508298

Table 5.1: Hyperparameters Of 3- layer CNN Model

5.2.2 6-Layer CNN Model Architecture

The proposed model has been constructed employing the Adam optimizer for all
versions of the dataset while categorical-cross entropy has been specified for the loss
function as we are working on a multi-class classification among 10 classes. The
activation function that has been used is Softmax. Moreover, a dropout rate of 10%
was set to prevent overfitting while setting the batch size was kept as 32.

Optimizer Adam

Loss Function Categorical Cross Entropy

Activation Function Softmax

Batch Size 32

Dropout 10%

Total Parameters 1,793,514

Table 5.2: Hyperparameters Of 6 layer CNN Model

Block 1:

1. A convolution layer that includes 64 3x3 sized kernels, with a default stride of 2,
“same” padding and ReLU activation, outputting shape of 224x224x64.The output
parameter for this conv2D layer is ((3*3*3)+1)*64 = 1792.

2. A Maxpool2D layer with 2 x 2 pool size and stride size of 2 with outputting an
image of 112, 112, 64 shape.

3. A dropout of 10% has been implied to reduce overfitting.

Block 2:

4. Another Conv2D layer that includes 64 3x3 sized kernels, with a stride of 2,
“same” padding and ReLU activation, outputting shape of 110, 110, 64. The out-
put parameter for this conv2D layer is ((3*3*64)+1)*64 = 36928

5. A Maxpool2D layer with 2 x 2 size and default stride size of 2 outputting an
image of (55, 55, 64) shape.

3. A dropout of 10% has been implied to reduce overfitting

Block 3:

39

6. A Cnov2D layer layer with 64 3x3 sized kernels with stride of 2, “same” padding
and ReLU activation function. It gives us an output of, ((3*3*64)+1)*64 = 36928
parameters. The output shape of this layer is (53, 53, 64)

7. A Maxpool2D layer with 2 x 2 size and stride size of 2 outputting an image of
(26, 26, 64 shape).

8. A dropout of 10% have been added.

Block 4:

9. A Cnov2D layer layer with 128 3x3 sized kernels with stride of 2, “same” padding
and ReLU activation function. It gives us an output of, ((3*3*64)+1)*128 = 73856
parameters. The output shape is, (24, 24, 128)

10. A Maxpool2D layer with 2 x 2 pool size and default stride size outputting an
image of (12, 12, 128) shape to be passed on next layer.

11. A dropout of 10% have been set.

Figure 5.10: Architecture of 6 Layer Custom CNN

Block 5:

12. A Cnov2D layer layer with 256 3x3 sized kernels with stride of 2, “same” padding
and ReLU activation function. It gives us an output of, ((3*3*128)+1)*256 = 73856
parameters and an output shape of 10, 10, 256

13. A Maxpool2D layer with 2 x 2 pooling size and stride size of 2 outputting an
image of 5, 5, 256 shape. giving us an output shape of 24 x 24 x 128

14. A dropout of 10% have been set.

40

Block 6:

15. A Cnov2D layer layer with 128 3x3 sized kernels with stride of 2, “same” padding
and ReLU activation function. It gives us an output of, ((3*3*64)+1)*128 = 73856
parameters. The output shape is 3, 3, 512

16. A Maxpool2D layer with 2 x 2 pool size and default stride size of 1 outputting
an image of 1, 1, 512 shape. giving us an output shape of 24 x 24 x 128

17. A dropout of 10% have been set.

18. 3 fully connected layers have been added with 256, 128 and 32 nodes that gives
us an output of 131328, 32896 and 4128 parameters respectively.

19. A flatten layer has been added to convert the 2D outputting matrix into a linear
vector.

20. A fully connected output layer of 10 nodes have been added as we have 10
classes with Softmax activation function.

5.3 Model Evaluation

After years of research various metrics were found which are necessary to evaluate
a model. These metrics help to understand the excellence of a model.

5.3.1 Confusion Matrix

Confusion Matrix is a method for analyzing the effectiveness of a classification al-
gorithm or Supervised model. In a binary classification, may be 4 outcomes as
below:

1. True Positive: Both predicted and actual outcomes are positive.

2. True Negative: Both predicted and actual outcomes are negative.

3. False Positive: Predicted outcome is positive but actual outcome is negative.

4. False Negative: Predicted outcome is negative but actual outcome is positive.

5.3.2 Accuracy and Loss

Accuracy:

Accuracy is an indicator of the model’s performance across all classes which quan-
tifies how frequently the classifier predicts correctly. In other words, it is the per-
centage of estimates in which the predicted value and the actual value are the same.
The accuracy metric is often inappropriate for datasets with unbalanced classes as

41

the accuracy score would often be high. For classification issues that are prop-
erly balanced and not distorted, accuracy is a reasonable viewpoint to evaluate the
model.

Accuracy= Truepositive+Falsenegtive

Truepositive+Truenegative+Falsepositive+Falsenegtive
(5.1)

Loss:

A model’s loss or cost function evaluates how well or poorly it performs after each
optimization cycle. It is the summation of errors for each sample in the training and
validation set. For diverse usage depending on the dataset, Keras and Tensorflow
include a variety of built-in loss functions.

5.3.3 Training Vs Validation Accuracy

Training accuracy is obtained after the model has been run through the training
sets and similarly validation accuracy refers to accuracy that’s obtained after val-
idation set has run accuracy. Training accuracy demonstrates a model’s capability
while training while validation accuracy shows the ability to adapt to new dataset.
When both the accuracy are close to equal, the model shows no overfitting, but as the
training accuracy gets higher than validation accuracy it shows signs of overfitting
to training datasets, which means it is fitting to unnecessary noise while training.
Similar to how training and validation losses may assist identify if a model is overfit,
underfit, or neither can also be used to assess its quality. As a result, the model is
roughly accurate when training loss and validation loss are comparable.

Precision, Recall and F1 Score

The precision is the ratio of the total predicted positive instances to the actual
positive cases. The target of precision is to measure the ratio of the positively
predicted labels being precise and that’s why it’s also called positive predictive value.
To balance false positives and false negatives, precision is utilized in combination
with recall. Precision depends on the class distribution. It’s a measure of accuracy.
High recall and precision models can be used to minimize false negatives. When the
classes are highly imbalanced, the precision score is a defining aspect of how well
predictions worked. The mathematical representation of this will be,

Precision =
Truepositive

Truepositive+Falsepositive
(5.2)

On the other hand, recall is denoted for sensitivity and conveys the same meaning.
Model recall signifies the model’s ability to correctly predict the positives out of
actual positives. It measures the credibility of the machine learning that has been
used in terms of classifying all actual positives out of all positives that exist within a
dataset. Higher recall score indicates model high ability at detecting positive exam-
ples and vice versa. To provide a comprehensive picture of the model’s performance,
recall is often used in association with other performance metrics like precision and
accuracy. The mathematical representation of this will be,

Recall =
Truepositive

Truepositive+Falsenegative
(5.3)

42

F1-score gives the same amount of weight to Precision and Recall for measuring
its accuracy performance and makes it an alternative to Accuracy metrics. It’s
also used as a single value to get comprehensive details about the output quality
of the model. It is the harmonic mean of accuracy and recall is crucial for unequal
class distributions. This measurement is often useful when either precision or recall
score need to be optimized in a decreased model performance. The mathematical
representation is,

F1Score = 2.P recision.Recall
(Precision+Recall)

(5.4)

43

Chapter 6

Result Analysis

This chapter demonstrates the results and findings found during this study while
analyzing the results. After training the model results have been evaluated observing
the metrics discussed in the previous section, the models’ test accuracy, loss, and
required parameters were assessed to provide a rough indication of how well the
models have performed. Test accuracy and Test loss will provide an overview of
how the models have executed on unseen segments of the dataset based on their
learning on the training set. All of the models have been trained using training
and validation portions of the dataset and evaluated using the test dataset portion.
As we have mentioned previously, there are 3 versions of the dataset. Those are,
Original dataset, Dataset- V1 and Dataset-V2. As previously stated in Chapter 5,
we have used 7 transfer learning models and 2 custom CNN models in this work. All
of those 9 models have been used to train and test 3 versions of the dataset. Original
dataset has been trained on 30 epochs, Dataset-V1 on 70 epochs and Dataset-V2
on 100 epochs.
All of the models will be judged based on some factors. Those are, testing accuracy
and loss, precision, recall, F1 score and parameters of the model. Another important
factor that we should take into consideration is the parameters required for the
model.

6.1 Analyzing Confusion Matrix, Accuracy & Loss

6.1.1 Dataset Version - 2

The smallest version of our dataset is indicated as Dataset-V2 that has been cre-
ated for ease of implementation initially. Due to being the smallest dataset, it was
easiest to train as it took less computational time to execute each epoch. However,
the challenge of working with small datasets is, it is easy to be overfitted as in most
cases models fail to learn the proper patterns of the inputs. Along with decreasing
samples of the dataset there are higher chances of the wrong validation. Because
of this it was necessary to use higher numbers of epochs as The results obtained
from dataset-2 after running several pre-trained CNN models and customized CNN
models are shown in the Table 6.1 below.

Pre-trained Models: We have applied 7 Transfer Learning models that are based
on CNN-architecture. Test accuracy depicts the models’ ability to differentiate be-

44

Test

Accuracy
Test Loss

Val(max)

Accuracy

VAL(min)

Loss
Avg Precision Avg Recall

Avg F1

Score

Pre-Trained

CNN Models

ResNet101 0.9858 0.0967 0.9816 0.1054 0.99 0.99 0.99

Xception 0.9939 0.0522 0.9945 0.0489 0.99 0.99 0.99

InceptionV3 0.9909 0.1239 0.9963 0.049 0.99 0.99 0.99

InceptionResNetV2 0.9949 0.0182 0.9982 0.0106 1 0.99 0.99

DenseNet201 0.9959 0.0203 0.9945 0.0584 1 1 1

VGG16 0.9983 0.0139 1 0.0039 1 1 1

MobileNetV2 0.9979 0.0205 0.9963 0.0563 1 1 1

Custom CNN

Models

CNN - 3 layer 0.9961 0.0254 0.9875 0.0474 1 1 1

CNN - 6 layer 0.9959 0.0122 1 0.0024 1 1 1

Table 6.1: Accuracy of Models in Dataset-V2

tween different distracted driving behavior from unseen data. If the test accuracy
is high, then it means that the model can distinguish between the behaviors much
more accurately. From the table -X we can see that, among all of the pre-trained
CNN models, Resnet101 shows the worst performance while evaluating the model.
“Test accuracy” indicates the results obtained after evaluation on the test set which
is the unseen portion of the entire dataset. Resnet101 achieved test accuracy of
0.9858, which is the lowest among all Transfer Learning models. On the other hand,
the highest accuracy was achieved by VGG16 which is 0.9983. Meanwhile, other pre-
trained CNN models that showed better performance that Resnet101 are, Xception,
InceptionV3, InceptionResnet-V2, DenseNet201 and Mobilenet, scoring accuracy of
0.9939, 0.9909, 0.9949, 0.9959 and 0.9979 respectively on test portion of dataset.
The accuracy of these models varies slightly. DenseNet201 performs 0.1% better
than InceptionResnet-V2 and Mobilenet’s performance varies with Densenet201’s
by 0.2%.

Test loss reflects the difference between the actual and predicted outcomes, and a low
loss rate denotes a classifier’s ability to classify with greater confidence. Among all
pre-trained CNN models InceptionResNet-V2 performs the worst, scoring the high-
est test loss of approximately .1239. Therefore, ResNet101 shows a better outcome
than Inception-Resnet-V2 obtaining a test loss of 0.0967. Meanwhile, Xception,
Mobilenet, DenseNet201, InceptionResnet-V2 reached test loss of 0.0522, 0.0205,
0.0203 and 0.0182 respectively and VGG16 performed best achieving the lowest test
loss.

Among transfer learning models DenseNet201, VGG16 and MobileNetV2 achieve
the highest precision, recall and F1 score. As described in Chapter-5, the confusion
matrix for multi-class classification plots a NxN matrix where N is the number of
classes. For this work, N=10, the amount of classes that we are classifying as we
can see in figure 6.1.

Custom CNN Models: Among the two custom CNN models that have been im-
plemented, the first one is a 3 layer CNN model which consists of 3 convolution
layers. As it can be observed from the Table 6.1 above, on the test dataset an
accuracy of 0.9961 has been achieved by this model which is relatively less than
the transfer learning models that we implemented in Dataset-V2. It has a test loss

45

Figure 6.1: Confusion Matrix of all models on Dataset-V2

of 0.0254 which is significantly higher than most transfer learning models. There-
fore, even though the 6-layer CNN shows quite similar performance compared to the
initially implemented 3-layer CNN while evaluating the test set of dataset, it still
underperforms all of the transfer learning models except ResNet101.

From the figure 6.1 above, it can be seen that DenseNet201, VGG16, MobileNetV2
and both custom CNNmodels achieve the highest precision, recall and F1-score. The

46

confusion matrix on smallest version of the dataset represents correct predicted and
actual true outcomes and predicted-actual false outcomes as discussed in previous
chapter. However, our confusion matrix is multi-dimensional consisting of 10 classes
in total which also represents class-wise precision, recall and F1 score rates. Due to
that we can understand the accuracy of model on unseen data through analysing
the ratio of it successfully classifying among different classes.

6.1.2 Dataset Version - 1

After successful implementation of pre-trained models on Dataset-V2, those models
were implemented on Dataset-V1, the medium sized dataset containing around one-
fourth of the images of the original dataset and 3 times larger than Dataset-V2.
Due to this, we can understand how these models perform with a slightly increasing
dataset.

Test

Accuracy
Test Loss

Val(max)

Accuracy

VAL(min)

Loss
Avg Precision Avg Recall

Avg F1

Score

Pre-Trained

CNN Models

ResNet101 0.9736 0.1017 0.9708 0.1122 0.97 0.97 0.97

Xception 0.9978 0.0171 0.998 0.0057 1 1 1

InceptionV3 0.9945 0.0442 0.998 0.0096 0.99 0.99 0.99

InceptionResNetV2 0.9978 0.0282 0.999 0.0071 1 1 1

DenseNet201 0.9983 0.0132 1 0 1 1 1

VGG16 0.9994 0.0061 0.999 0.0042 1 1 1

MobileNetV2 0.9967 0.0264 0.999 0.0076 1 1 1

Custom CNN

Models

CNN - 3 layer 0.9895 0.0345 0.9929 0.0268 0.99 0.99 0.99

CNN - 6 layer 0.9945 0.0207 0.9959 0.0126 0.99 0.99 0.99

Table 6.2: Accuracy of Models in Dataset-V1

Pre-trained Models: Table 6.2 demonstrates that Resnet101 performs the weak-
est when assessing the model among all of the pre-trained CNN models. Similar to
the results of Dataset-2 Resnet101 obtains the poorest test accuracy compared to
other Transfer Learning models with an accuracy of 0.9736. InceptionV3 performs
slightly better with an accuracy score of 0.9945. Mobilenet achieved 0.9967 test
accuracy. Whereas, Xception and InceptionResNet-V2 show similar test accuracy
of 0.9978 while DenseNet secures a higher accuracy of 0.9983. On the other hand,
VGG16, with a 0.9994 test accuracy rate, outperforms all other Transfer Learning
Models.

Custom CNN Models: Therefore, amidst the custom models mentioned on table
6.2 it can be noticed that 6-layer CNN achieved 0.9945 testing accuracy and test
loss of .0207, showing a significantly better performance compared to the 3-layer
CNN unlike observed in Dataset-V2.

In this version of dataset, Xception, InceptionResNetV2, DenseNet201, VGG16 and
MobileNet-V2 and VGG16 achieves the best avg precision, recall and F1 score. The
class-wise precision, recall and F1 score is given in the confusion matrix.

47

Figure 6.2: Confusion Matrix of all models on Dataset-V1

6.1.3 Original Dataset

This is the main version of dataset that has approximately 40 thousand images in
total. Other versions of datasets were created by sub-setting this dataset in differ-
ent ratios that has been mentioned in chapter 4. Due to being the largest dataset
compared to other that has been dealt with for this study, this consumed more time
in the training phase. Due to this, it has been trained until 30 epochs

48

Test

Accuracy
Test Loss

Val(max)

Accuracy
VAL(min) Loss Avg Precision Avg Recall

Avg F1

Score

Pre-Trained

CNN Models

ResNet101 0.9883 0.0408 0.989 0.0446 0.99 0.99 0.99

Xception 0.9986 0.023 1 0 1 1 1

InceptionV3 0.9988 0.0421 0.9989 0.0093 1 1 1

InceptionResNetV2 0.9991 0.0123 0.9997 0.0028 1 1 1

DenseNet201 0.9992 0.0219 1 0 1 1 1

VGG16 0.9997 0.0013 0.9963 0.0001 1 1 1

MobileNetV2 0.9998 0.0033 1 0 1 1 1

Custom CNN

Models

CNN - 3 layer 0.9994 0.0028 0.9995 0.0025 1 1 1

CNN - 6 layer 0.9986 0.00408 0.9995 0.0044 1 1 1

Table 6.3: Accuracy of Models in Original Dataset

Pre-trained CNN Models: From the above table 6.3, we can see that, the Mo-
bileNetV2 model has reached the highest accuracy with less training and validation
loss. It is also noticeable that the accuracy of these models vastly vary due to
their architecture while being implemented on the original dataset. VGG16 and
MobileNetV2 show a splendid performance in terms of evaluating test data. Due to
this, these two models are able to achieve the highest testing accuracy compared to
all other pre-trained CNN models. Both of these models obtained very close test-
ing accuracy as the difference of accuracy among VGG16 and MobileNetV2 is only
0.01%. Besides, DenseNet201 and Inception-ResNetV2 show outstanding results as
well.

The difference between the actual and predicted outcomes, and a low loss number
denotes that the classifier is more certain of its predictions which is measured by
test loss. From the table it is observable that, despite achieving highest accuracy
MobileNetV2’s test loss is higher than the test loss obtained from the VGG16 model.
However, the difference between the both models is very minimal.

Custom CNN: As seen in Table 6.3 above, 3-layer CNN model has attained an
accuracy of 0.9994 on the test data of the original dataset, which outperforms
most of the state of art transfer learning models unlike the results observed in
both Dataset-V1 and V2. The test accuracy obtained by this model is significantly
higher than the results obtained from training and evaluating ResNet101, Xception,
InceptionResnet-V2 and DenseNet201 on the original dataset. However, it under-
performs 2 transfer learning models, VGG16 and MobileNet-V2. 3-layer CNN model
also has remarkably less test loss than that of the majority of transfer learning mod-
els. It obtains a test loss of 0.0028. On the other hand, our 6-layer CNN model fails
to exceed the accuracy achieved by initially implemented 3-layer CNN model and
most of the transfer learning models. It achieves test accuracy of 0.9986, similar
to Xception. However, its training loss is notably less than most pre-trained CNN
models.

In this main or largest dataset, all models except ResNet101 achieves the avg preci-
sion, recall and F1 score of 1. The class-wise precision, recall and F1 score is given
bellow in figure 6.3

49

Figure 6.3: Confusion Matrix of all models on Original Dataset

6.2 Analyzing Training Accuracy-Loss Vs Valida-

tion Accuracy Loss

After thoroughly observing all of the pre-trained and custom CNN models through
analyzing their performances on various versions of datasets based on several met-
rics, it can be concluded that VGG16 and MobileNetV2 performs the best, partic-
ularly considering the test accuracy and test loss achieved by both of these models.

50

Despite the fact that our custom CNN models perform outstanding by achieving
great accuracy, those are unable to exceed the accuracy achieved by VGG16 and
MobileNetV2. However, these alone do not ensure that the models’ effectiveness as
concerns regarding overfitting can also arise from high accuracy. This may cause
poor results when the same models are applied on unseen data, and hence is unde-
sired. In real life driving scenarios that our model is supposed to be implemented
on, when the same models are applied on the unknown data, overfitting may lead
to unsatisfactory outcomes. Due to this, both the pre-trained CNN and custom
CNN models’ training accuracy and loss were assessed to corresponding validation
accuracy and loss for all three versions of datasets to ensure if the models truly
perform well or the high accuracies are resulted from overfitting as illustrated by
Figure 6.4, Figure 6.5 and Figure 6.6 beneath. Therefore, for the epoch acquiring
highest validation accuracy has been considered as the best checkpoint result and
saved. Later, the saved model was loaded while evaluating the model on unseen
data which is test set of the dataset in our case. The test accuracy achieved from
these models have been discussed in previous section

Dataset V2: As previously described in Chapter-2, presence of overfitting or under-
fitting issues can be ensured through observing the models’ training and validation
accuracy-loss graphs generated after each model has been fed into with training
data. As our model performs well in training phase, it can be said that there is
no issue of underfitting so far, hence to spot any case of overfitting among these
models training vs validation accuracy and loss have been observed. If mentioned
previously, if the training and validation accuracy or loss curves have significant
difference among that can be considered as a case of overfitting.

While observing the graphs of all models generated after being trained on the small-
est version of dataset, Dataset-V2 for 100 epochs, we can see that most of the
models’ graphs doesn’t have much difference among training-validation loss curves
and train-validation accuracy curves. However, ResNet101, Xception and Inception-
V3 shows hints overfitting in the very first few epochs.

51

Figure 6.4: Training Vs Validation Accuracy-Loss Graphs of Implemented Models
On Dataset-V2

Dataset-V1: This version of dataset is larger than the Dataset-V2. For this version
the dataset has been trained until 70 epochs.

After monitoring the graphs of Figure 6.5, it can be noticed that, in case of ResNet101,
at the initial epochs there are slight differences among both training-validation accu-
racy and loss which ultimately gets closer. For the other pre-trained model a sudden

52

Figure 6.5: Training Vs Validation Accuracy-Loss Graphs of Implemented Models
On Dataset-V1

rise of validation loss can be seen. However, this is natural while training a model
and cannot be considered as an issue of overfitting, as the best epoch has been saved
and applied in the model. And since that epoch is the highest from where training
and validation curve is alligned there is no case of overfitting. Nonetheless, in terms
of MobileNetV2, 3-Layer CNN and 6-Layer CNN models the curves of validation
training loss and accuracy completely converges with each other showing almost no
chances of the model being overfitted while training.

53

Original Dataset: In original dataset as well it can be seen that no model shows
any chances of being overfitted.

Figure 6.6: Training Vs Validation Accuracy-Loss Graphs of Implemented Models
On Original Dataset

54

Therefore, similar to Dataset-V2 and Dataset-V1, both of the custom CNN models
are showing phenomenal performance with no overfitting issues unlike the transfer
learning models that showed considerably smoother in the smaller versions of the
dataset.

After observing the training and validation accuracy-loss graphs of several models of
different versions of dataset, it can be seen that almost all of the implemented models
are giving us an impressive performance making it hard to decide on one model that
is performing the best. Therefore, in terms of test accuracy, InceptionV3, Xception,
DenseNet201, VGG16, MobileNetV2 and 3 layer CNN performs quite better than
6-layer model. However, according to our observation in training-validation loss and
accuracy graph, VGG16, MobileNetV2 and both custom CNN models, 3-layer CNN
and 6-layer CNN has performed significantly better than other models.

6.3 Parameters Of Models

In the case of deep learning, parameters include weight and bias, which are charac-
teristics of the training data that will be learned throughout the learning process.
The summation of all the biases and weights of the neural network indicates the
total number of parameters. If the history of deep learning is observed, we can see
that the number of parameters has resulted in appreciably good outcomes. Deep
learning models, however, need a lot of computational resources, so they’re not
ideal for lightweight devices like smartphones and the Internet of Things (IoT). The
amount of parameters caused due to the architecture of a specific model has a lot
to contribute in efficient detection as high parameters often result to high compu-
tational and time complexity. As the focus of this dissertation is to detect several
distractions of drivers caused in real-time scenarios while setting a camera device on
a side of the vehicle, the time required to perform the detection by the algorithm is
an important factor. Due to this, the detection procedure in such crucial real-time
based applications should take the least amount of time and to do so the goal should
be minimizing the time and computational complexity to the minimum.

Model Parameters

ResNet101 43,661,706

Xception 21,865,010

InceptionV3 22,314,794

InceptionResNetV2 54,720,746

DenseNet201 19,262,794

VGG16 14,965,578

MobileNetV2 3,730,634

3-Layer CNN 508,298

6-Layer CNN 1,793,514

Table 6.4: Parameters Of Implemented Models

Among all of the models that has been implemented in this work, whether pre-

55

trained or custom CNN, all has shown great training and testing accuracy with
minimal to almost no issues of overvitting. However, based on training and testing
accuracy and loss among pre-trained CNN models’ VGG16 and MobileNetV2 mod-
els are the best performer for our task. On the other hand, from custom both CNN
models’ 3 layer CNN outperforms the 6- layer CNN model in terms of accuracies.

Nevertheless, judging from the perspective of time complexity and the amount of
parameters required for these models, VGG16 and MobileNetV2 has least amount
of parameters compared to other transfer learning models, where parameter of Mo-
bileNetV2 is around 3.73 million which is four times less than the parameters of
VGG16. Therefore, our custom CNN models, 6-layer CNN and 3-Layer CNN has
parameters of around 1.7 million and 0.5 million which is approximately 2.08 and
7.34 times less than MobileNetV2.

So judging not only from the constraints of accuracies but also the parameters,
considering these models’ implementation in real-time, among all of these 9 imple-
mented models MobileNetV2, 3 Layer CNN and 6 layer CNN models are best suited
for this field.

6.4 Interpretability Of Model

Because of the availability of data, AI systems have widespread in numerous dif-
ferent fields and been implemented in several applications these days, which has
been possible solely due to the advancements of Deep Learning and the emergence
of various creative ways alongside, through which these growing datas can be uti-
lized. Developments in the sector of Deep Learning has allowed us to construct
models that are able to perform well on increasingly complex tasks. However, as a
consequence, the complexity of these systems and applications has become incom-
prehensible to visualize. Due the increasing parameters and complexity of these
models, it is quite challenging to understand how models arrive at their predictions,
which again makes it hard for us to analyze when a model is resulting poor perfor-
mance, for exact which reasons the model might not be working well enough. Due
to this, machine learning and deep learning models are often referred as black boxes.

However, deep learning is also implemented in various safely and health criticle
environments such as healthcare sector or autonomous driving. Therefore, human
simply need to understand the perspectives of the model through which they learn
and evaluate, to build a trust among human and machines even in crucial sectors.
That’s when we are required to know and explain the model’s learnings. The field
of Interpretable Machine Learning works on better understanding the interpretabil-
ity of these neural network models and validate how this deep learning models work.

There are several techniques that approximates black box models. For example,
LIME, Gradcam, SHAP are most reknowned ones for such tasks. To check inter-
pretability of our model we have used LIME.

The goal of checking interpretability of implemented models using LIME was to

56

understand if these models are properly detecting the Regions of Interest(ROI) that
these are supposed to look into. For example, if the input image for testing belongs
to c1 class which is texting with right hand, we would expect our model to identify
either the hand or phone or both. LIME aims to comprehend the characteristics
that affect a black-box model’s prediction of a particular ROI. The list of expla-
nations that LIME produces demonstrates the significance of each feature value to
prediction of model.

6.4.1 Interpretability of 3-Layer CNN

At first the we checked explainability in 3-Layer CNN model. This is the custom
CNN model that achieved the highest accuracy. Figure 6.7 below shows the region
of interest according to the confidence value and marks the highest ROI that plays
the most crucial role in the prediction of the model for that certain class. Besides,
through the heatmap most influential segments used by the model to make the pre-
diction can be identified. To check interpretation of these models it has been fed
into some images where each of those belong from 10 different classes of our dataset.

Figure 6.7: ROI Identified For 3 Layer CNN

57

Figure 6.7 containes 10 images from 10 classes. It can be noticed that, our 3 layer
CNN model is successfully able to identify regions of interests for class C0, C4, C5,
C6, C7, C9. For C0 class it identifies the hand that is on steering based on the infor-
mation the image can be recognized as an image of ”Safe Driving” class. Whereas,
in C4, the elbow of left hand is identifies as the person is talking over phone using his
left hand. For C5 class, marked hands on radio region shows that the driver is busy
operating the radio of the vehicle. In terms of C6, C7 and C9 class, drivers’ elbow,
waist and shoulder is identified as most prominent region with the most confidence
value.

However, our 3 layer custom CNN model fails to identify the proper regions for
class C2 and C8. Therefore, even though it identifies certain postures for C1 and
C3 class, it can also be considered as wrong regions. For example, in C1 class the
model marks driver’s tilted head as most significant region where the model actually
should rather focus on right hand and phone as the driver is texting with his right
hand. Same can be seen for C3 where the driver is using phone with left hand but
the model neither identifies the left hand or phone rather is again focused on tilted
head. In brief, the custom layer CNN model is able to identify 6 classes properly
and identifies 4 regions improperly.

6.4.2 Interpretability of MobileNetV2

This model has shown us the best performance among all of the implemented models
with best accuracy. Also it has the least parameters among those, making it more
suitable than the other ones for real time application.
Figure 6.8 below displays the region of interest based on the confidence value and
designates the highest ROI that is particularly crucial for the MobileNetV2 model’s
estimation for that given category.

If the figure 6.8 is observed thoroughly it can be seen that, the model perfectly iden-
tifies C1, C4, C5, C6, C9. where for C1 it marks right hand with phone, for C4 it sees
left hand with phone and face, , for C5 the model spots right hand operating radio,
for C6 it marks the water bottle and hand and lastly for C9 it spots the face of the
driver. However, the model fails to identify proper region for C0, C2, C3, C7 and C8.

58

Figure 6.8: ROI Identified For MobileNetV2

6.4.3 Interpretability of 6 Layer CNN

While analyzing the results of every models it was seen that 6-layer CNN performs
worse than other models in terms of test accuracy and loss. It’s total parameter is
approximately 1.7 million which is a lot less than transfer learning models. Figure
6.9 shows the the estimated regions with highest significance by this model.

Here we can see that, unlike MobileNetV2 and 3-Layer CNN, 6 layer CNN model
can identify proper regions of interests of all the classes quite precisely. If we try
to explore all of the classes individually we will notice that, in c0(safe driving) the
model identifies hands on steering as the most important region. For C1(Texting-
right hand) it exactly points out the right hand along with the device. In case
of C2(Talking on phone-Right hand) our model precisely identifies right hand and
phone and in C3(Texting-left hand) it can identify phone and left hand. Therefore,
observing C4(Talking on phone- left hand) the model identifies the driver’s left el-
bow and the hand along with certain finger gets identified in terms of C5(Operating
radio). In C6(Drinking), the model identifies not only uplifted head but also mis-
placed right elbow as next prominent region for this certain class. In the matter of
C7(Looking behind) and C8(Fixing hair & makeup) the model accurately identifies
the front portion of body and hand. Lastly our model correctly spots the significant

59

Figure 6.9: ROI Identified For 6 Layer CNN Model

region of C9(Talking to passenger) as it spots the face.

6.4.4 Comparison

Here, figure 6.10 shows the comparison of ROI identified by our proposed CNN
model(6 layer CNN model), Custom CNN model(6 layer CNN model) and transfer
learning model MobileNetV2. To do a fair evaluation while doing the comparison
among all these three models it has been ensured that same image of the test set of
each class has been fed into the model to identify the region of interest. Therefore
we can see that our proposed model performs best as it is able to identify ROI better
than 3 layer CNN and MobileNetV2.

60

61

Figure 6.10: Comparision Among Models

6.5 Proposed CNNModel Result In SFD3 Dataset

After scrutinizing our proposed model, 6 layered custom CNN’s excellent perfor-
mance in Howdrive: Distracted driver dataset, we implemented our model on famous
State farm distracted driver dataset (SFD3). Therefore the achieved test accuracy
of the model in State farm distracted driver dataset is 99.20% and test loss is as low
as 0.0332 as can be seen from the test accuracy and loss graph as can be noticed
from figure 6.11.

Figure 6.11: 6 Layer CNN Validation-Training Accuracy Loss Graph In SFD3
Dataset

62

Therefore an average precision, recall and F1-score of 99% has been achieved by our
model. The confusion matrix of figure 6.12 shows class wise result of our 6 layer
CNN model in SFD3 dataset.

Figure 6.12: 6 layer CNN Confusion Matrix In SFD3 Dataset

We also analyzed if our model is able to detect region of interests as impressively
in other datasets. Regions of all 10 classes has been identified perfectly as it was
seen in previously implemented Howdrive distracted driver dataset. The figure 6.13
shows the results.

Figure 6.13: 6 layer CNN ROI Identification in SFD3 Dataset

63

6.6 Comparison of Proposed Model With Previ-

ous Related Works

Throughout the years, many researches have been done in this field and researchers
and scientists have progressed to detect distracted behaviour with greater accuracy.
Table 6.5 shows the models that has been used in those previous works and the
accuracy that has been obtained by those models. This has also been broadly
discussed Chapter 3 of our paper.

Paper Title Applied Model Accuracy

Distracted Driver Detection

and Classification [11]

Average of pre-trained VGG 16,

VGG 19 and Inception V3
96.31%

Detection of Distracted

Driver using Convolutional

Neural Network [10]

VGG with Regularization
96.31%

Distracted Driver Detection [17])
VGG-16 architecture weights and

applied the Dense and Flatten layers.
93%

An Efficient Deep Learning

Framework for Distracted

Driver Detection [22]

EfficientDet-D3 99.16%

Driver Distraction Identification

with an Ensemble of Convolutional

Neural Networks [13]

Weighted sum of pre-trained

AlexNet, InceptionV3

, a ResNet50, and a VGG-16

90%

HSDDD: A Hybrid Scheme for the

Detection of Distracted Driving through

Fusion of Deep Learning and Handcrafted

Features [25]

KNN Algorithm 95.9%

An Embedded Deep Learning

Computer Vision Method for

Driver Distraction Detection [21]

Pre-trained SqueezeNet 93%

A hybrid neural network for driving

behavior risk prediction based

on distracted driving

behavior data [27]

Custom network named

Driving Behavior

Risk Prediction Neural

Network (DBRPNN)

91.46%

Robust Deep Learning-

-Based Driver Distraction Detection

and Classification [19]

VGG 19 95.77%

Distracted Driving Detection by

Combining ViT and CNN [28]
Combination of ViT and KNN 97.9%

Application of CNN-based architectures

in Detection of Distracted Diver
Custom 6 Layer CNN 99.86%

Table 6.5: Comparing our work with previous related works

From the table we can clearly see that our model is able to surpass their accuracy.
However, as we have mentioned several times before, the objective of this paper
has never been gaining a higher accuracy but the gaining better identification of
distracted behavior. None of these previous work has explained their model. Though
the accuracy of these works are quite impressive but, higher accuracy certainly do

64

not ensure proper detection of ROI as we have previously seen from MobileNetV2
and 3-layer custom CNN.

65

Chapter 7

Discussion

After constructing several convolutional neural network models, our 6 Layer CNN
model appeared to be the most suitable system that accomplishes our goal of provid-
ing an efficient system which is able to classify several distracted driving behaviours
with better success rate. Not only our proposed model has impressive test accuracy
and low loss along with high precision, recall and F1 score, it also overcomes the phe-
nomenon of a model being overfitted. It does, however, raise an interesting concern
regarding the model’s capability to triumph over the previously built state-of-art,
high-level pre-trained models.

Even though our model has not been able to achieve a greater accuracy than pre-
trained models, it surely shows a better interpretability results with minimal param-
eters compared to those. It is quite difficult to know what specific reasons triggered
our model to perform better than transfer learning models, however, one particular
reason may be deduced from the research process. As we know, deep learning mod-
els are known to be “Data hungry”, which means that, to train and make a model
learn requires sufficient amount of data, where those datas must be well labeled.
Transfer learning models are trained on ImageNet dataset, a large visual database
containing roughly 14 million images on 20 thousand different classes. To be trained
on this huge database, these models were required to show impressive accuracy with
least error rate while learning datas of numerous sources and categories and to do
so these transfer learning model needed more layers and parameters. Moreover, if
we notice the evolution of deep learning models starting from AlexNet, we will see
that the error rate of these evolving transfer learning models tend to be reduced
with increasing numbers of layers, in other words with increasing complexity. We
are assuming that, due to the previously learned weights from images of different
subjects, those pre-trained models have the tendency to search for distinct patterns
that are unsuitable for our images. For example, in terms of c0(Safe driving) and
c7(Looking behind), one of the transfer learning models with best performance,
MobileNetV2 was seen emphasizing on car window instead of identifying distinct
human body parts particularly involved for classification of these classes. This issue
doesn’t arise in our case as our proposed model is specifically trained to perform
this certain classification while learning from the images of training set of data. The
dataset that we used for our research purpose has around 40 thousand images where
28.8 thousand images were used specifically to training our model. This way our
model extracts only the exact required informations from each convolution layer

66

and proceed it to the next layer, learning what it is supposed to look at particularly
without dealing with these unnecessary extra layers and calculations due to previ-
ously stored weights.

There have been some related researches in this field that has achieved impressive
accuracy. However, as we have seen from our previous analysis in this study, ac-
curacy should not be the only metric to evaluate a model’s performance. Even
though MobileNetV2 and 3 layer CNN which had even lesser parameters (0.5 mil-
lion) achieved higher accuracy than our proposed model, we saw that those were not
able to identify all classes due to logical reasons. Which means, in real life scenarios
these models will not be able to perform as efficiently. However, in crucial sectors
as such it is important to build trust within technology and humans. Due to this
reason, it is necessary to know what these models are learning to make a successful
practical implementation possible. However, no work has been done before that
ensures this.

Although it could appear that the study and its findings were flawless, these are
still not prone to limitations. Even though our model shows great potential, we
have some limitations as well. Firstly, we haven’t still evaluated our model within
completely different unseen data which it will need to do in real-life scenarios. Sec-
ondly, as our model is supposed to work on real-time application where videos will
be extracted to frames which again will go through all the steps mentioned in this
work, it is necessary to apply this in such way to see if our model is able to identify
distracted behaviours within required short amount of time. We will be working
on this further in future and implement our research as a project based model to
implement in reality.

67

Chapter 8

Conclusion

Distraction of any form is not good. And when it comes to driving it can be lethal.
It can put ourselves and our loved one’s life on the line. A message pops up while
driving and it might seem harmless to check and reply that text, but little do we
think about the damage it can cause to our life. People face fines, tickets and even
jailtime for such offense. But the biggest of them all, we might have to trade our
life because of these distractions while driving.

With the goal of outspreading positive impacts by minimizing such occurrences, af-
ter looking into several CNN application based approach, we are proposing a custom
6 layer CNN model that is able to identify the common behaviours attempted by
drivers that lead to distraction while driving. After finding the suitable dataset the
dataset has been properly augmented and several data pre-processing has been done.
Later on, after implementing our model in several pre-trained models and analyzing
an convolutional approach has been taken to build a suitable custom model for this
task. Later on after trying out several custom CNN models 2 models, 3-layer custom
CNN and 6-layer custom CNN that worked best has been chosen to be portrayed
in this work. Our model has been built and trained specifically to work on this
domain with impressive accuracy and low loss. Our proposed model achieves ac-
curacy of 99.86% which surpasses accuracies obtained by most other related works.
Moreover, the model is able to explain how it signifies the regions and this prove
that the proper information and features were extracted through every convolution
layers which ultimately leads to proper identification. Later on, the proposed 6-layer
CNN model has been implemented on another famous dataset, State farm distracted
driver dataset of Kaggle and there as well it achieves a splendid accuracy of 99.20%
and alongside our model shows great explinability with correct region identification
in terms of this dataset as well.

68

Bibliography

[1] Y. Liang, Detecting driver distraction. The University of Iowa, 2009.

[2] W. H. Organization et al., “Mobile phone use: A growing problem of driver
distraction,” 2011.

[3] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature de-
tectors,” arXiv preprint arXiv:1207.0580, 2012.

[4] F. Tango and M. Botta, “Real-time detection system of driver distraction using
machine learning,” IEEE Transactions on Intelligent Transportation Systems,
vol. 14, no. 2, pp. 894–905, 2013.

[5] R. A. Berri, A. G. Silva, R. S. Parpinelli, E. Girardi, and R. Arthur, “A
pattern recognition system for detecting use of mobile phones while driving,” in
2014 International Conference on Computer Vision Theory and Applications
(VISAPP), IEEE, vol. 2, 2014, pp. 411–418.

[6] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[7] State farm distracted driver detection, 2016. [Online]. Available: https://www.
kaggle.com/c/state-farm-distracted-driver-detection/data.

[8] Y. Abouelnaga, H. M. Eraqi, and M. N. Moustafa, Auc distracted driver
dataset, Oct. 2017. [Online]. Available: https://abouelnaga.io/projects/auc-
distracted-driver-dataset/.

[9] A. Aksjonov, P. Nedoma, V. Vodovozov, E. Petlenkov, and M. Herrmann,
“Detection and evaluation of driver distraction using machine learning and
fuzzy logic,” IEEE Transactions on Intelligent Transportation Systems, vol. 20,
no. 6, pp. 2048–2059, 2018.

[10] B. Baheti, S. Gajre, and S. Talbar, “Proceedings of the ieee conference on
computer vision and pattern recognition workshops,” 2018, pp. 1032–1038.

[11] P. M. Chawan, S. Satardekar, D. Shah, R. Badugu, and A. Pawar, “Distracted
driver detection and classification,” International Journal of Engineering Re-
search and Applications, vol. 4, no. 7, 2018.

[12] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural
networks: An overview and application in radiology,” Insights into imaging,
vol. 9, no. 4, pp. 611–629, 2018.

[13] H. M. Eraqi, Y. Abouelnaga, M. H. Saad, and M. N. Moustafa, “Driver dis-
traction identification with an ensemble of convolutional neural networks,”
Journal of Advanced Transportation, vol. 2019, 2019.

69

https://www.kaggle.com/c/state-farm-distracted-driver-detection/data
https://www.kaggle.com/c/state-farm-distracted-driver-detection/data
https://abouelnaga.io/projects/auc-distracted-driver-dataset/
https://abouelnaga.io/projects/auc-distracted-driver-dataset/

[14] S. Kusuma, J. D. Udayan, and A. Sachdeva, “Driver distraction detection using
deep learning and computer vision,” in 2019 2nd International Conference on
Intelligent Computing, Instrumentation and Control Technologies (ICICICT),
IEEE, vol. 1, 2019, pp. 289–292.

[15] S. Jeong-ro, State farm distracted driver detection, Nov. 2020. [Online]. Avail-
able: https://www.kaggle.com/datasets/rightway11/state-farm-distracted-
driver-detection.

[16] P. Mao, K. Zhang, and D. Liang, “Driver distraction behavior detection method
based on deep learning,” in IOP Conference Series: Materials Science and En-
gineering, IOP Publishing, vol. 782, 2020, p. 022 012.

[17] D. Ruparel, A. Rajde, S. Shah, and P. Gidwani, Distracted driver detec-
tion, Oct. 2020. [Online]. Available: https ://www. jetir . org/view?paper=
JETIR2010371.

[18] D. J. K. Amy Schick Debbie Ascone, “Distraction by cell phones and texting,”
National Highway Traffic Safety Administration, 2021.

[19] A. Ezzouhri, Z. Charouh, M. Ghogho, and Z. Guennoun, “Robust deep learning-
based driver distraction detection and classification,” IEEE Access, vol. 9,
pp. 168 080–168 092, 2021.

[20] A. Kashevnik, R. Shchedrin, C. Kaiser, and A. Stocker, “Driver distraction
detection methods: A literature review and framework,” IEEE Access, vol. 9,
pp. 60 063–60 076, 2021.

[21] B. Roytburd, A. Shaout, and L. A. Sanchez-Perez, “An embedded deep learn-
ing computer vision method for driver distraction detection,” Available at
SSRN 3996984, 2021.

[22] F. Sajid, A. R. Javed, A. Basharat, N. Kryvinska, A. Afzal, and M. Rizwan,
“An efficient deep learning framework for distracted driver detection,” IEEE
Access, vol. 9, pp. 169 270–169 280, 2021.

[23] N. C. for Statistics and Analysis, “Distracted driving 2019,” National Highway
Traffic Safety Administration, Apr. 2021, (Report No. DOT HS 813 111). [On-
line]. Available: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/
813111.

[24] N. C. for Statistics and Analysis, “Distracted driving 2020,” National Highway
Traffic Safety Administration, Apr. 2021, (Report No. DOT HS 813 184). [On-
line]. Available: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/
813184.

[25] M. H. Alkinani, W. Z. Khan, Q. Arshad, and M. Raza, “Hsddd: A hybrid
scheme for the detection of distracted driving through fusion of deep learning
and handcrafted features,” Sensors, vol. 22, no. 5, p. 1864, 2022.

[26] T. Covington, “Distracted driving statistics: Research and facts in 2022,” The
Zebra, May 2022. [Online]. Available: https://www.thezebra.com/resources/
research/distracted-driving-statistics/.

[27] X. Fu, H. Meng, X. Wang, H. Yang, and J. Wang, “A hybrid neural network for
driving behavior risk prediction based on distracted driving behavior data,”
PloS one, vol. 17, no. 1, e0263030, 2022.

70

https://www.kaggle.com/datasets/rightway11/state-farm-distracted-driver-detection
https://www.kaggle.com/datasets/rightway11/state-farm-distracted-driver-detection
https://www.jetir.org/view?paper=JETIR2010371
https://www.jetir.org/view?paper=JETIR2010371
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813111
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813111
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813184
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813184
https://www.thezebra.com/resources/research/distracted-driving-statistics/
https://www.thezebra.com/resources/research/distracted-driving-statistics/

[28] Y. Li, L. Wang, W. Mi, H. Xu, J. Hu, and H. Li, “Distracted driving detec-
tion by combining vit and cnn,” in 2022 IEEE 25th International Conference
on Computer Supported Cooperative Work in Design (CSCWD), IEEE, 2022,
pp. 908–913.

71

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	Nomenclature
	Introduction
	What is Distracted Driving?
	Attributes of Distracted Driving
	Limitations of Detecting Distracted Driving
	Use of Deep Learning in Distracted Driving Detection

	Problem Statement
	Research Objectives
	Paper Orientation

	Background
	Convolutional Neural Network
	Foundational Elements of CNN
	Input Layer
	Convolution Layer & Kernel
	Activation Function
	Strides
	Padding
	Pooling Layer
	Dense Layers

	Training Model
	Loss Functions
	Optimizer: Adam

	Splitting Dataset
	Overfitting & Underfitting

	Literature Review
	Research Using Several ML Models
	Detection Using CNN Based Architectures
	Major Findings and Scope of Research

	The Dataset
	Data collection
	Data Analysis
	Data Pre-Processing for Models
	Making Sub-Dataset
	Data Augmentation

	The Models
	Transfer Learning Model
	Resnet50
	ResNet50V2
	VGG16
	Inception-ResNetV2
	InceptionV3
	Xception
	DenseNet201
	MobileNet-V2

	Convolutional Neural Network Models
	3-Layer CNN Model Architecture
	6-Layer CNN Model Architecture

	Model Evaluation
	Confusion Matrix
	Accuracy and Loss
	Training Vs Validation Accuracy

	Result Analysis
	Analyzing Confusion Matrix, Accuracy & Loss
	Dataset Version - 2
	Dataset Version - 1
	Original Dataset

	Analyzing Training Accuracy-Loss Vs Validation Accuracy Loss
	Parameters Of Models
	Interpretability Of Model
	Interpretability of 3-Layer CNN
	Interpretability of MobileNetV2
	Interpretability of 6 Layer CNN
	Comparison

	Proposed CNN Model Result In SFD3 Dataset
	Comparison of Proposed Model With Previous Related Works

	Discussion
	Conclusion
	Bibliography

