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Abstract
When images of printed or handwritten are converted; be it mechanically or electronically to an
editable text format, this is called optical character recognition. Bangla is one of the most complex
languages as it has so many characters and digits. Moreover the Bangla language has about 300
composite characters. That is why the extraction of characters from images is more difficult for
Bangla compared to other languages. Deep learning has recently developed good capabilities for
extracting high-level features from an image kernel.

This paper will propose a custom model KDANet and compare with some popular deep learning
models that can recognize handwritten Bangla characters written in various and distinct handwrit-
ing styles. These systems learn more accurate and inclusive features from large-scale training datasets
than earlier feature extraction techniques.

Keywords: Character Recognition; Bangla OCR; KDANet; Computer Vision; Deep Learning; Convo-
lutional Neural Networks;
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Chapter 1

Introduction

Character recognition from images, especially handwritten image samples have received a lot of
attention recently. Over these years, computation power has increased significantly due to high-
performing computing systems. This actually paved the way for more and more complex neural
network models which were limited a few years ago. It made the raw processing power demanding
research easier. Many researchers have worked on character recognition over the last few decades,
but research on Bangla character recognition is not so saturated yet, although it has been getting a
lot of attention recently.

The Bangla script came from the ancient Brahmi script with numerous transformations. Bangla
is the world's seventh most widely spoken language. Approximately 265 million people speak this
language. It is enriched with many different characters. The Bangla language has 11 vowels, 39
consonants, and 10 numbers. There are also some compound and some special characters in the
Bangla language.

Figure 1.1: Examples of Bangla Characters

Character detection has a greater implementation in terms of word detection and similarly in case of
sentence level detection. An OCR system can be used to retain the structure of old documents. Over
the years, many techniques have been developed and used to convert handwritten Bangla characters
into digital data i.e Water overflow model, CNN, RNN, DNN, Tesseract, etc. The compound characters
in the Bangla language are a bit difficult to recognize due to size, cursiveness, and miscellaneous
nature of handwriting. Compound characters and the cursive nature of the Bangla language act as
the main barrier for recognizing the Bangla language fully.
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In [1] they used 24 compound characters and achieved 91.1% accuracy using CNN based architecture
Inception. And in [16] they used shape decomposition technique along with chain code histogram
and multi-layer perceptron. They used 128 compound characters, which cover 95% of the total
compound characters used in the conventional Bangla language. They achieved 88.7% accuracy.

1.1 Research Problem
The Bangla language is a highly sophisticated language. There are lots of factors that make it difficult
to distinguish characters. In addition to that, if we consider the case of handwritten Bangla texts,
the handwriting varies greatly from person to person. Thus, in very few cases, it becomes almost
impossible to understand clearly with the human eye, let alone machines. Therefore, we need to
overcome many challenges but still, we thrive to propose a better OCR in terms of flexibility. Not
to mention the many different edge cases we are deemed to face whilst trying to determine the
suitable parameters for our aspiring model.

One of the most complicated things about the Bengali language is the header stroke (Matra), which
differs from character to character and can change the meaning of a word dramatically. There
are some rare cases where the characters differ only in header strokes. For example, ন and ণ are
very close to each other and can only be differentiated by their header strokes (Matra). There are
characters, which can be differentiated with only a dot. For instance, ব and র, these two char-
acters are different only because of a dot, which makes it strenuous to distinguish. The vowels
have modified versions too, [Fig:2], which combine with the consonants and give it a meaning. For
example, the vowel উ is also used as ু with some characters and consonants like ঁ (Chandrabindu)
is used to compliment other characters. In the word, “বাকা” here both ব and া are consonants, yet
they complement each other in forming one letter. These make the character recognition a lot more
challenging because we have to take care of these special 6 signs in consideration and some modified
characters are similar to each other that makes our classification more complicated.

Figure 1.2: Examples of Bangla Vowels
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1.2 Research Objective
If we think about what a standard OCR should be, the worldwide standard of English is phenomenal.
Compared to that, there is very little progress done for our Bangla language. Our primary objective is
to build a system which can convert any image filled with Bangla texts into an editable text format.
For that, we obviously need a hybrid model architecture so we need to conduct extensive research
on what our fellow researchers have achieved so far on Bangla OCR.

To build our custom model, we need to understand deeply how the state-of-the-art architectures are
functioning and which hyperparameter tuning shows promise. In this regard, we can take reference
from English OCR engines and test ourselves on Bangla popular datasets. As such, we can grasp
how the different models are making predictions on our dataset and detect the edge cases on which
we need to work on. After we are done with the trial and error mechanism, we can combine the
positives and tune the hyperparameters to tackle the negatives which will most likely lead to our
ultimate hybrid architecture.

We might need to implement transfer learning from one model to another for dealing with varied
issues. For instance, a BLSTM can be added on the post-processing to handle sequences of characters
or words or even sentences from data. Additionally, we hope to create a synthetic dataset with a
mixture of both printed and handwritten Bangla writings. Since printed dataset is hardly available,
our plan is to make use of the existing fonts for Bangla language. Our goal is to upgrade the Bangla
language OCR system towards the widely used English standard OCR engines in near future with our
research.
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Chapter 2

Literature Review

2.1 Optical Character Recognition
As human civilization is moving forward, the necessity for old-scripted documents is increasing.
To take inspiration from age-old methods or to know about old culture, these scripts need to be
preserved in digital format. Optical Character Recognition is the technology that helps to recognize
handwritten text and convert them into text.

2.2 Optical Character Recognition Techniques
There are a few fundamental steps involved in building OCR regardless of which method is used. We
will have a quick overview of these steps[15] and some techniques.

2.3 Scanning
Scanning is the conversion of physical documents into a digital format. This conversion process is
called text digitization. Scanning can be simply done by taking images of documents or using a
scanner to scan documents. Depending on the scanning process, the resolution varies, performance
also depends on the resolution or quality of the digital format.

2.4 Pre Processing
Before feeding data into the feature extraction layer we need to process the data. Few novel tech-
niques:
Image data augmentation: To introduce the variety in training, techniques like data resizing,
rescale,wrap, etc are used.
Image grayscale: In order to reduce dimensionality of data and reduce overhead for feature ex-
traction layer, image grayscaling is a great tool. It converts RGB(3D) images into grayscale(1D).
Image noise reduction: Converting RGB images into grayscale introduces noise. Depending on
the dataset we perform noise reduction, specifically for languages like Bangla where their character
includes dot, noise reduction can be troublesome. Because there are Bangla characters containing
dot(.) like : ‘র’, this dot can be misinterpreted as noise data.
Normalization: [9] The pixel intensity value of images usually varies from 1 to 255. In order to
convert this value from 0 to 1 (normal distribution helps visualize the image better), we use the
image normalization technique. It is done by dividing the matrix representation of image by 255.
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2.5 Feature Extraction
Feature extraction is a technique by which we can extract the most prominent features from a text
image. It is used to classify the characters according to the relevance of the extracted features. Later
this feature extraction becomes of great help during the classification phase.

2.6 Classification
Classification is the phase where character recognition takes place. In this process, the machine
learning algorithm chooses the appropriate space to which the extracted features belong and gives
a prediction.

2.7 Related Works
In [11] the authors have proposed a system for the recognition of compound characters in the Bangla
language using a Deep Neural Network with a squeeze and excitation ResNeXt (SE-ResNeXt) model.
The proposed model has several SE-ResneXt blocks followed by a convolutional block. The Squeeze-
and-Excitation Block is an architectural block that allows dynamic channel-wise feature recalibration
to increase its recognition performance. In this block, they have used global average pooling to
squeeze each channel to a specific value. Then followed by a fully connected layer, they have used
the RELU activation function to achieve nonlinearity and non-mutually exclusive relationships. Each
channel has a smooth gating function using another dense layer followed by a sigmoid. To deal with
overfitting, they used the dropout technique, which will remove some neurons randomly during the
training phase and that made the model more generalized. Lastly, they scaled the output. This pro-
posed model has an accuracy of 99.82% and F1 score of 97.62% for recognizing compound characters
in the Bangla language.

The authors[10] proposed a technique for the recognition of printed Bangla characters using a
multi-layer feed-forward back propagation Neural Network. They created an image dataset of each
40x40 pixel and used a multi-layer perceptron classifier with one and two hidden layers in scikit-
learn. The log-loss function is optimized via stochastic gradient descent in this model. Next, they
created a neural network using TensorFlow and used three layers. They used one-hot encoding,
as the data are categorical and a SoftMax output layer. Moreover, they used another neural net-
work with two hidden layers, the model is stated like LINEAR > RELU > LINEAR > RELU > LINEAR
> SOFTMAX. They also used Adam optimizer to compute cost. Furthermore, researchers used ten
distinct Bangla typefaces to train their model. They also created an UI to demonstrate their research.

In [2], researchers proposed a technique for recognition of cursive Bangla characters using convolu-
tional neural networks with a recurrent neural network. Here, CNN is similar to a transformation
function in that it takes input image sequence frames and outputs a feature vector. A stochastic gra-
dient descent approach is used to train the CNN. Next, the output vector is fed into the bidirectional
recurrent neural network that uses LSTM as a hidden layer. A Connectionist Temporal Classification
layer is located at the top of the recurrent net, at the end of the model to label sequences by
obtaining a character recognition probability.

In paper[7], researchers proposed a system based on Tesseract OCR Engine with the user inter-
face developed in the Java Graphical User Interface platform using NetBeans IDE and the codebase
is formed as a zip package. A software based on JRE ‘jTessBoxEditor’ is used for training Tesseract
through which the text files have been converted to images and the training information is stored
in a generated file with extension ‘tr’. The set of possible characters is known with the help of
a unicharset file and the font is in UTF-8 format. The character shape features can be clustered
using the shape clustering, mf training programs that are part of the OCR engine. The algorithm of
Tesseract uses search and fetch policy for generating output. If a character is matched, it gets the
coordinates of the character in that image, extracts the characters and outputs the file. If there is
no matching character, it extracts the character that is closely related to the character of the input
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file but produces a mismatched result for a large character set.

In[6], a complete OCR system for printed Bangla text has been implemented with efficient ways
involving line and word detection, zoning, character separations and character recognition. The
skew determination algorithm is based on the existence of matra, which begins with finding all the
connected components using DFS considering only the components having width greater than the
average. The OCR system identifies and separates different lines of text from the image file. The
next steps are finding the span of each word and character separation. Thirdly, a straightforward
deletion of the matra is done which splits the character into sub segments. After the deletion of the
topline and bottom line, it comes to separating each character also known as feature; the boundary
of pixels within which are to be scaled is marked. After that, thinning is conducted that enhances
the uniformity of character shaping a bit further. It has 3 processes- image cracking, darkening and
zoom-in. Now, the single pixelated characters need to be scaled to uniform shape before being fed
to the neural network. Finally, the researchers implemented a multi-layered feed-forward back prop-
agation neural network. After training character sets of 3 fonts- Sutonny, Sulekha and Madhumati;
the model is tuned to suit the edge cases. The result is an accuracy of over 90% which is acceptable
with a prospect of further improvement.

In [16] this paper the authors have used shape decomposition method, chain code drawing and
multi-layer perceptron (MLP) for recognizing compound Bangla characters. 128 compound char-
acters using 41 classes were recognized. Instead of recognizing complex shapes, they recognized
two basic characters from the compound character, which improves performance drastically as the
number of classes reduces. The workflow is preprocessing > segmentation > group formation > shape
decomposition > feature extraction > classification. Preprocessing is done using binarization, granular
noise cleaning, headline truncation (to remove elongated headline strokes) and partial thinning. Then
one of the most difficult tasks, segmentation takes place. The line, which connects two consonants,
is detected for segmentation. Based on structural shapes, pattern, segmentation and reference line
(Matra) compound characters, the dataset is divided into five groups. Depending on the vertical and
horizontal cuts are performed, to get better proper decomposition.
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Same compound character can be written in two ways mostly, they also took that under considera-
tion and performed the operation accordingly. Then comes feature extraction, in this part pictures
are normalized (49x49 pixels) and chain code histogram is generated. Then the input data is given to
the MLP feed forward network. It uses backward-propagation for minimizing the errors. The input
layer has 392 nodes and the output layer has 41 nodes. Parameter tuning takes place to decide the
average stroke width of Bangla characters, as most of the strokes are vertical. They have found the
average stroke width is 5. They used three models of which MLP achieved the best overall result of
88.74% accuracy.

In[3], they used modified ResNet-18 architecture for Bangla Handwritten language detection. They
used ResNet as Bangla language has spiral and horizontal structure due to its cursive nature. The
network architecture uses: Convolutional neural network layer, Dropout layer, max pool layer, batch
normalization and Adam optimizer. Bangla Lekha Isolated and CMATER db3 datasets are used in this
research paper. Data preprocessing in this paper uses noise reduction, median filter, edge thickening
and resizing to square shape. To make the used datasets diverse it uses image distortion method.
By experiments, it was found that input image size 112x112, dropout rate 0.2 and using Adam Op-
timize,r ResNet architecture could achieve 95.1% accuracy. From the confusion matrix we can see
the model often confuses among the characters (both isolate and compound) and classifies them as
wrong classes, it is due to the complex nature of Bangla Language structure.

Paper[13] used pre-trained OCR models such as AlexNet and GoogLeNet to recognize Urdu char-
acters through transfer learning. They used AlexNet and GoogLeNet to classify 1000 labels and used
Data Augmentation and Dropout techniques to prevent overfitting. It uses SoftMax as an output
layer. From the results, it can be said AlexNet works much faster compared to GoogLeNet because
it spends more time in the inception module looking for features. For offline character recognition,
AlexNet is a better option by a long shot. They used mobile phones combined with Matlab to identify
offline characters. The accuracy achieved by AlexNet and GoogLeNet are 96.3% and 94.7% respectively.

LSTM [20] is a special kind of RNN which can maintain its cell state by storing useful data. As
time proceeds; it also updates useful data and deletes irrelevant data. Therefore it makes LSTM
better suited for sequential data analysis and determining next word. There are three gates in an
LSTM [Fig 2.1] architecture; forget gate, input gate and an output gate. These gates have been
used to store, update, forget and output data. LSTM prevents the network from becoming biased or
overloaded.

Figure 2.1: LSTM architecture

The softmax [5] layer predicts the sequence of text. It works as an output vector which nor-
malizes the previous values to a probability between 0 and 1. Then the model makes a prediction
depending on the SoftMax value. In[15] , the authors proposed a complete guide to build a Bangla
OCR. The authors divided the steps into three categories; pre-processing, post-processing and classi-
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fication. In the processing part, feature extraction divides the characters into geometric shapes and
extracts the most prominent features about the characters. At last, when the data is affected with
noise, Artificial Neural Network works better.

In [1], the authors have described an approach to recognize handwritten Bangla characters using
a multilayer Convolutional Neural Network. The convolution blocks inside of the CNN architecture
extracts the main features of an input image and reduces its dimension. Using a 3x3 kernel in the
convolution layers is mostly popular. At first, the data is fed to the first convolution layer followed
by a MaxPooling layer. A convolution block is basically a convolution layer followed by a MaxPool
layer. After several convolution layers, they fed the data into an Inception Module with a fully
connected CNN stacked parallelly and sequentially.

In [22], it is shown that the residual inception models are relatively more efficient in terms of
computation power needed. It uses the inception blocks and a filter-expansion layer which helps
scaling up the dimensionality to match the depth of the input. The Inception-ResNet-v1 has almost
the same computational cost of Inception-v3 and the Inception-ResNet-v2 has the computation cost
Inception-v4. It compares top-1 Error and top-5 error percentage of different Inception versions with
similar cost Inception-Res-Net versions. And from the results it can be said that the Inception-Res-
Net gives slightly better results.

Moreover, choice of datasets play an vital role in the practical life performance of the model.
In [15], the dataset was collected using web scraping from “Prothom Alo” newspaper. As a result the
dataset is somewhat biased, because newspapers are written in a certain style which does not nec-
essarily follow day-to-day used communication semantics. Dataset should be diverse and distributed
among different walks of life so that models can perform well in various situations.
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Chapter 3

Methodology

Optical Character Recognition (OCR) can be divided into two phases; feature extraction and classifica-
tion. In our research, we are using Inception-v3, ResNet-50_v2, and VGG16 for comparison purposes
to test with our custom architecture model. Bangla character recognition is complex compared to
other languages. Unlike English, as it has a cursive nature plus complex shapes of compound charac-
ters. At present, there are various techniques that are used for Bangla OCR where some of those did
not get the optimum level of accuracy and could not satisfy different metrics criteria. Therefore, our
desire is to analogize between the most prominent Deep Neural Network algorithms and perceive
which one performs better while recognizing Bangla characters and also satisfies different metrics
criteria. Our working methodology consists of the following parts:

Step 1: Data Collection
Step 2: Data Pre-Processing
Step 3: Data labeling
Step 4: Data Splitting
Step 5: Proposed Inception V3, ResNet-50 V2, and VGG-16 models.
Step 6: Illustrating the Performance of the Proposed Model
Step 7: Comparison between the different deep neural network architecture

3.1 Architecture
3.1.1 Our Proposed Model (KDANet)
For building our custom model, we took inspiration from multiple state-of-the-art models Incep-
tion_V3[22], Res-Net50_V2 [8], and Inception-ResNet[21]. For OCR we require a high-level feature
deduction in addition to low and mid-level feature extraction. Deeper network reinforces the feature
extraction for the multi-level classification process [24]. There are a few caveats to using Inception
or ResNet alone for Bangla OCR:

1. Overfitting Problem: While training the Inception-v3 [22] network, we observed fluctuated
differences continuously in validation loss and training loss which indicates overfitting. This
problem was solved using early stopping and Regularization techniques. Moreover, ResNet50-v2
loss curves for both CMATERdb and BanglaLekha Isolated[4] show that even though training
loss is decreasing in every epoch, validation loss keeps spiking after some epochs which proves
that the ResNet50-v2 model is not performing well in our chosen datasets.

2. Computational Cost: Using ResNet for our dataset, each step took longer than the Inception
model to train. This translates to increased computational cost. Moreover, among the three
models we trained, VGG-16 was the most computationally expensive.

Inception ResNet[21] architecture solves these two crucial problems. By introducing factorization
and skip-connection techniques, a fusion of ResNet and Inception Network happened. Factoriza-
tion decreases the computational cost and a skip connection solves the vanishing gradient descent
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problem which occurs when a network is profoundly deep. Due to computational complexity and
hardware unavailability, it is not possible to implement such a Network. This paper proposes a
model KDANet, inspired by Inception-ResNet. We have downscaled the architecture by eliminating
duplicate layers and adding dropout layers. Moreover, we have specifically tuned hyperparameters
for our OCR system.

3.1.2 Model Architecture
The proposed model takes a 224x224 pixel image as input and output the probability of 50 fun-
damental characters of Bangla language in the final fully connected layer. The root block is the
initial layer, followed by Inception Resnet Block A, Reduction Block-A, Inception Resnet Block B and
Reduction Block B, Inception Resnet Block C, a global average pooling layer, the fully connected layer
with dropout, and lastly the softmax dense layer making a total of 229 layers.

The Root block[figure 3.2] is basically consecutive parallel convolutional layers, concatenated in
3 intervals. A batch normalizing layer and a ReLU activation function follow each Convolution layer.
The output of the Root Block is then passed on to the Inception-ResNet blocks. Finally to implement
dropout, a few dense layers were introduced which were then finally inputted into the softmax layer.

Reduction Block is the same as other convolution layers, except being a stride of 2x2 which in-
creases the movement of the kernel and implies dimensionality reduction. It is safe to say that this
is the reason why it is called the reduction block [21].
The Inception ResNet Blocks, Reduction Blocks and overall architecture are shown as follows.
[3.1,3.2,3.3,3.4,3.5,3.6,3.7]
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Figure 3.1: KDANet architecture (Proposed Model)
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Figure 3.2: Root Block
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Figure 3.3: Inception ResNet Block-A

Figure 3.4: Inception ResNet Block-B
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Figure 3.5: Inception ResNet Block-C

Figure 3.6: Reduction Block-A
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Figure 3.7: Reduction Block-B

3.1.3 VGG16
CNN works best for feature extraction for image data. To further improve it, a deeper convolutional
network was introduced in [18]. VGG-16 is a very deep state-of-the-art neural network architecture
having 16 convolution layers and 3 fully connected layers. The outer layers of a deeper network
learns normal features (lines, curves, etc.) and the deeper layers of the network learn abstract
features like shapes. Moreover, 3x3 and 1x1 kernel sizes were used over 7x7 which was previously
used. The reason is that it helps to reduce parameters and linearity in the model. Instead of using
a 7x7 kernel, three 3x3 kernels were used along with a ReLU activation function. Usage of 3 ReLU
units rather than one alongside a 7x7 kernel helps to introduce non-linearity in the model. 1x1
and 2x2 strides are used with convolution Layer and max pool layers with 5x5 kernel respectively.
Techniques used in VGG-16 are MaxPooling, Dropout, mini-batch training, and ReLU.

As OCR requires a very deep understanding of character shapes, it is essential to use a network
that can extract regular and abstract features, especially for a language like Bangla which has very
closely matched characters. So, it is important to understand abstract features as well.
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Figure 3.8: VGG-16 architecture

3.1.4 Resnet50-v2
In the paper [8]“Deep Residual Learning for Image Recognition” (2015), the researchers paved the
way for Res Net with so many different variants. The problem which arises when training deep
neural networks is the vanishing gradient, which was a matter of concern for deep learning practi-
tioners. To tackle this, lots of techniques started to spread across researchers mostly by sacrificing
performance and no solution was without its side-effects.

The resolution came in the form of Residual networks which are basically combinations of residual
blocks where a skip connection is at the heart of all. The technique is to skip some layers with a
direct connection which ultimately changes the output with necessary dimension adjustments. Here
an identity function also comes into play to stop the later layers to perform worse. The residual
networks too provided the practitioners to train much deeper neural networks without the concern
of worsening performance unlike other architectures.

The variant we have selected for our OCR system is ResNet-50. Initially, ResNet-34 was developed
inspired from the highly efficient VGG-19 architecture, but had one deep flaw- very long training
time. This has been fixed with the 50 layered variant by making use of a stack of 3 layers as a
bottleneck block in place of the previously used 2-layer block. Upon further research, ResNet-50
has demonstrated itself as a prominent neural network architecture in the fields of computer vision
which prompted us to utilize this for our OCR system. However, we did need to imply tuning of
hyper-parameters and parameters heavily.
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Figure 3.9: RESNet50-v2 architecture

Figure 3.10: Shortcut Connection ResNet

3.1.5 Inception-v3
[22]Deep convolutional neural networks have been chosen for different tasks over the past years as
it has shown significant improvements in a variety of benchmarks. However, with deeper neural
networks the computation cost of the model becomes expensive. Moreover, one of the challenging
issues in Convolution Neural Network is selecting the correct kernel size. To spread information
globally, a larger kernel is recommended, whereas for information that is dispersed more locally, a
smaller kernel is recommended. To overcome these issues, the Inception module was introduced.
The inception module uses three distinct filter sizes (1x1, 3x3, 5x5) to conduct convolution on an
input which solves the issues of choosing the right kernel size. Additionally, max pooling is applied.
Concatenated output are forwarded to the subsequent inception module. Furthermore, to make the
computation less expensive, a 1x1 convolution layer was introduced before the large 3x3 and 5x5
convolutions.
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To reduce the computational cost even more, inception-v2 and inception-v3 were introduced. Here
the large convolution layers are factored into small convolutions. For instance, 5x5 convolutions
were factored into two 3x3 convolutions which reduced the computation costs as 5x5 convolutions
are 2.78 times more costly than 3x3 convolutions. Moreover, authors factorize the NxN convolution
into 1xN and Nx1 convolutions and this method proved to be 33% cheaper than NxN convolutions.
Moreover, in inception-v3 RMSprop optimizer and a regularization component was introduced to pre-
vent overfitting. For these benefits over other algorithms, the Inception-V3 algorithm has been used
for testing in our research paper. Techniques used in Inception-V3 are max pooling,dropout,batch
normalization and ReLU activation function.

Figure 3.11: Inception Kernel[21]

Figure 3.12: Inception Kernel Reworked[21]
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Figure 3.13: Factorized Kernel[21]
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3.2 Tuning and Optimization Techniques
3.2.1 ReLU
[14]The Rectified Linear Activation function (ReLU) is a popular activation function for various kinds
of deep neural network models. It provides non-linearity to the neurons. It is a non-linear activation
function which works on a very simple logic. It always takes the maximum value between 0 and the
output. Therefore, it outputs the input when the input is positive, otherwise it outputs 0. The ReLU
function is a very useful tool to activate only the neurons that have a positive linear transformation
value.

Figure 3.14: ReLU Activation Function

3.2.2 SoftMax
[5]Softmax functions are widely used as a classifier's output to express the probability distribution
across n classes. Mostly it is positioned as the last layer of a multi-class deep learning model. This
function calculates the probability of an input for each possible class. It can be mathematically
described as-

softmax(Z) i =
exp(Z)∑
jexp(Z) i

(3.1)

Here, Z is the input of the softmax function which is the value of neurons of the output layer of
a multiclass mode. The exponential function adds non linearity. The normalization term

∑
exp(Z)

ensures that the sum of all the probabilities for an input is equal to 1. As our problem is a multi-
class classification one, that is why to classify and predict in which class a character is in, softmax
activation function has been used.
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Figure 3.15: SoftMax

3.2.3 Dropout
[19]Dropout is a widely used regularization technique that averts the overfitting problem. As the
architecture of neural networks gets deeper, it tends to learn more than the smaller ones. This
results in an overfitting problem. [19] introduced this technique that disconnects the hidden units of
a network while training. It is done randomly and as such, the network doesn’t learn unnecessarily.
As a result, it performs better in the unseen dataset and performs better. A vector of Bernoulli's
random variable having the probability is multiplied by the output layer. Then depending on the
value, the hidden units will be disconnected from the rest of the network.

Figure 3.16: Dropout Equation

This novel technique can also be referred to as the thinning of the network. Dropout =0.5 is widely
used in different models, it translates that 50% of the hidden units will be randomly disconnected.
For OCR we are using deep architecture, deep models tend to learn more and overfit. For this reason,
we are using the dropout technique to improve performance.
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Figure 3.17: Dropout

3.2.4 Adam Optimizer
[12]The prime optimization algorithm for training deep neural networks had been initially stochastic
gradient descent. However, it had some significant drawbacks especially when dealing with Big data
and then to further optimize this, the Adaptive Moment Estimation algorithm came into being. It's
basically a combination of two prominent gradient descent methodologies, ‘adaptive gradient’ and
‘root-mean-square propagation’ by taking the best of both of these.

Figure 3.18: Adam Optimizer Equation

The special feature of the Adam algorithm is the simplistic configuration and the handling of sparse
gradients on noisy data. Aside from that, intuitive as it is, it is also quite memory efficient and
proven to be highly effective in practice. Here the parameters to focus here are alpha, beta1, beta2
and epsilon.
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3.2.5 MaxPool
[23]Max Pooling downscales an image to only include the most prominent feature from the convolu-
tional filter. Thus, the output would be a feature map with the features that are only essential from
the preceding feature map.

Figure 3.19: Max Pooling

3.2.6 Early Stopping
Our aim while training a deep neural network is to produce the best possible results. However,
very large deep neural networks are apt to overfitting. Overfitting occurs when a model performs
well in training data, but not in validation data or unknown data. [17]Early stopping is a strategy

Figure 3.20: Early Stopping

for avoiding overfitting in which training the model is stopped after specific conditions are met.
Validation loss was selected to end training early in this study. As validation loss began to increase
substantially while training error was decreasing, early stopping was called.
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Chapter 4

Dataset

4.1 Data Collection
When it comes to Optical character recognition for the Bangla language, there are not too many
available options to begin with, but there are a few. CMATERdb 3.1.2 and Bangla Lekha Isolated are
two of the most renowned datasets which contributed to the research regarding the Bangla language
by providing clean datasets. There aren’t many printed datasets available for Bangla characters. Most
of the available datasets don’t contain compound characters, which is another big problem. There
are more than 150 compound characters [16]. For the sake of simplicity and to get an overview of
performance metrics, we considered a dataset of isolated characters as it shortens the number of
classifications.

CMATERdb is a repository for Bangla Pattern recognition-based works. It is an open-source database.
We are explicitly using CMATERdb 3.1.2. It includes images of 11 vowels and 39 consonants which
are handwritten characters with white and black texts on it (grayscale image). It includes a total
of 15000 images of Bangla characters. 12000 of them belong to the training class and 3000 of them
belong to the test class. There are 50 directories of 11 vowels and 39 consonants each of them
contains 60 images. Every image is in .bmp format.

BanglaLekha-Isolated dataset [4] is a collection of handwritten Bangla characters and numerals.
It contains 50 characters, 10 numerals, and 24 compound characters. There are a total of 1,66,105
images. For getting an overview of how the models will perform, we extracted 10 Bangla numerals
and used them to train the models. Each of the 10 directories of numerals contains 1940 images.
Every image has e black background and white font on them. We used an 8:2 ratio on this dataset for
training and testing. The dimension of the images is not consistent. The dataset also includes infor-
mation about the age and gender of the subjects from whom the handwriting samples were collected.
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4.2 Data Pre Processing
To pre-process data, first, we need a quality check of the dataset. As the data is taken from different
sources and taken in different shapes. Realistically it will contain missing values, duplicate values,
and even inconsistent values. While reading the CMATERdb dataset, we found data inconsistency in
the test data using trial and error method.

After finding the inconsistent data, we removed the bug from the dataset which was an extra hidden
file. Initially, our dataset has a total of 15000 images with 12000 training and 3000 testing. However,
the pixel dimensions of the images found from our dataset were not fixed, which could be an issue
for maintaining balance in data. So, we rescaled our images to 224x224 for training all of the models.

We also used data-augmentation techniques to assign random height, random width and random ro-
tation. Data augmentation helps to expand the diversity of the trainable data for the model training.
It also increases the amount of data since it generates new data points from the ones already existing.

We also tried random zoom as another data augmentation technique, but since some of the Bengali
characters are very similar (অ and আ, উ and ঊ); while cropping in, some features get lost; which
results in the character being a complete different one. Therefore, we decided not to do random zoom.

Figure 4.1: BanglaLekha-Isolated data samples with corresponding printed characters
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Figure 4.2: CMATERdb data samples with corresponding printed characters

4.3 Data Labeling
CMATERdb 3.1.2 dataset has 50 directories both in test and train directories. Directories are labeled
from 172 to 221 each directory contains unique alphabets of the Bangla language. We used directories
to label alphabets as their directory has a unique name. Each train directory contains 240 images
and each test directory contains 60 images in this database.
BanglaLekha-Isolated[4] dataset has 84 directories in both train and test set labeled from 1 to 84.
Each directory is labeled distinctly and contains images of a unique alphabet of Bengali language. To
compare our model’s evaluations with CMATERdb 3.1.2, 50 directories from BanglaLekha-Isolated[4]
have been separated. Each train directory contains 1450 images and each test directory contains 250
images chosen for our research purpose.
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Chapter 5

Implementation and Result
Analysis

For model evaluation, we used 2 different datasets. BanglaLekha-Isolated and CMATERDB. All the
models were trained with these two datasets and we compared the results.

5.1 Implementation Setup
This research used python programming language as the python has proven to be one of the best
for machine learning and data-science research due to its simplicity, as well as it has a large range
of accessible libraries and frameworks. In our research, the tensorflow framework is being used to
implement the Inception-V3, ResNet50-V2 and VGG-16 models. Tensorflow library is quite popular
among the deep learning practitioners. Tensorflow also has GPU compatibility to run models faster
than CPU. Moreover, for plotting charts we have used Matplotlib library and for performing different
tasks we used NumPy, Scipy and Sklearn libraries in our research.

We have used two computers with configuration i5 8400 GTX 1660 Ti and i7 7700HQ GTX 1050
ti configuration to train our model.

5.2 Peformance Analysis
In our research, for training and testing stages, we displayed loss and accuracy comparison for each
epoch. It allows us to see how our model performs in each epoch for training and testing. It depicts
if the model is overfitting or underfitting.

In the following figures, the accuracy and loss curves have been shown for both CMATERdb and
BanglaLekha Isolated dataset.

First of all, for the CMATERdb dataset, the loss and accuracy curve for all the models have been
shown in the following diagrams. For ResNet50-v2, the model was overfitting so we used early stop-
ping after 10 epochs. The graph visualizes the gap between the training loss curve and validation
loss curve which indicates that the model is overfitting at the start but after some time, the model
was performing well. However, after 10 epochs it began to overfit again which was handled using
early stopping. The accuracy on training data for this model is 98.43% and the validation accuracy
is 97.10%. Moreover, for the VGG-16 model the training accuracy is 98% and validation accuracy
is 96.2%. Here, for both the training and testing phases, the gap between the lines is also modest
for both training and loss curve that indicates that this model is performing well. Finally, in the
Inception-v3 model the training accuracy is 98.31% and validation accuracy is 97.93%. The accuracy
graph visualizes that the validation loss and the train loss is close to each other after a few epochs
and the accuracy graph shows a good performance on the dataset.
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Figure 5.1: ResNet50 v2 accuracy (On CMATERdb dataset)

Figure 5.2: ResNet50 v2 loss (On CMATERdb dataset)

Figure 5.3: VGG-16 accuracy (On CMATERdb dataset)
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Figure 5.4: VGG-16 loss (On CMATERdb dataset)

Figure 5.5: Inception v3 accuracy (On CMATERdb dataset)

Figure 5.6: Inception v3 loss (On CMATERdb dataset)
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The loss and accuracy curve for BanglaLekha Isolated on all the models have been shown in the
following diagrams. These models have been trained with a batch size of 256 with a learning rate
of .0001. BanglaLekha isolated models were trained for 20 epochs. After 20 epochs the Inception-
v3 model showed 98.07% train accuracy and 97.68% validation accuracy. This model used early
training to stop its training after 20 epochs as it was going to overfit. From the loss curves,
we can see that the validation loss curve started to go up while the training loss was going down.
Moreover, the ResNet50-v2 model had 97.86% train accuracy and 96.7% validation accuracy. ResNet50-
v2 encountered an overfitting issue as the loss graph shows. As already mentioned, we used early
stopping to stop the model to learn too much on training data. Finally, the VGG-16 model has 98.80%
train accuracy and 97.52% validation accuracy. However, VGG-16 performed well in the BanglaLekha
Isolated dataset as the loss curve shows.

Figure 5.7: Inception v3 accuracy (On BanglaLekha Isolated dataset)

Figure 5.8: Inception v3 loss (On BanglaLekha Isolated dataset)

30



Figure 5.9: ResNet50 v2 accuracy (On BanglaLekha Isolated dataset)

Figure 5.10: ResNet50 v2 loss (On BanglaLekha Isolated dataset)

Figure 5.11: VGG-16 accuracy (On BanglaLekha Isolated dataset)
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Figure 5.12: VGG-16 loss (On BanglaLekha Isolated dataset)

The following figures illustrate the accuracy loss curves of our proposed custom model KDANet. In
the case of BanglaLekha Isolated dataset, KDANet had a training accuracy of 95% and validation
accuracy of 96.71%. Moreover, from the loss curves, we can see that the curves are close to each
other which explains that our model is not overfitting. Regularization and dropout techniques have
been used so that we can avoid overfitting issues. On the CMATERdb dataset, the training accuracy
is 95.48% and a validation accuracy of 95.76%. Also, the loss curves also show that the model is
converging to the optimal point. However, to compare with other models, the training was stopped
after 10 epochs. Furthermore, to see how our model performs if we train our model for more time,
we trained our model for 40 epochs on BanglaLekha Isolated dataset. After 40 epochs, the training
accuracy increased to 97.94% and 97.79% validation accuracy. The loss curve shows how well the
model is performing on our KDANet model.

Figure 5.13: KDANet(proposed model) accuracy (On CMATERdb Isolated dataset)
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Figure 5.14: KDANet(proposed model) loss (On CMATERdb Isolated dataset)

Figure 5.15: KDANet(proposed model) accuracy (On BanglaLekha Isolated dataset)

Figure 5.16: KDANet(proposed model) loss (On BanglaLekha Isolated dataset)

33



Figure 5.17: KDANet(proposed model) Accuracy and Loss Curves (After 40 epochs)

A confusion matrix is a means of analyzing a classification algorithm's performance. It can help to
visualize what a classification model gets right and what errors are being done by the model. The
following diagram shows a part of the confusion matrix of CMATERdb dataset. The matrix shows
the amount of test data it got correct and which mispredictions it performed. For character 'ঘ', the
matrix shows that the model identified 57 out of 60 test images correctly and the rest of the images
were mispredicted as 'খ' . The reason behind the mispredicting can be resolved if we look at the
dataset; some of the characters of class 'ঘ' looks exactly like like 'খ' as if you miss header stroke
(Matra) from ‘ঘ’ it looks a lot like ‘খ’.We will discuss more about similar looking characters later on.
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Figure 5.18: Figure: A portion of the Confusion Matrix(CMATERdb dataset)

35



Characters Inception_V3 ResNet50_V2 VGG-16 Proposed Model
অ 0.99 0.98 0.97 0.99
আ 1 0.97 0.99 0.98

ই 0.99 0.99 0.99 0.99

ঈ 0.98 0.99 0.99 0.99

উ 0.96 0.96 0.96 0.95

ঊ 0.97 0.97 0.98 0.97
এ 0.93 0.92 0.92 0.94

ঐ 0.99 0.98 0.99 0.97
ও 0.98 0.98 0.96 0.98

ঔ 0.99 0.98 0.99 0.99
ঋ 0.99 0.98 0.99 1
ক 0.99 0.98 0.99 1
খ 0.98 0.98 0.99 0.96
গ 0.99 0.99 0.98 0.99
ঘ 0.99 1 0.99 0.99
ঙ 0.99 0.98 0.94 0.98
চ 0.96 0.94 0.95 0.95
ছ 0.97 0.95 0.97 0.96
জ 0.96 0.94 0.94 0.95
ঝ 0.99 0.96 0.98 0.98
ঞ 0.97 0.97 0.97 0.96

ট 0.99 0.98 0.99 0.99

ঠ 0.99 0.95 0.98 0.99
ড 0.97 0.97 0.94 0.96
ঢ 0.96 0.94 0.93 0.96
ণ 0.98 0.98 0.99 0.98
ত 0.99 1 0.98 0.99
থ 0.96 0.98 0.98 0.97
দ 0.95 0.93 0.94 0.95
ধ 0.95 0.94 0.92 0.96
ন 0.93 0.91 0.93 0.94
প 0.98 0.99 0.99 0.99
ফ 1 1 0.99 0.99
ব 0.99 0.96 0.98 0.99
ভ 0.98 0.98 0.99 0.98
ম 0.98 0.98 0.97 0.97
য 0.96 0.94 0.94 0.96
র 0.99 0.98 0.99 0.99
ল 0.99 1 1 1
শ 0.98 0.98 0.99 0.99
ষ 0.99 0.98 0.98 0.99
স 1 1 1 0.99
হ 1 1 1 0.99
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Characters Inception_V3 ResNet50_V2 VGG-16 Proposed Model

ড় 1 1 1 0.99
ঢ় 0.97 0.97 0.98 0.97
য় 1 0.94 0.99 0.99
ৎ 0.98 0.96 0.98 0.98
ং 0.99 0.99 0.99 0.96
ঃ 0.98 0.96 0.99 0.98

ঁ 0.98 0.98 0.98 0.98

Table 5.1: CMATERdb F1 Score

In the table [5.1, 5.2], we can see the F1 scores of Inception-v3, ResNet50-v2 and VGG-16 and our
proposed model KDANet. In each row , we can see character and their corresponding F1 score in
different models. The score 1 means the model was able to identify the character 100% accurately.
Basically, it is the percentage of time the model was able to identify correctly. The scores gives us
a detailed overview of the performance of models on individual characters.

Characters Inception_V3 ResNet50_V2 VGG-16 Proposed Model
অ 0.99 0.98 0.97 0.99
আ 1 0.97 0.99 0.98

ই 0.99 0.99 0.99 0.99

ঈ 0.98 0.99 0.99 0.99

উ 0.96 0.96 0.96 0.95

ঊ 0.97 0.97 0.98 0.97
এ 0.93 0.92 0.92 0.94

ঐ 0.99 0.98 0.99 0.97
ও 0.98 0.98 0.96 0.98

ঔ 0.99 0.98 0.99 0.99
ঋ 0.99 0.98 0.99 1
ক 0.99 0.98 0.99 1
খ 0.98 0.98 0.99 0.96
গ 0.99 0.99 0.98 0.99
ঘ 0.99 1 0.99 0.99
ঙ 0.99 0.98 0.94 0.98
চ 0.96 0.94 0.95 0.95
ছ 0.97 0.95 0.97 0.96
জ 0.96 0.94 0.94 0.95
ঝ 0.99 0.96 0.98 0.98
ঞ 0.97 0.97 0.97 0.96

ট 0.99 0.98 0.99 0.99

ঠ 0.99 0.95 0.98 0.99
ড 0.97 0.97 0.94 0.96
ঢ 0.96 0.94 0.93 0.96
ণ 0.98 0.98 0.99 0.98
ত 0.99 1 0.98 0.99
থ 0.96 0.98 0.98 0.97
দ 0.95 0.93 0.94 0.95
ধ 0.95 0.94 0.92 0.96
ন 0.93 0.91 0.93 0.94
প 0.98 0.99 0.99 0.99
ফ 1 1 0.99 0.99
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Characters Inception_V3 ResNet50_V2 VGG-16 Proposed Model
ব 0.99 0.96 0.98 0.99
ভ 0.98 0.98 0.99 0.98
ম 0.98 0.98 0.97 0.97
য 0.96 0.94 0.94 0.96
র 0.99 0.98 0.99 0.99
ল 0.99 1 1 1
শ 0.98 0.98 0.99 0.99
ষ 0.99 0.98 0.98 0.99
স 1 1 1 0.99
হ 1 1 1 0.99
ড় 1 1 1 0.99
ঢ় 0.97 0.97 0.98 0.97
য় 1 0.94 0.99 0.99
ৎ 0.98 0.96 0.98 0.98
ং 0.99 0.99 0.99 0.96
ঃ 0.98 0.96 0.99 0.98

ঁ 0.98 0.98 0.98 0.98

Table 5.2: BanglaLekha Isolated F1 score

Actual Character Predicted Character Actual Character Predicted Character

ঢ চ ই হ

উ ঊ ব ধ

ঢ ঢ় ই ঈ
ঋ ঝ ব র
থ য য ম

ধ ঋ ঙ উ
ষ ধ খ থ
ণ ন থ য

Table 5.3: Closely Related Characters(Mistakes Made By Models)
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Figure 5.19: Correct predictions by the KDANet on CMATERdb dataset

Figure 5.20: Wrong predictions by the KDANet on CMATERdb dataset

In the table [5.3], illustrates some misdirection's made by the models and the actual characters. Due to
handwriting orientation (left vs right) strokes vary and some characters closely resemble each other.
Moreover, scanning old documents and converting it into gray-scale produces noise. Furthermore,
the noise removal process sometimes accidentally removes dot(.) which is crucial for distinguishing
two characters from each other like র and ব ,ঢ and ঢ়. Sometimes due to the cursive nature of the
Bangla Language, characters seem the same to machines, which are hardly distinguishable by human
eyes.
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Chapter 6

Comparative Analysis

We fed our KDANet along with the other 3 models with two different datasets, CMATERdb and
the BanglaLekha-Isolated. On the CMATERdb dataset, the ResNet50-v2 model performed the best in
training with an accuracy of 98.43%. The Inception-v3 and VGG-16 being second and third, respec-
tively with 98.31% and 98% training accuracy. Whereas our proposed model achieved an accuracy of
95%. However, the Inception-v3 model had the highest test accuracy with 97.73% accuracy followed
by ResNet50-v2(96.60%), VGG-16(95.73%) and our proposed model (KDANet) got an accuracy of 94%.
On the BanglaLekha-Isolated dataset, the Inception-v3 model achieved the highest training accuracy
(98.34%) followed by the VGG-16 (98.08%) and the ResNet50-v2 (97.86%) and our proposed(KDANet)
(95.5%) model. All the models performed very similarly during the test phase with the Inception-v3
edging (97.90%) slightly higher than our proposed model (97.66%). The VGG-16(97.40%) and the
ResNet50-v2(97.12%) models had the lowest test accuracy of all the models.

CMATERdb BanglaLekha-Isolated
Model Train Accuracy Test Accuracy Train Accuracy Test Accuracy

Inception-v3 98.31% 97.73% 98.34% 97.70%
ResNet50-v2 98.43% 96.60% 97.86% 97.12%

VGG-16 98% 95.73% 98.08% 97.40%
Proposed Model 95% 94% 95.50% 97.66%

Table 6.1: Comparison table for training and test phase accuracy

The following bar charts illustrates the results:
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Figure 6.1: Model Performance on BanglaLekha-Isolated

Figure 6.2: Model Performance on CMATERdb
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Chapter 7

Challenges

Initially, we wanted to make an OCR for both handwritten and printed data. For lack of availability
of synthetic datasets for printed Bangla characters, we had to proceed with only handwritten data.
While training our Custom Model , using CMATERdb it resulted in overfitting. To begin with, the
dataset was not big enough. So we had to add a dropout layer which eliminated the problem.

Deep learning in general is computational power intensive. Due to unavailability of high-end GPUs
and the price hike, we didn't have enough resources to experiment with different models. Tesseract
being the leading OCR solution and open source , we wanted to use different features and fuse them
with our custom model. Unfortunately, due to complexity of the code we could not do so.

Finally, the resources existing for the Bangla OCR system are not well organized. Also lack of
various open source resources to work with have held us back heavily. So indexing them for our
many different purposes along the way was troublesome to say the least. It took a significant amount
of time to collect resources and previous works.
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Chapter 8

Future Works

Initially, we had been planning to build an OCR system which satisfies any sort of Bangla writing.
However, the lack of proper datasets proved to be a great barrier in achieving our milestone: es-
pecially in the segment of printed Bangla characters. Thus, we aspire to create a synthetic dataset
consisting of printed Bangla writings and our plan is to combine all possible Bangla fonts to achieve
this feat.

Apart from that, in the near future to work on full sentence based data, the OCR of which is
already available for English widely used across the globe. For that, our estimated approach is to
make use of Natural Language Processing techniques like segmentation that includes levels such as
line level, word level, character level segmentation. To achieve that, we obviously will need to make
our model hybrid by combining the strength of our Convolutional Neural Network architectures and
merge with BLSTM networks.

In addition to those, we will build a software or app capable of inputting an image and convert
the writings there to an editable text format. This too exists for the English language and so our
goal is to create a similar type of system for Bangla language. As for our progression in these aspects,
we are working currently on those but in an incomplete stage which is not enough to showcase our
results for the time being.
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Chapter 9

Conclusion

In a nutshell, Bangla is one of the most difficult languages to implement an OCR system due to its
cursive nature and structural complexity, not to mention the compound characters. However, we
take it as a challenge, as implementation of Bangla Language OCR system will enable many oppor-
tunities for not only the Bengali speaking population but also for the people who are interested to
travel to this region of the world.

Bangla OCR is still in its primitive stage but we are optimistic that by putting state-of-the-art
technologies in harmony with each other, we can produce better results with our custom-made
KDANet architecture based model. However, further extensive research is a must for making our
research fruitful. The question remains whether the future generations will utilize research materials
like ours and improvise accordingly. Still, there is hope as Bangla Language OCR is upgrading more
and more with every passing year due to the utmost sincerity displayed by our fellow researchers.
Soon the day will come when Bangla OCR will reach the heights of the standard OCR system for
English language.
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