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Abstract

Sign language is known as the primary communication medium for deaf and mute
people. But the lack of available resources and a steep learning curve deter the
average person from learning it making communication with the mute and deaf
difficult. This problem creates an opportune place for the application of machine
learning which has given rise to our emerging field. A large number of papers with
high accuracy have already been published for English, French, and other languages.
But the number of papers on its application for Bangla Sign language is few. Most
of the researchers use SVM, ANN or KNN as classifiers. We chose CNN because it is
excellent at high accuracy image classification. In this paper we use a large dataset
consisting of 30 classes with 500 images each totalling to about 15000 images of
bangla sign alphabets. Previous works were done only on 10 classes. We began
work on those 10 bangla alphabets and later increased the number of classes to 30.
We tested the accuracy’s of pre trained CNN models such as DenseNet201,VGG16,
InceptionV3, Resnet50, MobileNetV2, InceptionResnet, EfficientnetB2 along with
our custom CNN model and were able to achieve 97.97%, 96%, 96.22%, 56.44%,
90%, 94%, 4%,98.3 % train accuracy and 86.43%, 88%, 88.33%, 54.50%, 60%, 53%,
4.2%,87% validation accuracy respectively. Our custom CNN model has consistently
given better training and validation accuracy than any pre-trained model with lesser
layers which in turn require less computations making for a lighter and faster model
while maintaining high accuracy.
Keywords: Bangla sign language, CNN, KNN, ANN, VGG16, Resnet50, Incep-
tionV3.
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Chapter 1

Introduction

1.1 Thoughts behind the Topic

Language constitutes a fundamental building block of society. If people could not
communicate they would not be able to coordinate and that would hamper positive
growth. The ability to talk is such a commonplace concept that we forget that there
are people in the world who cannot communicate vocally whether by disability or
accident. Sign language stands as the primary standardized method of communica-
tion to many such individuals. Sign language is usually conveyed via hand gestures
where one or both hands form a specific shape which represents one of the letters
in a particular language. Bangladesh has more than 30 lakh people who are hearing
impaired [6]. The Center for Disability and Development or CDD recognized Bangla
Sign Language as a standard of communication for the Bangla Deaf Community in
2000 yet the facility and opportunities for learning sign language remains inadequate
[6]. In recent years research has been conducted to create a machine learning model
for recognizing sign language and translating into letters that the general public can
understand. With the help of image recognition we can help close the impairment
gap by translating sign languages into both written and spoken forms easing com-
munication. Image recognition is performed by a CNN model trained upon a fixed
dataset consisting of images of hand signs and their corresponding labels which are
the Bangla alphabet.

1.2 Problem Statement

Language is the medium of communication. But in our society some people unfor-
tunately do not have the ability of speaking and listening. To communicate with
those people we need to use sign language. In Sign language we generally use various
gestures like hand gestures or symbolic gestures instead of sound. As sign language
is quite hard for common people to understand, many people lose their interest in
learning sign language.
There is no international standard for sign language. For example, even though
citizens from both countries speak English, the sign languages of the United States
and the United Kingdom are not the same. Automatic recognition of sign language
(ARSL) can be extremely useful in establishing quick communication between gen-
eral and deaf or mute people. Furthermore, a combination of ARSL and a translator
can help deft and mute people to communicate between similar types of people even
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though they are from different nations. As a result, researchers from various fields
like NLP and AI are using their knowledge to build a tool that will ease communi-
cation with the deaf and the mute. [1]
A lot of research has been done on English language but the amount of researchers
on Bangla sing language is very few and most of them uses SVM as a classifier
to detect alphabets for different hand gestures. But SVM is a generic classifier in
machine learning. It was not designed to work with image data in mind. However,
nowadays CNN is frequently using for image classification . It has a higher accu-
racy for classifying images. However, convolutional neural networks (CNN) do not
require manual feature extraction, which is a significant advantage. Using CNN as a
classifier, we suggest a method in this research for recognizing Bangla sign language.

1.3 Research Motivation

In this modern world, computer vision is helping in every sector to make our life
easier. In order to develop with this modern world, Deaf people frequently use sign
language to communicate . For every language in the world there exists its signed
counterpart. Such as, Australian Sign Language (AUSLAN),British Sign Language
(BSL), etc. In our country deaf people’s language is known as Bangladesh Sign
language (BDSL) which is shown in figure 1.1. Sign language is not commonly
known making communication with the disabled difficult.This kind of innovation
will benefit the deaf people of our country. Fundamental goal of this kind of work
is to work as a digital helping device between hearing people and deaf people.

Figure 1.1: Bangla Sign Hand Gestures
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1.4 Research Objectives

In order to achieve our goal, we need to do:

1. Find maximum amount of data set, with different backgrounds and lighting
conditions to

2. Deeply understand the algorithm model to make the system more efficient.

3. We have to consider all the possible error while making the system.

There are some people who work on this kind of project in Virtual reality and they
apply a leapmotion control to detect hand gestures. Some people use an artificial
neural network to recognize signals by employing CNN. However none of them func-
tioned in real-time. While researching CNN based object identification systems we
find about faster R-CNN. This sends only the necessary regions to convolutional
network .So by using these simple architectures we can accomplish our goal and
make the lives of deaf people easier.

4



Chapter 2

Related Work

2.1 Literature Review

In a project, Sohalia Rahman, Naureen Fatema, M. Rokonuzzaman et al.,[1] use
a dotted glove to identify the gesture of hands. The system collects the dots and
matches with the pre-prepared charts. The researcher uses image processing on the
input image. By this way, they identify numerical letters of BDSL. Using gloves is
not an effective method.

Oishee Bintey Hoque, Mohammad Imrul jubair, Md. Saiful Islam, Al-Farabi Akash,
Alvin sachine Paulson et al., [2] proposed a paper using faster (R-CNN) which gen-
erally makes maps and a network regional proposal network (RPN). This method
processes the input picture with a high possibility of containing the desired hand
gesture. After this stage, ROI pooling reduces the maps into the identical shape.
After dividing the feature map input into a set numeral of roughly equivalent areas
it applies max–pooling into each zone. By this way, they said the accuracy of their
project

Md. Sanzidul Islam, Sadia Sultana Sharmin Mousumi, Nazmul A. Jessan, AKM
Shahariar Azad Rabby, Sayed Akhter Hossain brought in their paper named “Ishara-
Lipi: The First Complete Multipurpose Open Access Dataset of Isolated Characters
for Bangla Sign Language” [3] that by using ADAM optimizer they got a rate 0.001.
Their model of CNN contains 9-layers. For their sign character database, they kept
the data for testing 15% and for training 85%. They assert that after 50 epochs,
their accuracy on training set and validation was 92.65% and 94.74%.

Md. Islam et al., [4] suggested a paper using Convolutional Neural Network (CNN)
to recognize BdSL digits. Firstly they converted the images in jpg format in 128
by 128 pixels for the dataset.Then the dataset was resized by 28 into 28 pixels
converted into gray level pixels. Then converted into binary colored pictures given
the labels. The model achieved 95.5% training accuracy 94.88% validation accuracy.

Shirin Sultana Shanta, Saif Taifur Anwar et al.,[5] proposed a paper using Con-
volutional Neural Network (CNN) and SIFT to recognize BdSL. They implement
skin masking technique to crop only region of interest(ROI).Then extract feature
descriptor using SIFT (Scale Invariant Feature Transform), Use k-means clustering
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to obtain features as clustered descriptor, use bag of features to represent the fea-
tures in histogram of visual vocabulary , Input the data in CNN as histogram and
check output accuracy is 98.20%.

Md. Islam et al.[6] suggested a paper using CNN in order to recognize Bangla Sign
Language.Firstly, they convert the image into a gray-scale image then they nor-
malize those images. For normalizing the images they divide gray pixels by max
gray level value which is 255. Then, images were reshaped in 64 by 64 pixels for
exploration. Finally, they input these images in CNN algorithm where the number
of convolution, pooling and fully connected layers are six, three and two (one for
input and one for output) accordingly. For basic characters, numerals, and their
combined use, they were able to attain accuracy of 99.83 percent, 100 percent, and
99.80 percent, respectively.

Consisting of 24168 samples, the authors Hossain et al., [7] state in their proposed
model that they got the highest accuracy from digit detection by putting some extra
layers such as convolution layers selected number, max pooling, dropout etc. they
also claimed that with 30FPS, their model can give better performance. Moreover,
by adding extra layers they solved their detection problem of having a kind of similar
input.

To recognize Bangla sign language Lutfun nahar, Nanziba Basnin, and MD Shaha-
dat Hossain et al.,[8] makes use of CNN with LSTM. The background subtraction
creates a foreground mask. Gray-scale conversion ensures that only a single channel
is used, speeding up the learning process. Morphological erosion removes the noise.
The image is then run through a median filter and resized. This image is sent to
the CNN resulting in a testing accuracy of 88.5%.

F. M. Javed Mehedi Shamrat et al., [9] proposed a paper using Convolutional Neural
Network (CNN) and SIFT to recognize BdSL. The system applies transformation
on image then applies logarithmic replace technique to control extra light. Every
pixel measurement is replaced with the logarithmic grade. Then the LBP is applied
to the image.

The paper named Bangla sign Language Recognition using hand Gestures: A Deep
Learning Approach by T.B. Das and M.J. Islam et al., [10] proposes a CNN variant
-1 with 6 layers. The images are taken with a webcam where the background is seg-
mented through flipping, gray-scaling and blurring it without the hand first. Then
the hand is introduced which is gray-scale, blurred and using a threshold is sepa-
rated from the image with bit-wise AND operation. This results in high accuracy
from the model.
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Chapter 3

Data Collection and Preprocessing

3.1 Working Plan

In total there are 36 characters available in Bangla sign language. So, we collected
all 36 letters and rearrange them properly. To avoid the chance of desultory, the data
sets will be categorized in different folders. The folders will be labeled according
to the numeric naming convention. For making the datasets usable with machine
learning models, we resized the height and width of the images and converted them
to gray-scale. We resized them by 128 * 128 pixels. Then, we split the data for
training and testing purposes. We trained our dataset with multiple layers of CNN
to try and produce the most accurate results.

Figure 3.1: Working Plan Flowchart

7



3.2 Data Analysis

Our research topic has plenty of work done already. So acquiring multiple datasets
was easy. We collected multiple datasets from the internet with different back-
grounds and lighting effects. As, making our own dataset is time consuming we
decided to go with pre-existing ones. How we collected our input data and how we
pre-processed it are briefly explained bellow.

3.3 Input Data

There are two types of bangla sign languages available in our country. They can be
one-handed and two-handed however one-handed sign language is used frequently.
So we decided to work on one-hand bangla sign language.

Figure 3.2: Dataset

There are a total of 30 classes for one-hand representation of Bangla Sign Language.
In 30 classes there are total approximately 15000 which is split into 80 percent train-
ing and 20 percent test purpose. All images are in RGB which is illustrated in figure
3 .Some images are collected from a project paper paper: ”Real Time Bangladeshi
Sign Language Detection using Faster R-CNN” by authors Oishee Bintey Hoque
and Mohammad Imrul Jubair and Md. Siful islam and Al Farabi Akash and some
images are collected from Kaggle and https://www.kaggle.com/datasets/
kanchonkantipodder/bdsld1500 and the paper author is Kanchon Kanti Podder.
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3.4 Data Preprocessing

We make use of the pythons augmenter library to augment our data.

A) All the input images are resized from their original sizes to a matrix of size
224 by 224. The input dataset contains images with a variety of sizes which cannot
be passed through our model due to size mismatch. Resizing allows us to control
the size of each layer of our model while allowing the flexibility of having a dataset
consist of multiple image sizes. A size of 224 by 224 is a good middle ground between
the processing speed and model accuracy.

B) The resulting images are then flattened. This reduces the number of channels
that need to be processed from 3 to 1 resulting in a decrease in time required for
each step from 24s to 8s each and the total time for each epoch from 600s to 200s
roughly which is a 3x increase in processing speed from running the same data in
rgb.
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Chapter 4

Model Architecture Using
Classifiers

4.1 CNN

CNN: Data that can be split into a grid-like pattern, such as a digital image, is
evaluated using convolutional neural networks (CNNs). A digital picture may be
conceptualized as a large grid of binary values that each represent one primary hue
or a mix of the three. Pixel values specify the brightness and color of each individual
pixel.

Figure 4.1: Picture representation using a pixel grid

Three layers of CNN are convolutional, pooling, and fully connected.
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Figure 4.2: Architecture of a CNN

Convolution Layer: The main factor of CNN is the convolution layer. The network’s
computational capacity is primarily its responsibility. This layer includes two ma-
trices: the limited portion of the receptive field and a group of trainable parameters
called kernel, and another part is the confined the receptive field’s portion. While
the kernel is smaller than an image, it is deeper. This implies that the kernel’s height
and breadth are modest if the picture has three (RGB) channels but the depth is
large. The kernel shifts the height and width of the image throughout a forward
run, providing a visual description of the accessible area. At each spatial place in
the image, a two-dimensional representation of the kernel’s response generates an
activation map. A stride refers to the kernel’s sliding size. Assuming, our input size
is W x W x D and,
F= with a spatial dimension a Dout number of kernels,
S= stride
P= padding amount
Now, to calculate the size of the output volume the formula is:

Wout =
W − F + 2P

S
+ 1 (4.1)

Pooling Layer: At some locations, the output of the network is replaced with a
summary of nearby outputs by the pooling layer. This lessens the size and hence
the quantity of calculations needed. Each representational slice is handled inde-
pendently throughout the pooling process. Examples of pooling functions include
the rectangular neighborhood L2 norm, rectangular neighborhood average, and a
sample mean calculated based on the distance to the central pixel. Max pooling,
the most popular technique, gives the maximum output for the neighborhood.
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Figure 4.3: : Pooling Operation (Source: O’Reilly Media)

The following formula can be used to compute the output volume:

Wout = W − FS + 1 (4.2)

Here, The activation map’s dimensions in this case are W x W x D, where F is a
spatially-sized pooling kernel and S is stride. Pooling provides some uniform trans-
lation in all cases, for instance an object may be identified no matter in which it
occurs on the panel.

Fully Connected Layer: As suggested by the name, every neuron in this layer as
well as the layer below it is linked. This makes it possible to compute it using bias
effect and matrix multiplication.

The completely linked layer is constantly able to accommodate the input and output
mapping.

Activation Function:
i. Sigmoid: Mathematical version of sigmoid nonlinearity is sigmoid(x) = 1/ (1+e-
x). A real-valued number is ”squashed” into a value between 0 and 1.
ii. ReLU: In any CNN architecture, activation functions play a critical role in
determining which node should be fired. The function ReLU can be represented
mathematically as ReLU(x) = max (0, x) (1), where x is the input to a neuron
iii. Softmax: The Softmax Activation Function is a fascinating activation function
that takes real-number vectors as input and normalizes them into a probability dis-
tribution proportional to the exponential of the numbers.
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Figure 4.4: Softmax Activation Function

Output Layer: In CNN output layer is a fully connected layer that flattens and
sends the input from other in order to change the output into the number of classes
requested by the network.

4.2 Proposed CNN Model

Configuration 1: Dropout and Batch Normalization: Dropout layers were
a common recommendation for reducing over fitting. So we decided to try creating
a model with drop out. Batch normalization would ensure our values kept within
a certain range. In this model we use 5 layers. ( 2 Convolution layers with max
pooling, 3 dense layers). All layers include batch normalization with axis= -1.All
layers include a Dropout layer of 0.2.

Configuration 2: Simpler CNN with 12 layers: It was apparent from
testing the pre-trained models that we would require a simple model for our dataset.
So one of the CNN’s we tried was one with 12 very simple layers. In this model
we have 12 layers which are 2 Convolution layers, 2 max-polling layers, 4 batch-
normalization layers, 1 flatten layer and 3 dense layer.
However, we have tried few others configurations as well. Among them configuration
2 gives us better accuracy. So the model summary of configuration 2 is attaching
below:
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Layer (type) Output Shape Param

conv2d4(Conv2D) (None, 222, 222, 32) 896
maxpooling2d4(MaxPooling2D) (None, 111, 111, 32) 0

batchnormalization8(BatchNormalization) (None, 111, 111, 32) 128
conv2d5(Conv2D) (None, 109, 109, 32) 9248

maxpooling2d5(MaxPooling2D) (None, 54, 54, 32) 0
batchnormalization9(BatchNormalization) (None, 54, 54, 32) 128

flatten2(Flatten) (None, 93312) 0
dense6(Dense) (None, 512) 47776256

batchnormalization10(BatchNormalization) (None, 512) 2048
dense8(Dense) (None, 256) 131328

batchnormalization11(BatchNormalization) (None, 54, 54, 256) 1024
dense10(Dense) (None, 30) 7710

Table 4.1: Custom CNN Model.

4.3 VGG

V GG : VGG architecture is widely used for Object recognition now a days.Other
than imageNet, VGGNet outperforms baseline on a range of tasks and datasets.
It is one of the most commonly utilized image recognition architectures available
constructed from small convolutional filters. In total it VGG-16 has thirteen convo-
lution layers and three fully linked layers.

Figure 4.5: VGG Neural Network Architecture

Details of VGG layer is mentioning below:
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Input Layer: Images having a resolution of 224×224 pixels are accepted by the
VGGNet.

Convolutional Layers: A tiny receptive field (3x3) to record up or down and left
or right movements is used by the convolutional layers of VGG. In addition, 11 con-
volution filters produce a linear function of the input. The ReLU unit, a significant
AlexNet creation significantly diminishes training time. The stride is set at 1 pixel
to support the spatial resolution of subsequent convolution.

Hidden Layers: The VGG network uses ReLU in every hidden layer.

Fully-Connected Layers: Three completely connected layers make up the VGGNet.
Two layers in the beginning have 4096 channels each, whereas the third layer has
1000 channels, one per class.

VGG16: VGG16 has 16-layer deep neural network (VGGNet). with 138 million
parameters. The network’s appeal comes from its simplicity. It has a uniform archi-
tecture. We can use around 64 alternatives to the number of filters, where we can
extend to approximately 128 and then to 256. We can utilize 512 filters in the last
phases.

Figure 4.6: VGG-16 Architecture of a VGG16 model

4.4 ResNet50

ResNet50: Resnet50 is a 50-layer deep convolutional neural network (CNN) con-
sisting of 48 layers of convolution, 1 MaxPool and 1 Average Pool layer. A residual
Neural Network(ResNet) is a sort of Artificial Neural Network (ANN) which con-
structs a network by pilling up residual blocks on top of one another. In this method,
a network is pre-trained on over a million photographs and is stored in the imageNet
database. A 224x224x3 image is used as the input, followed by a MaxPooling layer
with a 3x3 filter. Then there are 16 leftover blocks. Each residual block is made up of
three convolutional layers that change the data’s dimensionality. The leftover blocks
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are divided into four groups. The remaining blocks in a group have comparable lay-
ers. In the first group, for example, we have three residual blocks, each of which has
three convolutional layers that perform the following convolutions. ResNet50 helps
to train ultra-deep neural networks which means it can contain hundreds or thou-
sands of layers but it still performs well. In short, Resnet is the most well-known
neural network that is used to solve a variety of computer vision problems as it can
classify pictures into over a thousand different items types which includes monitor,
book, pen and a variety of animals.

Figure 4.7: ResNet50 Architecture

The framework can also be used to improve accuracy in non-computer vision ac-
tivities. Backpropagation reduces the gradient which in turn slows the network’s
learning rate. This is called the ’Vanishing Gradient Problem’ and is one of the key
drawbacks of CNNs. ResNet overcomes this problem with ”SKIP CONNECTION.”
Skip connection concatenates the original input to the output of the convolution
block. When we multiply numerous numbers less than or greater than 1 together,
the output shrinks or grows exponentially with each term added to the multiplica-
tion yet we need to conduct more multiplications the more layers we have. This has
been empirically demonstrated that when using typical architectures, the perfor-
mance of very deep neural networks degrades and accuracy saturates as the network
converges. To eliminate this kind of problem, skip connection is necessary.

Figure 4.8: Skip Connection.

A skip connection is a straight connection that bypasses some of the model’s tiers.
As a consequence of the skip connection, it results in various kinds of output. With-
out the skip connection, input ’X is multiplied by the layer’s weights, then a bias
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term is added.
Although all algorithms are trained on the output ’Y,’ ResNet is trained on F(X).
To put it another way, ResNet attempts to make F(X)= 0 so that Y=X.
The activation function, F(x), produces the following output:

F (w ∗ x+ b) = F (X); (4.3)

The output of the skip connection technique, on the other hand, is:

F (X) + x; (4.4)

There are two kinds of input blocks in ResNet50. One is identity block and another
is convolutional block. The value of ‘x’ is added to the output if the,

Inputsize == Outputsize; (4.5)

However, a convolutional block is attached to the shortest way to make the size of
the input equal to the output if the input size is not equivalent to the output size.

Figure 4.9: Identity Block.

Figure 4.10: Convolutional Block.
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To make the input size equal to the output size, there are two methods,
i) Padding the input volume,

[(n+ 2p− f)/s+ 1]2; (4.6)

Where,
n = input size of image,
p = padding,
f= number of filters
s= stride.
ii) Performing 1x1 convolutions,

[(n/2) ∗ (n/2)]; (4.7)

Where,
n = input size of image.

4.5 Inception-v3

Inception-v3: Inception-v3 is design from the inception family that performs fac-
torized 7*7 convolutions, label smoothing, and includes an additional classifier to
send label information farther down the network. InceptionV3 model is the outcome
of several concepts that different scholars have refined over time. The model has a
variety of elements, including symmetric and asymmetric buildings, max pooling,
concatenations, dropouts, and completely connected layers. This model heavily re-
lies on batch normalization, and Softmax is utilized to compute loss.

Figure 4.11: InceptionV3.

18



Inception v3 network built in five ways.
i) Factorized Convolutions: As the number of frameworks in a network is reduced,
it plays an important role to upgrade the computational productivity. Furthermore,
the factorized convolutional monitors the network’s efficiency.

ii) Smaller Convolutions: It is used for replacing bigger convolutions with smaller.
Because of this reason, it leads to faster training. For instance, to reduce the com-
putational cost 5x5 layer is replaced by two 3x3 convolutional layers.

Figure 4.12: Two 3x3 Convolutions

iii) Asymmetric Convolutions: Beside a bigger convolutions are factored into small
pieces, the asymmetric convolution is the best option for making the model more
productive.For instance, we can replace a 3x3 convolution by a 1x3 convolution after
another 3x1. convolution.

Figure 4.13: Asymmetric Convolutions

iv) Auxiliary Classifier: Inception v3 aims to use an auxiliary classifier so that it can
enhance the convergence of very deep neural networks. As an additional classifier
during training, a little CNN is inserted between layers, and the loss it suffers is
contributed to the loss of the primary network. Prior to Inception v3, auxiliary
classifiers used deeper networks in Google Net to their advantage; as a result, In-
ception v3 uses auxiliary classifiers as regularizers.
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Figure 4.14: Auxiliary classifier.

v) Reduced grid size: Basically, the reduction of grid size is done by max polling
and average pooling. Moreover, a more efficient strategy is presented to tackle com-
putational cost bottlenecks. For instance, a dxd grid with n filters after reduction
it sums up in d/2 x d/2 with 2n filters.

Figure 4.15: Grid size reduction

4.6 Inception-ResNet-v2

Inception-ResNet-v2: ResNet and Inception provide the best performance in im-
age classification in relation to the computational cost necessary. Inception-ResNet
as the name implies combines the Inception and Residual architectures to obtain the
best of both worlds. The network consists of 164 layers and is capable of classifying
images into 1000 different categories from keyboard and mice to many animals.

The essential feature of the Inception-ResNet is output of inception module is at-
tached to the input from the preceding layer. This is accomplished by utilizing three
separate stem modules and reduction blocks. In order to maintain this functionality
factorization is utilised to match the input and output dimensions from the previous
layer and the inception module respectively.
However, more research revealed that when there are more than 1000 convolution fil-
ters, the network fails. The problem of the dying network is addressed by activation
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Figure 4.16: Inception ResNetv2

Figure 4.17: Inception ResNetv2 Process

scaling, which is then introduced.

4.7 DenseNet

DenseNet: By concatenating the output feature maps of the layer with the input
feature maps rather than calculating their total, DenseNets streamline the con-
nection pattern between layers introduced in previous designs. Due to the lack
of duplicate feature maps, DenseNets may operate with fewer parameters than a
comparable classical CNN.

x1 = Hl([x0, x1, ..., xl−1])

DenseBlocks and Transition Layers are the two components of DenseNets. The
feature maps dimensions are consistent inside each Denseblock. Between them are
the Transition Layers, which provide batch normalization, 1x1 convolution, and 2x2
pooling layers to handle downsampling. This channel dimension is becoming bigger
at every layer since we are concatenating feature maps. We can generalize for the
l-th layer if we set up H-l to generate k feature maps each time:

kl = k0 + k ∗ (l − 1)
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Figure 4.18: DenseNet

The growth rate is this hyperparameter k. The amount of information added to the
network at each tier is controlled by the growth rate.
Every layer has access to the layer above it and, as a result, to all of the information.
Then, as concrete k feature maps of information, each layer is contributing fresh
information to this overall collection.

4.8 EfficientNet

EfficientNet: Based on the baseline network created by the neural architecture
search utilizing the AutoML MNAS framework, EfficientNet was created. The net-
work is optimized to achieve maximum accuracy, but when the network takes a
long time to produce predictions, it is punished for both being computationally de-
manding and having a sluggish inference time. Due to the increase in FLOPS, the
architecture employs a mobile inverted bottleneck convolution that is bigger than
MobileNetV2.
EfficientNet uses a technique called compound coefficient to scale up models in a
simple but effective manner. Compound scaling uniformly scales each dimension
with a certain fixed set of scaling coefficients. The baseline model is compound
scaled up to obtain the family of EfficientNet

Figure 4.19: EfficientNet
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4.9 MobileNetV2

MobileNetV2: MobileNetV2 is CNN group of general-purpose computer vision
neural networks built for mobile devices to provide categorization, detection, and
other functions. The capability to operate deep networks on personal mobile de-
vices increases user experience by providing anytime, everywhere access, as well as
extra security, privacy, and energy conservation benefits. As new applications arise
allowing users to interact with the actual world in real time, so does the demand for
ever more efficient neural networks. Here, the MobileNetV2 meets the need of the
requirement of efficient neural network.
MobileNetV2 extends the concepts of MobileNetV1, as a effective building blocks
depth-wise separable convolution. MobileNetV2 has two new architectural features.
One is linear bottlenecks between layers and another one is shortcut connections
between bottlenecks.

Figure 4.20: MobileNetV2
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Figure 4.21: MobileNetV2 architecture

MobileNetV2 enhances the performance of mobile models on a variety of workloads
and benchmarks, as well as across a range of model sizes. The base of this model
architecture is it is a reversed residual form where it goes outside of the tradition and
makes the residual block as thin bottleneck of input and output. In order to retain
representational strength, non-linearity’s in the thin layers must be removed.For this
design, it enhances performance and provides the inspiration.From transformation’s
vent, it allows decoupling of the input or output domains. Moreover, MobileNetV2
is providing a useful foundation for further investigation.
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Chapter 5

Result And Analysis

5.1 Result and Analysis

We achieved various accuracy metrics from various models to verify the outcome
analysis after the train and test for all the models for 30 classes. We achieved the
highest prediction accuracy and validation accuracy for each model for these 30
classes. The following table lists top train accuracy and validation accuracy:

Models Top Training Accuracy Validation Accuracy

Custom CNN 98.3 % 87%
Dansenet201 97.97% 86.43%

VGG16 96% 88%
InceptionV3 96.22% 88.33%
Resnet50 56.44% 54.50%

MobileNetV2 90% 60%
InceptionResnet 94% 53%
EfficientnetB2 4% 4.2%

Table 5.1: Accuracy For 30 Classes.

In Table 5.1 we can see that test accuracy, which measures how accurately the
models can categorize Bangla Sign Language (30 classes), and validation accuracy,
which measures how accurately our trained model predicts on the testing dataset.
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Figure 5.1: Custom CNN Accuracy

Figure 5.2: Custom CNN Loss

In figure 5.1 and 5.2 accuracy for custom CNNmodel shoots up quite rapidly crossing
80% by epoch 10. From 10 onwards it very slowly climbs to 98.3% over the remaining
50 epoch.Accuracy in training.Loss follows a similar trend in the opposite direction.
It decreases to 0.5 in the first 10 epochs and slowly trickles to around 0.1 by epoch
50 in training.
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Figure 5.3: DenseNet201 Accuracy

Figure 5.4: DenseNet201 Loss

In figure 5.3 and 5.4 DenseNet model starts off with relatively low loss on both
training and validation but as the epochs progress the training loss progressively
decreases while the inverse is true for validation. Validation loss is also not a grad-
ual increase.Accuracy for this model starts around 55% and quickly increases to a
maxima of 90% within the first 10 epochs. What follows is a gradual but slower
progression to a maximum of 97.97% at epoch 50.
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Figure 5.5: VGG16 Accuracy

Figure 5.6: VGG16 Loss

In figure 5.5 and 5.6 Vgg16 starts off with poor accuracy but within the first 5
epochs accuracy shoots up to 80% before steadily increasing with time until about
10 epochs have finished. At which the accuracy starts to plateau as it crosses 90%.
From 10 epochs onwards the accuracy shifts between 93 - 96% over the course of the
next 20 epochs to epoch number 30. As the model approaches epoch 40 the accuracy
gradually stabilises and holds position near 96% till it reaches epoch 50. Beyond
epoch 50 overfitting occurs. Validation accuracy however is far more unstable across
the entire dataset. We used an 80/20 split between the training and validation data.
Validation accuracy in contrast begins at 72% gradually increasing to 80 after which
it increases in an unstable manner to a maximum of 88% till epoch 50. Loss during
training starts of at around a value of 2. Similar to the accuracy over the course of
the next 5 epochs it drastically decreases to a value of 0.375. From epoch 5 to 50
loss decreases to 0.125.
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Figure 5.7: InceptionV3 Accuracy

Figure 5.8: InceptionV3 Loss

In figure 5.7 and 5.8 training accuracy for this pre-trained InceptionV3 model starts
of faster than the others, quickly shooting up to about 80% by epoch 5. After epoch
5 the two curves split up. Training accuracy continues to increase steadily with
some variance upto 96% . Validation accuracy splits off at epoch 5 and with a lot
of variance, slowly increases to about 88%.
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Figure 5.9: Resnet50 Accuracy

Figure 5.10: Resnet50 Loss

In figure 5.9 and 5.10 Resnet50 model training started off with accuracy 1% which
gradually increases to a maximum of around 56% with some variance. Validation
accuracy never went above 54% with a large variance in its values. Training loss
started from 7.5 and went to 3 over 50 epochs. Validation was incredibly unstable
ranging in value from 4.5 all the way up to 8.5 throughout the epochs never holding
a consistent value.
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Figure 5.11: MobileNetV2 Accuracy

Figure 5.12: MobileNetV2 Loss

In figure 5.11 and 5.12 shows MobileNetV2 had 90% training accuracy and 60%
validation accuracy and training loss is fluctuating between 10% to 0% and validation
loss is also fluctuating between 11% to 58%.
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Figure 5.13: InceptionResnet Accuracy

Figure 5.14: InceptionResnet Loss

In figure 5.13 and 5.14 shows InceptionResnet had 94% training accuracy and 53%
validation accuracy and training loss is fluctuating between 13% to 2% and validation
loss is also fluctuating between 9% to 14%.
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Figure 5.15: EfficientNet Accuracy

Figure 5.16: EfficientNet Loss

In figure 5.15 and 5.16 EfficientNet had the lowest accuracy by far. Training accuracy
never went beyond 4% and did not increase across 50 epochs. Validation accuracy
was also erratic and managed a maxima of 4.2% at its peak.

33



Figure 5.17: Confusion Matrix of Custom CNN model

A confusion matrix summarises the performance of a model for each class in one
elaborate yet simple diagram. In figure 5.17 our confusion matrix is a straight di-
agonal line traveling from top left to down right as a clean line indicating that our
model works very well at classifying most of our classes effectively. The problems
come from some of the more complex letters that are constructed from a combina-
tion of straight and rounded lines and also closely resemble other letters. Notable
examples would be Ca and Dha.
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Figure 5.18: Train Accuracy

Figure 5.19: Validation Accuracy
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In a nutshell, we know that a loss function graph can be used to determine if a
model is over-fitting or not. When models rely too much on their training data and
lose their capacity to perform effectively on new data, this is known as over-fitting.
In other words, the model includes and learns from the random oscillations in the
training data. We might have had minor over-fitting concerns, as shown by the loss
function graphs of the classic transfer learning models shown above. These over-
fitting problems had an effect on the predictability of outcomes. This problem was
resolved via normalizing and the addition of few dropout layers, which increased the
prediction accuracy of the Bangla Sign Language categorization. Additionally, the
total number of layers in our unique CNN model is 12, which makes it lighter and
faster to train. Finally, as seen in figure 5.1, our customized CNN model performs
better than any other pre-trained models and provides us with greater accuracy.
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Chapter 6

Conclusion

6.1 Discussion

We worked on 15000 images of hand gestures. All these images were augmented to
increase the number of data. Then it was split into two folders using split-folders li-
brary. One is train dataset which contains 80 percent of the image of whole dataset.
The validation dataset which contains rest 20 percent images. Then we applied
various pre-trained models on this dataset. We used Densenet201, VGG16, In-
ceptionV3, Resnet50, MobileNetV2, InceptionResnet, EfficientnetB2. Among them
DenseNet201 gave the highest training and validation accuracy 98 percent and 86
percent accordingly.

The objective of this study was to create a model which can predict Bangla Sign
Language as accurate as possible. To satisfy our goal we tried to build a custom
CNN model. Which includes in total 12 layers. To improve the accuracy and reduce
overfitting issue, we added several dropout layers and normalizing layers. Then we
arrived at a model which gave better accuracy (98.3 percent training and 87 percent
validation) than any tested pre-trained model ensuring less depth of neurons, lighter
model and faster training time.

6.2 Conclusion

Nowadays, sign language is very essential for people who have problems in hearing
and talking. This dataset contains Bangla Sign Language which is developed by
using convolutional neural networks. We used CNN architecture for faster delivery.
This system will be the digital interpreter between deaf and normal people which
can be easier for understand the language to deaf and also very friendly for hearing
people. Initially, this paper contains Sign language of all the Bangla Alphabets and
further we will also work for the Bangla Numerical Signs. Conducting this procedure
as friendly as possible for both hearing and non-hearing people is our main objective.
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6.3 Future Plan

We intend to work with all Bengali alphabets in the future. But we also want to
apply it in real world applications which will be able to identify and differentiate
between different bangla sign languages in real time. We had over-fitting problems
in our current system. We’ll take care of this by enhancing the data.
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