
Autonomous Precision Landing of UAV Digital Twins on
Moving Platforms and River Data Analytics from UAV Imagery

by

Rezwana Ashrafi
17201043

Jahir Uddin
22341091

Suhail Haque Rafi
18201004

Mashiat Mamun Raidah
18101359

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
September 2022

© 2022. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Rezwana Ashrafi
17201043

Jahir Uddin
22341091

Suhail Haque Rafi
18201004

Mashiat Mamun Raidah
18101359

i

Approval
The thesis/project titled “Autonomous Precision Landing of Unmanned Aerial Ve-
hicles on Moving Platforms and River Data Analytic from UAV Imagery” submitted
by

1. Rezwana Ashrafi(17201043)

2. Jahir Uddin(22341091)

3. Suhail Haque Rafi(18201004)

4. Mashiat Mamun Raidah(18101359)

Of Summer, 2022 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on September 23, 2022.

Examining Committee:

Supervisor:
(Member)

Md. Khalilur Rhaman
Professor

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Md. Golam Rabiul Alam
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Advisors
Supervisor:
(Member)

Md. Khalilur Rhaman
Professor

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Md. Golam Rabiul Alam
Professor

Department of Computer Science and Engineering
Brac University

Advisor:
(Member)

Zubair Al Billal Khan
CTO & Co-Founder

STRAIGHT

iii

Abstract
UAVs have ignited our curiosity to understand the mechanism of flying and improve
the way these vehicles fly to enable them to be of great benefit in a variety of ap-
plications such as exploration, rescue, 3D mapping, military use, and many other
applications. But these applications of drones face limitations due to short battery
life, human interventions necessary to replace the battery, power consumption, and
communication distance. The purpose of our research is to mitigate the challenges
faced by UAVs by proposing an autonomous quadcopter that is able to land pre-
cisely on a wireless charging station placed on a moving vehicle by motion tracking
algorithm and increasing the accuracy of Helipad Detection and a Gazebo simulator
capable of modelling an air traffic system for a swarm of drones by combining sensor
values and control movement from the environment, as well as specifying the traffic
system through path planning and collision avoidance. This study solves the short
flight time of the soon to become one of the main components of the urban infras-
tructure air traffic system and ensures the variety of applications of these drones to
be carried on for a safer and longer period of time and without any hazard. Aside
from that, we will concentrate on factors such as water surface analysis, where we
will look for water garbage in rivers and ocean bodies in Bangladesh.

Keywords: UAV, Digital Twin, Precision Landing, Trash Trap, Mapping, Detec-
tion, AI, River Image Processing

iv

Dedication
This study is a tribute to our parents, who have always provided for all of our
necessities as we created our system and taught us that even the most difficult tasks
can be completed if they are faced one step at a time.
We dedicate this research to everyone who put forth a lot of effort to assist us in
completing this study.

v

Acknowledgement
We acknowledge Md.Tahmid Rashid’s guidence & mentoring and thank him from
the core of our heart.

vi

Table of Contents

Declaration i

Approval ii

Advisors iii

Abstract iv

Dedication v

Acknowledgment vi

Table of Contents vii

List of Figures ix

Nomenclature x

1 Introduction 1
1.1 Thoughts Behind This Research . 1
1.2 Research Objectives . 2

2 Related Work 4
2.1 Vehicle Tracking . 4
2.2 Precision Landing . 5
2.3 Air Traffic Control System Simulator 5
2.4 Water Trash Trap Detection . 7
2.5 Digital Twin . 8
2.6 Wireless Charging . 8

3 Methodology 9
3.1 Calculations . 9

3.1.1 Weight . 9
3.1.2 Power . 10

3.2 3D CAD Design . 10
3.3 Hardware Architecture . 11
3.4 Power Distribution Board Design . 12
3.5 ROS Control Software Architecture 12

3.5.1 Trajectory Projection . 13
3.6 Precision Landing . 14

vii

3.6.1 Digital Twin & Air Traffic System 15
3.7 Description of the Model and Data 17
3.8 Data Acquisition and Calibration . 18

3.8.1 Water Trash Detection . 19
3.9 Plotting Data on Map . 19
3.10 Area Calculation for Trash Traps . 23
3.11 Image Stitching . 24

4 Evaluation 26
4.0.1 Helipad Detection . 28
4.0.2 Water Trash Detection . 28
4.0.3 Landing & Digital Twin . 29

5 Future Goals 31
5.1 ETP Monitoring . 31
5.2 Wireless Charging Station . 32

6 Conclusion 34
6.1 Conclusion . 34

Bibliography 37

viii

List of Figures

3.1 (a) Lipo Battery Mount, (b) CMOS camera box with lid, © Pix-
hawk Mount,(d) Servo Mount, (e) Raspberry Pi 4 Heat sink case, (f)
Camera Mounted with Servo . 10

3.2 Quad Details . 11
3.3 UAV Power Distribution Board Design 12
3.4 Marker Detection . 15
3.5 Landing on Target Marker . 15
3.6 Simulation Pipeline . 16
3.7 Digital Twin Architecture . 17
3.8 YOLOv5 Architecture . 18
3.9 Image Custom Dataset: Vehicles . 19
3.10 Image Custom Dataset: Water Trash Trap 20
3.11 Trash Data on The Map . 20
3.12 Map Plotting Workflow . 22
3.13 Pixel To Feet Method . 23
3.14 AR Tag Vertices From Landing Pad 23
3.15 Image Stitching Workflow . 25

4.1 Training and Validation Losses . 26
4.2 Different Evaluation Metrics for Vehicle Tracking 27
4.3 Real-time Vehicle Tracking Results 27
4.4 Helipad Detection . 28
4.5 Different Evaluation Metrics for Water Trash Detection 28
4.6 UAV altitude while flying . 29
4.7 Rangefinder Analysis . 30
4.8 Air Traffic System . 30

5.1 ETP Monitoring Workflow . 31
5.2 ROS Pipeline . 33

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

APM ArduPilot Power Module

COMP Coordinated Multi-Point Transmission

ESC Electronic Speed Controller

ETP Effluent Treatment Plant

FAA Federal Aviation Administration

FRP Fibre Reinforced Plastic

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

x

Chapter 1

Introduction

1.1 Thoughts Behind This Research
Lightweight quad-copters are becoming more common in a variety of applications,
including topographic mapping, area monitoring, high-voltage line inspection, for-
est fire patrol, and so on. Drones will very certainly be utilized for continuous and
autonomous operations in the future. All fully autonomous UAVs must have au-
tonomous take-off and landing capabilities, which are both critical and problematic.
In occupations that demand continuous flight operations, precision landing capabil-
ities are critical for autonomous docking of aerial vehicles into a recharge station.
UAVs are commonly powered by rechargeable lithium polymer batteries, which only
last about 20-40 minutes[7], depends on the weather condition. The charging op-
eration must be automated to produce a fully autonomous system. Bangladesh is
a disaster prone country. Autonomous drone operation may help in rescue mission,
surveying, river and ETP monitoring. This requires long flight time which requires
more energy. The problem can be solved by implementing a autonomous docking
solution so that it can land and recharge itself autonomously. The purpose of this
study is to offer an autonomous vision based landing solution that can be inte-
grated with existing drone flying system with the goal of analyzing UAV imagery
and Digital Twin (DT). We implemented a Digital twin in this research to see the
performance of sensors data. Also, by implementing DT we increased the perfor-
mance of the drone by analyzing and reducing variance.
A unique state estimation methodology and predictive path tracking system, that
allows us to monitor and anticipate an expected touchdown sequence position, with
the accuracy and adaptability required to follow the vehicle also in bends of its
course. The trajectory tracking approach applied for vehicle tracking using a pre-
diction of its future direction is the most essential component of the suggested frame-
work that helps the Quad-copter to touch down perfectly on a platform following
a specific speed which is near to the UAVs’ maximum speed and on a non-straight
route. Simulating the air traffic system in a virtual environment is another aspect of
our research. Commercial drone activities are becoming more common these days.
Drones will soon be flying everywhere, dramatically boosting the quality of a wide
range of services. According to the European drone outlook study [5], over 7 million
drones will be in use in Europe by 2025 (200 thousand commercial and governmental
drones, and about a thousand military drones). The Federal Aviation Administra-
tion (FAA) estimates that up to 3.17 million Unmanned Aerial Vehicles (UAVs) will

1

be in use in the United States by 2022, according to recent research. As a result, a
standardized air traffic control system for UAVs that can be deployed in a real-world
scenario is urgently needed. We need a simple model that can replicate an array
of factors and operations utilizing each and every kind of drone with a variety of
features, so we can examine and assess them before they are operationally tested.
The simulator should be able to implement routing algorithms and collision detec-
tion approaches. The recommended simulator is based on the widely used Gazebo
simulation platform. Furthermore, water is an essential resource for all life on Earth.
When the water supply becomes contaminated because of pollution, it causes many
health problems, Food chain contamination, and many more. Our target is to an-
alyze the water surface pollution by image processing and data analysis using GIS
mapping with an onboard CPU to detect the presence of trash and monitor the
trash flow on the water surface.

1.2 Research Objectives
The major goal of this study is to provide dynamic charging stations to make UAVs
more efficient while on the job. We will investigate dynamic precision landing, air
traffic control, water trash detection, and wireless charging systems as part of our
research. We will look at improving precision landing algorithms that will allow a
drone to take off from a moving vehicle while maintaining communication with other
drones. Also, our goal is to use UAVs to detect water trash so that we can notify
authorities before it harms the environment. Our primary objectives are outlined
as follows:

• One of our important targets is detecting the trash on the water surface. We
will analyze the data and show the result on the spatial distribution map. If
we look at the Earth’s major pollution, we will notice that water pollution
is one of them. In our country, mainly water from the surface gets polluted
by the factories’ garbage and with the water flow that garbage mixes with
the river water and makes them polluted. The government of Bangladesh has
made ETP (Effluent Treatment Plant) mandatory for all factories that use
water as a raw or processing material, but most of the factories do not follow
that. With this parameter of the drone, we will be able to detect the trash
flow on the water surface. Also, we will be able to analyze where the industries
do not maintain ETP and how badly that is affecting our water surface.

• Making a drone land precisely at a specific area has always been difficult,
whether it’s devising a mechanism for drone delivery, establishing a drone
docking station, hovering a drone for monitoring, or attempting to land a
drone in the back of a truck.We are addressing this challenge by proposing a
unique precision landing algorithm that will allow the drone to land precisely.

• Incorporating autonomous technologies into heavily urbanized air transporta-
tion necessitates the creation of technologies and simulations to aid in ongoing
research initiatives. We are building an Air Traffic Simulator System with the
Gazebo Simulator Platform so that we can safely test UAVs in a real-world
setting before deploying them. The ODE or bullet physics engines enable a

2

multi-robot simulation environment in Gazebo, which includes dynamics sim-
ulation. Gravity, contact forces, and friction are all taken into account by the
simulator, making this simulation platform resemble a real-world environment.
The user can add customized controls for simulating drones and senses, as well
as alter the environment, using a plugin system.

3

Chapter 2

Related Work

2.1 Vehicle Tracking
In this paper [16], The author presents a case study of Yolov5 used to detect heavy
goods vehicles at rest areas throughout the winter to estimate parking place oc-
cupancy in real-time. The author uses thermal network cameras because the icy
circumstances and polar nights of much of the country pose some obstacles for pic-
ture identification in the winter. Because vehicle photos generally contain a lot of
overlaps and cut-offs, the author used YOLOv5 and transfer learning to see if the
front cabin and the back are good features for heavy goods vehicle recognition. The
results indicate that the trained algorithms can reliably detect the front cabin of
heavy goods vehicles, whereas detecting the rear cabin appears to be more difficult,
especially when the vehicle is far away from the camera.
In this paper [17] The authors propose a multi-component reduction of the number
of training examples in comparison to the initial YOLO-v5 design. The findings
of this study’s experiments also reveal that precision has greatly improved. The
training results demonstrate a minor drop in characteristics from 7.28 million in the
YOLO-v5-S profile to 7.26 million in the author’s model, according to the author.
Apart from that, when comparing the YOLO-v5-L/X profiles, the author reduced
the recognition rate by 30 fps, and small object tracking performance was improved
by 33percentage points as compared to the YOLO-v5-X feature in this study.
In this paper [14]The author explored the consequences and logic of several architec-
tural and model adjustments performed to the famous YOLOv5 detection algorithm
in terms of improving its small-object identification capacities, emphasizing its spe-
cial demands and constraints, and suggesting prospective future study. The author
has created an original YOLO-Z family of modeling techniques providing high qual-
ity with a 6 per cent increase in the ability to identify small objects while only
raising prediction performance by around 3 ms. Based on these findings, existing
technologies can be updated to accurate very small objects in situations where ex-
isting approaches cannot identify anything either. According to the author, this can
improve an automated vehicle’s detection sensitivity and perceptual resilience, re-
sulting in superior planning and decision-making techniques, giving an autonomous
racing car a significant competitive advantage.

4

2.2 Precision Landing
According to B.Caruso, M. Fatakdawala, A.Patil, G.Chen, and M.Wilde [15] (Demon-
stration of Inflight Docking), dynamic docking is not implemented yet. Autonomous
static docking itself is a challenging issue. Currently, researchers are working on au-
tonomous static docking and for future implementation, they are planning to work
on autonomous dynamic docking. The author presented a vision/GPS-based dock-
ing control system for UAV Autonomous Aerial Refueling in this study [4]. An
enhanced Kalman filter (EKF) approach for integrating GPS and machine vision
(MV) sensor information to derive the accurate relative location of the UAV and
the drogue has been proposed. The simulation results demonstrate that the pro-
posed control strategy can precisely determine the relative location of the UAV and
tanker and achieve safe docking. In this paper [13] the author’s combined drones
and deep learning technology. They used two drones for the demonstration. By
using the UAV+CNN model, they realized the remote sensing recognition of park-
ing spaces, which can largely inform people about which parking lot is available for
them at the destination they are going to in advance. The authors of this study [18]
Introduced an algorithm with two defining features:developed a difference convex
automated system (DCA) to solution changes for UAV transmit beamforming and
UAV-UE association, and (ii) utilized a deep Q-learning method to solve the chal-
lenges of CSI’s inability to establish UAV positions. The two methods recommended
resolving the problem. The deep Q-learning (DQL) technique is used in the first step
to allow UAVs to learn the entire state of the system and account for such combined
motion of all UAVs to manipulate their placements. In the second phase, the DCA
continuously solves a concave approximation sub-problem of the original non-convex
MINLP issue with the estimated, using computed UAV placements from the DQL
approach. The problem’s variables include transmitting directional antennas and
UAV-UE connection.

2.3 Air Traffic Control System Simulator
In recent years, various studies on air traffic management systems were carried out by
various scholars utilizing a variety of gaming engines and frameworks. The following
are a few of them: Amjed Al-Mousa et al [9] presented the ’UTSim’ simulator, which
is based on the Unity framework. UTSim can simulate the physical characteristics
of unmanned aerial vehicles, as well as movement, controls, connectivity, detection,
and evasion in stationary and dynamic settings. UTSim was created with the goal
of being simple to use. The user can choose the environment’s features, the quantity
and types of unmanned aerial vehicles in the environment, and the path planning
and collision avoidance algorithm to be utilized. The simulator generates a log file
containing a multitude of relevant data, including the number of sent and received
messages, detected objects, and collisions of unmanned aerial vehicles. This article
uses three scenarios to demonstrate the possibilities of UTSim and how it might
help researchers in the subject of integrating unmanned aerial vehicles into urban
air traffic. Although Unity 3D has many strengths that make it a great game
development tool, in complex scenes, users might lose sight of some of the attached
components:

• The built-in support for the PhysX physics engine in the Unity 5 engine has

5

several performance concerns and is missing some key features that are re-
quired to create an outstanding game app.

• From a graphics standpoint, the engine is behind. Unlike other game develop-
ment engines, it does not provide a wide range of tools for creating stunning
graphics.

• Licenses are required for the best visuals, deployment, and performance ad-
vantages. Furthermore, the use of graphics, buffering aid, stencil aid, and a
plethora of other features raises production costs due to expensive licenses.

• In comparison to other engines, Unity’s code is more reliable, and it comes
with a wonderful architecture that boosts the game app’s performance. How-
ever, the lack of source code makes it harder to identify, address, and resolve
performance issues.

• The Unity engine consumes more memory, resulting in OOM failures and app
debugging concerns.

Ziyi Zhao et al [10] introduce the Multi-agent Air Traffic and Resource Usage Sim-
ulation (MATRUS) framework, which intends to provide a quick assessment of var-
ious air traffic management strategies as well as the interaction among strategies,
surroundings, and traffic conditions. It can also be utilized in the planning of a next-
generation smart city to determine resource allocation and launch site placement.
For a managed (centrally coordinated) and unmanaged (free-fly) traffic situation,
extensive comparisons of UAS flight time, conflict ratio, and utilization of cellular
communication resources are provided as a case study. This research, on the other
hand, does not support evaluating the policies of UTM traffic management, elab-
orating airspace intrinsic capacity, or providing airspace traffic optimization at a
lower level. Furthermore, the framework does not allow for the investigation of the
impact of UAS detect and avoid techniques, the implementation of additional traffic
management policies, or the handling of more complex traffic demand geographical
distribution.
Sameer Alam et al [1] To investigate free flights, present the Air Traffic Operations
And Management Simulator. The ATOMS concept, structure, capabilities, and ap-
plications are all described in this article. It’s an intent-based simulator that divides
the entire airspace into equal-size hyper-rectangular cells to consistently keep the
intent reference points. It can simulate conventional and free-fly airspace opera-
tions and air navigation procedures from start to finish. To create precise trajectory
predictions, the ATOMS models atmospheric and wind data. ATOMS employs
a multi-agent-based modeling technique for modular design and easy integration of
varied air transport subsystems. Airborne Separation Assurance, Cockpit Display of
Traffic Information, weather avoidance, and decision support systems are only some
sophisticated Air Traffic Management technologies prototyped in the ATOMS.. Ex-
periments show that sophisticated ATM ideas support free-flying; nonetheless, more
research and understanding of their intricate interactions in non-nominal settings is
required.

6

2.4 Water Trash Trap Detection
Melisa A. Isgró et al. [22] employ regression analysis to calibrate empirical models
for predicting water quality indicators based on in situ physicochemical parame-
ters and spectral reflectance measurements acquired by the commercial Micasense
RedEdge-MX Dual sensor. The multispectral photos are captured using the Micas-
ense RedEdge-MX Dual Camera, acquiring information. Pix4D mapper, a Structure
from Motion tool, was used to process the multispectral pictures. Based on the cam-
era’s EXIF metadata, the CRP to calculate absolute irradiance, and the DLS data
to normalize each image for differences in incoming radiation during the conflict, this
software does radiometric processing and calibration. The process’s end products
are ten single reflectance calibrated GEOTIFFs.They indicate that the reflectance
value of each pixel on these maps ranged from 0.0 to 1.0.
The atmosphere barrier between the UAS and the ground is so thin that it may
ignore this close-range remote sensing approach; it did not address atmospheric cor-
rection for UAS imagery. Picture segmentation thresholding is used in this paper
[6] because it is a widely used image classification technique. It uses picture distri-
bution statistics to extract objects from photos with varied gray level ranges for the
target and background. Their article used an interpretive approach to retrieve data
from beach detritus. The drone operated autonomously using DJI GS Pro, a ground
station software. The whole mission procedure was completely automated, involving
takeoff and landing, route planning, and computation of the proper spatial resolution
of flying altitude. They selected the mapping and aerial image area patterns during
the setup process. In this study [3], Using two alternative approaches in ArcGIS,
employed high-resolution UAV pictures to determine lake borders. Lake boundaries
are extracted by using a digitizing method and a maximum likelihood classification
(MLC) method. MLC is a typical classification method with a generative model
that assumes the picture features within each target class have a Gaussian distribu-
tion. So, Sample regions on the lake are determined for use as signature files in this
manner. Using ArcGIS.Classified raster data of mine lakes are generated by using
the signature file. The categorized data is passed through a majority filter three
times to generate image contrast. And they use the lake boundaries transformed
into vector data using a raster to polygon approach.
Paschalis Koutalakis et al [8] Present a low-cost unmanned aerial vehicle (DJI Spark)
capable of obtaining reliable video images of a natural river. They evaluate the con-
tinuous frames taken by the UAV using three different software packages: Three
image-based techniques are PIVlab, PTVlab, and KU-STIV (LSPIV, LSPTV, and
STIV, respectively). The findings demonstrated that a low-cost UAV system could
easily and successfully take a movie or a sequence of frames above rivers or moving
water bodies. It can take Photographs with a multi-copter by directing the cam-
era vertically downward. The study Using image-based techniques and a current
streamflow meter was conducted along the same and additional cross-sections of the
River. This allows for the analysis of surface velocity in various reaches and the
testing of diverse natural water patterns.

7

2.5 Digital Twin
Digital twin is a virtual entity of a physical instance. According to Y. YU et al,
[20] digital twins are more reliable, cheaper, and safer for on-site inspection. They
also stated , modern technologies are capable of producing digital twins of existing
assets. A digital twin is a way to inspect a entity’s performance in real time and also
make it possible to increase performance by adjusting errors. Another research was
conducted [19], to study interference suppression of Digital Twin UAVs by adopting
COMP technology. Another study by G. Nasos et al [11], deployed a digital twin to
detect deviations from the UAVs expected behavious and detected potential bugs.
S. Wen et al [23], developed a dynamic digital twin for an air-ground network in
which DT served as an aggregator.

2.6 Wireless Charging
C. H. Choi and colleagues [2] suggest a completely automated wireless charging
station. The station also allows for a less-than-ideal UAV landing on the platform,
which is prevalent in real-world scenarios. Manual battery charging of quad-rotor
UAVs might be totally eliminated with the suggested charging station. This study
[12] discusses a rapid wireless charging port for an 85-kHz band 50-V 10-A inductive
power transfer system constructed of fibre-reinforced plastic (FRP) and intended
for outdoor use. S. Obayashi et al designed the charging port’s distinctive frustum
construction, which advantages of high coupling between transmit and receive coils,
the lightweight of the receive coil, and misalignment prevention even in the gusty
wind.

8

Chapter 3

Methodology

3.1 Calculations
We have calculated the total system before building the quad. It was necessary to
make the quad stable and reduce costs. The calculations are given below:

3.1.1 Weight
• Total weight of quadcopter:

• 1 x Frame 400 gram

• 1 x Receiver 15 gram

• 1 x Flight controller 40 gram

• 1 x Battery 265gram (3s, other brand)

• 1 x Power distribution 68 gram

• 4 x ESC 4 x 28 = 112 gram

• 4 x Propeller 4 x 10 = 40 gram

• 4 x Motor 4 x 30.6 = 122.4 gram

• 1 x Rpi 1 x 46 = 46 gram

• 1 x gps 1 x 16 = 16 gram

• 1 x cmos camera 1 x 400 = 400 gram

• Others: 500 = 500 gram

Total weight of the quad-copter is 2024.4 gram.

9

3.1.2 Power
Total thrust of our 2306KV motors are 7032 gram. So, the weight lift ratio is
2024.4/7032 = 0.28
According to the motor specifications, the motors require 9.33 Ampere(50% throttle)
continuous current. Using a linear ratio, the assumed usage is 9.33 * 0.28 = 2.6124
Ampere per motor. The total number of required ampere equals 10.4496 Ampere
during a normal flight. We have used 3300 mAH battery. LiPo shouldn’t discharge
below 85%. This translates in 3300 * 0.85 = 2805 mAH for this battery.
The estimated flight time is = (2.805/10.4496) * 60 = 16 minutes.

3.2 3D CAD Design

Figure 3.1: (a) Lipo Battery Mount, (b) CMOS camera box with lid, © Pixhawk
Mount,(d) Servo Mount, (e) Raspberry Pi 4 Heat sink case, (f) Camera Mounted
with Servo

We have included some of our SolidWorks designs in 3.1. We provided six different
design images in all. We print those using our 3D printer after we finish our de-
sign. We couldn’t use the 3D printer to print the weighty parts because there was
a chance of them not printing correctly. As a result, we chose to print the lightest
particles in the figure. We have designed this battery mount to add the least weight
to our quadcopter. When tying up with the battery, you can place it anywhere
in the quadcopter. We keep in mind that this battery mount provides the most
air for cooling. We have designed our CMOS camera box with a lid that provides
our camera extra protection with the flexibility to work with the servo. We have
designed a lightweight Pixhawk mount that will be easy to place on the body with

10

the help of vibrator damping foam pads, and we designed it with enough space for
the wires. When we activate the motor, the servo mount we construct here keeps it
stable. We aim to build an amount that is exactly the right size for both the servo
and the quadcopter.

A heat sink case was necessary because we are using a Raspberry Pi 4B for our
quadcopter. Our heat sink is placed over the Raspberry Pi’s chips and processor,
and it helps transmit the heat generated on the chips and processor to the air. We
have designed the servo so that the camera mount has the ability to move.

3.3 Hardware Architecture
We have used the PX4 Flight Controller board for its vast capacity to support dif-
ferent sensors and peripheral devices. It is directly connected to a ardupilot power
module. APM is directly connected to 3300 mAH LiPo battery and it supplies reg-
ulated 5V to flight controller and 12V to electronic speed controller. Raspberry Pi
is powered by 5V which comes from ESC. Raspberry Pi 4B is our main processing
board in this design. It has a Logitech USB Camera connected to it that allows
us to take good-resolution pictures. The script is executed on the Raspberry Pi
and it detects AR Tags from the USB Camera feed. It also receives GPS and IMU
Data from the Pixhawk Board. We have used the SE100 GPS Module that works
perfectly with the flight controller. Later on, when it detects a tag, it sends appro-
priate commands to the PX4 and this instructs it to land. We have also connected a
2.4GHZ 9-channel radio controller that communicates through the RF, for manual
control.

Figure 3.2: Quad Details

11

3.4 Power Distribution Board Design
We needed a custom Power Distribution Board (PDB) for our quadcopter. We tried
to work on designing a custom PCB. We designed the PCB in the Proteas Software.
The ESCs on the UAV require very high current passing through. This is why we
made sure that the routes are thick enough to carry this current. Furthermore, we
have also added some extra led along the routes to lessen the load on the PCB.

Figure 3.3: UAV Power Distribution Board Design

3.5 ROS Control Software Architecture
ROS is being widely used in the industry for its convenience and resources in
robotics. We have designed our very own custom package for autonomous land-
ing. The Landing Pad Node processes the camera feed and detects AR Tag using
the OpenCV library. It is capable of detecting all 16 dictionaries of the Aruco Tag
in different shapes and sizes. Whenever the landing pad i.e. the AR Tag has been
detected it communicates with the Controller Node on the visual-data topic using
MQTT Protocol.
When the Controller Node gets the localization information of the landing pad it
calculates the PID values required for the landing and passes the data to the PX4
Firmware Node through the MAVLink Protocol on controller-data topic. The Rasp-
berry Pi communicates with the Pixhawk using Serial Communication. The getting
instructions from the Controller Node, the PX4 Firmware Node takes the necessary
measures to navigate the UAV into a safe precision landing Here, the Controller
Node and the PX4 Firmware Node act as both Publisher and Subscriber at differ-
ent times. When Raspberry Pi is sending data to the Flight controller, the Controller
Node is the Publisher and the PX4 Firmware Node is the Subscriber. Nevertheless,

12

the are times when Raspberry Pi needs data from the Pixhawk such as GPS data,
IMU data etc. In those times, the PX4 Firmware Node works as the Publisher and
Controller Node as the Subscriber.

3.5.1 Trajectory Projection
One of our applications is to precisely land the UAV on a running vehicle. For that,
we followed two different approaches. One is tracking the helipad and another is
tracking an AR Tag. But the problem is we can identify the vehicle but to ap-
proach the running vehicle it’s important to know the speed of the vehicle without
intercommunication. In real life, the challenge is to track a vehicle across different
cameras and angles. It is challenging because in some cases the vehicle appears
different because of the camera motion. For this problem, a robust tracker is bene-
ficial. We solved this problem by using the optical flow algorithm. In this method,
the vehicle is tracked utilizing Spatio-temporal image brightness fluctuations at the
pixel level. The goal of this algorithm is to obtain a displacement vector for the
object that will be monitored across the frame. We faced a problem while trying
to predict the trajectory of a running vehicle. We noticed that we can detect small
motions but we failed to detect large motions. We used the Lucas-Kanade approach
to derive an equation for the velocity of certain spots to be tracked in order to
address this problem. There is a function in OpenCV cv.calcOpticalFlowpyrLK().
We constructed a basic application to track the points using this single method. We
start with the first frame and discover corner points, then use Lucas-Kanade optical
flow to iteratively track those locations.

We work with another dataset for vehicle detection as we are working on preci-
sion landing on a running vehicle. We collected approximately 300 images, which
was insufficient, but it resulted in an accuracy of 79 per cent. We trained this data
into Yolov5. Earlier, we separated and labeled the 240 training images; for the
remaining 60 images, we used them as validation and labeled them. We get 79 %
accuracy after running the dataset through Yolov5, and the output of our trained
data is shown in the figure.

Simulation is essential before creating a real-life prototype to assure a good sys-
tem design as well as safety in deployment because developing and testing au-
tonomous navigation algorithms on real-world UAVs is difficult and requires inten-
sive resources. As a result of testing in simulations, risks are reduced when testing
physically. Before deploying the entire system in the physical realm, visual-based
autonomous landing algorithms must be thoroughly tested in simulated situations
to catch potential vulnerabilities. Using the PX4 SITL, we tested our algorithms in
the Gazebo Simulator environment. The Pixhawk flight stack is managed by SITL
PX4, which also offers direct support for the prototype deployment procedure. For
object detection and tracking, cameras have been widely utilized around the world.
Deep learning algorithms provide good results, however, it is vulnerable to deliver-
ing low spatial resolution. It is computationally costly and limits the application’s
efficiency. This is why we have an alternative approach.

When dealing with vision-based tracking, this second approach focuses on lower-

13

ing the computing overhead. We’ve replaced Helipads with AR Tags [21] as docking
pads. AR Tags are easily identifiable fiducial marker systems with their own IDs.
So we can give each of our docking stations a unique ID. Even in rotating positions,
system occlusion, and random overlap with an object, they are plainly apparent.
The landing pad is detected by comparing it to the AR Tag template. To discover
features, the camera frame is compared to the template frame. A description is
assigned to every feature in both templates. We determine the distance between the
camera frame and the template using the Euclidean distance measurement formula.
The correlation between the two frames is used to create a homography matrix.
The orientation of the landing pad is then determined by applying a perspective
transform to the homography matrix. The landing pad’s corners and centre are
then calculated. As with the DeepSORT technique, the Kalman filter then utilizes
a velocity model to track the location of the pad. It can reliably estimate the pad’s
location in the previous frame using this velocity model. The AR Tags’ unique IDs
allow us to numerically identify each station independently.
A control system is required to coordinate the peripheral devices to approach for
landing. For this, we have used a PID controller that performs based on the object
tracking data i.e. the centre of the landing pad from the camera frame and the
angle, on top of the Pixhawk’s built-in PID controller. The external PID controller
minimizes the difference between the dimensions of the template frame and the cam-
era frame.
At the moment, we are in the phase of testing this algorithm of the UAV physically
and observing the results.

3.6 Precision Landing
Drone operation requires stability, reliability, and precision while navigating au-
tonomously. For every flying vehicle, it’s important to land or dock precisely on
a charging pad or launching pad. When it comes to long-distance operations, it’s
a must-have recharging station. We, humans, make errors while doing something
accurately. When it comes to drones or space, the situation is more complicated.
In this study, we established vision-based precision landing both practically and in
simulation. Previously, we stated we have built a quad-copter including a raspberry
pi as a core processing and commanding module. For vision-based landing, we have
used some components like a night vision pi camera attached to the raspberry pi,
and a mini LiDar for ranging distance accurately.
There are three core modules in this project. Firstly, in the flight control module,
we used an open-source Pixhawk flight controller for the physical drone. A flight
controller is a module that controls drone movement in the air. Secondly, we used
the Raspberry Pi 4 as a core processing module. The Raspberry Pi is a single-board
microcomputer. Finally, we used an infrared-based night vision camera with manual
focus. These three components are integrated together in the drone.

14

Figure 3.4: Marker Detection

Figure 3.5: Landing on Target Marker

3.6.1 Digital Twin & Air Traffic System
An air traffic system is essential for safe air travel. Tracking and monitoring UAVs
is vital for UAV navigation and making the sky safe for all flying objects.
For now, we have created an environment using an open-source java simulator. For
UAV navigation, we have used PX4 firmware, and for control station and monitor-
ing, we have used ground control software. We have used a custom quadcopter with
necessary sensors such as GPS for positional data, imu, 3DR for two way commu-
nication etc. As we are using GPS for positional data, we can see every flying UAV
on our ground control software. Also, we can easily define routes for UAVs. As a
result, it’ll be easier for UAVs to avoid collisions. Additionally, by using 3DR it is
possible to intercommunicate between the UAVs which may help to synchronize and
get necessary broadcasting data. Also, it is possible to stop any unauthorized flying
objects or to track them and inform concerned authorities.
We will explain the simulation first, then we will move to the practical part. In
the simulation, we used a robot operating system, a framework for robot control,
PX4, an open-source drone firmware, Gazebo, a simulation environment, Rviz, to get
feedback from subscribed topics, and RQT-graph to see the feedback from connected
nodes. In the given figure, we can see all the published topics and connected nodes
altogether, which we got from rqt. First of all, we will be giving an overview of the
simulation. Later, we will deep dive into the simulation. For the landing platform,
we have trained a model using the helipad dataset, which is discussed in part 28. To
make the landing more precise, we have also used ArUco markers. An ArUco marker
is composed of a black border and has a binary matrix inside which provides a unique
identification number. This enables error detection and correction by extracting
data from the marker. Internal matrix size is determined by marker size. OpenCV-

15

Figure 3.6: Simulation Pipeline

contrib has a library for ArUco markers, which makes it easier to code and detect.
As the robot operating system comes with a pre-installed OpenCV dependency, the
ArUco marker is also there. From the main camera, we are taking input from the
environment. After getting the ArUco marker into a frame, the Rpi extracts its
feature with respect to a given template, which we can see in 3.6. After extracting
the feature, it detects the corners and computes observations. After computing,
it reduces errors by applying a Kalman filter. By using the PID algorithm, it
navigates to the target ArUco marker and lands. In 3.4, we have shown details of
the total simulation pipeline. We have ROS nodes, topics, publishers, subscribers,
actions, etc. We modeled the world in the Gazebo simulation environment using
the Clover drone instance, ArUco map, and physics model. For coding, we used
the Python code-base for easier integration. ROS nodes are individual processes
that are written into the program. The nodes receive and send information. This
information is organized in a specific way called a ”topic.” In 5.2, after initializing
the simple off-board node, it subscribes to Gazebo and the main camera node, which
captures aruco information from the world and publishes the message through TF.
Aruco detects the node subscribes to that topic and gets the information. After
extracting the feature, it again published the information through TF, and Mavros
subscribed to that node. Mavros is a communication protocol between ROS and PX4
firmware. After getting the information through Mavros, the PX4 firmware gives
the command to the drone to fly and land on the specific ArUco marker. During
this time, it continuously receives messages from the subscribed thrust, control, and
altitude nodes. By adjusting those parameters using the Kalman filter and PID
algorithm, it reaches the target and lands smoothly.
In 3.4, we can see our main camera, which captures a frame of the marker, is detected
and its unique identification number is shown. As shown in figure 4, the ability to
detect ArUco markers individually helped us land on a specific target precisely, as
shown in 3.5. Also, using camera calibration, we determined the distance between
the main camera and the marker. With the help of a rangefinder(mini lidar), we
may avoid collisions in swarm and obstacle detection scenarios. The rangefinder at
the markers’ z-axis helps us to adjust thrust and tune the PID algorithm to land
safely.

Finally, we tested our simulation results in the real world. We equipped the drone

16

with a Raspberry Pi, a camera, pixhawk, GPS module, and telemetry and config-
ured it properly. Additionally, we used a 10-channel 2.4GHz radio controller for
manual override in the case of unwanted situations. We set it to script mode on
switch 9. We planned a grid path-like simulation. The Rpi is configured to connect
to the same LAN network as the laptop. By remotely accessing the RPi, we exe-
cuted the landing script and switched to the script mode. It changed its altitude
to 2.5 meters and looked for the marker. After seeing the marker, it analyzed the
distance, adjusted its thrust, and landed. To make it safer and smoother, we used
the SE100 GPS to get feedback from the GPS and took advantage of position hold
mode.
We get real world sensor data from our quad through mavlink. Sensors are con-
nected to Raspberry Pi. Raspberry Pi has raspbian os with ROS and other tools.
It it connected with our ground control module via MavRos. MavRos is bridge be-
tween mavlink and ROS. It connects base station with other sensing module. After
collecting the data such as: gyro and power data, it analyzes the data and thrust
node estimates the thrust level. After estimating, PX4flow node adjusts the thrust
level by tuning PID value. This way, DT helps us to reduce variance.

Figure 3.7: Digital Twin Architecture

3.7 Description of the Model and Data
Because of the vast variety and high volume of trash generated in manufacturing,
manual waste sorting is time-consuming and labor-intensive; The quantity of output
and residential waste increases as social productivity rises, lowering people’s living
standards and quality of life while also causing environmental damage. Thus, the
implementation of automatic waste identification can be very useful. Because of its
fast response time and excellent detection accuracy, we use the YoloV5 algorithm.
The YoloV5 method treats target detection as a regression problem. Three funda-
mental structures are in the YOLOv5 network model, First one is the backbone,
the second one is the feature pyramid network and the third one is the detection
header. The backbone network is in control of feature extraction from various kinds
of pictures at various scaling, the feature pyramid network is in control of fusing
features from different kinds of scaling and transferring them to another network
which is a detection network. The detection network is in control of trying to predict
the object group in it to use input pictures and creating the object bounding box
obtained by training the network model with the backpropagation algorithm.

17

Figure 3.8: YOLOv5 Architecture

In the diagram above, the network architecture of YOLOv5 is depicted. The Cross-
Stage Partial Network (CSPNet) on Darknet was first merged by YOLOv5, which
led to the development of CSPDarknet as the primary building block. By integrating
gradient changes in the feature map, CSPNet addresses recurrent gradient informa-
tion problems, reduces model parameters and FLOPS, ensures fast and accurate
inference, and reduces model size. The YOLOv5 utilizes a Path Aggregation Net-
work (PANet) as neck to enhance the information flow. PANet implements a new
Pyramid Network (FPN) feature to improve low-level feature propagation. Addi-
tionally, each feature level provides important information that reaches the following
subnetwork thanks to the pooling of adaptive information, which connects with the
feature grid to all other feature levels. PANet encourages accurate localization sig-
nals at lower levels, greatly improving the precision of object location. To conduct
multi-scale prediction, the Yolo layer, which is at the core of Yolov5, generates three
different sizes of feature maps (18, 36, and 72).

In order to land precisely, you must first detect the helipad. We created a sec-
ondary dataset by scraping photographs from the internet using Google. There are
650 photos in the dataset. We then divided the dataset into 80, 20 train and test
groups. The model is trained using the YoloV5 model.

3.8 Data Acquisition and Calibration
We have made a dataset from surfing the internet. As we focused on images that
are mostly taken from UAV or atleast from the high altitude similar to a UAV. We

18

have gathered around 200+ images for the model to work on. 160 of them were used
for training and 40 were used for testing as per the 80-20 split.

Figure 3.9: Image Custom Dataset: Vehicles

3.8.1 Water Trash Detection
To capture images and videos of the trash on the water surface, we need a cam-
era, and we are going to use a CMOS camera for that. The UAVs camera is a
20-megapixel 1-inch CMOS. The onboard computer is chosen based on the number
of processes required to perform image processing after detecting the garbage. To
detect the trash on the water surface, the data set here we used in this paper con-
tains a large number of trash images, the majority of which we collected from the
internet. There are two types of data categories in this set. one is labeled as trash
and another as not trash. 20% of the images are selected as a set of validation, and
the remaining 80% of images are used as the training set. We label the training
set with the make sense tool and generate the corresponding XML file for training.
Each of the pictures generates a text file with a similar title, with each line repre-
senting the label of a single object. The object class is the first column. Here the
dataset only contains one type of class., and all classes are merged. Object frame’s
XY coordinates are in the second and third columns, and the coordinate position
normalizes using the original image’s aspect pixel values as a numerator. Column
number, fourth and fifth display the object frame’s normalized aspect pixel values.

3.9 Plotting Data on Map
As we know, A Geographic Information System (GIS) is a valuable tool for combin-
ing spatial and other data. It enables the spatial representation of information and
analysis of integrated data, making resource development, environmental protection,

19

Figure 3.10: Image Custom Dataset: Water Trash Trap

and scientific research planning easier. GIS has advanced map-making skills that are
valuable for communicating data analysis results. So we will use GIS mapping. For
tracing and keeping the record of the location, we will use a Geocoordinate record.
So, after analyzing the data, if there is any garbage or trash on the water surface, it
will mark it as red in the digital image; otherwise, it will remain blue. Finally, we
will show it in the spatial distribution map for better understanding.
We used one leafmap plotting backend because our main goal was to detect the
garbage from the drone view, locate the garbage on the map with a circle marker,
and measure the garbage area. We use Folium as the plotting backend to create an
interactive map that functions in a Jupyter environment like Google Colab, Jupyter
Notebook, or JupyterLab.

Figure 3.11: Trash Data on The Map

Jupyter Notepad: We use Jupyter Notebook as it is an open-source web ap-
plication. Jupyter Notebook enables sharing of documents with real-time code,
equations, visuals, and text. This technology has many applications, such as data
transformation and cleaning,machine learning, simulation, statistical modeling, data
visualization and many more. For our data visualization, we’ll make use of this tool.

Pandas: Some of those tools are contained in the standard library, a toolbox that

20

is provided with the language. One of the significance of this class is the panda.
It is a program that has evolved into a top open-source library for getting at and
analyzing data from various sources.

Numpy: For Python-based scientific computing, Numpy is the core package.

Folium: When working on interactive leaflet maps,it is easy with folium to see
data that has been modified .Python is used. Data connectivity to a map for choro-
pleth visualizations is made possible by HTML, rich vector, and raster visualizations
that are passed as markers on the map in folium. In addition, the library supports
user-created tilesets utilizing Mapbox or Cloudmade API keys and provides several
pre-built tilesets that leverage OpenStreetMap and Mapbox. Folium supports im-
age, video, GeoJSON, and TopoJSON overlays. We utilized folium to locate trash
on a map.

Openstreetmap: A popular choice for creating Slippy Map is Leaflet, a cutting-
edge which is a mobile-friendly, open-source JavaScript library for interactive fea-
tures.OpenStreetMap is used as a free global geographic database. It records each
physical feature on the planet. The mappers who create the OpenStreetMap database
collect data while traveling by car, bicycle, or foot along streets, using GPS receivers
to record their every move.A set of transformable geometric properties as in points
and lines that can be used for navigation or converted into maps are made using this
information.OpenStreetMap has utilized a wiki-like system for this database. Any
mapper can use it to edit or add features to any location, and every object’s entire
editing history is recorded. Because of this, deliberate vandalism can be overturned,
keeping the data accurate, and OpenStreetMap does not store its data in an ex-
isting geographic information system. Instead, it uses its software and data model
to facilitate crowdsourcing and provide the greatest flexibility. Compared to other
geographic databases, Openstreetmap is updated more frequently. Downloads of
the most recent data are always available. Anyone can manually fix errors in Open-
StreetMap data. If any errors are found in the data, they can be corrected on the
map quickly, and the database is immediately updated. While most other mappings
only offer a few different style options, obtaining a customized map is expensive and
time-consuming. The only restriction on the variety of mapping styles with Open-
StreetMap is their own technical and cartographic capabilities. Additionally, several
free map-rendering software programs and GIS programs support OpenStreetMap
data.

Mapbox: Among other data sources, Mapbox Streets uses OpenStreetMap. All
Mapbox users have access to Mapbox Streets, a set of vector tiles used in almost all
of the different Mapbox template designs. The Mapbox Streets tileset will likely be
included in any new style created using a Mapbox template in the Mapbox Studio
style editor. The quickest method for using OpenStreetMap data in Mapbox Studio
is to use Mapbox Streets as a source. Mapbox Streets is a customized tileset man-
ufactured from OpenStreetMap data; it is updated as OpenStreetMap is edited. It
is vital to use additional tools, such as Overpass Turbo, to extract OpenStreetMap
data to add features to the map that Mapbox Streets does not support.

21

We fixed a frame for the drone image view to measure the garbage area. If trash is
outside the frame when the drone takes the picture, the provided code will stitch the
images from the exact location, create a complete view from those several images,
and send it to the folium parameter. If the trash covers a large area, the circle maker
will appear with a large radius and a different color on the map. These are some
parameters we use.

Figure 3.12: Map Plotting Workflow

Map() and Tiles: We employ the Map () function to create a map. To accom-
plish this, we must provide the function with the latitude and longitude data.The
Map() function’s ”tiles” parameter defaults to being ”OpenStreetMap”. With this
parameter, we can modify the Map’s design. Alternate options include CartoDB
Positron,Stamen Toner, CartoDB Dark Matter or Stamen Terrain. Adjusting the
size using the width and height parameters, and also enlarging an image using the
zoom start feature. We use the Circle() function to circle the coordinates. By
entering parameters like radius and color, we can alter the output. We get GPS
coordinates and the Marker() function to mark the coordinates’ location. We fur-
thermore placed the location name using the popup parameter. The data of garbage
from the drone view is used. This data consists of area name and latitude and longi-
tude from GPS coordinates and the measurement. We use the GPS coordinate data
because we require a region’s location on the Buriganga side. We use the Pandas
library to load the data in Excel and look at some values after loading the data.
The Pandas merge() function is used to combine these data. The Plugins package
contains the MarkerCluster() function. We set a parameter based on the geographic
data. We draw boundaries with the help of GeoJson in the Folium and a JSON file
with the desired coordinates. We try to color the Map according to the size of the
garbage patch. We use The Choropleth () function in this. Using each coordinate
value, we use the MarkerCluster() function to map the locations of their accommo-
dations. Then, we wanted to assign each lodging a different color based on how big
the garbage area was. To do that, we require a color map. For various ranges, we
use different colors. For instance, we use a red circle with a large radius for large
area garbage, and we assign the minimum and maximum area coverage to various
variables to achieve this.

22

Figure 3.13: Pixel To Feet Method

3.10 Area Calculation for Trash Traps
After detecting trash with the help of YOLOv5, we are proposing a PixelToFeet
method to approximate the area of the trash on the water surface. In this method,
we will freeze the altitude of the UAV at a specific height and hover around the
water body, maintaining that altitude. Before the start of hovering, the UAV will
detect the landing pad of four 6X6_250 AR Tags and calculate the pixel per foot
value from that Tag.

Figure 3.14: AR Tag Vertices From Landing Pad

23

For example, in a particular frame, the bounding box for the AR is detected at
Tag 0 [(312, 230), (469, 232), (313, 389), (470, 390)],
Tag 1 [(871, 232), (1031, 229)], (870, 391)], (1030, 391)],
Tag 2 [(310, 790), (470, 791), (310, 950), (470, 949),
Tag 3 [(869, 791), (1030, 790), (870, 950), (1031, 950)].

Now, we will calculate the Euclidean length of each edge of the tag and add them
all together. The sum divided by 16 should be equal to 0.5. This is our value for
pixels per foot. When the detection algorithm draws a bounding box around the
trash, using the Pixel To Feet Method, we can easily calculate the area of the trash
in feet and plot that information on the map.

3.11 Image Stitching
One other application is image stitching. So herein lies the problem. A UAV cap-
tures two-dimensional images of the three-dimensional world from roughly the same
perspective, but by moving the UAV forward or backward. As we move the camera,
the fields of view of the pictures overlap. We use this set of images to automatically
create a bigger image covering a larger area in one single image that can be zoomed.
We wish to stitch them together to make a panorama.

For this, first we apply the SIFT detector on the images so that we are able to
extract features, and SIFT is ideal for this application. Then, based on the SIFT
descriptor, we are going to match features between images and find some pairs of
matching features.

We may get two matched feature points in these two images that have exactly the
same local appearance, the same blobs, in the context of the SIFT detector. So we
get a match, a perfect match, because they have the same appearance, but it just
happens that they don’t come from the same point in 3D. These are called outliers,
and we need a method to distinguish them from the inliers. For this purpose, we
used the RANSAC Algorithm.

After getting the valid matching features from RANSAC, we wish to work out the
geometric relationship between pairs of images like the transformation that takes
from one image to a different image, so that we are able to take a picture and warp
it to the coordinate frame of the opposite image. That transformation is called
homography. In particular, the transformation that we try to attain is named the
Projective Transformation.

Once we are able to try this, we are able to actually warp the pictures to a stan-
dard coordinate frame. We simply select one of the images as the reference image
and wrap all of the opposite images around the coordinate frame of that image.
Next, we get a group of a stack of overlapping images. The problem remains that
no two images are really captured with precisely the same exposure. Whether or
not we managed to try and do that, it seems that the radiometric response of a

24

Figure 3.15: Image Stitching Workflow

lens varies slightly over the sector of view of the lens. This can be due to effects
like vignetting. So it is nearly always absolutely necessary to have seams between
overlapping images. To remove these seams, we need a blending algorithm, a simple
algorithm that in an exceedingly literal sense removes these seams and creates one
contiguous panorama of the scene. For every one, we are computing a weighting
function. The weighted function we’re using means that the load we assigned to a
pixel is a function of its distance from the nearest boundary point. We will compute
that by using the distance transform. The weight increases as our distance from the
edge increases. The more we are inside a picture, the more confidence we have in
the brightness of the process of blending. So a simple weighting function allows us
to require these three images, which previously produced the seams, and after we
blend them using that function, we get a panorama that appears fairly seamless.

25

Chapter 4

Evaluation

Figure 4.1: Training and Validation Losses

In This graph above, we can see that the losses are very minimal. The class loss on
testing data accounts for only 0.297%, object loss for 1.56%, and box loss for 2.60%.
Plotting the accuracy and recall values of the model in a graph of the confidence
score threshold yields the Precision-Recall curve. Precision is a metric that helps us
to determine how frequently the model forecast correctly. The recall is a metric that
assists us to understand if the model predicted everything it should have predicted.
Our model has a precision of 0.674 and a recall of 0.313.

If a model shows high recall but poor accuracy, it accurately identifies the ma-
jority of positive data but has a lot of false positives. For our case, the model has
high accuracy but a poor recall means that it is correct when it identifies a sample
as Positive, but only part of the positive samples is classified. Our precision-recall
curve is trending higher because as the confidence rises, more forecasts and correct
predictions are made. This can be further enhanced by data augmentation which
will focus on in the next few weeks.
Here the recall being 77.5% and precision of 70.5% indicates that the was getting
a very good amount of correct positive predictions and a majority of the positive
samples are classified. Our precision-recall curve is rising because more forecasts

26

Figure 4.2: Different Evaluation Metrics for Vehicle Tracking

and correct predictions are made as confidence grows. We plan to strengthen this
further via data augmentation.

Figure 4.3: Real-time Vehicle Tracking Results

From the image above we can see that the model perform very well in detecting
vehicle on the road.

27

4.0.1 Helipad Detection
On the Helipad dataset, using YOLOv5, due to the weak dataset, we only acquired a
58% Mean Average Precision at 50% IOU after training the model. This model can
be enhanced by adding more data and taking into account varied lighting situations.

Figure 4.4: Helipad Detection

4.0.2 Water Trash Detection

Figure 4.5: Different Evaluation Metrics for Water Trash Detection

As you can see in the above figure, the dataset gives a Mean Average Precision of
60% at 50% IOU and detects the trash on the water surface and detects the human
as not trash. We plan to collect additional data with our drone in the future, which
will improve the accuracy of the trash detection.

28

4.0.3 Landing & Digital Twin
In figure 4.6, we can see the drone’s altitude while flying from GPS. It shows drone
started to hover from ground and it went around 200mm vertically. By seeing
the altitude variance, we can say that the drone struggled in the air to fly. After
implementing DT, the altitude variance reduced significantly. We have plotted the
range-finder’s value in rqt-plot, getting from the range finder topic. It gives us the
distance value in meters.

Figure 4.6: UAV altitude while flying

As we can see from the graph 4.7 the quad reached to 1.5 meter altitude and hovered
for 4 seconds before it detected the marker and landed safely. The graph also shows
that, the altitude variance reduced and the graph line became smooth. In the
figure 4.8, we can see the drone’s real-time location with its sensor data in the
ground software’s UI, such as: air pressure, live location, heading, speed, altitude,
mode, etc., which helps us to manage and monitor air traffic. We have connected
qgroundcontrol with ROS via MAVROS. Gazebo simulator is also connected with
ground control software. This helped to visualize the physical entity in virtual
environment.

29

Figure 4.7: Rangefinder Analysis

Figure 4.8: Air Traffic System

30

Chapter 5

Future Goals

5.1 ETP Monitoring
Bangladesh, as everybody knows, is a riverine country, facing river pollution for
many years. Most of the river sides are covered in vast amounts of trash. The
industries that do not adhere to the ETP are the main producers of this trash.
Finding the industries that violate the ETP can make a remarkable change in river
pollution.The most significant users of water in Bangladesh are the textile indus-
tries. Rivers and surface waters become contaminated when the textile is released
as effluent.

Figure 5.1: ETP Monitoring Workflow

To enforce the Effluent Treatment Plant or ETP in the Industries, the Department
of Environment has worked. The government has established ETP as a requirement
for receiving authorization for factory settings. According to the report, 52% of
Bangladesh’s industries have implemented ETP, while the remaining 48% have not.
Smaller businesses frequently lack an effective ETP, and many factories discharge
water directly. However, the factories that have ETPs do not operate continuously,
and many of the ETPs—which are only used for display—are also inoperable. Our

31

future goal is to identify the industry sectors that improperly maintain ETP and
discharge into river water and to mark those industries differently on the map so
that the authority can get the information and take action.

5.2 Wireless Charging Station
The flight time of a UAV is limited due to the high current requirements of the
motors. The energy required to operate a UAV is stored in a battery, often large
and heavy. One UAV can only fly for a few minutes, even in a controlled environ-
ment with a fully charged battery. The flying time decreases even more if it carries
additional weight, such as a camera or other gadget. In the future, we want to build
a wireless charging station that doesn’t require human involvement.

As we know, the energy delivery from a power source to an electrical load is wire-
less power transfer. Wireless transmission systems usually require two coils: one
for transmission and one for reception—An electromagnetic loop antenna produces
an oscillating magnetic field (copper coil). In this procedure, a specially designed
transmitter transforms DC from a power supply to AC. The AC powered the trans-
mitter’s coil, which generates the magnetic field. When the receiving coil is near a
magnetic field, the magnetic field can induce AC in the coil. The loop of the coil is
the strength of magnetic field. Many loops in the coil can help build a strong field.
A secondary wire inverts when it is introduced into a magnetic field. Because the
poles’ permanent magnet only works with AC, a DC input must be converted to an
AC output before the coil at the transmitter can be energized. We’ll focus on an
inverter that will convert the DC input to the AC output. To minimize loss and
increase output, we’ll concentrate on the inverter.
When a drone’s battery will reach less than 80% charged, it will seek a nearby charg-
ing station. After locating a nearby charging station, it will automatically fly to the
station and land there using our unique precision landing algorithm. It will wait in
the waiting station until the station becomes available if it is not free. Otherwise,
it will land on the charging pad and begin charging. It will execute the previous
command after completing the charge. If a new drone comes during this period,
it will wait in the waiting station. We will utilize a scheduling technique for this.
Additionally, We will create a priority queue based on the urgency of the drone’s
mission, which will assist in charging the drone on time.
For future work, we will work on algorithms and essential simulations for a success-
ful wireless charging station.

32

Figure 5.2: ROS Pipeline

33

Chapter 6

Conclusion

6.1 Conclusion
The future holds a lot of opportunities for autonomous UAVs. But it is also im-
portant to make sure that UAVs have the power to meet the rising demand for the
applications of a swarm of drones. Keeping this in mind, we are working on this
system for land drones autonomously with the precision of the wireless charging sta-
tion, so that they can recharge and get back to the task that was assigned to them.
The UAV Air Traffic Systems will allow us to increase the efficiency of a drone.
We have proposed a dynamic precision landing algorithm. Along with making our
environment safer we are working on detecting trash in rivers as well as monitoring
effluent treatment plants.

34

Bibliography

[1] S. Alam, H. A. Abbass, and M. Barlow, “ATOMS: Air traffic operations
and management simulator,” IEEE Trans. Intell. Transp. Syst., vol. 9, no. 2,
pp. 209–225, Jun. 2008.

[2] C. H. Choi, H. J. Jang, S. G. Lim, H. C. Lim, S. H. Cho, and I. Gaponov,
“Automatic wireless drone charging station creating essential environment for
continuous drone operation,” in 2016 International Conference on Control,
Automation and Information Sciences (ICCAIS), Ansan, South Korea: IEEE,
Oct. 2016.

[3] M. A. Yucel and R. Y. Turan, “Areal change detection and 3D modeling of
mine lakes using high-resolution unmanned aerial vehicle images,” en, Arab.
J. Sci. Eng., vol. 41, no. 12, pp. 4867–4878, Dec. 2016.

[4] H. Zhu, S. Yuan, and Q. Shen, “Vision/GPS-based docking control for the
UAV autonomous aerial refueling,” in 2016 IEEE Chinese Guidance, Naviga-
tion and Control Conference (CGNCC), Nanjing, China: IEEE, Aug. 2016.

[5] and Single European Sky ATMResearch 3 Joint Undertaking, European drones
outlook study : unlocking the value for Europe. Publications Office, 2017. doi:
doi/10.2829/085259.

[6] Z. Bao, J. Sha, X. Li, T. Hanchiso, and E. Shifaw, “Monitoring of beach
litter by automatic interpretation of unmanned aerial vehicle images using the
segmentation threshold method,” en, Mar. Pollut. Bull., vol. 137, pp. 388–398,
Dec. 2018.

[7] A. M. Jawad, H. M. Jawad, R. Nordin, S. K. Gharghan, N. F. Abdullah, and
M. J. Abu-Alshaeer, “Wireless power transfer with magnetic resonator cou-
pling and sleep/active strategy for a drone charging station in smart agricul-
ture,” IEEE Access, vol. 7, pp. 139 839–139 851, 2019. doi: 10.1109/ACCESS.
2019.2943120.

[8] P. Koutalakis, O. Tzoraki, and G. Zaimes, “UAVs for hydrologic scopes: Ap-
plication of a low-cost UAV to estimate surface water velocity by using three
different image-based methods,” en, Drones, vol. 3, no. 1, p. 14, Jan. 2019.

[9] A. Al-Mousa, B. H. Sababha, N. Al-Madi, A. Barghouthi, and R. Younisse,
“UTSim: A framework and simulator for UAV air traffic integration, control,
and communication,” en, Int. J. Adv. Robot. Syst., vol. 16, no. 5, p. 172 988 141 987 093,
Sep. 2019.

35

https://doi.org/doi/10.2829/085259
https://doi.org/10.1109/ACCESS.2019.2943120
https://doi.org/10.1109/ACCESS.2019.2943120

[10] Z. Zhao, C. Luo, J. Zhao, Q. Qiu, M. C. Gursoy, C. Caicedo, and F. Basti, “A
simulation framework for fast design space exploration of unmanned air system
traffic management policies,” in 2019 Integrated Communications, Navigation
and Surveillance Conference (ICNS), Herndon, VA, USA: IEEE, Apr. 2019.

[11] N. Grigoropoulos and S. Lalis, “Simulation and digital twin support for man-
aged drone applications,” in 2020 IEEE/ACM 24th International Symposium
on Distributed Simulation and Real Time Applications (DS-RT), 2020, pp. 1–
8. doi: 10.1109/DS-RT50469.2020.9213676.

[12] S. Obayashi, Y. Kanekiyo, and T. Shijo, “UAV/drone fast wireless charging
FRP frustum port for 85-khz 50-V 10-A inductive power transfer,” in 2020
IEEE Wireless Power Transfer Conference (WPTC), Seoul, Korea (South):
IEEE, Nov. 2020.

[13] T. Zhou and C. Huang, “UAV automatic docking technology based on deep
learning,” in 2020 International Conference on Computing and Data Science
(CDS), Stanford, CA, USA: IEEE, Aug. 2020.

[14] A. Benjumea, I. Teeti, F. Cuzzolin, and A. Bradley, “YOLO-Z: Improving
small object detection in YOLOv5 for autonomous vehicles,” Dec. 2021. arXiv:
2112.11798 [cs.CV].

[15] B. Caruso, M. Fatakdawala, A. Patil, G. Chen, M. Wilde, ; P. Luong, F.
Gagnon, L.-N. Tran, and F. Labeau, “Deep reinforcement Learning-Based
resource allocation in cooperative UAV-Assisted wireless networks,” IEEE
Transactions on Wireless Communications, vol. 20, pp. 7610–7625, 2021.

[16] M. Kasper-Eulaers, N. Hahn, S. Berger, T. Sebulonsen, Ø. Myrland, and P. E.
Kummervold, “Short communication: Detecting heavy goods vehicles in rest
areas in winter conditions using YOLOv5,” en, Algorithms, vol. 14, no. 4,
p. 114, Mar. 2021.

[17] ——, “Short communication: Detecting heavy goods vehicles in rest areas in
winter conditions using YOLOv5,” en, Algorithms, vol. 14, no. 4, p. 114, Mar.
2021.

[18] P. Luong, F. Gagnon, L.-N. Tran, and F. Labeau, “Deep reinforcement learning-
based resource allocation in cooperative UAV-assisted wireless networks,” IEEE
Trans. Wirel. Commun., vol. 20, no. 11, pp. 7610–7625, Nov. 2021.

[19] Z. Lv, D. Chen, H. Feng, R. Lou, and H. Wang, “Beyond 5g for digital twins
of uavs,” Computer Networks, vol. 197, p. 108 366, 2021, issn: 1389-1286. doi:
https://doi.org/10.1016/j.comnet.2021.108366. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1389128621003534.

[20] M. Mohammadi, M. Rashidi, V. Mousavi, A. Karami, Y. Yu, and B. Samali,
“Quality evaluation of digital twins generated based on uav photogrammetry
and tls: Bridge case study,” Remote Sensing, vol. 13, no. 17, 2021, issn: 2072-
4292. doi: 10.3390/rs13173499. [Online]. Available: https://www.mdpi.com/
2072-4292/13/17/3499.

[21] N. Svahn and P. Bergstedt, “A comparison between remote and physically co-
located, plane and AR tag, as well as 2D and 3D supervision in a collaborative
AR-environment,” en, Ph.D. dissertation, 2021.

36

https://doi.org/10.1109/DS-RT50469.2020.9213676
https://arxiv.org/abs/2112.11798
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108366
https://www.sciencedirect.com/science/article/pii/S1389128621003534
https://www.sciencedirect.com/science/article/pii/S1389128621003534
https://doi.org/10.3390/rs13173499
https://www.mdpi.com/2072-4292/13/17/3499
https://www.mdpi.com/2072-4292/13/17/3499

[22] M. A. Isgró, M. D. Basallote, and L. Barbero, “Unmanned aerial system-based
multispectral water quality monitoring in the iberian pyrite belt (SW spain),”
en, Mine Water Environ., vol. 41, no. 1, pp. 30–41, Mar. 2022.

[23] W. Sun, N. Xu, L. Wang, H. Zhang, and Y. Zhang, “Dynamic digital twin
and federated learning with incentives for air-ground networks,” IEEE Trans-
actions on Network Science and Engineering, vol. 9, no. 1, pp. 321–333, 2022.
doi: 10.1109/TNSE.2020.3048137.

37

https://doi.org/10.1109/TNSE.2020.3048137

	Declaration
	Approval
	Advisors
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	Nomenclature
	Introduction
	Thoughts Behind This Research
	Research Objectives

	Related Work
	Vehicle Tracking
	Precision Landing
	Air Traffic Control System Simulator
	Water Trash Trap Detection
	Digital Twin
	Wireless Charging

	Methodology
	Calculations
	Weight
	Power

	3D CAD Design
	Hardware Architecture
	Power Distribution Board Design
	ROS Control Software Architecture
	Trajectory Projection

	Precision Landing
	Digital Twin & Air Traffic System

	Description of the Model and Data
	Data Acquisition and Calibration
	Water Trash Detection

	Plotting Data on Map
	Area Calculation for Trash Traps
	Image Stitching

	Evaluation
	Helipad Detection
	Water Trash Detection
	Landing & Digital Twin

	Future Goals
	ETP Monitoring
	Wireless Charging Station

	Conclusion
	Conclusion

	Bibliography

