
Comparative Analysis and Implementation of
AI Algorithms and NN Model in Process Scheduling Algorithm

by

Maharshi Niloy
19101117

Md. Moynul Asik Moni
19101189

Farah Jasmin Khan
19101239

Aquibul Haq Chowdhury
19101290

Md. Fahmid-Ul-Alam Juboraj
19101618

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
September 2022

© 2022. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Maharshi Niloy
19101117

Md. Moynul Asik Moni
19101189

Farah Jasmin Khan
19101239

Aquibul Haq Chowdhury
19101290

Md. Fahmid-Ul-Alam Juboraj
19101618

i

Approval
The thesis/project titled “Comparative Analysis and Implementation of AI Algo-
rithms and NN Model in Process Scheduling Algorithm” submitted by

1. Maharshi Niloy(19101117)

2. Md. Moynul Asik Moni(19101189)

3. Farah Jasmin Khan(19101239)

4. Aquibul Haq Chowdhury(19101290)

5. Md. Fahmid-Ul-Alam Juboraj(19101618)

Of Summer, 2022 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on September 20, 2022.

Examining Committee:

Supervisor:
(Member)

Amitabha Chakrabarty, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Moin Mostakim
Senior Lecturer

Department of Computer Science and Engineering
Brac University

ii

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

iii

Abstract
Process scheduling is an integral part of operating systems. The most widely used
scheduling algorithm in operating systems is round-robin (RR), but the average
waiting time in RR is often quite long. The purpose of this study is to propose
a new algorithm to minimize waiting time and process starvation by determining
the optimal time quantum by predicting CPU burst time. For burst time predic-
tion, we are using the machine learning algorithms decision tree (DT), k-nearest
neighbors (KNN), linear regression (LR) and Neural Network Model Multi-Layer
perceptron-MLP. Finally, the obtained accuracy for burst time prediction of DT
is 98.64%, KNN is 17.1%, LR is 97.96% and using MLP is 26.01%. Moreover,
for 10000 predicted(burst time) processes with the same configuration the aver-
age turnaround time (avg TT), the average wait time (avg WT) and the number
of context switches (CS) of the proposed algorithm are consecutively 40331930.48,
40312117.96 and 20002, whereas Traditional Round Robin (RR) has 87194390.98
(avg TT), 87174578.46 (avg WT) and 28964 (CS). Self-Adjustment Round Robin
(SARR) has 72398064.70 (avg TT), 72378252.18 (avg WT) and 39956 (CS). Modi-
fied Round Robin Algorithm (MRRA) has 84924105.36 (avg TT), 84904292.84 (avg
WT) and 5208 (CS) and Optimized Round Robin (ORR) has 78508779.73 (avg TT),
78488967.20 (avg WT) and 22470 (CS). Therefore, it is clear that the proposed algo-
rithm is almost 2 times faster than the other algorithm in terms of process scheduling
under a huge load of processes.

Keywords: Decision Tree (DT); KNN; Linear Regression (LR); Neural Network
(NN); MLP; Prediction; Burst Time; Average Turnaround Time (avg TT); Average
Waiting Time (avg WT); Context Switch (CS); Proposed Algorithm; Round Robin
(RR); Self-Adjustment Round Robin (SARR); Modified Round Robin Algorithm
(MRRA); Optimized Round Robin (ORR)

iv

Acknowledgement
Firstly, all praise to the Great Allah for whom our thesis have been completed with-
out any major interruption.
Secondly, to our supervisor Dr. Amitabha Chakrabarty and co-supervisor Mr. Moin
Mostakim sir for their kind support and advice in our work. They helped us when-
ever we needed help.
And finally to our parents without their throughout sup-port it may not be possible.
With their kind support and prayer we are now on the verge of our graduation.

v

Table of Contents

Declaration i

Approval ii

Abstract iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables ix

Nomenclature xi

1 Introduction 1
1.1 Research Problem . 2
1.2 Research Objectives . 2

2 Related Work 3

3 Methodology 12
3.1 Workflow . 12
3.2 Input Data . 13
3.3 Data Preprocessing . 14
3.4 Implementation . 16

3.4.1 Ideology . 16
3.4.2 Input Data Management . 16
3.4.3 Burst Time Prediction . 16
3.4.4 Comparative Analysis of Proposed Way and Other Existing

Scheduling Algorithms via Running on the Predicted Burst
Time . 17

4 Results and Analysis 21
4.1 Accuracy Analysis of Burst Time Prediction 21

4.1.1 Exponential Average . 21
4.1.2 Linear Regression Model . 21
4.1.3 K-Nearest Neighbour (KNN) 24
4.1.4 Neural Network (NN) . 26

vi

4.1.5 Decision Tree . 27
4.1.6 Choosing the Best ML/AI Model 29

4.2 Scheduling Efficiency Analysis of Proposed Algorithm with Others . . 30

5 Conclusion 35

Bibliography 39

vii

List of Figures

3.1 Workflow . 13
3.2 Heatmap . 14
3.3 Feature Importance Graph . 15

4.1 Linear Regression Flowchart . 22
4.2 Train Validation Accuracy and Loss of LR 23
4.3 Actual-Predicted Data Points of LR 23
4.5 Train Validation Accuracy and Loss of KNN 24
4.4 KNN Architecture Flowchart . 25
4.6 Actual-Predicted Data Points of KNN 26
4.7 Decision Tree Diagram [1] . 28
4.8 Train Validation Accuracy and Loss of DT 29
4.9 Actual-Predicted Data Points of DT 29
4.10 Score of Exponential Average, KNN, LR, DT, and NN. 30
4.11 Comparison of the average turnaround time 31
4.12 Comparison of the average waiting time 32
4.13 Comparison of number of context switches 32
4.14 Average Turnaround Time (Consecutive Test) 34
4.15 Average Waiting Time (Consecutive Test) 34

viii

List of Tables

2.1 Summary of Related Work . 8

3.1 Feature Importance Scores . 15

4.1 Score of Exponential Average, KNN, LR, DT, and NN. 30
4.2 Comparison of the CPU Scheduling Algorithms 31
4.3 Result of Consecutive Test . 33

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

α Alpha

Σ Summation

σ Sigmoid Function

AI Artificial Intelligence

avg TT Turnaround Time

avg WT Waiting Time

CPU Central Processing Unit

CS Context Switch

DT Decision Tree

GA Genetic Algorithm

I/O Input/Output

KNN K-Nearest Neighbour

LR Linear Regression

ML Machine Learning

MLP Multi-layer Perceptron

MRRA Modified Round-Robin Algorithm

ORR Optimized Round-Robin

OS Operating System

RR Round-Robin

SARR Self-Adjustment Round-Robin

SCM Supply Chain Management

SJF Shortest Job First

x

SMOreg Sequential Minimal Optimization

SRTF Shortest Remaining Time First

WEKA Waikato Environment for Knowledge Analysis

xi

Chapter 1

Introduction

In a modern multitasking operating system, efficiency is paramount. Therefore, a
good scheduling algorithm is necessary to maximize computing efficiency. These
algorithms can be judged on many criteria, such as CPU utilization, throughput,
turnaround time (TT), waiting time (WT),Context Switches (CS), response time,
etc. Two scheduling algorithms of interest are shortest-remaining-time-first (SRTF)
and round-robin (RR). In SRTF, each process is associated with its next CPU burst
time, and the process with the smallest next CPU burst is chosen for execution.
In RR, a small unit of time called the time quantum is used. The process at the
head of the ready queue is allotted at most of the time quantum for execution then
preempted and stored at the tail end of the ready queue. If the time quantum is
too small, there will be many context switches. On the other hand, if the time
quantum is too large, RR will devolve into a first-come-first-serve (FCFS) algorithm
[24]. Thus it is evident that both of the above-mentioned algorithms have some
shortcomings.
On separate note, we tried to improve the efficiency of the the processor based on
our proposed algorithm and made a comparative analysis with the different artificial
intelligence algorithms which includes Decision Tree (DT) [1] (previously performed
well for applications like: COVID-19 severity prediction [29], table-tennis tactical
decision making system [31]), K-nearest Neighbor (KNN) [3] (previously performed
well for applications like: biometric image databases [16], industrial fault detection
[26], and movie recommendation system [27]), Linear Regression (LR) [5] (previously
performed well for applications like: forecasting power load [7], predicting contact
temperature in high voltage switchgear [21]) and Multi Layer Perceptron (MLP) in
terms of burst time prediction. If it is possible to train the processor to identify
and predict the burst time accurately, it will be very much effective to calculate the
time quantum more efficiently. So the comparison was done with different algorithms
like self-adjustment round-robin (SARR), modified round-robin algorithm (MRRA),
and optimized round-robin (ORR) after predicting the burst time with different
algorithms and the same was done with our proposed algorithm where the time
quantum was made dynamic. The result shows that our algorithm and the analytical
process gives complete upper hand in decreasing the TT, WT, and reducing the
context switches comparatively,thus making the processors and CPU scheduling
algorithms efficient and optimized.Moreover, the machine learning models like DT
[1] is a very useful tool in classification. KNN [3] is a widely used ML tool. Another
powerful tool in ML is LR [5]. Thus, in this paper, we propose a new process

1

scheduling algorithm and use ML and neural network (NN) models like DT, KNN,
MLP and LR to determine the optimal time quantum dynamically.

1.1 Research Problem
The process scheduling algorithm is one of the most vital aspects of ensuring over-
all efficiency. With the advent of the operating systems and the processor, there
have been a lot of algorithms and processor level modifications to ensure the maxi-
mum utilization of the processor and operating system with minimum resource cost.
Still, at present most of the algorithms we formulate or micro-level modifications are
based on educated assumptions, and those are not exactly correct, because of dif-
ferent processes in different hardware systems and in different computers like cloud,
grid [15], high performance, macro or micro along with different operating systems
like mac, windows, Linux [6] or different subsystems the process scheduling is very
much unpredictable, dynamic and nearly impossible. As a result, it gives rise to
different problems like starvation of process, context overhead switching, delay of
processor, deadlock, and process and resource allocation, aging, inefficient usage of
CPU resources, wastage of internal memory, job pool queuing, etc. Also, another
problem is the lack of analytical data based on different CPU scheduling algorithms
and parameters like burst time, turnaround time, waiting time, and the estimated
and most optimized time slice in the round-robin algorithm. This problem also
raises many problems in the feedback queue, because the feedback received by the
system is merely based on some presumptions data. Another problem is that the
operating system end is not intelligent enough to make the decision or the CPU
itself is unaware of the CPU and scheduling parameters. So all these optimizations,
maximization, and minimization problems can be solved if the CPU can be made
aware of the data or if we can implement our algorithm with a predictive approach
to make intelligent decisions.

1.2 Research Objectives
1. To find out the best ML/NN approach for CPU burst prediction.

2. To propose a new CPU scheduling algorithm.

3. To compare the performance between the proposed algorithm and the existing
algorithms based on predicted CPU burst time.

2

Chapter 2

Related Work

Different types of estimation algorithms like exponential average do not always pro-
vide accurate results, therefore in the paper [15], the authors proposed an approach
where they have used some Machine Learning (ML) methods to estimate the CPU
burst time for the process. They traced the most important attributes that are
highly correlated with the CPU burst time via some feature selection techniques.
They applied various types of ML approaches (Decision Tree-DT, K Nearest Neigh-
bor - KNN, Support Vector Machine - SVM, ANN) on a grid computing dataset.
The authors found a rigid linear relation between the CPU burst time and the se-
lected attributes of a process after a series of experiments. Moreover, the authors had
shown that KNN outperformed all other methods and approaches. Furthermore, the
paper explicitly pointed out that the overall performance of the proposed methods
had improved in terms of space and time complexity along with the estimation of
CPU burst time, after the refinement of the data via feature selection methodologies.
In this paper, the authors mainly focused on four ML-based methodologies (MLP,
SMOReg, KNN, and DT). They applied these techniques in six consecutive steps (
preparing data, filtering, generating model, prediction, evaluation, and deployment)
and finally justified the efficiency by proposing the implementation of SRTF and
SJF.
The authors showed in this paper [2] the implementation of the learning mechanism
for the handling of the scheduling problem by the processors in a multiprocessor envi-
ronment. They suggested intelligent heuristics be learned by the intelligent machines
learned on their own in different cooperative processes. The authors provided an
architecture called expert scheduler on which they recommended knowledge-based
along with system inference, learning subsystem, monitor, and finally a scheduler.
For the whole process, the authors considered arrival time, time quantum, and set
of predecessor processors. Also, they have shown the credit assignment for different
heuristic models. This shows the probabilistic feature that is the architecture which
is possible to avoid bottlenecks by correcting those and making computations along
with the parallelism.
The authors mainly used Fuzzy inference on the user model [8]. The proposed model
was mainly composed of two components process log and user feedback the process
log is mainly used as data for the classification of the processes and user feedback
for the user modeling, on the other hand, it has already been shown that both
of the decision parameters from both of the logs are sent to the process priority
and the priority was calculated based on the fuzzy inference. The experimentation

3

was done on the grid on the Linux kernel 2.4.25 and they concluded that based
on the multiple processes the system can classify the processes based on the batch,
interactive and real-time processes, and based on the type it can recommend the
adaptive process and lastly it can provide scheduling algorithm without resetting
the operating system and they also proved their model can provide the flexibility of
supporting scheduling algorithms to different users.
In the paper [30] the authors claimed a novel approach in which they used some
Machine Learning methodologies dynamically to find out the most efficient CPU
scheduling algorithm. Through experimentation, they showed that the overall per-
formance of the Decision Tree in terms of accuracy and computational time was
better than the other ML techniques. But in the Tarek et al. [15] claimed that
KNN gives better and more accurate results, The authors in this paper showed
that DT gives high accuracy and less execution time whereas the algorithms like
KNN give time-consuming high distance results and naive Bayesian data gives the
degraded performance due to highly correlated data based on conditional indepen-
dence. Their main goal for the research was based on combining the strategies of
existing schemes and changing those dynamically based on the arrival time. The
constraints that were set high accuracy and the least response time throughout the
whole process, though the literature doesn’t show predefined data the authors gen-
erated the data based on the predefined rules from solving the Gantt chart and use
machine learning as predict function on the whole dataset.
In this paper [19] the authors analyzed two important and vital algorithms: The
Bayesian decision tree and the modified design scheduling process. They also high-
lighted the module isolating the kernel modules from the isolated wrappers. Also,
they proposed the self-selecting and self-detecting process. Unlike the fuzzy infer-
ence, this paper mainly focused on the uniprocessor system and used the Bayesian
decision tree as the classifier in two of the main process, the first one mainly com-
prised of the selection of the static and dynamic properties of the whole system like
the process in the queue and secondly the process also comprised of the comparison
of the previously executed process. On the other hand, the authors also showed
the way to classify and make decisions based on useful and not useful processes.
Though the author mainly focused on the low-level assembly environment but men-
tioned that Linux and UNIX have editable kernels, their model can be implemented
in those two kernels as well.
Paper [23] has proposed a median-based modified Round Robin (RR) CPU schedul-
ing algorithm that specifies the time quantum dynamically in each round depending
on the process bursts time available in the ready queue. Here, they have worked with
five processes with their proposed algorithm and compared the resulting parame-
ters like the required number of context switching, average waiting time, average
turnaround time, etc. to the existing available algorithms. They mostly focused
on dynamic allocation of the time slice which is called time quantum for RR. Their
algorithm illustrates a slightly modified RR algorithm where they approximate this
time quantum in each round depending on the process available in the ready queue
and their corresponding burst time. In the end, their algorithm reduces the number
of context switches and both the turnaround time and waiting time compared to
other existing algorithms (e.g. primitive RR, DQRRR, IRRVQ, SARR, etc.).
In this paper [28], the proposed work upholds a dynamic modified Round Robin
(RR) algorithm based on K-Means clustering to consolidate the advent of favor

4

short processes and low scheduling overhead to minimize the average waiting time,
turnaround time, and the number of context switching. They first constructed some
clusters depending on the process parameters using the K-Means algorithm. A
method named Silhouette, they have used here for the evaluation of the processing
cluster where it finds out how effectively each data point lies within its cluster. A
high average silhouette width indicates a good clustering. Then they have approxi-
mated a time slice for RR which directly contributes to the minimization of average
waiting time and average turnaround time. Using this pre-calculated time quantum
value they have again adjusted the time slice value depending on residual burst time.
Surprisingly the proposed approach performs better than other algorithms proposed
before in terms of efficient CPU scheduling.
In [20] the author proposed an in-depth survey of some Machine Learning based
algorithms for improving the process scheduling algorithm. Here they sequentially
reviewed various proposed algorithms. Firstly the authors featured a Machine Learn-
ing (ML) based approach referring to the paper [6] for making the CPU scheduling
more efficient. Where the main paper [6] was mainly focused on the prediction of
the number of required resources of the processes before their execution to provide
the CPU with an initial guess about the incoming processes. Here “interactive”
and “no interactive” were specified for the categories of the process and the Linux
benchmark had used for evaluation purposes. The total execution time of the in-
coming processes was predicted using a total of 24 attributes by ascertaining the
values for the various chosen attributes of a particular process by making required
system calls. They first collected the data and put them under 20 classes to be used
for machine learning in WEKA by using the “Trees, Lazy, Rules” classifier. The
prediction part was accomplished using Decision Trees, K-NN and Decision Tables.
For finding the best subset of the attributes for better prediction, the authors used
an attribute evaluator which assigned a weight to each subset and search method
(i.e. Genetic Search, Best First Search, and Rank Search), which defined the kind
of search that would be performed. The “input size” was predicted as the best at-
tribute over others and “page reclaims” was predicted as the second best. In the
end, these results were used to improve PBS scheduling algorithms.
Secondly, the paper [20] reviewed a similar sort of Machine learning approach [11]
which imposed a data mining technique on the data present in the kernel about each
process for the classification of similar type of behavior. Here to create a training
base the attributes of the processes present in the Linux context were extracted. Us-
ing the unsupervised learning algorithm the groups were made and then manually
analyzed. And rest of the steps were quite similar to the previous paper [6], predic-
tion of the best attribute and then using it in the Process Scheduling algorithm.
Then the author of the paper [20] illustrated [12] where the authors proposed a
new scheduling technique named “Semantically Cognitive Scheduling” where the
scheduler used a cognitive approach for process scheduling. It mainly depended on
the utility value of the process for their classification and the rest of the evaluation
part was quite similar to the previous. In this manner paper [20] illustrated a few
more proposed ML algorithms.
The paper has proposed [9] that the main goal was to get the minimum time quantum
to get a minimum turnaround time in this paper. A multilayered perception NN
with a hidden layer is used, where a hidden layer activation function is taken and an
activation function is taken from the output layer of the neural networking approach,

5

and the scaled conjugate gradient method is used for the weights of the NN. Here,
different service times are taken as input from the ready queue and their avg time has
been calculated to get the minimum time quantum. The times have been divided
by their maximum service time to get a binary range. And the estimated ideal
quantum length and the calculated quantum give us the error function. So, from this
experiment instead of a before-thought time quantum, a minimum time quantum is
derived from a set of service times.
In the research papers [10][14], a genetic algorithm approach has been used to get
a minimum average waiting time for all the time scheduling algorithms FCFS, SJF,
and RR. In the genetic algorithm, initially, a random population is initialized, then
a fitness evaluation is done, after that from them through roulette wheel selection
individuals are selected and crossover & inversion is done. So, in program scheduling,
random jobs are taken and from their permuted pool random jobs are selected. So,
after the mutation, if the crossover isn’t valid then again the selection process is
performed so that the jobs don’t repeat in the scheduling process. After the selection
process, a schedule with a minimum average waiting time is found.
The author in [4], has used the Genetic Algorithm (GA) but with a two-dimensional
matrix. Here, the reproduction is used as an operator. Then, a biased roulette
wheel is used in the fitness value. A crossover operator mates two randomly selected
offspring and does the crossover in the allocation matrix and this does a vertical split
of the offspring. After that, if any invalid allocation matrices have been presented
then we repair that particular matrix. Then, they used a mutation operator which
randomly selects positions of the matrices and compliments their values. After this
step, we again have to see if the allocation matrix is valid or not. This replaces the
worst-fit individual with the best-fit individual.
The paper has presented [17], a comparison between traditional RR, Improved RR,
and a new type of RR named Enhanced RR is given. In the Improved RR, if the
burst time of the running job is less than 1 time quantum then the CPU is allocated
with the same process again. In the Enhanced RR, if the time quantum of the
running process is <= 1 then it comes to the same process again and if the time
quantum is > 1 then it is submitted to the end of the ready queue tail. So, for these
3 algorithms, 3 types of scenarios are taken where Burst times are taken at random,
increasing and decreasing in order. After the experiment, we can see that Enhanced
RR gives better output than the traditional RR & Improved RR.
The paper [25] has used Neural Networking on single and multiprocessor systems.
For both cases, NN outperforms all the other algorithms like RNN & fixed priority.
Both systems have been set to certain constraints. In this scenario, Hopfield-type
networks which are a type of recurrent neural network are used. Hard real-time
scheduling is used where the system mimics human memory. Also, the nodes are
used like neurons, where the neurons have minimum binary storage and regardless
of the input they converge back. But many times this system is incorrect. To solve
this problem, a solution has been suggested where binary feedback will be given,
whether the system is correct or not. And the system has to be rigorously trained.
This is called an SCM method without this whole NN system would be pointless.
In the research paper [18] a new algorithm named Improved RR, which is the com-
bination of RR, SJF, and priority. Here, the jobs have a priority and the lowest
priority jobs have smaller time slices, medium priority has a bigger time slice than
low priority jobs and higher priority has the biggest time slice. Through compari-

6

son, it is said that the average waiting time, turnaround time & context switches of
improved RR are less than the traditional RR.
The research work has proposed [13] a new multi-level scheduling algorithm using
fuzzy inference. In the fuzzy inference system, the if-then form is used where binary
values 0/1 are taken according to the comparison. Partial Truths are taken in a
graph, where they will point to a binary result according to the degree of the truth.
Here, the fuzzy system is designed to change the values of the CPU time dynamically.
The CPU times are given in different queues, cycle times are given by the users. In
this technique, the ready queue is divided into two subparts. In the first part,
I/O bounds are taken and in the second part, the CPU-bound processes are taken.
Here the 1st process gets the priority during all the processes. The new proposed
algorithm improved response time and starvation problems with small increments
in waiting time which can be avoided as the average reduced waiting time is less
than the increased waiting time.
In the paper [22], a new algorithm named Modified Median round Robin algorithm
(MMRRA) where the time quantum is calculated through the root of the multi-
plication of the median and highest burst time. This algorithm is tested with the
SJF algorithm where processes will go to the second round if the first round time
quantum is calculated and the outburst time becomes greater than twenty percent
of the total burst time; if not, the process will be completed by the CPU. When
compared with other algorithms it has provided better results.
In this paper [33], a new type of algorithm MARR (Median Average Round Robin)
is proposed where the time quantum is dynamically changed. Here, the burst time
of the new ready queue time quantum is calculated. The time quantum is set out
to be the running burst time if it is empty, but if the time quantum isn’t empty the
average of the burst time is taken. It is seen that a new MARR(Median Average
Round Robin) is better than other algorithms like RR, AMRR, AN, MMRRA in
ATAT (Average Turnaround Time) & AWT (Average waiting Time) but the NCS
(number of context switches) is the same. It would have been more efficient if the
context switch had been reduced.
In the paper [34], an algorithm named a new novel intelligent CPU Scheduling RR
algorithm is proposed where based on a standard deviation of jobs the processes
are executed in a single or multiple sub-queue. If the SD (Standard Deviation) is
larger than the optimal value of the threshold it will be copied to the SRQ(Single
ready queue) otherwise the single sub-ready queue. IQ (Intelligent Quantum) &
DIQ (Dynamic Intelligent Quantum) is calculated with the usage of SRQ and the
help of mean, median & Standard deviation. IQ is executed by all the processes of
SRQ. DIQ will be executed, if the initial SRQ burst time process is less than equal
to DIQ’s SRQ value. Other SRQ’s will be executed if the small time quantum is 1
until the beginning SRQ is empty. If the first SRQ is empty, then the next SRQ
will be counted. In this algorithm, ATA, AWT, NCS are better performing than the
other algorithms like ADDRR, CRRTQ, MRRA, DMRR, EDRR, MMRRA, etc.
In the paper [32], the Highest Response Ratio Next algorithm (HRRN) is a new
algorithm where according to approximate run time, waiting time for each job is
prioritized. The longer a job is starved the higher the priority it gets. Longer
jobs with shorter life spans are ignored with the starved jobs. According to the
largest response ratio, the CPU is given the work of a process. Priority is set by the
summation of waiting & estimated time runtime divided by the estimated runtime.

7

It was seen through tests that the AWT of HRRN was less than the traditional RR
due to HRRN’s lack of time quantum usage.
From the above discussion, it is observed that most of the research implements var-
ious types of algorithms. These models try to propose an optimum solution by im-
plementing these techniques directed upon the burst time, turnaround time, waiting
time, context switching, and CPU overhead. For example, Genetic algorithm, Fuzzy
inference, and Neural Network approaches have been taken to make the system fur-
ther efficient regarding their scheduling. All of the research has shown compelling
outcomes and also bestowed us with increased methodical solutions. Whilst there
have been thousands of works appraising this topic, there are still a few places for
improvement where the scheduling can be considerably more efficient.

Table 2.1: Summary of Related Work

References Task Model/Algorithm Summary
[15] Find the most impor-

tant attributes of the
process and estimate
the CPU-burst

Support Vector
Machine (SVM), K-
Nearest Neighbours
(K-NN), Artificial
Neural Networks
(ANN), Decision
Trees (DT)

The authors pro-
posed a Machine
Learning (ML)
based approach to
estimate the length
of the CPU-bursts
for processes.

[2] Suggesting the
heuristics by ma-
chines in cooperative
environment, im-
plement expert
scheduler

Credit assignment
heuristic models
along with expert
scheduler

Implementation of
the learning mech-
anism about the
handling of the
scheduling problem
by the processors
in a multiprocessor
environment

[8] Classification of the
processes and user
feedback for the user
modelling

Fuzzy Inference The system can
classify the processes
based on the batch,
interactive, and
real-time processes;
based on the type it
can recommend the
adaptive process.

[30] Comparison of the
dynamic machine
learning models like
KNN, DT

Dynamic machine
learning algorithms

The decision tree
gives better results
in terms of accuracy
and computational
time

Continued on next page

8

Table 2.1: Summary of Related Work (Continued)

[19] Analysis of Bayesian
Decision Tree and
modified scheduling
algorithm

Bayesian Decision
Tree

Proposal of the self-
selecting and self-
detecting process.

[23] Proposal of median-
based Round Robin
(RR) CPU schedul-
ing algorithm

Modified Round
Robin with dynamic
time quantum

Approximating the
time quantum in
each round depend-
ing on the process
available in the ready
queue and their cor-
responding burst
time and reduce the
CPU parameters

[28] Proposal of dynamic
modified Round
Robin

K-Means clustering Consolidate the
advent of favour
short processes and
low scheduling over-
head in order to
minimize the aver-
age waiting time,
turnaround time,
and the number of
context switching by
K-Means

[20] Survey of ML-based
on process schedul-
ing algorithms

Different scheduling
based ML algorithm

Comparison of differ-
ent ML algorithms

[6] Prediction of the
number of required
resources of the pro-
cesses before their
execution

Categorization based
on interactive and
non-interactive pro-
cesses

Improving the result
of the PBS schedul-
ing algorithm

[11] Imposition of data
mining technique in
kernel data

Unsupervised learn-
ing algorithm

Predicting the best
attributes and im-
proving those

[12] Proposing Seman-
tically Cognitive
Scheduling algo-
rithm

Cognitive process
scheduling approach

Showed the depen-
dency on the util-
ity value of the pro-
cess for their classifi-
cation.

Continued on next page

9

Table 2.1: Summary of Related Work (Continued)

[9] Get the minimum
time quantum

Multilayered percep-
tron NN with a hid-
den layer

Instead of a before
thought time quan-
tum, a minimum
time quantum is
derived from a set of
service times.

[10] Implementing a
genetic algorithm
approach to get the
minimum average
waiting time

Genetic algorithm A scheduling algo-
rithm with minimum
average waiting time
was identified.

[4] Implementing a Ge-
netic algorithm with
a two-dimensional
matrix for process
scheduling algo-
rithms

GA with two-
dimensional matrix

The reproduction
was used as an
operator

[17] Comparison between
traditional RR and
enhanced RR

Improved and en-
hanced RR

Enhanced RR gives
better output than
the traditional RR &
Improved RR.

[25] Implementation of
Neural Networking
on single and multi-
processor systems

RNN, fixed-priority
scheduling algorithm

A solution has been
suggested where bi-
nary feedback will be
given, whether the
system is correct or
not. And the system
has to be rigorously
trained which is the
SCM method.

[18] Implementation of
Improved RR

RR+SJF along with
priority

Average waiting
time, turnaround
time & context
switches of improved
RR are less than the
traditional RR.

Continued on next page

10

Table 2.1: Summary of Related Work (Continued)

[13] Implementation of
a new multi-level
scheduling algorithm
using fuzzy inference

Fuzzy inference Proposed algorithm
improved response
time, the starvation
problem with a small
increment in waiting
time which can be
avoided as average
reduced waiting
time is less than the
increased waiting
time.

[22] Efficient Process
Scheduling

Modified Median
round Robin algo-
rithm (MMRRA)

It is a modified
RR where time
quantum calculates
through the root of
the multiplication
of the median and
highest burst time
and compared with
other algorithms like
SJF.

[33] Dynamic Time
Quantum

MARR (Median Av-
erage Round Robin)

It dynamically calcu-
lates time quantum
and is compared
with RR, AMRR,
AN, MMRRA by
measuring avg TT,
avg WT, and num-
ber of CS where
it performs better
except number of CS
is same.

[34] Efficient Process
Scheduling

A novel intelligent
CPU Scheduling RR
algorithm

It is based on a
standard deviation of
jobs the processes are
executed in a sin-
gle or multiple sub-
queue.

[32] Approximation of
run time

Highest Response
Ratio Next algo-
rithm (HRRN)

It is a new algo-
rithm where accord-
ing to approximate
run time, waiting
time for each job is
prioritized.

11

Chapter 3

Methodology

3.1 Workflow
The purpose of the proposed algorithm is to minimize the starvation of processes
for an extended period. We are going to do that by predicting the burst/run time
of the processes with ML models, MLP, and exponential average. After predicting
the burst/run time, we calculate the time quantum. The scheduling algorithm is
going to schedule the processes with the calculated time quantum. The following
flowchart shows the workflow of our model.
In this paper, we will use a Decision Tree, K Nearest Neighbor, and linear regression
as our ML models and Multilayer Perceptron as a Neural Network model to predict
the burst/run time from the collected dataset. There are a few stages to complete
the training of the model:

1. Input Data Preprocessing: In this stage, the dataset is cleaned and formatted
in such a way that makes the models learn and generalize the data better.

2. Processing: After splitting the dataset into training and testing, the training
data is used to train the models.

3. Prediction: The testing data is used to make predictions and find the accuracy.

12

Figure 3.1: Workflow

3.2 Input Data
The input data was collected from the GWA-T-4 AuverGrid dataset. AuverGrid is a
production grid platform where there are five clusters geographically located in the
AuverGrid region of France. Each cluster has dual 3GHz Pentium-IV Xenons nodes
running Scientific Linux. The total number of CPUs is 475 and the number of users
is 405. Moreover, the number of jobs in the dataset is traced to be 404176. This
dataset and its detailed analysis can be found at GWA-T-4 AuverGrid (tudelft.nl).
The dimension of the dataset is 404176x29. We are going to train and test our model
with 347611 rows. In this dataset, we take the ‘RunTime’ column as the target value

13

as we are predicting the burst/run time of jobs. And all the other columns as feature
values.

3.3 Data Preprocessing
Initially, the raw dataset contains 29 columns of which 11 columns contain null val-
ues. We drop all these columns: ‘JobStructure’, ‘JobStructureParams’, ‘UsedNet-
work’, ‘UsedLocalDiskSpace’, ‘UsedResources’, ‘ReqPlatform’, ‘ReqNetwork’, ‘Re-
qLocalDiskSpace’, ‘ReqResources’, ‘VOID’, ‘ProjectID’ containing the null values.
In the dataset, the null values are represented as -1. Moreover, there is one column
called ‘ReqNProcs’ which has one unique value. So, this column would not help in
the learning process. So, we discard this column.
Since null values were found in some rows of the ‘ReqMemory’ column we drop all
those rows and keep only rows only with real values.
Furthermore, machine learning models can not work with string values. So, any
string value is to be removed or changed. In the AuverGrid dataset, there were cate-
gorical string values in the following columns: ‘QueueId’, ‘GroupID’, ‘ExecutableID’,
‘OrigSiteID’, ‘LastRunSiteID’, ‘UserID’ which were encoded with numeric values to
avoid disruption in learning. The encoding was done by ranking the unique values
by their appearance order in the dataset. The columns names were changed to
‘QueueNo’, ‘GroupNo’, ‘ExecutableNo’, ‘OrigSiteNo’, ‘LastRunSiteNo’, ‘UserNo’.
Also, ‘OrigSiteNo’, ‘LastRunSiteNo’ are fully correlated with each other. So, it was
redundant to keep both columns. Therefore, to avoid complexity we removed the
‘LastRunSiteID’ column. Similarly, ‘JobID’ was dropped as ‘JobID’ and ‘Submit-
Time’ columns are totally correlated.

Figure 3.2: Heatmap

Again, we start to figure out which features are more significant in predicting the
burst time among all the available features by feature importance measurement.

14

We find the score for each feature using the linear regression model. The model is
trained and tested with each feature to find scores for each corresponding feature.
We only keep features whose score is larger than 0.1 and drop all the other columns.

UserNo 0.015196729510913443
LastRunSiteNo 0.5329341568710566
OrigSiteNo 0.5329341568710566
ExecutableNo 0.05874631582963863
GroupNo 0.005515194804284196
QueueNo 0.002129171205123015
PartitionID 0.5455940117741753
Status 0.872746079265907
ReqMemory 0.05597046566995223
ReqTime 2.5662661960198285
ReqNProcs 6.16116002882805e-05
Used Memory 14.046796027826481
AverageCPUTimeUsed 73.58383266335557
NProcs 6.16116002882805e-05
WaitTime 0.9589562873902668
SubmitTime 1.3120721319386353
JobID 1.3977326446768967

Table 3.1: Feature Importance Scores

Figure 3.3: Feature Importance Graph

Finally, the resulting dataset had a dimension of 347611x9 where 8 columns were
picked as attributes, and ‘RunTime’ was selected as the target column.

15

3.4 Implementation
This segment narrates the implementation and result of the proposed scheduling
algorithm and the chosen ML and AL models for this work. The whole coding, result
analysis and visualization-related workings for this paper were done with Jupyter
Notebook (for efficient use of the local resources) although for some cases google
collab was also used. The system that is used for this work, has the configuration
- processor: AMD Ryzen 7 5800X, ram: 64 GB, GPU: Nvidia GeForce RTX 3060
and operating system: Windows 10. Sometimes a few handwritten calculations
were also performed for the manual validation of the proposed algorithm in case of
memory and time complexity. The main implementation part of this work is mainly
divided into four segments. These are input data preprocessing, prediction of the
burst time, choosing the best model, and running the proposed and other existing
algorithms on predicted burst time. And the result segment is explicitly focused
on comparison and visualization of the outcome and efficiency of the proposed way
with some existing and previously proposed algorithms [Traditional Round Robin
(RR), Self-Adjustment Round Robin (SARR), Modified Round Robin Algorithm
(MRRA) and Optimized Round Robin (ORR)].

3.4.1 Ideology
Most of the process scheduling approaches predict the approximate burst time for
a process using the exponential average technique. But in this work, the prediction
of the burst time for the proposed algorithm is accomplished via some ML and AI
models (KNN, Linear Regression, Decision Tree, etc.). Since it is mostly dependent
on Machine Learning and Artificial Intelligence, all of the implementations were
done with python 3 on Jupyter Notebook via creating some cells of code for each
segment. For instance, cell of code for necessary library importation, cell of code
for dataset connection, cell of code for data preprocessing, cell of code for dataset
splitting, cell of code for ML, AI model and proposed algorithm, cell of code for
outcome visualization.

3.4.2 Input Data Management
The data preprocessing segment of this paper clearly describes the applied data pre-
processing techniques for this work in the previous section. For instance, dropping
unnecessary data fields, handling null values, finding correlation via the visualization
of heat maps, etc.

3.4.3 Burst Time Prediction
Different models of ML and NN work in different fashion for the prediction of the
data. For getting appropriate predictions for this work primarily four models and
a traditional prediction approach (exponential average) were tested. These are the
Linear Regression model (LR), k-nearest neighbor classification model (KNN), De-
cision Tree model (DT) and Neural Network (NN)[multilayer perceptron-MLP]. For
the best fitting of the dataset in these models, the preprocessed dataset is split into
70% training data and 30% testing data. The models have shown different types of
behavior in terms of training-validation accuracy and loss and the actual score.

16

3.4.4 Comparative Analysis of Proposed Way and Other Ex-
isting Scheduling Algorithms via Running on the Pre-
dicted Burst Time

At this point, the predicted burst times go to the proposed algorithm as well as to
other existing and previously proposed algorithms for the execution to determine
the 3 comparison parameters; Average Turnaround Time (avg TT) and Average
Waiting Time (avg WT) and Context Switch (CS). Turnaround time is the time that
is needed to complete the execution of a process and waiting time is the time that
is needed for a process to wait to accomplish the whole of its execution. A context
switch is a number that shows how many times the CPU is given to the processes
throughout the operation. On the basis of these 3 parameters, the efficiency of
the proposed way has been estimated. Algorithm 3.1 shows the pseudo-code of the
proposed way.
The proposed way works in the below manners:

1. Add incoming process p with associated process_id in process_list

2. Sort the process according to ascending order of the remaining burst time
[Sort(process_list)]

3. Add priority process in front of the process_list with process id

4. Calculation of the time quantum:
time_quantum = abs (p r o c e s s _ l i s t . va lu e s () [−1] −

p r o c e s s _ l i s t . va l u e s () [0])
i f time_quantum == 0 and f i r s t round :

time_quantum = p r o c e s s _ l i s t . v a lu e s () [−1]
i f time_quantum == 0 :

time_quantum = time_quantum_previous_round

5. Execute process according to time quantum

6. If the process list is empty go to step 7 else go to step 1.

7. End work

The predicted burst times from the decision tree model along with their process ids
and priorities go as input to the proposed way as well as in Traditional Round Robin
(RR), Self-Adjustment Round Robin (SARR), Modified Round Robin Algorithm
(MRRA) and Optimized Round Robin (ORR). And from this section 3 parameters,
average turnaround time (avg TT) and average waiting time (avg WT) and the
number of the context switch (CS) are deduced for the comparison.
The Existing Models are previously proposed by:

1. Traditional Round Robin [Existing]

2. Modified Round Robin Algorithm (MRRA) (Pradhan and Ray, 2016)

3. Self-Adjustment Round Robin (SARR) (Matarneh and Rami, 2009)

4. Optimized Round Robin (ORR) (Biswas and Saha, 2018)

17

function proposed_algo(burst_time, process_id, arrival_time,
priority_list)

process_list← {};
previous_time_quantum← 0;
flag ← True;
for e ∈ burst_time do add process p with associated process_id in
process_list;

while process_list 6= ∅ do
for new_process ∈ burst_time do add process p with associated
process_id in process_list;

Sort(process_list);
if priority_list 6= ∅ then add priority process in front of the
process_list with process_id;
time_quantum←Abs(process_list.values()[−1]−
process_list.values()[0]);

if time_quantum = 0 and flag = True then
time_quantum← process_list.values()[−1];
flag = False;

end
if time_quantum = 0 then
time_quantum← previous_time_quantum;

for p ∈ process_list do
provide CPU to process p for time_quantum unit of time;
if process execution is done then

remove it from process_list;
if p ∈ priority_list then remove it from priority_list;

else
decrease burst_time of p for time_quantum unit from
process_list;

end
end

end
end

Algorithm 3.1: Pseudo-code of Proposed Way

18

Architecture of the Compared Existing and Proposed Algorithms to the
Proposed Way

Round Robin (RR) The process that takes less time to complete suffers, and
waiting times are frequently fairly long in the traditional round robin algorithm also
I/O-bound processes are preferred over CPU-bound ones. The initial process in this
case will receive the CPU before any other processes, and only after the first process
has completed running. Also, if additional processes have smaller burst times than
the initial process, the processes will have to wait more frequently than necessary,
which will increase the average waiting time, or the Convoy effect. Device and CPU
utilization are reduced as a result of this effect in the traditional round robin. For
time-sharing systems, where it is crucial that each user receive a share of the CPU
at regular intervals, the FCFS algorithm is particularly problematic. Time slices are
sometimes called as time quantum and usually refer to the method of managing all
processes equally and in a circular order (also known as cyclic executive). Scheduling
using a round-robin is straightforward, simple to implement, and starvation-free.
Other scheduling issues, such as data packet scheduling in computer networks, can be
solved with round-robin scheduling. Also in the traditional round-robin algorithm,
one queue is maintained without sorting, And repeatedly the time slice is assigned
to the remaining process by preemption and again appended to the queue with the
remaining time slice.

Self-Adjustment Round Robin (SARR) It is a modified algorithm of classical
Round Robin to dynamically adjust the time quantum according to the burst time
of the processes in the ready queue. The optimal time quantum is calculated by
finding the median[15,16] in each iteration for an existing set of processes in the
ready queue; to avoid the overhead of context switching the median is modified to
25 if it is less than 25. The value for time quantum Q consequences for the median
is represented by formula 1.

Q = x̃ ≡

{
Y(N+1)/2 ifN is odd
1
2
(YN/2) + (Y1+N/2) ifN is even

(3.1)

The SARR mainly checks if there is any arrival of process in the queue or not and
if the initial process status is 0 it assigns a new counter value for that particular
process and if it’s false it also goes for the median calculation of the burst time and
keeps assigning the median as long as there are process in the queue and when the
ready queue becomes empty it leaves the algorithm. There will be more unneeded
context switches regardless of whether the process is by itself in the ready queue or
not, whereas this issue does not exist at all in the new suggested algorithm because
in this scenario the time quantum will be equal to the process’s remaining burst
time.

Modified Round Robin Algorithm (MRRA) The modification to the CPU
scheduling method is the main focus of the suggested algorithm. When compared
to other scheduling calculations including plain Round Robin booking calculations,
the method significantly reduces waiting times and turnaround times. With a small
change, the suggested calculation is comparable as of yet. Instead of using the
FCFS’s standard Round-Robin computation, it conducts the most limited activity

19

with the least amount of wasted time first. It also makes use of smart rather than a
static time quantum. The approach determines the Smart time quantum itself as per
the burst time all factors considered, as opposed to providing static time quantum
in the CPU scheduling time. The proposed calculation eliminates the errors that
result from implementing fundamental round robin engineering. Each procedure
is organized in the expanding request of CPU burst time throughout the primary
phase of the creative calculation CPU scheduling method. It means that the need
will inevitably be subordinated to the processes. The necessity for a method with a
high blast time is greater for processes with low blast times. Then, the calculation
then determines the average CPU burst time of the number of processes in the
second stage. It will gradually determine the time quantum, i.e. (normal of mean
and most elevated burst time), after determining the mean. Then, in the final stage
of the algorithm, choose the main process from the prepared line and give it the
CPU for up to one Smart time quantum.

Optimized Round Robin (ORR) The maximum difference between two ad-
jacent processes has been presented as the basis for an optimized Round Robin
algorithm. The goal is to create a process that is more effective than the previous
Round Robin. The suggestion is to classify all processes according to Burst Time
in ascending order to achieve effective resource allocation. After that, it had been
computed and measured how much could differ between two neighboring processes.
The calculations for time quantum were accurate. Time quantum is defined as the
largest difference between two adjacent processes plus the burst time of the first
process following sorting. The optimized RR algorithm is shown in Algorithm 1. As
input, the algorithm uses burst time to find the turn-around-time, waiting-time and
context-switching. Inputs and outputs have been clearly stated in the algorithm.
The required sorting of all inputs is presented by the maximum difference between
two adjacent processes has been calculated. Then, the optimized time quantum is
estimated in the algorithm. The entire program has been implemented in a preemp-
tive manner. Finally, the outputs such as turn-around time and waiting time were
obtained.

20

Chapter 4

Results and Analysis

4.1 Accuracy Analysis of Burst Time Prediction

4.1.1 Exponential Average
Traditionally, the old scheduling algorithms use this approach for a rough prediction
of the burst time of the incoming processes in the ready queue. It is basically a well
defined equation.
Exponential Average: Tn+1 = αtn + (1− α)Tn

where, α = is a smoothing factor and 0 ≤ α ≤ 1, tn = actual burst time of nth
process and Tn = predicted burst time of nth process. This method scores about
26.08% of accuracy for the burst time prediction on the chosen dataset.

4.1.2 Linear Regression Model
Linear regression is a supervised ML algorithm that finds the best linear equation
that finds the correlation between the dependent variable & the explanatory (inde-
pendent) variable.
Linear Regression Architectural Mechanism:

1. Random weights are chosen

2. According to that hypothesis mean square error function is calculated

3. The Gradient descent function is used to change the weights

4. The third step is repeated until the mean square error is minimized

5. The weight is updated accordingly

6. When the loss function is stable the optimization is done

Linear regression is best used with two continuous variables relationship finding. It
is often used in medical sectors like finding weight given height and medicine dosage.
Linear regression fails to work with non-linear, non-additive datasets.
This ML model has performed quite well since the data of the dataset are continuous
in fashion as well as there is no cluster. Figure 4.2a shows the train and validation
accuracy and figure 4.2b shows the train and validation loss of the linear regression

21

Figure 4.1: Linear Regression Flowchart

22

model for this work. Figure 4.2a points out that the validation accuracy dominates
over train accuracy for the first few iterations where the model is fit and scored
depending upon a small number of data points. But with the increment of the data
points, the accuracy varies and at point 40 along the X-axis the validation accuracy
has fallen dramatically below the train accuracy rate. A similar pattern goes for the
training and validation loss curve but in a mirror reflection fashion in terms of the
X-axis that is visualized in figure 4.2b.

(a) Train Validation Accuracy of LR (b) Train Validation Loss of LR

Figure 4.2: Train Validation Accuracy and Loss of LR

Below figure 4.3 highlights the scatter plotting of the actual burst time and the
predicted burst time for the Linear Regression Model. The blue points signify the
actual burst time from the dataset and the red points signify the predicted burst
time by this model. The overlapping segment of blue and red colors explicitly
highlights the perfect prediction area via this model. The actual accuracy score of
the regression model was more than 97.96% for this work in terms of predicting
burst time.

Figure 4.3: Actual-Predicted Data Points of LR

23

4.1.3 K-Nearest Neighbour (KNN)
K-Nearest neighbor is an elementary supervised ML algorithm used in both classi-
fication & regression problems.
KNN Architecture Mechanism:

1. The dataset is chosen.

2. The value of k in a specific neighborhood of the dataset.

3. Euclidean distance between the currently chosen k and its closest neighbors
are calculated.

4. Put the calculated distances in a sorted list.

5. Select top k from the list.

6. If it is regression, then the mean of the k labels ia returned.

7. If it is classification, then the mode of the k labels is returned.

KNN is best used when labeled data isn’t available and it doesn’t work well when
the dataset is too large. It is best for instances like handwriting, image & video
detection.
This model has not performed well for this work as this is a non-parametric super-
vised machine learning. Figure 4.5a shows the train and validation accuracy and
figure 4.5b shows the train and validation loss of the KNN model for this work. Fig-
ure 4.5a points out that the training accuracy dominates over validation accuracy
from the start to the end. Moreover, with the increment of the data points both
training and validation accuracy remains constant in manner. A similar pattern
goes for the training and validation loss curve but in a mirror reflection fashion in
terms of the X-axis that is visualized in figure 4.5b.

(a) Train Validation Accuracy of
KNN (b) Train Validation Loss of KNN

Figure 4.5: Train Validation Accuracy and Loss of KNN

Below figure 4.6 highlights the scatter plotting of the actual burst time and the
predicted burst time for the KNN Model. The blue points indicate the actual burst
time from the dataset and the red points indicate the predicted burst time by this
model. The overlapping segment of blue and red colors explicitly highlights the

24

Figure 4.4: KNN Architecture Flowchart

25

perfect prediction area via this model. The actual accuracy score of the regression
model was approximately 17% for this work in terms of predicting burst time.

Figure 4.6: Actual-Predicted Data Points of KNN

4.1.4 Neural Network (NN)
An artificial neural network (ANN) or simply, neural network (NN) is a directed
weighted graph of neurons. A neuron takes inputs from other nodes via edges
in the graph, which could be the inputs to the neural network or other neurons.
Each edge has an associated weight. The weighted sum of the inputs is calculated
to produce the transfer function. Finally, the transfer function is passed to the
activation function to produce the output of the neuron.
Transfer function:

vj =
n∑

i=1

wixi (4.1)

Common activation functions:

ReLU(vj) = max(0, vj) (4.2)

σ(vj) =
1

1 + e−avj
(4.3)

A NN may have one or more layers. A NN with a single layer is called a perceptron.
On the other hand, a NN with more than one layer is called a multilayer perceptron
(MLP).
In an MLP, there are two kinds of layers, hidden layers and the output layer. At
first, the inputs are processed via one or multiple hidden layers. Finally, the output
layer produces the final output of the MLP.
A MLP is trained through the backpropagation algorithm. It is discussed as follows:

26

1. The NN is run in a feed-forward fashion and the error of each neuron of the
output layer is calculated.

2. The errors are passed backward in the NN, from the output layer to the first
hidden layer, by recursively calculating the local gradient of each neuron. The
gradients are used to update the weights of the neurons.

One drawback of traditional fully connected NN is that the number of parameters
increases exponentially with the number of inputs. This can be mitigated by using
convolutional neural networks (CNN). Another drawback is that it cannot detect
sequences in the data. This can be mitigated by using recurrent neural networks
(RNN).
Multi-layer perceptron (MLP) model is used for this work. But this model is not
efficient enough for the chosen dataset. Here for this work, the NN model was built
with 20 hidden layers with a learning rate of 0.001. And the score for the prediction
of the CPU burst is only 26.01%.

4.1.5 Decision Tree
The decision tree is a supervised learning model based on the tree data structure.
It is a way to represent a function that maps from a vector of attributes to a single
output value called the “decision.” The inputs and outputs can have discrete or
continuous values. The properties of a decision tree are:

1. Each non-leaf node represents a test to be performed on an attribute.

2. Each arc from a non-leaf node represents a specific value of the attribute.

3. Each leaf node represents a single output label.

Since the decision tree is a very powerful and expressive machine learning model,
it is prone to overfitting. To mitigate this problem, the training algorithm should
build a shallow, compact tree by splitting the tree at the most important attributes.
For this reason, the model should take into account entropy and information gain.
Entropy is a measure of uncertainty and impurity in a dataset. It is given by:

H(P) =
n∑

i=1

−pi log2 pi (4.4)

On the other hand, information gain is calculated as the reduction of entropy of the
label if the decision tree were to be split on a specific attribute. It is a measure of
the importance of the attribute. It is given by:

Gain(S,A) = H(S)−
n∑

i=1

p(Ai)H(S|Ai) (4.5)

The training process of the decision tree is given below: If all the examples of the
dataset have the same classification, then return that classification. Else find the
attribute with the highest information gain. The tree is split on the attribute with
the highest information gain. For each value of the attribute, recursively perform
the training algorithm for the subtree.

27

As we have already mentioned, the decision trees are susceptible to overfitting.
Therefore, it should not be used when the dataset is small. Pruning can be used to
combat this overfitting in decision tree.

Figure 4.7: Decision Tree Diagram [1]

This model has performed better than the Linear regression model and KNN model
for this work. Actually, the decision tree model uses a set of algorithms for making
decisions to split a node into required sub-nodes. And the increment of these sub-
nodes is directly responsible for the increasing homogeneity of the developed sub-
nodes. Figure 4.8a shows the train and validation accuracy and figure 4.8b shows
the train and validation loss of the decision tree model for this work. From figure
4.8a it is clear that the accuracy of training is 100% for the data set of this work. It
also shows that the training accuracy dominates over the validation accuracy along
with the increment of the data points. A similar pattern goes for the training and
validation loss curve but in a mirror reflection fashion in terms of the X-axis that is
visualized in figure 4.8b.

28

(a) Train Validation Accuracy of DT (b) Train Validation Loss of DT

Figure 4.8: Train Validation Accuracy and Loss of DT

Below figure 4.9 highlights the scatter plotting of the actual burst time and the
predicted burst time for the Decision Tree Model. The blue points indicate the
actual burst time from the dataset and the red points indicate the predicted burst
time by this model. The overlapping segment of blue and red colors explicitly
highlights the perfect prediction area via this model. The actual accuracy score of
the regression model was more than 98.64% for this work in terms of predicting
burst time.

Figure 4.9: Actual-Predicted Data Points of DT

From the above visualization, it is clear that because of the linearity of the dataset
for this work the accuracy and loss curves have shown quite a similar sort of curve
(straight line in type) without any dramatic increasing and decreasing peak and
zig-zag.

4.1.6 Choosing the Best ML/AI Model
Selection of the best model mainly depends on the score of that model for the
predefined dataset for any work. For this work and dataset, Decision Tree performs
better over exponential average, Linear Regression, KNN, and MLP withholding the

29

prediction accuracy score of more than 98.64%. Figure 4.10 shows the comparison
of the score of the exponential average, linear regression and KNN with the decision
tree. Table: 4.1 and Figure 4.10: points the accuracy of the examined ML, NN
models.

Figure 4.10: Score of Exponential Average, KNN, LR, DT, and NN.

Model Name Accuracy
K-Nearest Neighbor (KNN) 17.1%
Linear Regression (LR) 97.96%
Decision Tree (DT) 98.64%
Neural Network (MLP) 26.01%

Table 4.1: Score of Exponential Average, KNN, LR, DT, and NN.

4.2 Scheduling Efficiency Analysis of Proposed Al-
gorithm with Others

For the measurement of the efficiency of the proposed algorithm, 10000 processes
were put as input for both the proposed method and Traditional Round Robin (RR),
Self-Adjustment Round Robin (SARR), Modified Round Robin Algorithm (MRRA)
and Optimized Round Robin (ORR) algorithm where a general processor is given
10 to 200 processes at a time by the OS. 5 algorithms run in the same environment
and under the same configuration. The final outcome points out that the proposed
algorithm ensures almost half of the turnaround time and the waiting time is less
than the other 4. Also it ensures less number of context switches. Below Table
4.2 shows the resultant output of the 5 algorithm and figure 4.11, figure 4.12 and

30

figure 4.13 consecutively shows the comparison of the average turnaround time and
waiting time and the number of context switches of the proposed algorithm to the
others.

Algorithm Average
Turnaround
Time (avg AT)

Average Waiting
Time (avg WT)

Number of Con-
text Switch (CS)

Proposed Way 40331930.48 40312117.96 20002
Traditional Round
Robin (RR)

87194390.98 87174578.46 28964

Self-Adjustment
Round Robin
(SARR)

72398064.70 72378252.18 39956

Modified Round
Robin Algorithm
(MRRA)

84924105.36 84904292.84 25208

Optimized Round
Robin (ORR)

78508779.73 78488967.20 22470

Table 4.2: Comparison of the CPU Scheduling Algorithms

Figure 4.11: Comparison of the average turnaround time

31

Figure 4.12: Comparison of the average waiting time

Figure 4.13: Comparison of number of context switches

From the above illustration, it is clear that the proposed algorithm is almost 2
times faster than the other existing and proposed algorithm in terms of process
scheduling under a huge load of processes. Also, it can be inferred that although
the sorting mechanism of the proposed algorithm create some time complexity, the
high performance of the algorithm makes this time complexity negligible.
For better illustration, the proposed algorithm and the other 4 have run on 5000
processes depending upon 10 consecutive epochs wherein each epoch the process

32

list gets 500 more randomized processes than the previous step. Here Table 4.2.2
illustrates the outcomes of this extensive consecutive test.

Table 4.3: Result of Consecutive Test
Number
of
Process

Statistic Proposed
Way

SARR MRRA ORR RR

500 avg TT 424.52 458.83 435.18 447.83 454.698
avg WT 420.08 454.39 430.74 443.39 450.256
CS 1000 1314 1080 1152 3971

1000 avg TT 7936.57 13925.30 10348.01 14863.83 17353.17
avg WT 7907.10 13895.84 10318.55 14834.36 17294.24
CS 2000 3668 2858 9650 5784

1500 avg TT 20267.64 29815.32 23697.23 39071.35 42786.14
avg WT 20227.01 29774.70 23656.60 39030.73 42704.90
CS 3000 5526 4222 22354 8229

2000 avg TT 34832.50 49129.28 36845.24 67781.12 74717.89
avg WT 34783.84 49080.61 36796.58 67732.46 74620.56
CS 4000 7498 4930 39998 10333

2500 avg TT 52547.49 73284.80 53914.47 101508.70 113031.21
avg WT 52483.36 73220.68 53850.34 101444.57 112902.95
CS 5000 9734 5634 41152 12474

3000 avg TT 81761.10 114067.22 89648.77 149688.48 184494.64
avg WT 81652.24 113958.37 89539.91 149579.63 184276.93
CS 6000 11866 7332 29092 14595

3500 avg TT 157316.81 228038.63 193686.82 286097.33 373350.66
avg WT 157038.27 227760.08 193408.27 285818.78 372793.56
CS 7000 13850 9262 46222 16456

4000 avg TT 316794.73 472188.52 428018.72 600110.13 821582.66
avg WT 316320.99 471714.78 427544.98 599636.39 820635.18
CS 8000 15448 11738 100616 18630

4500 avg TT 558382.81 834770.91 731754.71 1070574.47 1436216.40
avg WT 557654.79 834042.88 731026.69 1069846.45 1434760.36
CS 9000 17650 12596 109958 20848

5000 avg TT 962821.14 1398027.61 1440608.90 1803293.73 2327200.60
avg WT 961586.58 1396793.04 1439374.33 1802059.17 2324731.47
CS 10000 19694 15162 120080 22858

Figure 4.14 and Figure 4.15 describe the overall result in terms of average turnaround

33

time and average waiting time. From table 4.3 and the figures, it is clear that the
proposed algorithm always took less time in terms of average turnaround time and
average waiting time than the other algorithms in every situation whether it is a
small bath of processes or a large batch of processes.

Figure 4.14: Average Turnaround Time (Consecutive Test)

Figure 4.15: Average Waiting Time (Consecutive Test)

34

Chapter 5

Conclusion

This work will contribute by adding intelligence to the operating system end level of
the processor or at least it will be possible to provide necessary information to the
processor to take decisions intelligently from the user/software level for the overall
optimization. Since we are proposing a new algorithm along with machine learning
connectivity for the process scheduling algorithm and evaluating the work done
previously. This proposal can be further extended to improved scheduling algorithm
implementation along with extending the horizon for new domains in AI and OS.
Implementation of learning with the operating system itself is a unique domain and
our research will pave the way for future researchers who will be working on this
domain.
In the future we would like to continue this research by implementing other AI
models and on other different datasets via real implementation of the operating
system end.

35

Bibliography

[1] J. N. Morgan and J. A. Sonquist, “Problems in the analysis of survey data,
and a proposal,” en, Journal of the American Statistical Association, vol. 58,
no. 302, pp. 415–434, Jun. 1963, issn: 0162-1459, 1537-274X. doi: 10.1080/
01621459.1963.10500855. [Online]. Available: http://www.tandfonline.com/
doi/abs/10.1080/01621459.1963.10500855.

[2] D. Tonogai, “Ai in operating systems: An expert scheduler,” EECS Depart-
ment, University of California, Berkeley, Tech. Rep. UCB/CSD-88-487, Dec.
1988. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
1988/6149.html.

[3] E. Fix and J. L. Hodges, “Discriminatory analysis. nonparametric discrimina-
tion: Consistency properties,” International Statistical Review / Revue Inter-
nationale de Statistique, vol. 57, no. 3, p. 238, Dec. 1989, issn: 03067734. doi:
10.2307/1403797. [Online]. Available: https://www.jstor.org/stable/1403797?
origin=crossref.

[4] P.-C. Wang and W. Korfhage, “Process scheduling using genetic algorithms,”
in Proceedings.Seventh IEEE Symposium on Parallel and Distributed Process-
ing, San Antonio, TX, USA: IEEE Comput. Soc. Press, 1995, pp. 638–641,
isbn: 9780818671951. doi: 10.1109/SPDP.1995.530742. [Online]. Available:
http://ieeexplore.ieee.org/document/530742/.

[5] J. M. Stanton, “Galton, pearson, and the peas: A brief history of linear re-
gression for statistics instructors,” en, Journal of Statistics Education, vol. 9,
no. 3, p. 3, Jan. 2001, issn: 1069-1898. doi: 10.1080/10691898.2001.11910537.
[Online]. Available: https://www.tandfonline.com/doi/full/10.1080/10691898.
2001.11910537.

[6] K. K. P. and A. Negi, “Characterizing process execution behavior using ma-
chine learning techniques,” in In DpROMWorkShop Proceedings, HiPC 2004
International Conference, 2004.

[7] K.-B. Song, Y.-S. Baek, D. Hong, and G. Jang, “Short-term load forecasting
for the holidays using fuzzy linear regression method,” en, IEEE Transactions
on Power Systems, vol. 20, no. 1, pp. 96–101, Feb. 2005, issn: 0885-8950. doi:
10.1109/TPWRS.2004.835632. [Online]. Available: http://ieeexplore.ieee.org/
document/1388498/.

[8] S. Lim and S.-B. Cho, “Intelligent os process scheduling using fuzzy inference
with user models,” in New Trends in Applied Artificial Intelligence, H. G.
Okuno and M. Ali, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 725–734, isbn: 978-3-540-73325-6.

36

https://doi.org/10.1080/01621459.1963.10500855
https://doi.org/10.1080/01621459.1963.10500855
http://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500855
http://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500855
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/6149.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/6149.html
https://doi.org/10.2307/1403797
https://www.jstor.org/stable/1403797?origin=crossref
https://www.jstor.org/stable/1403797?origin=crossref
https://doi.org/10.1109/SPDP.1995.530742
http://ieeexplore.ieee.org/document/530742/
https://doi.org/10.1080/10691898.2001.11910537
https://www.tandfonline.com/doi/full/10.1080/10691898.2001.11910537
https://www.tandfonline.com/doi/full/10.1080/10691898.2001.11910537
https://doi.org/10.1109/TPWRS.2004.835632
http://ieeexplore.ieee.org/document/1388498/
http://ieeexplore.ieee.org/document/1388498/

[9] O. AlHeyasat. and R. Herzallah., “Estimation of quantum time length for
round-robin scheduling algorithm using neural networks,” in Proceedings of the
International Conference on Fuzzy Computation and 2nd International Con-
ference on Neural Computation - ICNC, (IJCCI 2010), INSTICC, SciTePress,
2010, pp. 253–257, isbn: 978-989-8425-32-4. doi: 10.5220/0003058002530257.

[10] R. Kumar, E. R. Kumar, E. S. Gill, and E. A. Kaushik, “Genetic algorithm ap-
proach to operating system process scheduling problem,” International journal
of Engineering science and Technology, vol. 2, no. 9, pp. 4247–4252, 2010.

[11] P. V. Araujo, “Classificação automática de processos em sistemas operacionais,”
2011.

[12] S. Dolev, A. Mendelson, and I. Shilman, “Semantical cognitive scheduling,”
Nov. 2012 Technical Report, Tech. Rep., 2012.

[13] V. Chahar and S. Raheja, “Fuzzy based multilevel queue scheduling algo-
rithm,” in 2013 International Conference on Advances in Computing, Com-
munications and Informatics (ICACCI), Mysore: IEEE, Aug. 2013, pp. 115–
120, isbn: 9781467362177. doi: 10 . 1109 / ICACCI . 2013 . 6637156. [Online].
Available: http://ieeexplore.ieee.org/document/6637156/.

[14] M. Sharma, P. Sindhwani, and V. Maheshwari, “Genetic algorithm optimal
approach for scheduling processes in operating system,” International Journal
of Computer Science and Network Security (IJCSNS), vol. 14, no. 5, p. 91,
2014.

[15] T. Helmy, S. Al-Azani, and O. Bin-Obaidellah, “A machine learning-based
approach to estimate the cpu-burst time for processes in the computational
grids,” in 2015 3rd International Conference on Artificial Intelligence, Mod-
elling and Simulation (AIMS), Kota Kinabalu, Malaysia: IEEE, Dec. 2015,
pp. 3–8, isbn: 9781467386753. doi: 10.1109/AIMS.2015.11. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/7604542/.

[16] H. b. Jaafar, N. b. Mukahar, and D. A. Binti Ramli, “A methodology of nearest
neighbor: Design and comparison of biometric image database,” in 2016 IEEE
Student Conference on Research and Development (SCOReD), Kuala Lumpur:
IEEE, Dec. 2016, pp. 1–6, isbn: 9781509029488. doi: 10.1109/SCORED.2016.
7810073. [Online]. Available: https://ieeexplore.ieee.org/document/7810073/.

[17] J. Khatri, “An enhanced round robin cpu scheduling algorithm,” IOSR Jour-
nal of Computer Engineering, vol. 18, no. 04, pp. 20–24, Apr. 2016, issn:
22788727, 22780661. doi: 10.9790/0661-1804022024. [Online]. Available: http:
//iosrjournals.org/iosr-jce/papers/Vol18-issue4/Version-2/D1804022024.pdf.

[18] H. B. Parekh and S. Chaudhari, “Improved round robin cpu scheduling al-
gorithm: Round robin, shortest job first and priority algorithm coupled to
increase throughput and decrease waiting time and turnaround time,” in 2016
International Conference on Global Trends in Signal Processing, Information
Computing and Communication (ICGTSPICC), Jalgaon, India: IEEE, Dec.
2016, pp. 184–187, isbn: 9781509004676. doi: 10.1109/ICGTSPICC.2016.
7955294. [Online]. Available: http://ieeexplore.ieee.org/document/7955294/.

37

https://doi.org/10.5220/0003058002530257
https://doi.org/10.1109/ICACCI.2013.6637156
http://ieeexplore.ieee.org/document/6637156/
https://doi.org/10.1109/AIMS.2015.11
http://ieeexplore.ieee.org/document/7604542/
https://doi.org/10.1109/SCORED.2016.7810073
https://doi.org/10.1109/SCORED.2016.7810073
https://ieeexplore.ieee.org/document/7810073/
https://doi.org/10.9790/0661-1804022024
http://iosrjournals.org/iosr-jce/papers/Vol18-issue4/Version-2/D1804022024.pdf
http://iosrjournals.org/iosr-jce/papers/Vol18-issue4/Version-2/D1804022024.pdf
https://doi.org/10.1109/ICGTSPICC.2016.7955294
https://doi.org/10.1109/ICGTSPICC.2016.7955294
http://ieeexplore.ieee.org/document/7955294/

[19] N. Sarwar, N. Aslam, and A. Batool, “Designing a model for improving cpu
scheduling by using machine learning,” International Journal of Computer
Science and Information Security,, vol. 14, pp. 201–204, Oct. 2016.

[20] S. Dias, S. Naik, S. K, S. Raman, and N. M, “A machine learning approach for
improving process scheduling: A survey,” International Journal of Computer
Trends and Technology, vol. 43, no. 1, pp. 1–4, Jan. 2017, issn: 22312803.
doi: 10.14445/22312803/IJCTT-V43P101. [Online]. Available: http://www.
ijcttjournal.org/archives/ijctt-v43p101.

[21] X. Feng, Y. Zhou, T. Hua, Y. Zou, and J. Xiao, “Contact temperature predic-
tion of high voltage switchgear based on multiple linear regression model,”
in 2017 32nd Youth Academic Annual Conference of Chinese Association
of Automation (YAC), Hefei, China: IEEE, May 2017, pp. 277–280, isbn:
9781538629017. doi: 10.1109/YAC.2017.7967419. [Online]. Available: http:
//ieeexplore.ieee.org/document/7967419/.

[22] H. Mora, S. E. Abdullahi, and S. B. Junaidu, “Modified median round robin
algorithm (mmrra),” in 2017 13th International Conference on Electronics,
Computer and Computation (ICECCO), Abuja, Nigeria: IEEE, Nov. 2017,
pp. 1–7, isbn: 9781538624999. doi: 10.1109/ICECCO.2017.8333325. [Online].
Available: http://ieeexplore.ieee.org/document/8333325/.

[23] M. Tajwar, M. Pathan, L. Hussaini, and A. Abubakar, “Cpu scheduling with a
round robin algorithm based on an effective time slice,” Journal of Information
Processing Systems, vol. 13, Jan. 2017. doi: 10.3745/JIPS.01.0018.

[24] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating system concepts, eng,
Tenth edition. Hoboken, NJ: Wiley, 2018, isbn: 9781119439257.

[25] D. Hureira and C. Vartanian, “Machine learning and neural networks for real-
time scheduling,” 2019.

[26] G. S. K. Ranjan, A. Kumar Verma, and S. Radhika, “K-nearest neighbors
and grid search cv based real time fault monitoring system for industries,”
in 2019 IEEE 5th International Conference for Convergence in Technology
(I2CT), Bombay, India: IEEE, Mar. 2019, pp. 1–5, isbn: 9781538680759. doi:
10.1109/I2CT45611.2019.9033691. [Online]. Available: https://ieeexplore.ieee.
org/document/9033691/.

[27] C. Cai and L. Wang, “Application of improved k-means k-nearest neighbor
algorithm in the movie recommendation system,” in 2020 13th International
Symposium on Computational Intelligence and Design (ISCID), Hangzhou,
China: IEEE, Dec. 2020, pp. 314–317, isbn: 9781728184463. doi: 10.1109/
ISCID51228 . 2020 . 00076. [Online]. Available: https : / / ieeexplore . ieee . org/
document/9325794/.

[28] S. M. Mostafa and H. Amano, “Dynamic round robin cpu scheduling algo-
rithm based on k-means clustering technique,” en, Applied Sciences, vol. 10,
no. 15, p. 5134, Jul. 2020, issn: 2076-3417. doi: 10.3390/app10155134. [On-
line]. Available: https://www.mdpi.com/2076-3417/10/15/5134.

38

https://doi.org/10.14445/22312803/IJCTT-V43P101
http://www.ijcttjournal.org/archives/ijctt-v43p101
http://www.ijcttjournal.org/archives/ijctt-v43p101
https://doi.org/10.1109/YAC.2017.7967419
http://ieeexplore.ieee.org/document/7967419/
http://ieeexplore.ieee.org/document/7967419/
https://doi.org/10.1109/ICECCO.2017.8333325
http://ieeexplore.ieee.org/document/8333325/
https://doi.org/10.3745/JIPS.01.0018
https://doi.org/10.1109/I2CT45611.2019.9033691
https://ieeexplore.ieee.org/document/9033691/
https://ieeexplore.ieee.org/document/9033691/
https://doi.org/10.1109/ISCID51228.2020.00076
https://doi.org/10.1109/ISCID51228.2020.00076
https://ieeexplore.ieee.org/document/9325794/
https://ieeexplore.ieee.org/document/9325794/
https://doi.org/10.3390/app10155134
https://www.mdpi.com/2076-3417/10/15/5134

[29] N. Rochmawati, H. B. Hidayati, Y. Yamasari, et al., “Covid symptom severity
using decision tree,” in 2020 Third International Conference on Vocational
Education and Electrical Engineering (ICVEE), Surabaya, Indonesia: IEEE,
Oct. 2020, pp. 1–5, isbn: 9781728174341. doi: 10.1109/ICVEE50212.2020.
9243246. [Online]. Available: https://ieeexplore.ieee.org/document/9243246/.

[30] S. Tehsin, Y. Asfia, N. Akbar, F. Riaz, S. Rehman, and R. C. D. Young, “Se-
lection of cpu scheduling dynamically through machine learning,” in Pattern
Recognition and Tracking XXXI, M. S. Alam, Ed., Online Only, United States:
SPIE, Apr. 2020, p. 24, isbn: 9781510635777. doi: 10.1117/12.2559540. [On-
line]. Available: https://www.spiedigitallibrary.org/conference-proceedings-
of-spie/11400/2559540/Selection-of-CPU-scheduling-dynamically-through-
machine-learning/10.1117/12.2559540.full.

[31] B. Zhang, “Tactical decision system of table tennis match based on c4.5 de-
cision tree,” in 2021 13th International Conference on Measuring Technology
and Mechatronics Automation (ICMTMA), Beihai, China: IEEE, Jan. 2021,
pp. 632–635, isbn: 9781665438926. doi: 10.1109/ICMTMA52658.2021.00146.
[Online]. Available: https://ieeexplore.ieee.org/document/9410189/.

[32] B. Richardson and W. Istiono, “Comparison analysis of round robin algorithm
with highest response ratio next algorithm for job scheduling problems,” In-
ternational Journal of Open Information Technologies, vol. 10, no. 2, pp. 21–
26, 2022.

[33] Sakshi, C. Sharma, S. Sharma, et al., “A new median-average round robin
scheduling algorithm: An optimal approach for reducing turnaround and wait-
ing time,” en, Alexandria Engineering Journal, vol. 61, no. 12, pp. 10 527–
10 538, Dec. 2022, issn: 11100168. doi: 10.1016/j.aej.2022.04.006. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S1110016822002599.

[34] P. S. Sharma, S. Kumar, M. S. Gaur, and V. Jain, “A novel intelligent round
robin cpu scheduling algorithm,” en, International Journal of Information
Technology, vol. 14, no. 3, pp. 1475–1482, May 2022, issn: 2511-2104, 2511-
2112. doi: 10.1007/s41870-021-00630-0. [Online]. Available: https://link.
springer.com/10.1007/s41870-021-00630-0.

39

https://doi.org/10.1109/ICVEE50212.2020.9243246
https://doi.org/10.1109/ICVEE50212.2020.9243246
https://ieeexplore.ieee.org/document/9243246/
https://doi.org/10.1117/12.2559540
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11400/2559540/Selection-of-CPU-scheduling-dynamically-through-machine-learning/10.1117/12.2559540.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11400/2559540/Selection-of-CPU-scheduling-dynamically-through-machine-learning/10.1117/12.2559540.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11400/2559540/Selection-of-CPU-scheduling-dynamically-through-machine-learning/10.1117/12.2559540.full
https://doi.org/10.1109/ICMTMA52658.2021.00146
https://ieeexplore.ieee.org/document/9410189/
https://doi.org/10.1016/j.aej.2022.04.006
https://linkinghub.elsevier.com/retrieve/pii/S1110016822002599
https://doi.org/10.1007/s41870-021-00630-0
https://link.springer.com/10.1007/s41870-021-00630-0
https://link.springer.com/10.1007/s41870-021-00630-0

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Research Problem
	Research Objectives

	Related Work
	Methodology
	Workflow
	Input Data
	Data Preprocessing
	Implementation
	Ideology
	Input Data Management
	Burst Time Prediction
	Comparative Analysis of Proposed Way and Other Existing Scheduling Algorithms via Running on the Predicted Burst Time

	Results and Analysis
	Accuracy Analysis of Burst Time Prediction
	Exponential Average
	Linear Regression Model
	K-Nearest Neighbour (KNN)
	Neural Network (NN)
	Decision Tree
	Choosing the Best ML/AI Model

	Scheduling Efficiency Analysis of Proposed Algorithm with Others

	Conclusion
	Bibliography

