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Abstract

The web as we know it is continuously evolving and changing its shape rapidly. And
every day the rate of new technologies being introduced is also increasing. Kuber-
netes is an excellent tool for cloud computing. Kubernetes is still in its early days.
Developers are changing their deployment strategy to use Kubernetes. Kubernetes
is a powerful tool for horizontal scaling. Cloud providers like GCP, AWS, Azure,
and Oracle are offering Kubernetes services. They offer both x86 and ARM plat-
forms. But x86 covers most of the market and very few people are currently working
on ARM. We want to find out a more efficient and cost-effective implementation of
Kubernetes. ARM offers cheap cloud products at a cheaper rate. ARM is energy
efficient and ARM is a newer CPU design than traditional x86. We want to compare
the Kubernetes performance on x86 vs ARM to study whether moving to ARM is
a better option or not.

Keywords: CPU Architecture, Cloud, Kubernetes, Docker, GCP, AWS, Azure,
x86, ARM, Oracle
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Chapter 1

Introduction

1.1 Background and Motivation

For the last few years, the progress and innovation in the world of cloud computing
have been astonishing. More and more services and technologies are being devel-
oped every day by both large corporations and the open-source community. Many
services are now available on top of the cloud, such as Software as a Service (SaaS),
Infrastructure as a Service (IaaS), Function as a Service (FaaS). Most of the cloud
providers are providing automated services that reduce work from the developer’s
end. Kubernetes is now available as a PaaS.

Figure 1.1: Cloud Computing [24]

Containerization is the latest trend in development. Everyone is converting their
applications into containers. Docker is the most famous implementation of con-
tainerization. There are other containerization technologies such as LXC that are
not as famous as Docker [2]. Though it adds extra steps to create an image of the
application and some applications require a complex Dockerfile, it saves time if the
deployment needs to be repeated on multiple devices. A complex setup of deploy-
ment that can be scripted by using docker-compose. Still, multiple containers need
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to be load balanced manually and implementing on multiple instances take time.
Kubernetes removes this complication, and automates and load balances pods [2].
Most docker images can be used in Kubernetes. In Kubernetes, containers are called
pods, and each of the computing instances is called nodes. The node which controls
other nodes is called master. In a Kubernetes system, at least one master node and
one worker node are needed. But in a small-scale scenario, one master with three
worker configurations is expected. In a highly available system, multiple master
nodes are load balanced and provide failover. Intel introduced the x86 architecture
with the launch of 8086. It was initially launched with 16-bit support in 1978. Then
in 1985, it added support for 32-bit and support for 64-bit was added in 2003. It is
now the most used architecture in the world. Almost all current personal and server
computers are based on x86 platforms. The 64-bit architecture was introduced by
AMD. Though x86 is currently the most used, it is currently changing. The use of
ARM is rising day by day. ARM is another architecture. It supports 32-bit and
64-bit. ARM was introduced in 1999. ARM’s most significant advantage is there
are many manufacturers in ARM development. ARM is power efficient compared
to x86. ARM processors are easy to modify according to need. All mobile telecom-
munication devices are based on ARM. Kubernetes on ARM looks promising.

1.2 Research Problem

Kubernetes is a complex tool setup. It has an upfront complexity. In the long run,
it helps with deployment and scaling. There are multiple ways to set Kubernetes.
Not to mention the source code is open source. So, many developers are modifying
the source codes to meet their demands better. The availability of the system is
also dependent on the deployment.
Kubernetes supports both x86 and ARM architecture. But it does not mean ev-
erything will work on ARM. By default, everything is made to run on x86 these
days. Most of the runtime supports ARM, but there are a few exceptions. Few pro-
grams still do not have official support for ARM. So, developers have to use some
alternative or compile source codes on their own.
Setting up Kubernetes is a complex task. The Kubernetes cluster is controlled by
the master node. Kubectl is a CLI tool that lets the user control a cluster. Kubectl
needs an auth key named Kubeconfig that provides access to a cluster.
Many cloud providers provide Kubernetes clusters to the user. It requires low main-
tenance. It is easy to scale. But it is not the cheapest option. But its availability is
better or more reliable than on-prem configuration.
Kubernetes is evolving continuously. But most of the time, one production or large-
scale implementation currently is on x86. There are a few cloud providers that
provide Kubernetes on ARM architecture. The advantage of using ARM is, it
is energy efficient. ARM processors do not have a lot of cores compared to x86
machines. But a large core count is not necessary for a distributed system.
The industry is moving towards ARM processors. Our computers, phones, cars,
and IoT devices are leaning towards ARM processors. The question this research is
trying to answer is:

What is the feasibility of using an ARM Kubernetes cluster instead of a
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traditional x86 platform?

This research will try to discover if an ARM or hybrid system is more efficient and
cost-effective than a traditional x86 system by running different benchmark tests on
each system and trying to determine how it performs in each scenario.

1.3 Research Objectives

This research will compare different Kubernetes solutions in different scenarios. We
need to benchmark each of the systems and try to keep the playing ground fair as
much as possible. The objectives of our proposed research are:

1. To understand how containerization works

2. To understand how to make a Kubernetes cluster

3. To understand how Kubernetes work

4. To understand how an application works in different architectures

5. To develop Kubernetes clusters or provision clusters from major cloud providers

6. To develop a benchmark system, which will cover different scenarios based on
workload (CPU, Memory, I/O)

7. To run benchmarks on those systems.

8. To evaluate the results.

1.4 Our Contributions

In this thesis, we tried to show a price per performance result of the Kubernetes in
different architectures so that it can help developers in real time work. However,
our sole intention is to show the developer community the result of Kubernetes
analysis in different architectures so that they have an understanding about price
to performance scale. Which will eventually help them to make the right decision
of choosing Kubernetes services on a certain architecture that can save time and
money on a large scale. Our Contributions are:

• Comparing both x86 vs ARM platforms.

• Finding out the cost-effective platform.

• Using Custom API to benchmark Kubernentes systems.

• Measured CPU, Memory, and I/O.

• Tested on major cloud providers’ services.

3



1.5 Overview of the Thesis

Our thesis title is Kubernetes performance analysis on different architectures. Here
we tried our best to come up with real world results which we have gathered from
testing a couple of Kubernetes services offered by different organizations based on
different architectures. The overview of our research is given below:

1. Chapter 1 : Here we have talked about Introduction, our research problem
,research objectives, our contributions etc.

2. Chapter 2: In this section we have mainly talked about Background, CPU
architecture, x86 vs ARM, ARM advantages, Bare metal, Virtualization etc.

3. Chapter 3: In this portion we discussed about Related study mainly. Where
we have covered Kubernetes Auto Scalability, Current situation of CPU Plat-
forms, Different types of Kubernetes etc topics.

4. Chapter 4: Here we have talked thoroughly about methodology.We covered
Testing Plan, Deploying Clusters, HTTP Tools, Creating REST API, CPU
information collection API etc topic. Which is the core of our methodology.

5. Chapter 5: In this chapter we have covered Experimental Evaluation.Here we
have talked about Experimental Settings, Connecting with cluster, Deploying
pods and services on the clusters, Setting up Benchmark tools, Benchmarking
Parameters etc. Which is a step by step process of our Experimental Evalua-
tion.

6. Chapter 6: In this portion we have talked about Discussion part. Where
Overview, Limitations are the core part of our discussion.

7. Chapter 7: In this chapter we have concluded our research in conclusion and
also shared some of our future plan regarding this work.
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Chapter 2

Background

Kubernetes is a powerful tool for a developer. Though it has an upfront complexity,
for someone who has overcome that hurdle it is an extremely helpful tool. Our
primary goal is to find a cost-effective solution based on CPU architecture.

Kubernetes is a complex deployment. It is the result of the evolution of many under-
lying systems. Firstly, people started to deploy VMs to make the best use of their
resources. Then it improved into containers. Once people started to deploy large-
scale applications the need for a tool that manages containers arose. Kubernetes is
the result of that demand.
We are going to cover each underlying technology of Kubernetes. Starting from
bare metal servers. Then we will discuss virtualization. Containerization technology
comes after virtualization. Then we will cover Kubernetes.

2.1 CPU Architecture

The central processing unit, or CPU, is a component that powers computers (CPU).
Most likely, CPUs are produced by businesses such as Intel, AMD, Fujitsu, Zhaoxin,
and Qualcomm, and their technical specifications include things like Quad Core, 3.2
GHz, and 6Mb of cache. The CPU has components called registers that can store
data. They function somewhat similarly to RAM, however, the memory cells are
made entirely of logic gates instead of capacitor-based memory cells. While regis-
ters function far more quickly than RAM, they cannot store as much data. The
ALU is the core of the CPU. It is capable of adding binary numbers. Numerous
more arithmetic operations, like subtraction and incrementation, are also among its
capabilities. The ALU may also carry out logical operations, such as determining
whether or not two binary numbers are equal. The control unit interprets each
command to determine its meaning before directing the other components’ actions.
Therefore, the control unit will signal what the ALU and memory are supposed to
perform when it receives an instruction, which is simply a binary number. The in-
struction could tell the computer to add two numbers together or to save a particular
number in RAM. Both the instructions and the data necessary for the computer to
carry out those instructions are stored in the RAM. The stored-program computer is
built on the concept of storing both data and instructions in the same memory. Two
registers are required for reading from or writing to RAM: one register is used to
store the RAM address that is being read from or written to, and the other register
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is used to store the actual data. Buses are a collective term for the wire bundles
that connect all of these parts. As a result, there are buses for transporting data,
addresses, and instructions. A computer will typically have some input and output
devices that can take in outside data and subsequently output the computation’s
findings. This might be a keyboard and monitor, or it might be something more
complex like a data link.

2.2 x86 vs ARM

The CPU family based on the Intel 8086 and 8088 microprocessors is referred to as
X86. Backward compatibility for instruction set architectures is ensured by these mi-
croprocessors. x86 initially had an 8-bit instruction set but was expanded to 16- and
32-bit sets. A family of central processing units (CPUs) known as ARM processors
is based on the RISC (reduced instruction set computer) architecture. Advanced
RISC Machine is the ARM acronym. Compared to more well-known server architec-
tures like x86, ARM architectures provide a distinct approach to how the hardware
for a system is created. The two main CPU processors, X86 and ARM, each have
their advantages and disadvantages. They can be contrasted based on a few im-
portant factors, including the instruction sets they use, power usage, software, and
application. The newest of its sort, RISC, divides tasks into short instructions that
are processed in a single clock cycle, allowing for the speedier processing of millions
of these instructions per second. Despite having to process numerous instructions, it
operates at a faster overall speed thanks to its potent processors and pipelining. As
opposed to X86 processors, which use the CISC architecture (Complex Instruction
Set Computing). Multiple clock cycles are used to process complex instructions in
a single step. It prioritizes process efficiency by handling numerous instructions in
a single step while making use of the memory that is available. It accomplishes
numerous jobs with higher throughput and performance by utilizing more registers.
To handle multiple instructions, ARM demands extra memory. Even when GPUs
and other peripherals are used, it uses 5W of electricity.X86 processors use more
registers and place a greater emphasis on performance and high throughput. As a
result, there is greater energy use and heat production in this area. devices with
ARM chips Process is powered by Android operating systems, which were created
specifically for ARM. Operating systems designed for X86 processors, such as Unix,
Linux, and Windows, power desktops, laptops, and servers. Processor selection is
based on application requirements and predicted performance levels. Compared to
X86, ARM is favored in high-end, contemporary, and digital application devices.
X86 is preferred by low-end, traditional back-end applications where reliable perfor-
mance is needed.

2.3 ARM Advantages

A series of CPUs known as the Advanced RISC Machine (ARM) Processor is used
extensively in electronic devices like smartphones, wearables, tablets, and multime-
dia players. This CPU used extremely little power and just needed a small number
of instructions. The complexity of the circuits has decreased. Because there are
fewer circuits, it is ideal for small-sized devices (It is more relevant now due to
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demand for more compact devices).In terms of CPU efficiency, ARM is very effec-
tive.ARM processors are easier to develop and frequently considerably smaller than
other CPUs because of their RISC architecture, which is less complex. Because of
this, processors may now be used in smaller devices. The increased consumer need
for more handheld and portable gadgets will profit from this according to study [26].

1. Affordable: ARM processors are incredibly inexpensive. It is produced for
a substantially lower cost as compared to other processors. They are there-
fore suitable for producing inexpensive mobile phones and other electronics.
Making ARM CPUs is often inexpensive and does not call for sophisticated
machinery according to study [26].

2. Work Faster: ARM conducts 1 operation at a time. This speeds up its opera-
tion. It features a speedier response time and decreased latency according to
study [15].

3. Low Power Consumption: Less power is used by ARM Processors. Initially,
they were intended to operate at lower power. Even so, their architecture uses
fewer transistors. They also have additional characteristics that make this
possible.

4. Multiprocessing feature: The design of ARM processors allows for their usage
in multiprocessing systems, which process data by using many processors ac-
cording to study [15]. The first AMP processor, known as ARMv6K, had the
hardware ability to support 4 CPUs.

5. Load Store Architecture: Data is stored in different registers by the processor
using a load-store architecture (to reduce memory interactions).

2.4 Bare Metal

Physical hosting equipment dedicated to a single client is a ”bare metal server”. A
bare metal server, which is often installed on-site or in a third-party data center
(which can be rented or used for colocation), processes more data than any other
hosting solution because the user has exclusive access to all computing capabilities.
it has exclusive access to CPU, RAM, Disk space, and Bandwidth. Bare metal
deployment is a fully dedicated computing resource but there are more reasons why
companies choose this for example high levels of processing power, High data privacy
due to the lack of other tenants, Consistent input/output operations per second
(IOPS), Predictable billing (typically monthly), Complete control over the server’s
hardware and the software stack, Consistently high performance. The advantages of
bare metal are difficult to beat if your program is sensitive to performance and you
want to keep data at a single-tenant device. But when it comes to running multiple
applications on a single device problem arises, multiple applications may require a
different environment set up which is impossible to run in the same environment
setup. To solve that problem companies need different devices for each application
which is a fully waste of physical resources. Because one application might not need
100 percent of a device but still other applications will not be able to run on the
same device as a result physical resources are highly underutilized. Bare metals are
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hard to partition for different applications and difficult to scale. Not to mention
buying a new machine for every single application is expensive to buy and maintain.

Figure 2.1: Bare Metal Server [29]

2.5 Virtualization

Virtualization took off in the 1990s, solving the issues with bare metal deployments.
VMs, or virtual machines, were becoming very popular. Virtualization’s primary
goal is to manage workload by improving the scalability, effectiveness, and cost-
effectiveness of traditional computing. Operating system virtualization, hardware-
level virtualization, and server virtualization are just a few examples of the many
areas where virtualization can be used. In cloud computing, customers are virtually
allotted space and memory on the servers, which calls for a host (platform) on
which to execute a hypervisor (software that communicates with the hardware)
according to study [3]. A hypervisor is the essential component of hardware that
powers virtual machines (VMs). The available physical resources can be divided
into several virtual ones, known as Virtual Machines, using a hypervisor, which
is software that emulates a specific piece of computer hardware or the complete
computer (VMs). The VMs that are created and maintained by the hypervisor is
referred to as Guest Systems, while the machine that runs the hypervisor is referred
to as the Host System. Hypervisors can be installed either on top of the OS or top
of the hardware. However, occasionally it might be difficult to distinguish between
the two, like in the case of Kernel-based Virtual Machine (KVM), the virtualization
module included within the Linux kernel.Decoupling allows I/O devices to be time-
and space-multiplexed, which permits the implementation of multiple logical devices
by a lower number of physical devices.
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Figure 2.2: KVM, XEN [31]

2.6 Containerization

Containerization is a smart to deploy application. The theory of containerization is
not new but in recent years the usage of containerization has skyrocketed. It is kind
of like a Virtual Machine but without the extreme overhead. In containerization the
process shares the Kernel. So there is no need to virtualize hardware and software.
It has revolutionized the way we create, deploy and test applications.

Figure 2.3: VM vs Container [17]
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2.7 Docker

Out of all the containerization technology, nobody is as popular as Docker. It is
impossible to think about containerization without thinking about Docker. Docker is
open-source, maintained by Google and written in Golang. Which is also maintained
by Google. Each runtime is called containers. According to study [5], Docker is
extremely efficient in deployment. Docker helps developers to build and deploy
applications faster. According to study [6] Docker helps developers to create cloud-
native applications. Docker helps developers to create isolated environments faster
to run their code. According to study [7],it helps to test applications in an isolated
environment first then deploy on the production server.

2.7.1 Docker Client and Server

The machine that runs docker is a docker server. Through docker socket a client can
access the resources of that server. In most scenarios the client and the server will
be on the same machine. Through the RESTful API a client can send commands
to a remote server, covered by study [4].

Figure 2.4: Docker [25]

2.7.2 Docker Images

Docker images are like templates. Container images are not a new concept. The
actual code is not images. Users can make their Image then create a container on
that image. Images are based on some sort of Linux Os. Most of them are based on
Debian or Alpine. Alpine is extremely light. They do not have all the functionality
of the OS. Images are layered. Images are built using a file named Dockerfile. After
creating the image the image needs to be tagged to index the image for future use.
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Figure 2.5: Docker Image [30]

2.7.3 Docker Registries

Docker Registries are storage for Docker images. To use Docker images on different
devices users first need to create an image then tagged then upload the image to a
repository. Docker Hub is the default registry. Images can be public and private.

2.7.4 Docker Containers

Docker containers are the actual runtime. Docker containers run on Docker images.
To run an application such as a web server, database etc a container is needed.
Docker containers are created using Docker run. To run multiple containers or to
run containers with specific configuration we use docker-compose.

Figure 2.6: Docker Container [23]

2.7.5 Scalability

Docker helps with horizontal scaling. To Increase the performance of single threaded
applications performance developers can create containers of the same application
and use a load balancer to scale the application. Database clusters can be created
using multiple Docker containers.
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2.7.6 Speed

According to the study [8], Docker helps with fast deployment. As a developer can
create Docker images and push it to a registry, they can pull this image to use in
multiple servers located in multiple places faster. Instead of pulling the code and
setting up all the variables they will only need to run the docker-compose to use
their latest image.

2.7.7 Portability

Images can be easily moved from device to device using the repository. It helps with
portability. Just pulling the image is all a developer needs to do to get their codes.

2.7.8 Density

By using Docker, we get more performance. Hypervisor uses a lot of resources.
Docker does not need that. So, it gives us more performance on the same device.
On the same device we can get more utilization than a hypervisor.

2.8 LXC

LXC is Linux Containers. They are not as light-weight as docker. They are more
like a VM and have their own networking. Docker generally use bridge networking
and creates multiple virtual networks for routing. LXC acts as a individual device
but lighter than VM.

2.9 Kubernetes

We are going to discuss about Kubernetes architecture now. The architecture of
Kubernetes has many components. First comes a cluster. It is a collection of hosts
and network resources according to study [10]. A Kubernetes cluster can be a single
node cluster. These types of clusters are used for testing and learning. But a
very basic cluster should be 1 master and 1 worker node cluster. For production
level usage 1 master 3 worker is recommended. A Kubelet is primarily a Kubernetes
process that allows the cluster to talk to one another, communicate with one another,
and execute actions on those nodes, such as launching application processes. Each
worker node has containers for different applications deployed on it; therefore, a user
may have a variety of docker containers operating on worker nodes depending on
how the workload is split. The actual work is done primarily in the worker nodes.
The user application will run on the worker node. Now we must learn about master
nodes. The master nodes run numerous Kubernetes programs that are required to
properly run and govern the cluster. An API server, which is also in a container,
is one of these processes. The entry point to the Kubernetes cluster is an API
server. So, this is how multiple Kubernetes clients communicate with each other,
such as a UI if the user is using the Kubernetes dashboard, or an API if the user
is using scripts and automation technologies, as well as a command-line tool. In
addition, another process known as a controller manager is operating in master
nodes. This essentially maintains track of what’s going on in the cluster, such as
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whether something needs to be fixed, whether a container has died and needs to
be restarted, and so on. Another component is the scheduler, which is in charge of
scheduling containers across nodes based on workloads and server resources available
on each node. It’s an intelligent procedure that determines which worker nodes the
next container should be scheduled on based on the worker nodes’ available resources
and the container’s load requirements. Etcd key-value storage is another component
of the entire cluster. Which encapsulates the current state of the Kubernetes cluster
at any given time. As a result, it contains all of the data configuration as well as
all of the status data for each node and container within the node. Finally, the
virtual network is a crucial component. It allows those nodes, worker nodes, and
master nodes to communicate with one another. In basic terms, a virtual network
transforms all of the nodes in a cluster into a powerful machine with the sum of all
of the nodes’ resources. Let’s take a deeper look at Kubernetes components.

Figure 2.7: Kubernetes [27]

2.9.1 Control Plane Components

Control plane components are responsible for managing Kubernetes resources and
making sure everything is working properly. It tracks all the events on a cluster. If
a pod fails to run it will take care of that.
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Figure 2.8: Kubernetes Pods [28]

Any machine in the cluster can be used to run control plane components. To keep
things simple, set-up scripts usually do not launch user containers on the machine
where the control plane components are started.

2.9.2 Kube-API-Server

KubeAPI-server manages the connection between nodes and controllers. When new
nodes are added to the cluster the API server communicates with the nodes and
scales the cluster. It sends commands to the nodes and tracks their behavior. It
also divides I/O loads.

2.9.3 etcd

Etcd is a the database of the cluster. It contains all the configuration and authen-
tication keys.

2.9.4 Kube-Scheduler

Kube-Scheduler maintains the daily scheduled tasks. A lot of tasks are needed to
be done routinely to make sure things are running properly.

2.9.5 Kube-Controller Manager

These are the Kube-Controller Manager.
Node Controllers: Node controllers are in charge of identifying outages and taking
appropriate action.
Job Controller: Keeps an eye out for Job objects that stand for sporadic duties and
subsequently constructs Pods to carry out those activities.
Endpoints Controller: Adds objects to the Endpoints object by joining Services and
Pods.
Service Account & Token Controllers: Generate API access tokens and default ac-
counts for new namespaces.
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2.9.6 Cloud-Controller Manager

In most scenarios Kubernetes will run on the cloud. So the cloud provider adds their
application in the cluster to manage the clusters and provide a client on demand
basis. For different cloud providers these implementations are different.
Node Controller: After a node stops responding, to check the cloud provider to see
whether it has been destroyed in the cloud.
Route Controller: Controls internal routing.
Service Controller: Manages Kubernetes services.

2.9.7 Node Components

Every node has some services to run alongside Kubernetes applications. They com-
municate with the master node or nodes to receive tasks and instructions. They
track pods’ resource utilization and send them to the master. If something goes
wrong, it reports to the master node.

2.9.8 Kube-proxy

Kubernetes relies on complex networking. It communicates in between for many
services. It is not easy to access an running application on Kubernetes on a default
port. Firewall protocols and network rules are set up by this Kube-Proxy.

2.9.9 Container Runtime

Kubernetes supports container runtime other than Docker. Some of them are con-
tainerd, CRI-O etc. Users can choose which container runtime they want to use for
their application.

2.9.10 Services

To access the application running on Kubernetes, services are needed like Node Port,
Load Balancer, Cluster IP, Ingress. To use a FQDN on an application, Ingress is
used.
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Chapter 3

Related Study

3.1 Kubernetes Performance Major Cloud Providers

According to study [2], Kubernetes is a better deployment system than most con-
tainer orchestration systems.According to study [12], the author compared a few
managed Kubernetes systems and benchmarked their CPU, Memory, and I/O. All
of them are synthetic benchmarks and though they give us an Idea about the per-
formance, Real world applications are much more complicated. Most of the time,
the loads are HTTP-based and HTTP loads are not linear. In our testing, we
are primarily focused on determining the CPU’s performance based on the HTTP
performance.

3.2 Kubernetes Auto Scalability

Kubernetes’s biggest strength is scalability and availability. The small unit of appli-
cation running instances is known as pods. Pods will automatically scale or restart
based on requirements. It is also easy to increase or decrease the number of in-
stances based on demand according to study [11]. Kubernetes also balances load
automatically according to study [14]. One can create a cluster with a single node
for testing but no one will use that in production. So, there will be multiple nodes
in a cluster. And the load will be equally distributed among the nodes. It confirms
the fair allocation of resources.

3.3 Different Types of Kubernetes

There are also different types of Kubernetes. Each of them manages the clusters,
pods, and services in their way. They have their pros and cons according to study
[21]. Though Creating an ARM cluster is a relatively new concept in cloud comput-
ing. In the Homelab community, many people are creating clusters on Raspberry Pi
according to study [19]. According to study [22], A raspberry PI cluster was created
based on K3s. K3s is a lighter version of Kubernetes. Google’s vanilla Kubernetes is
known as K8s. The price to performance of a raspberry pi cluster is great. Though
it has some limitations. It lacks availability. It is hard for an individual to create
a highly available cluster. The individual will also have to bear the upfront cost of
owning the hardware. Here, a cloud solution makes more sense.
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3.4 Current Situation of CPU Platforms

Currently, only Intel and AMD make x86 processors. Almost all Desktop and Lap-
tops run on x86 CPU. All mobile devices are ARM based according to study [18].
Intel has some ARM CPUs but their performance is very poor. Other than Apple,
nobody has still created any desktop ARM CPU that performs well. Apple’s M1
CPU is revolutionary [13]. Raspberry Pi is a great example of ARM’s success. It is
cheap and power efficient. So it is perfect for small-scale servers or IoT applications
according to study [1]. It acts as a gateway for a lot of developers as it is cheap and
easily accessible.

3.5 ARM Support on Major Cloud Providers

For server or enterprise applications Intel has Xeon-based CPUs according to study
[9]. They have a high Core count and a lot of PCI-E lanes for additional hardware.
AMD has EPYC CPUs for the enterprise. They are available up to 64 cores and
up to 128 PCI-E Gen-4 lanes according to study [20]. These products have served
well till now in high-performance computing. ARM’s enterprise lineup of products
is Neoverse. Neoverse N1 has up to 128 cores and they are cheap and power ef-
ficient. AWS’s Graviton CPU is based on Neoverse N1[16]. Our testing system
will determine the best price-to-performance architecture for general Kubernetes
applications.
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Chapter 4

Methodology

In this paper, we created a stress testing model described in 4.1. Stress testing
cloud systems are pretty complex. Our goal was to find out the performance of
each architecture on the same load and then compare the price to performance
to determine the better platform based on cost. The following aspects were given
importance:

1. What is the complexity of deploying pods in clusters based on different archi-
tectures?

2. What kind of benchmark tool will be best for our experiment?

3. How will these clusters perform under stress tests?

4. Which is the better option when the cost is considered?

Figure 4.1: Testing Model

4.1 Testing Plan

Kubernetes is primarily used in microservices or web applications. Microservices
are mostly based on HTTP protocol. REST API is a good example of microservice.
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GET, POST, DELETE, PATCH, and PUT protocol are used to fetch data from
server, send data to server, delete data from server and update data of the server.
We created clusters on different Cloud providers which are running on different CPU
architectures. We created the same application on differnt popular frameworks and
then ran benchmark on them. These tests covers a lof of scenario. We would also
ran a sythetic benhmark called Sysbench to test our nodes’ I/O. It gave us read/s
and write/s of the system.

4.2 Deploying Clusters

We tested on 4 different platforms. We tested on Intel, AMD, Ampere, and Graviton.
Here Intel and AMD are based on x86 architecture. Ampere and Graviton are
running on ARM architecture. We made Kubernetes clusters on these platforms.
We created these clusters on the public cloud. For our testing, we created clusters
on GCP, AWS, and Oracle Cloud. We tried to keep the testing field consistent as
much as possible. All the clusters had 3 Nodes each consisting of 2 Cores and 8
GB of RAM. Each cluster had its own Virtual Cloud Network. All the clusters are
deployed in different fault domains/ zones. Which increases availability even more
at the cost of negligible latency. Clusters were created on the web GUI of Google
Cloud Platform and Oracle Cloud Platform. To create clusters on AWS we had to
use the AWS-CLI tool to access our cloud resources and we used EKSCTL to create
the Kubernetes cluster from a YAML configuration file.

4.2.1 x86 Intel Cluster

An Intel x86 cluster was created on the Google Cloud Platform. The Nodes were
running on Intel® Xeon® Gold 6314U processors. These Nodes were based on
GCP N2 type instances. Kubernetes version 1.22.11-gke.400 was used to create the
cluster. The region of the data center was ”asia-southeast1-a”.

4.2.2 x86 AMD Cluster

An AMD x86 cluster was created on the Google Cloud Platform. The Nodes were
based on GCP T2D instances. The Kubernetes version and datacenter region are
the same as the Intel x86 cluster. The Nodes were running on an AMD EPYC 7B13
processor.

4.2.3 ARM Ampere Cluster

An Ampere cluster was created on Oracle Cloud. The cluster was based on Kuber-
netes version 1.24.1. The cluster nodes are based on Oracle. It was hosted on Oracle
Cloud ”ap-singapore-1” zone. The nodes were based on VM.Standard.A1.Flex.

4.2.4 ARM Graviton Cluster

A Gravitron cluster was created on AWS. Kubernetes version of the cluster was
1.22. The nodes were based on AWS m6g.large instances. The cluster was located
on ”ap-southeast-1” AWS zone. These nodes were running on Neoverse N1 CPU.
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Cloud
Provider

Intance
Type

Number of
Nodes

CPU Cores RAM
Kubernetes
Version

Datacenter
Location

CPU
Architecture

GCP N2 3 Intel® Xeon® Gold 6314U 2 8 1.22.11-gke.400 asia-southeast1-a x86
GCP T2D 3 AMD Epyc 7B13 2 8 1.22.11-gke.400 asia-southeast1-a x86
Oracle
Cloud

VM.Standard.A1.Flex 3 Ampere A1 2 8 1.24.1 ap-singapore-1 ARM

AWS m6g.large 3 Graviton 2 8 1.22 ap-southeast-1 ARM

Table 4.1: Platforms

4.3 HTTP Tools

We created HTTP applications to benchmark the clusters. The primary goal of
the HTTP application will be to stress the CPU of the nodes and to check the
performance of the HTTP . As we want to keep any other aspect of the system
isolated from the test. We made an application that calculates the Fibonacci series.
The last position of the series is passed through the application by GET request and
the result and sent in a JSON body. We only focused on the CPU of the system. So
we avoid using any external API, external database, block or object storage. These
things will introduce many variables. We can not deploy all of our testing in the
same datacenter as different providers provide different systems running on different
CPU architectures. The complexity of our application is O(n). A single execution
of the application does not put much stress on the system. But for our experiment
we are going to create synthetic load to find the performance of the system in the
worst case scenario.
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Figure 4.2: Fibonacci Pseudo code

4.3.1 Creating REST API

We are using the REST API as it is widely used in the industry and it will give
us the best scenario of real-life implementation of Kubernetes. The last index of
the Fibonacci series will be delivered to the application through a GET request and
it will be in the URL. The application will calculate the value and send the value
through an HTTP response with a status code 200 and the value in the body as
a JSON. We have created the same application on 4 major frameworks. They are
Express, Flask, Gin, and Actix. They are running Node JS, Python, Golang, and
Rust. Currently, they are one of the most used cloud-native languages. Node Js
and Python are two mature languages. Though Golang and Rust are comparatively
new in the programming world, they are gaining massive popularity overnight for
their performance and memory management.
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Figure 4.3: Express API

4.3.2 CPU Information Collection API

From the dashboard of every major cloud provider we can see the CPU’s family
or generation but they do not show which specific CPU our system is running on.
To get the specific CPU model we created an Express Application that sends the
System’s CPU information such as model, clock speed and number of cores in a
JSON body.
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Figure 4.4: CPU info collection API

4.3.3 Containerization

To run our application on a Kubernetes cluster we had to convert our application
into a docker image. Here we faced our first challenge for running our application
on different architectures. Though the code for running on different architectures
was the same, the runtime created for x86 will not work on ARM as they have
different instructions. Such as Node JS for x86 and Node Js for ARM are not the
same binary file. When we are creating an HTTP docker image we use some sort
of Docker image as a base and build on top of it. So for creating x86 systems we
used Docker images intended for x86 systems and for ARM systems we used Docker
images intended for ARM systems. To simplify our building we created a Dockerfile
to create the image. We created the x86 Image on an x86 system by running the
Dockerfile on it. To create the ARM image we ran the Dockerfile on a Raspberry
Pi 4. The images were tagged differently to make them easy to identify.
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Figure 4.5: Dockerfile

4.3.4 Uploading to Image Registry

We have created clusters on different datacenters. To access the images on different
datacenters we needed to upload our images to an image registry. We uploaded our
images to Docker Hub which is a free image registry for public images. First, we
had to create an account on docker hub and then login through the cli to upload
the image with a custom tag.

4.4 Sysbench

We used Sysbench to measure the storage performance of the nodes. We used an
exisitng Sysbench application container. 1 single pods was deployed to measure the
best possible storage perofrmance.
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Chapter 5

Experimental Evaluation

Now we are going to run our experiment and analyze the results to conclude. From
our results, we will be able to understand the performance differences between the
two architectures.

5.1 Experimental Settings

We had to connect with our cluster and then create pods and services to access
our application. Then we called our API with a client simulator that will create a
massive number of requests which will stress test the system.

5.1.1 Connecting with the cluster

To access the resources of a Kubernetes cluster we need to use a tool called Kubectl.
We use Kubectl version 1.24.0. With the help of Kubectl, we can see a cluster’s
nodes, pods, namespaces, and services. We can also inspect logs and create inter-
active shells inside the pods. To connect with a cluster we need a configuration file
named KubeConfig. To access the GCP clusters we used the Google Cloud CLI tool
to access the KubeConfig file. For the AWS cluster, we used the AWS-CLI tool and
to access the OCP cluster we used the OCI tool.

5.1.2 Deploying pods and services on the clusters

After connecting with the cluster we used a YAML file to deploy our application
on the Kubernetes cluster. For our experiment we deployed 15 pods, so 5 pods on
each of our nodes. Kubernetes uses internal networking to communicate within the
cluster. To access the HTTP application we used an external load balancer. The
load balancer distributed the load among the nodes. All of this was deployed in the
default namespace. The services were also deployed in the same YAML file. We
deployed the x86 images on x86 clusters and ARM images on the ARM clusters.
The application that collects CPU information was also deployed with a YAML file
and routed with an external load balancer.
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Figure 5.1: Express API Deploy
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5.1.3 Setting up Benchmarking Tool

We used an open-source tool named Vegeta to stress test our cluster. Vegeta was
set up on a Linux machine running Linux Mint 21. It was running on Intel 5820K.
Intel 5820K has 6 cores and 12 threads. It had 32 GB of RAM and 256 GB of SSD.
It also had 1 GBPS uplink to the cloud data centers.

OS CPU Core Threads RAM
CPU
Architecture

Linux
Kernel

Linux Mint 21 Intel 5820K 6 12 32 GB x86 5.15

Table 5.1: Testing Client

5.1.4 Benchmarking Parameters

We stress-tested each cluster with Vegeta. Vegeta is based on Golang. We ran the
test for 30 seconds for each cluster running each application. For Express, Gin, and
Actix applications we sent 8000 requests per second for 30 seconds. For Flask we
sent 500 requests for 30 seconds. We noticed if we were sending more than 500
requests per second the results were degrading exponentially. So for Flask, we stuck
with 500 requests per second.

To measure I/O, we ran a Sysbench container. A single pod was deployed in the
cluster. The parameter of the test was set to default. Prime Number Limit was set
to 2000 and a single thread was used to run this benchmark

5.1.5 Collecting CPU information

We ran the CPU information collecting API to get the CPU model, clock speed,
and the number of cores.

5.2 Experimental Results

After running the benchmark we have gathered data on the benchmark. We noted
down throughput, and success rate, and calculated the price to performance.
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Platform Express JS Flask Gin Actix

x86 Intel
Throughput

(requests/second)
2128.84 309.2 7981.29 5647.71

Cost per Month ($) 296.1
Price to Performance 7.189598109 1.04424181 26.95471125 19.07365755
Seccess Rate (%) 77.25 92.63 100 99.92

x86 AMD
Throughput

(requests/second)
1092.93 305.36 7982.81 6855.55

Cost per Month ($) 314.47
Price to Performance 3.475466658 0.971030623 25.38496518 21.80033072
Seccess Rate (%) 48.95 91.6 100 99.92

ARM Ampere
Throughput

(requests/second)
7958.88 361.18 7989.75 5797.38

Cost per Month ($) 120.4
Price to Performance 66.10365449 2.999833887 66.36004983 48.15099668
Seccess Rate (%) 100 99.97 100 99.92

ARM Graviton
Throughput

(requests/second)
7956.84 243.25 7980.15 6226.32

Cost per Month ($) 243.42
Price to Performance 32.68770027 0.9993016186 32.78346069 25.57850629
Seccess Rate (%) 99.96 72.24 99.93 99.82

Table 5.2: API Benchmark Results

Platform CPU Architecture Read/s Write/s
GCP Intel x86 2137.06 1424.71
GCP AMD x86 2086.93 1391
Oracle Cloud ARM 937.51 624.94

AWS ARM 1807.59 1205.06

Table 5.3: I/O Results

5.2.1 Express Results

The throughput of express API is highest on Ampere. In the second place, there
is Graviton. Intel and AMD and third and fourth respectively. The success rate
is also the highest on Ampere. Graviton is close second and Intel and AMD are
third and fourth again. If we consider price to performance Ampere is ahead by
a long shot. Graviton’s price-to-performance is half of Ampere and compared to
ARM platforms, x86 platforms’ price to performance is really low.
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Figure 5.2: Express Throughput

From figure 5.2 we can see that the express API is highest on ARM Ampere then in
ARM Gravition. x86 AMD takes the lowest amount of requests which is 1092.93.

Figure 5.3: Express Success Rate

From figure 5.3 we can see that the highest rate of success in ARM Ampere which
is 100 percent and ARM Graviton in the second position having 99.96 percent of
rate. x86 AMD provides the lowest rate of success which is 48.95 percent.
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5.2.2 Flask Results

Flask’s throughput is highest on Ampere. Followed by Intel, AMD, and Graviton.
The success rate is also highest on Ampere and Intel, AMD and Graviton are second,
third, and fourth respectively. For Ampere price to performance is also very high
compared to other platforms. In the second place, there is Intel and it is less than
half of Ampere. AMD is close third and Graviton’s price to performance is the
poorest here.

Figure 5.4: Flask Throughput

In figure 5.4 Flask throughput is also highest on ARM Ampere and lowest on ARM
Graviton. Intel and AMD are second, third respectively.

Figure 5.5: Flask Success Rate
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In figure 5.5 Flask success rate is highest on Ampere and second, third on Intel
and AMD respectively. Graviton shows the lowest performance rate that is 72.24
percent.

5.2.3 Gin Results

Throughput is almost the same for all platforms. For ARM, Gin’s price to per-
formance is equivalent to Express. But the price to performance increased for x86
platforms. The success rate for all platforms is close to 100 percent.

Figure 5.6: Gin Throughput

In figure 5.6 we can see that the Ampere takes the highest request that is 7989.75
and AMD ,Intel ,Graviton are second ,third and fourth respectively.
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Figure 5.7: Gin Success Rate

In the figure 5.7 we got 100 percent rate in Intel, AMD and Ampere platforms. Only
the Graviton gave 99.93 percent of the rate.

5.2.4 Actix Results

For Actix AMD’s throughput was the highest. Graviton, Ampere, and Intel are
second, third, and fourth respectively. The success rate is close to 100 percent for
all platforms. In price to performance, Ampere is the winner. Followed by Graviton,
AMD, and Intel.

Figure 5.8: Actix Throughput
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From figure 5.8, we can figure the highest rate of request on AMD for Actix through-
put. Graviton having the second position and Ampere, Intel are third and fourth
respectively.

Figure 5.9: Actix Success Rate

From figure 5.9, here in Actix success rate the Ampere got 99.96 percent which is
the highest one. Later Intel, AMD and Graviton comes second,third and fourth
respectively.

5.2.5 I/O Results

In I/O GCP platform gave us better performance. Here Intel and AMD have the
Lead. Graviton’s performance is not far behind. Amerpe’s performance is the lowest
here.
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Figure 5.10: I/O Performance

In this chart, we find a different result where Ampere got the lowest value of per-
formance where the read is less than 1000 items per second and write is above 500
items per second. Intel got the highest value of reading approximately above 2000
and writing is below 1500 items per second. Moreover, AMD and Graviton are
second, and third respectively according to performance.

5.3 Experimental Findings

In most scenarios ARM had the upper hand. Express’s performance on X86 was very
poor compared to ARM. Graviton’s and Ampere’s performance was pretty much in
the same ballpark. But Due to Ampere’s low cost in price to performance ratio,
Ampere always had a great advantage.
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Figure 5.11: Cost Difference

In this figure 5.11, we can see that the most efficient platform is the Ampere, it cost
only 120.4 dollars. On the other hand AMD platform has the highest cost around
314.47 dollars.

Figure 5.12: Express Price to Performance Ratio

From figure 5.12, In case of price to performance Ampere has the highest value
approximately 70 while Graviton has the second highest value around 32. On the
other hand AMD has the lowest value that is less than 5.
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Figure 5.13: Flask Price to Performance Ratio

From figure 5.13, In the flask price to performance chart Ampere got the peak value
of performance that is 3 while Intel is slightly higher than 1 and Graviton got the
value exactly 1. On the other hand AMD has the lowest performance that is below
1.

Figure 5.14: Gin Price to Performance Ratio

From figure 5.14, In this figure Ampere has the highest performance approximately
65 and Graviton has the second highest performance which is below 35 while the
other two Intel, AMD got the value below 30.
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Figure 5.15: Actix Price to Performance Ratio

From figure 5.15, In the above figure we will find Ampere having the highest per-
formance value which is near to 50. Graviton and AMD got the value that is above
20 respectively while Intel has got the lowest performance value which is below 20.

5.3.1 Theoretical Comparative Study

Name Benchmark Cloud Highly Available Cluster Platform
Synthetic Custom Built Public Private x86 ARM

Our Methodology Yes Yes Yes Yes Yes Yes
A Performance Evaluation of Containers running on

Managed Kubernetes Services
Yes Yes Yes Yes

Self-Hosted Kubernetes: Deploying
Docker Containers Locally with MINIKUBE

Yes Yes

A Comparison of Kubernetes and Kubernetes-
Compatible Platforms

Yes Yes Yes Yes

Design and Deployment of Kubernetes Cluster
on Raspberry Pi OS

Yes Yes

Table 5.4: Comparison

From the above table we can see that we have used Synthetic and custom build
benchmark tools. And our cloud service was public and highly cluster was available
and we have tested on x86 and ARM architectures. But others did not use these
benchmark tools both, their cloud service was private and more importantly they
did not test it in x86 and ARM both architectures. Which gives our methodology
of testing more accuracy than others. Finally, we can say that our result that we
presentedd on this paper is much more realistic than others and it will help the
developer community in real time.
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Chapter 6

Discussion

6.1 Overview

Our thesis title is ”Kubernetes performance analysis on different architectures.”
Here we tried our best to come up with real-world results which we have gathered
from testing a couple of Kubernetes services offered by different organizations based
on different architectures. Here we have tested the x86 platform both on Intel and
AMD, ARM platform in Ampere, and Graviton also. Where we have tested them
using Express JS, Gin, Flask, Actix, etc. First, we had to write API in the mentioned
framework. We had to connect with our cluster and then create pods and services
to access our application. Then we called our API with a client simulator that will
create a massive number of requests which will stress test the system. Then based
on the result we have reached our final verdict.

6.2 Limitations

There are a few limitations in our paper

1. We could not check every single major CPU.

2. We could not check every single cloud service provider.

3. Different cloud providers use different virtualization technology, different stor-
age speeds, etc. So the same CPU can show different performance.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

From the experiment we can see that ARM’s performance is greater than most x86
in most scenarios. It’s because ARM is comparatively new architecture and has
better instructions.But in the industry the use of x86 is widespread. So, a lot of
businesses use x86. The mass transition of ARM is still on the way. When we start
considering cost, ARM becomes a clear winner. ARM’s cost is low to begin with
and Cloud privers like Oracle are providing their Ampere platform at a very cheap
rate compared to the competition. They are providing this service at this rate to
promote their product.Even the most complex ARM chips are orders of magnitude
(or two) simpler than the most basic contemporary X86 CPUs, making ARM signifi-
cantly less expensive. They are widely produced by many different businesses under
license, in contrast to X86, where two companies essentially control the market,
which is possibly relevant. Most ARM processors can be used without spending a
fortune. ARM processors are easier to develop and frequently considerably smaller
than other CPUs because of their RISC architecture, which is less complex.For a
large corporation who need highly available, highly scalable and high performing
Kubernetes to run its infrastructure, ARM is a great choice for them as it is cheap
and energy efficient.

7.2 Future Plans

Furthermore, plenty of room is available to extend this study. In the future, we can
include more diverse benchmarking to narrow down each architecture’s strength and
weakness. To test the performance, we chose the Google Cloud Platform, although
there are many other platforms as well, including Amazon Web Services (AWS),
Alibaba, Microsoft Azure, and IBM Bluemix. In order to advance the research, we
can also evaluate how well these various platforms performs.
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