
An Improved DeepFake Detection Using Deep Learning

by

Annay Paul
18301097

Binayak Kumar Dey
18301054

Md Mostafa
18301132

Maharin Mosfakin
18301119

Rukshana Amin Tonika
18301247

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
September 2022

© 2022. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Annay Paul
18301097

Binayak Kumar Dey
18301054

Md Mostafa
18301132

Maharin Mosfakin
18301119

Rukshana Amin Tonika
18301247

i

Approval

The thesis titled “An Improved Deepfake Detection Using Deep learning” submitted
by

1. Annay Paul (18301097)

2. Binayak Kumar Dey (18301054)

3. Md Mostafa (18301132)

4. Maharin Mosfakin (18301119)

5. Rukshana Amin Tonika (18301247)

Of Summer, 2022 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on September 20, 2022.

Examining Committee:

Supervisor:

Dr. Muhammad Iqbal Hossain
Associate Professor

Department of Computer Science and Engineering
Brac University

Program Coordinator:

Dr. Md. Golam Rabiul Alam
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:

Sadia Hamid Kazi
Chairperson

Department of Computer Science and Engineering
Brac University

ii

Abstract

With the emergence of Generative Models for creating Deepfake images, and videos
of high quality, which are extremely realistic and hard to recognize, several social,
and political issues have come to light. DeepFakes of celebrities and political per-
sonalities are used to exploit and spread misinformation that leads to several social
and political unrest. Hence, the necessity to develop a methodology to detect such
images and videos created with DeepFakes has arisen in recent times. Several state-
of-the-art methodologies are in use for the purpose such as CNN, RNN, reverse
engineering of GMs, neural networks, ensemble-based learning approaches, etc. As
many machine learning-based approaches are already adopted, our aim is to improve
the quality of detection of DeepFakes using models that utilize deep learning, in our
study. The state-of-the-art methodologies have shown promising results when ap-
plied to popular datasets vastly used for training and research purposes. However,
most methods are not robust enough to perform well in all kinds of general-purpose
DeepFakes. Hence, in this paper, we have developed a new comprehensive and ef-
ficient framework that improves the DeepFake detection performance not only on
general purpose but also on training purpose data.

Keywords: Deepfake, GAN, CNN, RNN, Reverse Engineering Of GM’s

iii

Acknowledgement

This research was done with the support of BRAC University. First and foremost,
we give appreciation to the Great Allah for protecting us from harm during the
COVID-19 epidemic, which allowed us to complete our study on time. We would
want to take this occasion to express our gratitude to Dr. Md. Iqbal Hossain sir,
our supervisor, for all of his efforts in guiding us and for allowing us to work for him.
We would like to show our thanks to Dr. Golam Rabiul Alam sir for supporting
us greatly from the beginning and for mentoring us and offering guidance while we
conducted the research. And lastly, thanks to our parents for their kind prayers and
support.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables viii

Nomenclature ix

1 Introduction 1
1.1 Research Problem . 1
1.2 Research Objectives . 3
1.3 Background Studies . 4

2 Related Work 7

3 Dataset And Preprocessing 9
3.1 Preprocessing . 9
3.2 Dataset . 10

4 Proposed Deepfake Detection Architecture 12
4.1 Motivation . 12
4.2 Proposed deepfake detection framework 12
4.3 Short Description Of Proposed Model and Architectures Used For

Comparison and Composition . 13
4.4 Model Details . 15

4.4.1 ConvNeXt: . 15
4.4.2 LSTM . 16

5 Experiments And Results 20
5.1 Parameter Settings . 20
5.2 Evaluation Matrices . 21

5.2.1 Adam . 21

v

5.3 Performance Evaluation Matrices . 22
5.3.1 Cross Entropy Loss . 22

5.4 Result . 23
5.4.1 Graphs On Loss function Calculation 24

6 Conclusion 28
6.1 Limitations . 28
6.2 Future Work . 29

Bibliography 30

vi

List of Figures

3.1 A Flowchart to showcase the steps for generating output through the
model . 10

4.1 A block diagram displaying the generic architecture of the proposed
model . 13

4.2 Standard, Depth-wise and Point-Wise Convolution 15
4.3 Block Modifications (a) Standard ResNeXt Block (b) Inverted Bot-

tleneck Implementation . 16
4.4 Block Design of ConvNeXt From . 16
4.5 LSTM Dataflow . 17
4.6 Cell State . 17
4.7 Gate Layer . 17
4.8 Forget Gate. 18
4.9 Input Layer, Sigmoid and tanh operation. 18
4.10 Updated Value. 19
4.11 Output Layer. 19

5.1 Loss Function: Swin Transformer architecture 24
5.2 Accuracy: Swin Transformer architecture 25
5.3 Loss Function: VGG16 architecture 25
5.4 Accuracy: VGG16 architecture . 26
5.5 Loss Function: ConvNeXt architecture 27
5.6 Accuracy: ConvNeXt architecture . 27

vii

List of Tables

5.1 LSTM Blocks and Layers in each architecture 20
5.2 Number of parameters in each architecture 21
5.3 Number of Videos in each architectures 21
5.4 Performance comparison on each dataset. 23

viii

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ANN Artificial Neural Network

CNN Convolutional Neural Network

DFDC Deepfake detection challenge

DNN Deep Neural Network

FF ++ FaceForensics++

GANs Generative Adversarial Networks

LSTM Long Short Term Memory

ReLU Rectified Linear Unit

RESNET Deep Residual Networks

RNN Recurrent Neural Network

SWIN Shifted Window

V GG Visual Geometric Group

V iT Vision Transformers

ix

Chapter 1

Introduction

In this era of the 21’st century in all of social media, we can see many forged contents,
where the authenticity of the contents raises questions. It has come to our senses
though we are not bothered by the authenticity of these contents always, many
people are taking advantage of this fake content and the victims are experiencing
horrible consequences. This problematic situation is caused by DeepFake.
DeepFake refers to fabricated multimedia such as photographs or videos of a person
created using deep learning algorithms. Using deep neural architectures many open
source software has been developed to create this manipulated multimedia. The
availability of this software is so widespread that anyone can create these forged
contents very easily. Many advanced technologies have been developed for several
years to detect these deepfakes contents. These technologies work effectively in
certain contexts. However, these do not guarantee satisfactory results in the identi-
fication of deepfake contents in a variety of settings, which is why new technologies
are being developed day by day.
Deepfake detection is becoming increasingly relevant at the moment because it
causes us to be misled by fake information, also creating chaos and economic loss.
Recently, some criminals used deepfake and manipulated personal data and facial
recognition systems which caused the Chinese government to lose $76 million dollar.
Then also we have seen US President Donald Trump mocking Belgium for staying
in the Paris climate agreement. Following that, we saw Tom Cruise performing coin
tricks on social media.[1] After some time, it became clear that the video was a
hoax.
As aforementioned, this has encouraged us to focus on improving DeepFake detec-
tion. In DeepFake detection, we get to see the use of CNN, RNN, GANS, and many
more. CNN gives high accuracy in image analysis. RNN is used with CNN to resolve
temporal data problems.

1.1 Research Problem

Due to the exponential growth in the number of users for web applications and so-
cial media platforms for content creation and communication respectively the digital
world is potentially becoming a resource for both information and misinformation
alike. Leveraging this idea several malicious sites and technologies have emerged
over the past few years that have attempted to exploit the users all around the
globe by spreading misinformation. One such instance of a rising technology is the

1

creation of deepfake videos. According to [2], deepfakes can produce three various
kinds of films, including those that use lip-syncing, face switching, and head pup-
petry. With the vast amount of technological establishments that are exposed to
modern society, such videos may have several social and political repercussions. As
such, many companies including the current tech giants such as Google, Facebook,
etc. have come forward to participate in fighting the challenges imposed by deepfake
videos [3][4]. Even while many deepfakes may be produced using conventional visual
components or computer graphics, deep learning techniques like autoencoders and
generative adversarial networks—which are already widely utilized in the computer
vision field—are the most well-known and commonly employed underlying mecha-
nism for deepfake synthesis. In order to train various models to produce convincing
photos and videos, deepfake techniques may require a significant quantity of visual
data. Celebrities and politicians are the primary targets of deepfakes since their
images and videos are so readily available online [5].
In most concerted initiatives, certain similar flaws in deepfake detection have been
observed, such as datasets-related issues, the ambiguity of not covering all accessi-
ble datasets by any particular method, and so on. Likewise, all existing databases
include the contents of celebrities, politicians, and other well-known people. Fur-
thermore, all current architectures are only applied to static visual contents.
We observed that a single source video was conducted to generate various sorts
of alterations in the vast majority of instances. As an outcome, numerous fakes
were created by oversampling a single face. Many DeepFake generators use minor
adjustments to a source face in order to vary the facial expressions, making it hard
to distinguish between altered and actual faces. Due to the sheer lack of variety
and oversampling, the data is overfitted immediately even before discovering the
important deepfake features. Despite learning manipulation aspects, the networks
begin to encode the faces of the subject which causes poor performance [6].
In most datasets, celebrities are targeted in deepfake videos because thousands of
pictures of celebrities are available on the internet, and the majority of these images
are of the subject facing the camera. As a result, the quality of deepfakes has reached
a stage where they are nearly indistinguishable from actual footage, and the focus
has shifted towards generating these deepfake of ordinary people. A study conducted
by Singh et al [7] showed that a limited number of images taken from a YouTube
video can be used to generate photo-realistic artifacts via a GAN-based approach
that are not detectable by the human eye. Thus the creation of deepfake videos has
taken a great leap forward keeping the generation process no longer limited to the
specific datasets already available.
Along with other issues, it has come to our attention that one particular method
cannot provide effective accuracy for all datasets. According to [8], the accuracy rate
from ResNet50 is 93.70% and VGG16 is 87.50% which might indicate that not all
the deep neural network architectures will have satisfactory performances in several
datasets. Other than that, all these architectures provide a high-performance rate
only for images, not videos.
Though there are several studies that have been and are being conducted on deep-
fake detection methodologies they suffer from some common issues as mentioned by
Lyu et al in [9]. According to the author, the issues can be listed as the following
challenges

2

• Limitation: One of the major concerns about deepfake detection algorithms
is that though these methods have been trained on different existing datasets,
it still faces different challenges regarding performance evaluation [10].

• Performance evaluation: Deepfake videos can be considered a binary clas-
sification problem. In the real world, these deepfake detection methods result
in a blurrier picture. The binary classification approach must be expanded
towards different classes of detection, in order to effectively address the com-
plexity of mainstream media falsifications.

• Explain-ability of Detection Results: Several deepfake detection ar-
chitectures which are data-directed, lack appropriate explainability due to the
characteristic of DNN models, defined as the black-box[9]. If a numerical score
related to a video that was made by using a synthesis algorithm is not validated
by proper reasoning, it becomes of no use for practitioners.

• Temporal Aggregation: The majority of extant deepfake detection algo-
rithms seem to be focused on frame-level binary classification. This system
comprises two major flaws. Firstly, regardless of the fact that many deep-
fake images exhibit temporal irregularities, the temporal stability of frames is
not specifically evaluated. Secondly, we must integrate scores over each frame
while calculating such scores.

1.2 Research Objectives

The aim of the study is to combine elements of several existing works into one frame-
work in order to develop a detection methodology that can generate an equivalent or
more efficient outcome than the state-of-the-art methodologies. Going through the
several existing experiments we have drawn the conclusion that all the methodolo-
gies have some limitations in terms of performance or robustness. Therefore, our aim
is to evaluate the proposed framework for all the existing experimental dimensions
in order to generate a robust model that will not lag in performance.
Dynamic face augmentation is a technique for preprocessing a dataset using the
face’s landmark location value. The positioning of the ears, eyes, nose, jawline, and
mouth are considered landmark points of the face. Dlib is a cutting-edge architecture
that can recognize the 68 distinct landmark places on the face ranging from 0-to 67
that are utilized to compute the polygon for face cutout [6].
An automated deep learning technique called CNN, uses a grid like system to anal-
yse the data which is derived from the architecture of the animal visual system
[11]. Additionally adaptable, it can learn spatial hierarchies of attributes ranging
from basic to complex patterns. The fundamental types of layers in CNN include
convolution, pooling, and completely connected layers. The first two layers- convo-
lution and pooling, locate and retrieve the attributes. These qualities are converted
into end outputs, like categorization, via the third layer, a completely connected one.
Convolution layer, a form of linear process, is one of the crucial parts of CNN, which
is made up of a sequence of arithmetic functions like convolution. Extracted charac-
teristics can gain hierarchical order and grow more complex as one layer transmits
its result into the following. Additionally, training is the method of altering kernels
and other parameters to create a connection between the labels on the ground truth

3

and the outcome. Gradient descent and backpropagation optimization methods are
used to establish the connection [12].
An effective neural network training approach for interpreting sequence data is re-
current neural networks. Feedforward neural networks from where RNNs have been
developed, act in the same way as human brains. Other algorithms are unable to
predict sequence information in the same manner as recurrent neural networks do.
An RNN’s input is a loop that repeats itself. Before drawing conclusions, it assesses
the present input and what it has acquired from earlier entries [13].
The development of a hybrid deep neural network-based model that can enhance
the performance of recognizing deepfake content is the main goal of this research.
Dynamic face augmentation, as well as CNN and RNN-based models, are the ar-
chitectures we’re attempting to integrate to achieve our goal. We’ll preprocess the
available datasets using Face-Cutout, a dynamic face augmentation so that they
don’t overfit the models. The preprocessed datasets will next be trained using deep
neural models based on CNN and RNN.

1.3 Background Studies

The practice of photo manipulation emerged in the 19th century and was imme-
diately applied to film. With the advent of digital video, technology developed
steadily and more fast during the 20th century. Beginning in the 1990s, univer-
sity researchers created deepfake technology, and subsequently, amateurs on inter-
net forums. There are still other online communities where people share deepfakes
of politicians, celebrities, and other people, such as those on Reddit like r/SFW
deepfakes, which do not distribute pornography. On websites that do not restrict
deepfake pornography, several other online groups nevertheless exchange porn. An
exclusive desktop program named FakeApp was introduced in January 2018. With
the help of this software, users may quickly make videos in which their faces have
been switched. 2019 saw the demise of FakeApp in favor of open-source rivals like
Faceswap, command-line-based DeepFaceLab, and web-based programs like Deep-
fakesWeb.com. Since then, DeepFake is becoming more and more popular . Even-
tually, ordinary people are creating deepfake material using open source tools and
websites like FaceApp, DEEPFAKES web, ReFace, FaceSwap, and others. Deep
neural networks were used to create all of these applications. The most prevalent
architectures for DeepFake content creation have mostly utilized Generative Adver-
sarial Networks (GANs) and AutoEncoders. The most common DeepFake image
models are GDWCT, STARGAN, ATTGAN, STYLEGAN, STYLEGAN2. On the
other hand, the state-of-the-art for image classifications is EfficientNet, ResNeXt,
XceptionNet, ResNet, DenseNet, etc. Using neural networks, those models have
been developed with a view to classifying images.
The developed model architectures are usually used in terms of generating deepfakes
and detecting deepfakes which are discussed briefly:

• DeepFake Creation:

One of the core components in deepfakes is machine learning, which has fa-
cilitated deepfakes to be generated at a lower cost with quicker speed. Some
frequently used model architectures in generating deepfakes are:

4

– GANs: Generative Adversarial Networks (GANs), a subset of the gener-
ative modeling process, use deep learning techniques like Convolutional
Neural Networks. The generator model and the discriminator model are
two sub-models of GANs. The generator model is instructed to manufac-
ture the latest occurrences and the discriminator model is instructed to
recognize the samples’ authenticity. There are a lot of variations where
GANs architecture is used to create deepfake images [14]. It generates
new data samples based on the dataset it is trained on.

– StarGAN: It is an updated version of the GANs architecture that basically
learns mappings between multiple domains. It uses a unified modeling
architecture that allows numerous datasets and domains to be trained
simultaneously in a single network [15].

– Autoencoders: A form of neural network that acquires information from
a compact representation of raw data, is defined as an Autoencoder. It
is made of two sub-models: (i) the encoder model- which compresses the
given data, and (ii) the decoder model- which attempts to rebuild the
given data from the encoders’ part. After training, the encoder model
is kept and the decoder one is erased. Then, a machine learning model
would be used here. Subsequently, the encoder would be used to re-
trieve features from the original data which would be considered as a
data preparation method.

Autoencoder is made up of three primary parts- encoder, decoder, and
code. The encoder and decoder are fully integrated to form a feed for-
warding mesh, with the code acting as a single layer with its own di-
mension. There are some variations in autoencoders such as - Denoising
autoencoders, Sparse autoencoders, and Variational autoencoders.

In Denoising autoencoders, some noisy data are integrated with the input
image where the raw image cannot be copied because of noises in the raw
image. With proper fit function and other computations, it generates
better image quality. A Sparse Autoencoder is a sort of autoencoder that
uses sparsity to achieve a limitation in information flow. Regularization is
a Sparse autoencoder modification in which sparsity restrictions are reg-
ularized and certain extra terms of the loss function are introduced with
the goal of activating particular regions of nodes throughout the layer
and therefore assisting in the discovery of distinct properties in the input
data. Another type of autoencoder is Variational autoencoder which is
used in difficult scenarios to determine the odds of creating a distribution
from the input data. The functional output of this autoencoder is ob-
tained by a sampling strategy. Its design is similar to that of Regularized
autoencoders[16].

• Deepfake Detection: There are several faults in the way deepfake videos are
produced. These abnormalities can be utilized to take advantage of detecting
deepfakes. Several deep learning architecture-based models have been devel-
oped, which are particularly effective in detecting deepfake contents. Some
of them are EfficientNet B0 to B7, Xception, and ResNet50. These models
require large amounts of datasets.

5

Convolutional neural networks are for image classification as it gives high
accuracy. Also can be scaled up for better result. An EfficientNet is based
upon CNN and scaling methods. EfficientNet scales up all the network width,
depth, and resolution uniformly. There are several versions of EfficientNet B0
to B7.

ResNet, also known as the Residual Network, is one kind of Deep Neural
Network. The vanishing gradient problem is a typical challenge in deep neural
networks and ResNet was the first to establish the notion of a skip connection.
It allows us to build layers without making things too complicated. As a
result, CNN may now be used much more effectively. ResNet is available in
several flavors. ResNet50 is a version with 50 layers, the majority of which are
convolutional layers. In deep feature extraction, ResNet50 is often used.

Traditional convolutional layers can be made more efficient with the help of
depth-wise separable convolution. Google developed the Xception neural net-
work. It stands for Extreme Inception. It is made up of a modified depth-wise
separation convolution, and it outperforms Inception-v3 in terms of perfor-
mance. Due to the efficient use of model parameters Xception neural archi-
tecture is used in many different types of image classification.

A recurrent neural network is a sophisticated deep learning model that can
learn from data sequences. It is capable of storing information from earlier
input in memory. As a result, it can manage temporal sequences and extract
information. Long short-term memory is a different kind of recurrent neural
network that is usually utilized for understanding temporal sequences from
frames (LSTM). An efficient representation of spatial and temporal sequences
is provided by this recurrent neural network.

6

Chapter 2

Related Work

A multitude of deep learning architecture based models have been created as a result
of technological developments. Among all the existing architectures, some are highly
effective in detecting deepfake contents which are mentioned below:

• Reverse Engineering-Based Framework:
Authors Asnani et al. in [17] proposed a reverse engineering-based approach
that

Authors Asnani et al. in [17] proposed a reverse engineering-based approach
that would infer the hyperparameters involved in the generative process. The
framework consisted of two different networks namely, a finger-print estimation
network (FEN) and a parsing network(PN). The networks would combine
to predict the hyperparameters that are specific to a particular architecture
model. They claimed that the FEN may be further developed to conduct
DeepFake detection with functionality comparable to cutting-edge techniques.

Guarnera et al [18] have mentioned in their paper another reverse engineering-
based approach where they perform the expectation-maximization (EM) algo-
rithm which was suggested by Moon et al. [19] to extract the feature vector
of a synthesized image which corresponds to the kernel size of the generative
model employed in the image generation process.

• Deep Learning Based DeepFake Detection:
David and Edward, the authors, proposed a two-stage CNN analysis. CNN
was used to extract frame characteristics in this scenario. A recurrent neural
network is then developed using these characteristics. To record the transient
difference between frames induced by the face-swapping procedure, they used
LSTM for temporal sequence analysis to extract features from a temporal
aware RNN network. More than six hundred videos, both real and fake from
the HOHA website [20] are used.

Author Jatin and Sahil created a deep learning-based DeepFake to evaluate if
a photo is authentic or otherwise, by using a detection system that uses CNN
and ResNet50. The classification of images also made use of the Sigmoid
activation function. Their methodology is based on two datasets that contain
140k genuine and synthetic faces in total. The genuine dataset features 70k
actual faces from Nvidia’s Flickr collection, whereas the false dataset has 70k
artificial faces selected from a pool of 1 million fake faces created using GAN[8].

7

• Hybrid Models For DeepFake Detection:
Author Pan et al. presented a strategy that included four datasets developed
using four distinct deepfake technologies and has yielded high accuracy results
across all four datasets. They also manufactured a mechanism that included
all the detection methods that were used to cast votes depending on the images
if they were fake or real, which made the accuracy rate higher [21].

In a paper presented by author Ismail et al., another method has been used
which was a hybrid of YOLO, CNN, and XGBoost. Here, to retrieve the face
part from the video frames, the YOLO face detector has been used, and the
InceptionResNetV2 is utilized to retrieve attributes of these faces which are
provided to method XGBoost. From a dataset that was constructed by com-
bining CelebDF and FaceForensics++, a high accuracy rate was accomplished
[22].

• Face Augmentation For CNN-based models:
A dynamic Face augmentation process has been developed by authors Sowmen
Das et al. in [6] which is mainly focused on the underlying information of the
faces. With CNN-based models, this augmented data is trained in order to
get a better feature extraction by which the overfitting problem in the existing
datasets can be solved. In this research, it is shown that the existing models
of CNN-based architectures can provide a better result with the Face-Cutout
process for all of the existing datasets.

• Multi-attentional Network:
Author Hanqing Zhao et al. in [23] developed a multi-attentional DeepFake
Detection network. In this research, detecting the originality of multimedia
is categorized under fine-grained classification problems. They sub-sectioned
their research into three main components. Firstly, to focus on different local
parts of the image while extracting features, they used multiple spatial atten-
tion heads. Secondly, to zoom in on the almost indistinct shallow features,
they enhanced the textural feature block. Finally, they used the aggregation
of semantic characteristics of high-level regions which are extracted from at-
tentional maps with the textural characteristics of low-level regions. In this
research, they decomposed the attention into multiple regions for the collection
of local features for the deefake detection task and they used the BAP [Bilin-
ear Attention Pooling] instead of using Global Average Pooling and shallow
features focused and enhanced.

• GAN Anomalies Based Detection:
Focusing on the abnormal patterns visible on the most structured parts of
a synthesized image Giudice et al. in 13 proposed an algorithm where they
could generate 8 X 8 blocks via a JPEG pipeline. The blocks are further
processed via a Discrete Cosine Transformation (DCT) which generates AC
coefficients for each block. A beta value is calculated using 0-Centered Laplace
Distribution on the coefficients which are used to acquire the GAN Specific
Frequencies (GSF). Their work is promising as it requires less computational
resources with performance that exceeds the state-of-the-art techniques.

8

Chapter 3

Dataset And Preprocessing

3.1 Preprocessing

Deepfakes in recent years have increased dramatically due to the invention of several
video synthesis technologies and video generation architectures such as generative
models. Hence, the amount of dataset publicly available is not only large, but
also robust. Despite the fact that the data available in any of such datasets is in
the same video format, surprisingly each dataset has certain aspects that add to
its uniqueness. The primary requirement of processing such data arises in order
to mitigate such significant varying criterions and establish a baseline standard on
which several models can be trained and validated. As the term suggests pre-
processing refers to preparing the data in order to process it before feeding it to any
model.
In order to process our videos for detecting real and synthesized frames, we have to
begin by cropping videos into frames that contain only the ‘face’ of a candidate. As
different videos may contain different angles and sizes of faces, hence each ‘cropped’
video is likely to have a different dimension than others. Since resolution of each
video frame is crucial in containing information at a pixel level, having different
varieties of resolution for the same task may complicate the training and evaluation
of our model. To solve this issue, we resize each video frame into a resolution of
112 – which acts as a standard value for face-cropped image size. To further reduce
the impact that different color channels may have due to having different pixel
intensities, we adapt a normalization using a base standard deviation and mean. To
reiterate, the videos have been cropped around the face with a dimension of 112 x
112 and standard normalization values of mean = (0.485, 0.456, 0.406) and standard
deviation = (0.229, 0.224, 0.225) have been applied as transformations to normalize
the color channels.
After applying the face crops and transformations a desired number of videos are
selected for shifting into the data loader. The data loader is responsible for stacking
the model with frames. It further allows us to shuffle the data, select a particular
length of frames, choose a particular batch size and so on. The data is divided into
two groups: a training set (80%) and a validation set (20%) before being passed to
the data loader. It is also ensured that the number of real:fake videos is 50:50.

As shown in Figure:3.1, the steps are mentioned below for the dataset proprocessing.

1. Faces are detected using python’s ”face recognition” library

9

2. Detected faces are cropped and stored in a separate module using python’s
in-built functions from python’s computer vision library named Open-CV

3. Videos are splitted into training (80%) and validation (20%) set where each
set has equal number of real and fake videos.

4. Videos are loaded into the data-loader with a specified batch size, shuffle value
and frame length.

Figure 3.1: A Flowchart to showcase the steps for generating output through the
model

3.2 Dataset

Forgery and video modification are not new anymore, but the usage of DNN has
made the method of developing fake videos significantly more efficient, making them
extremely difficult to detect. With the support of well-documented datasets, the
deep fake identification method has improved. For different deep learning tasks, the
utilization of a substantial, high-quality dataset is crucial so that it can minimize
issues such as overfitting [24].

• DFDC One of the largest datasets is the DeepFake Detection Challenge
(DFDC), which has more than 100000 clips produced by 3426 paid actors and
utilizing various Deepfake, GAN-based, and other algorithms. This dataset
includes footage of people in a range of inside and outside situations and dif-
ferent real lighting, without professional touch. It was created using two kinds
of face-altering techniques that are unidentified and consists of 4113 fabricated
videos that are of people from different genders, ethnicities, and generations.
These videos are of individuals who consented to being recorded and shown
alongside their modified photos in a dataset for machine learning. This dataset
is also open to the public, which has made it easier to utilize [25].

10

• Celeb-DF In Celeb-DF, there are 590 videos that are original which were
collected from Youtube. It includes video snippets of 59 celebrities varying
from males to females, ethnicities, and generations, totaling 5639 DeepFake
videos.

• FF++ The collection consists of 70,000 PNG pictures at a dimension of 1024
by 1024. Regarding age, ethnicity, and picture background, it has a wide
range. Since Flickr was used to crawl the photographs, all of that website’s
biases were carried across. A monument, a painting, or a photo of a photo was
occasionally removed using Amazon Mechanical Turk.

11

Chapter 4

Proposed Deepfake Detection
Architecture

4.1 Motivation

Video and image synthesis, regularization, segmentation and localization problems
and methods of solving them are gaining popularity gradually ever since the incep-
tion of Convolutional networks. However, due to the advent of a wide variety of
vision transformers, computer vision tasks are now facing a drastic shift towards
a new genre of architecture for similar problems that were previously solved using
convolutional networks. The emergence of the ConvNeXt architecture was initiated
to modernize the convolutional networks to the extent where they can be equiva-
lent to their counterparts; transformers in terms of performance. Deepfake video
detection problem is similarly a widely known area which incorporates several image
synthesis based anomalies that integrated and detected at the core pixel level of an
image. The core drive for executing this study was to analyze the performance of
the ConvNeXt architecture and determine whether it is capable of adapting to solve
a robust and complex problem such as determining whether a video is real or not.

4.2 Proposed deepfake detection framework

We create a straightforward and clear design for the overall model in order to provide
a model that would primarily focus on the performance metrics of the backbone
architecture, in our case the ConvNeXt convolutional network. Figure 4.1. depicts
how our suggested model is represented. According to the figure, the input is passed
to the core architecture; which extracts a feature map from the provided data.
This feature map is passed through an adaptive average pooling layer and further
processed by a Recurrent Neural network; LSTM. The final layer is a simple fully
connected layer responsible to generate the required number of output classes.

12

Figure 4.1: A block diagram displaying the generic architecture of the proposed
model

4.3 Short Description Of Proposed Model and Ar-

chitectures Used For Comparison and Com-

position

The baseline model’s core architectures and the core architectures utilized for com-
parative models are briefly introduced in this section. For a thorough analysis in
understanding the performance comparison, we shift the backbone architecture used
for extracting features from the frames while maintaining generic base composition
for the entire model which consists of the following components: Backbone (VGG16,
ConvNeXt, Swin Base), LSTM, Linear Layer, Average Adaptive Pool layer. While
executing training and validation process an additional layer of dropout has been
implemented.

• VGG16: VGG-Net is mainly categorized into 4 versions namely VGG11,
VGG13, VGG16, VGG19 where the numbers 11, 13, 16, 19 represent the
total number of convolutional layers and fully connected layers used in the
model respectively. With an objective to improve AlexNet the implementation
of VGG16 composed a significant change by reducing the size of the kernel.
Due to having a dimension of 3 x 3 in the filters alongside a stride value 1
followed by a rectified linear unit to introduce non-linearity the complication

13

of computation is widely reduced. The size for the max pool layers is 2 x 2
with a stride value of 2.

• ConvNeXt: Similar to VGG-net and many modern architectures proposed,
ConvNeXt also has its own set of variants namely ConvNeXt-T, ConvNeXt-S,
ConvNeXt-B, ConvNeXt-L, ConvNeXt-XL where each variant differs in the
number of channels which are respectively as follow: 96, 96, 128, 192, 256.
The key idea that incurred the inception of this architecture was the design
decisions that impacted the performance of ConvNets in transformers. By
replacing the stem cell of the ResNet backbone with a patchify layer imple-
mented using 4x4 ConvNeXt replaces ResNet-style stem cell with a patchify
layer composed of a 4x4 convolution layer and a stride of 4[26]. An advance-
ment in the network width from 64 to 96 while keeping the same channel
number as that of swin-t, ConvNeXt manages to enhance its performance in
detection-based tasks.

• Swin Transformer: ‘Swin’ is mainly elaborated into the terms “Shifted Win-
dows” and is a vision transformer variant with a hierarchical way of processing
images. Due to having a quadratic complexity with respect to the image size
ViT tends to lack efficiency in scaling when working with high resolution im-
ages, hence, the inception of Swin transformers. Therefore, to mitigate the
constraints of ViTs, Swin introduced to concepts, namely hierarchical feature
maps which paved the requirement fine-grained prediction and shifted win-
dows which allowed self-attention to be spanned in a crossed window fashion.
Each Swin block consist of 2 sub units each having a normalization layer, atten-
tion module, normalization layer and multi-layer perceptron layer respectively.
Window-MSA is used by the first sub-unit, in contrast Shifted Window-MSA
module is integrated in the second sub-unit [27].

• LSTM: LSTM is one of the variations of Recurrent neural networks (RNNs),
that works with long-term dependencies, particularly for sequence prediction
[28]. LSTM contains feedback connections as well as the ability to process the
single data points and complete sequence of input data. In LSTM, one of the
key aspects is the cell state, which functions primarily as a conveyor belt. It
travels the entire system, including some marginal linear operations. LSTMs
employ a number of ’gates’ that regulate the way of taking input in a data
sequence, maintaining that information and leaving the system. A typical
LSTM contains three gates: a forget gate, an input gate, and an output gate.
These gates mainly function as filters, having their own network [29].

• Average Adaptive Pool, Linear Layer and Dropout: In order to syn-
chronize the output dimensionality in correspondence with the provided input,
the adaptive average pool layer is responsible in determining the kernel size.
In order to do so, a mean of the pooling layer is computed in order to enhance
the search space [30]. A linear layer simply consists of weights and biases that
reinforces the dimensionality to our requirements. The inclusion of a dropout
ensures that the model is forced to learn the relationships with respect to
image and labels by randomly dropping weights with a desired probability.

14

4.4 Model Details

4.4.1 ConvNeXt:

The vision to introduce ConvNeXt architecture was to undertake the task of en-
hancing the existing ResNet models incrementally to establish a model which can
equate to any hierarchical vision transformer. Hence the architecture incorporates
several design features from both.
A generic stem cell of the ResNet model is composed of a 7×7 convolution layer
having a stride value of 2, followed by a max pool, which results in a 4×4 down-
sampling of the input images. As mentioned previously, Liu et al in [4] proposes
a ‘patchify layer’ to replace the stem cell which consist of a 4x4 convolution layer
having stride of 4. Figure 4.2 portrays that depth wise convolution can be utilized
further as an improvement of the grouped convolutions, where the depth of refers
to the numeric value of channel size.

Figure 4.2: Standard, Depth-wise and Point-Wise Convolution

The channel number in this case is 96, which additionally brings the network per-
formance to an increase along with an increase in FLOPs which is another metric
for evaluating a networks performance. Further investigating the inverted bottle-
neck concept where the dimensions of the hidden layer of MLP is 4 times wider
in comparison to the input dimension and by introducing this bottleneck to the
base design, the network FLOP decreased significantly with a slight performance
increase. Figure 4.3 (a) and (b) showcases this in block diagrams.
The depth-wise convolution blocks are further shifted upwards in order to incorpo-
rate a larger kernel of size 7 x 7. In the micro design level, a Gaussian Error Linear
Unit or GELU is introduced along with a LayerNorm for normalization instead of
BatchNorm. This activation function is considered an enhancement of its prede-
cessor Leaky ReLu for being used in vision transformers. The standard ConvNeXt
block is illustrated as shown in Figure: 4.4. Finally for down sampling, a separate
2x2 conv layer with stride 2 is added into the layer, which is a familiar strategy
found in hierarchical transformers (eg: Swin).
ConvNeXt have different variants based on the number of channels C and the number
of blocks B in each stage. Below is a list of the variants and the corresponding
channel and block values.

• ConvNeXt-T: C = (96, 192, 384, 768), B = (3, 3, 9, 3)

15

Figure 4.3: Block Modifications (a) Standard ResNeXt Block (b) Inverted Bottle-
neck Implementation

Figure 4.4: Block Design of ConvNeXt From

• ConvNeXt-S: C = (96, 192, 384, 768), B = (3, 3, 27, 3)

• ConvNeXt-B: C = (128, 256, 512, 1024), B = (3, 3, 27, 3)

• ConvNeXt-L: C = (192, 384, 768, 1536), B = (3, 3, 27, 3)

• ConvNeXt-XL: C = (256, 512, 1024, 2048), B = (3, 3, 27, 3)

4.4.2 LSTM

Long Short Term Memory networks, commonly known as ”LSTMs,” is a variation
of RNN that usually overcome long-term dependencies [31]. Instead of one single
neural network layer, LSTM has four layers that are combined in a unique way to
prevent the problem of long-term dependency shown in Figure 4.5.

16

Figure 4.5: LSTM Dataflow

One of the fundamental elements, the cell state that is shown by the horizontal line
all the way, basically operating like a conveyor belt. As illustrated in Figure 4.6,
it traverses straight through the entire system, with some marginal linear computa-
tions.

Figure 4.6: Cell State

The LSTM can erase as well as add new information to the cell state, which is
controlled by gates, shown in Figure 4.7. Gates works like a method of selectively
allowing information to pass through. The sigmoid layer produces numbers between
0(not pass datas) and 1(pass datas). LSTM generally has three gates including
forget gate, input gate and output gate.

Figure 4.7: Gate Layer

• Forget Gate: The first stage of LSTM is determining which information will
be discarded from the cell state which is done by the ”forget gate key,”. Forget
layer is basically a sigmoid layer which examines ht−1 and xt and produces a

17

value between 0 and 1 for every value in the cell state . Figure 4.8 describes
the forget layer.

Figure 4.8: Forget Gate.

ft = σ(Wf .[ht−1, xt] + bf) (4.1)

• Input Gate: The stage is to determine which additional information will be
recorded in the cell state which includes two parts. Initially, a sigmoid layer
known as the ”input gate layer” determines the information to be updated. A
tanh layer is then used to generate a vector containing new values, C̃tto add
in the state. In the following step, these two will be combined for updating
the state, demonstrated in Figure 4.9.

Figure 4.9: Input Layer, Sigmoid
and tanh operation.

it = σ(Wi.[ht−1, xt] + bi) (4.2)

Candidate Memory Cell equation is as followed:

C̃t = tanh(WC .[ht−1, xt] + bc) (4.3)

Now, the values are upgraded from the previous cell state, Ct−1 , to the new cell
state, Ct by carrying out the preceding steps. The previous state is multiplied
by, ft forgetting the decided values. Then we make additions to it⊗C̃t. This is
the updated set of candidate values, as shown in Figure 4.10, calculated from
the amount of each state value was updated.

18

Figure 4.10: Updated Value.

Ct = ft ⊗ Ct−1 ⊕ it ⊗ C̃t (4.4)

• Output Gate: The final state is to determine the output which will be filtered,
depending on the cell state. For this, a sigmoid layer is executed to determine
which bits of cell state will be output. After that, tanh layer will be per-
forming on the cell state for generating the values between 0 and 1. Finally,
a multiplication will take place with this output and the sigmoid value and
eventually generate the output shown in the Figure 4.11.

Figure 4.11: Output Layer.

ot = σ(Wo.[ht−1, xt] + bo) (4.5)

Hidden State equation is as followed:

ht = ot ⊗ tanh(Ct) (4.6)

The value of ht from equation 4.6 is the output of the current timestamp. This
value is passed to the next LSTM block at the timestamp t+ 1.

19

Chapter 5

Experiments And Results

5.1 Parameter Settings

Experimental setups require an extensive tuning of parameters and hyperparame-
ters that can dramatically influence performance. This can often lead to black-box
testing where the output lacks the explain ability for a given input in case of a signif-
icant drop of rise in accuracy, but in many cases the parameter tuning is the treated
as the “cause” and the accuracy or likewise the performance achieved is considered
as the “result”.

Environmental Set Up
In order to observe the true potential of the proposed models architecture we had
to run a couple of adjustments.

1. Dropped the Last 2 layers from the ‘backbone’ architecture Essentially the last
layer is a softmax function which has been implemented to predict classes
equivalent to the size of the IMAGENet version-1 (which is 1000). The layer
before this ensures that the proper dimension of output is processed into the
softmax layer for the proper predictions.

2. Varying the number of Latent dimensions in LSTM Due to dropping off the
last layers we lose the common interface for binding the output of our back-
bone architecture and passing the output forward to another layer. Hence, we
need to adjust the latent dimensions of the LSTM layers in order to maintain
synchronization in the dimensionality and downsampling of the input which
is demonstrated in Table 5.1

Model Number of LSTM Blocks Number of layers per LSTM
VGG16 2 512 2 512
Swin base 1 1024
ConvNeXt 1 1024

Table 5.1: LSTM Blocks and Layers in each architecture

The number of batches we chose for our purpose is 4. We set the initial epoch size
to 20 for both validation and training purposes. A standard learning rate of 0.00001
and a drop out of 0.6 has been used. The backbone architectures are all pretrained

20

on the IMAGENET Version 1 dataset, and we shall proceed with the pretrained
values. Table 5.2 illustrates the number of parameters for each pre-trained model

Model Pre-Trained on IMAGENET Number of Parameters

VGG16 True 138.4 million
Swin base True 87.8 million
ConvNeXt True 88.6 million

Table 5.2: Number of parameters in each architecture

Due to time and space constraints we have chosen an optimal number of videos
for each of the datasets, namely DFDC, FF++ and Celeb-DF, instead of using the
entire dataset available in our disposal. The number of videos selected for each
dataset is illustrated in Table 5.3.

Dataset Number of Videos Present Number of Videos used

DFDC 100,000 2,550
FF++ - 1,990
Celeb-DF 5,639 1,170

Table 5.3: Number of Videos in each architectures

5.2 Evaluation Matrices

5.2.1 Adam

Adam is one of the most popular algorithms that is highly used in deep learning
because of the efficient and robust optimization. This optimization is enabled by
incorporating the following features:
Starting with the computation of optimization problems using stochastic gradient
descent. Additionally, the vectorization of minibatch stochastic gradient descent,
which uses bigger sets of observations in a single minibatch, massively improves
efficiency. In order to expedite convergence, Momentum included a system for com-
piling a collection of previous gradients. Adagrad made use of per-coordinate scaling
to enable a preconditioner that was computationally effective. Per-coordinate scal-
ing and a learning rate adjustment were separated by RMSProp.

Leaky averaging is one of the major features of Adam which is used for estimating
both momentum as well as second moment of the gradient by employing exponen-
tially weighted moving averages and state variables are:

vt ←− β1vt−1 + (1− β1)gt,
st ←− β2st−1 + (1− β2)g

2
t .

The weighted variables β1 and β2 are nonnegative. They frequently choose from β1

= 0.99 and β2 = 0.999. The variance estimation therefore grows even more slowly

21

than the momentum term. While initializing v0 = s0 = 0, there is a substantial bias

towards lower values. The fact
∑t

i=0 β
i =

1− βt

1− β
that can be used to re-normalize

terms in order to address this. The normalized state variables:

v̂t =
vt

1− βt
1

and ŝt =
st

1− βt
2

At the beginning, the gradient must be rescaled in a way that is quite similar to
RMSProp’s, to get

g
′
t =

ηv̂t√
ŝt + ϵ

In contrast to RMSProp, the update makes use of the momentum x instead of

the gradient directly. Additionally, while scaling, the usage of
1√

ŝt + ϵ
instead of

1√
ŝt + ϵ

causes a slight change. We commonly choose ϵ = 10−6 because it offers a

good balance among fidelity and numerical stability. The updated form:

xt ←− xt−1 − g
′
t.

In state variables, the momentum and scale are very apparent. The terms are
redefined because of their definition which can be updated by changing update
condition and initialization . Furthermore, the combination of terms is quite simple
and straightforward. Lastly, we may regulate the step length to resolve convergence-
related problems by explicit learning rate, η.

5.3 Performance Evaluation Matrices

5.3.1 Cross Entropy Loss

The cross entropy loss among the input and the target is measured. It is essen-
tial in terms of training a classification model with C classes [32]. The alterna-
tive parameter weight needs to be a 1D tensor that provides each class a certain
amount of weight. This is especially helpful if your training set is not balanced
properly.The input is anticipated to include each class’s unfiltered or raw and unnor-
malized score value. A Tensor of size (C)(C) for unbatched input or (minibatch, C)
or (minibatch, C, d1, d2,, dk) with K ≤ 1 is required for the K-dimensional case.
An additional benefit of it is for inputs with greater dimensions, including such de-
termining cross entropy loss per-pixel for 2D images. The cross entropy loss includes
the following:
Class generally falls within the [0, C][0, C] range, where C presents the number of
classes; in case of a fixed or constant index, this loss automatically recognizes this
class index that may not fall within class range. When reduction set to ”none,”
often addressed as unreduced loss is:

ℓ(x, y) = L = {l1,, lN}T , ln = wyn log
exp(xn, yn)∑C
c=1 exp(xn, c)

· 1 {yn ̸= ignore index}

Here, x, y, C and w work as the input, the target, number of classes and weight re-
spectively. N encompasses minibatch dimension and d1, ..., dk for the K-dimensional

22

case. When reduction is not labeled as ’none’(default’mean’).
For every single class, probabilities are necessary where more than one class of labels
are needed for a minibatch item for smoothing the labels, blending the labels etc.
When reduction is not labeled as ’none’ (default ’mean’),
Here, x, y, C and w work as the input, the target, number of classes and weight
respectively. N encompasses minibatch dimension and d1, ...dk for the K-dimensional
case. When reduction is not labeled as ’none’ (default ’mean’),

5.4 Result

After running the models for 20 epochs, we have recorded the mean train and val-
idation accuracies along with the maximum train and validation accuracies. For
comparing loss we are primarily focusing on the validation loss. This is illustrated
in Table 5.4 . The first column represents the model, the second column showcases
the Datasets used for each model, in our case for each model the second and all
other columns will have three rows. To isolate the results for ConvNeXt we keep
the model and corresponding records at the final row of the first column. As shown
in Table 5.4 the lowest mean loss is 0.231 for FF++, highest mean training accu-
racy 99.507 and maximum training accuracy 99.920 is achieved for Celeb-DF while
highest mean validation accuracy 95.226 and maximum validation accuracy 96.231is
achieved for FF++.

Model Dataset
Mean
Loss

Mean
Train

Accuracy

Maximum
Train

Accuracy

Mean
Validation
Accuracy

Maximum
Validation
Accuracy

DFDC 0.396 88.989 97.369 83.911 90.465
FF++ 0.406 87.716 97.056 82.998 92.720Swin Base
Celeb-DF 0.487 80.258 97.644 76.135 92.170
DFDC 0.376 90.389 98.166 83.750 89.466
FF++ 0.424 89.327 99.436 84.573 92.211VGG16
Celeb-DF 0.427 81.204 99.679 77.970 92.308
DFDC 0.281 90.321 98.912 89.771 97.613
FF++ 0.231 99.484 99.874 95.226 96.231ConvNeXt
Celeb-DF 0.438 99.507 99.920 90.811 93.162

Table 5.4: Performance comparison on each dataset.

23

5.4.1 Graphs On Loss function Calculation

Loss Function and Accuracy on Swin Transformer

Loss Function Value
While plotting the curves for showcasing the loss functions behavior; in Figure 5.1(a)
and in Figure 5.1(c) it can be noticed that the loss function has a quicker convergence
rate which is under 10 epochs for DFDC and FF++ respectively. The validation
and training loss for DFDC have slightly larger fluctuations in comparison to FF++.
The loss curve has a comparatively slower convergence rate as for Celeb-DF as shown
in Figure 5.1(b) where the validation loss curve has a peak nearly at the tenth epoch.

(a) Loss function:
DFDC

(b) Loss function:
Celeb-DF

(c) Loss function:
FF++

Figure 5.1: Loss Function: Swin Transformer architecture

Accuracy
As illustrated in Figure 5.2(a) and (c) the both validation and training curves are
increasing till the fifth epoch and have an almost parallel linear shape up to the
twentieth epoch for the Swin on the datasets DFDC and FF++ respectively. The
curve for Celeb-DF shows a similar trend of increase for both validation and training
curves till the tenth epoch and is almost slightly fluctuating theronwards, which is
shown in Figure 5.2(b).

24

(a) Accuracy:
DFDC

(b) Accuracy:
Celeb-DF

(c) Accuracy:
FF++

Figure 5.2: Accuracy: Swin Transformer architecture

Loss Function and Accuracy on VGG16:
Loss Function Value

A similar trend of convergence rate is visible for VGG16 as illustrated in Figure
5.3(a) and 5.3(b) for DFCC and FF++ respectively. In both cases, the curves are
at a steady decline from the tenth epoch. The decline for the Celeb-DF loss curve
is slightly imbalanced and the variation between the validation and train curve is
slightly greater in comparison to the previous ones as shown in Figure 5.3(b)

(a) Loss function:
DFDC

(b) Loss function:
Celeb-DF

(c) Loss function:
FF++

Figure 5.3: Loss Function: VGG16 architecture

25

Accuracy

The accuracy and validation curves for VGG16 on the datasets DFDC and FF++
are increasing till the seventh epoch and are almost linear and parallel in shape
with slight fluctuations, which is shown in Figure 5.4(a) and (c) respectively. The
validation and accuracy of DFDC for VGG16 are increasing till almost the tenth
epoch as demonstrated in Figure 5.4(b), however post epoch ten, they still have
increasing tendencies with a small slope.

(a) Accuracy:
DFDC

(b) Accuracy:
Celeb-DF

(c) Accuracy:
FF++

Figure 5.4: Accuracy: VGG16 architecture

Loss Function and Accuracy on ConvNeXt:
Loss Function Value

For ConvNeXt the loss function shown in Figure 5.5(b) training loss is an almost
linear curve with a slight peak at the and the validation curve is another linear curve
which is almost parallel to the train curve with a peak around the second epoch. As
illustrated in Figure 5.5(c) the training and validation curves decline quickly under
five epochs and the remaining part of the curve for training is stable whereas the
curves for validation loss is slightly increasing. Finally, the loss curve for DFDC
as shown in Figure 5.5(a) is decreasing; however the validation curve has several
minima and maxima and can be interpreted as an increasing curve.

26

(a) Loss function:
DFDC

(b) Loss function:
Celeb-DF

(c) Loss function:
FF++

Figure 5.5: Loss Function: ConvNeXt architecture

Accuracy
In the case of ConvNeXt, both training and validation curves are increasing till the
fourth epoch and are almost parallel straight lines with high accuracies till the final
epoch as shown in Figure 5.6(a) and (c) respectively for DFDC and FF++. With
slight declines in the beginning around the third to fourth epoch and in the fifteenth
to seventeenth, the remaining curves are almost parallel straight lines for Celeb-DF
as illustrated in Figure 5.6(b)

(a) Accuracy:
DFDC

(b) Accuracy:
Celeb-DF

(c) Accuracy:
FF++

Figure 5.6: Accuracy: ConvNeXt architecture

27

Chapter 6

Conclusion

DeepFakes is creating an alarming situation for the trustworthiness of online in-
formation. Using different components of the most recent and effective deepfake
detection or image classifier algorithms, we are approaching the creation of a system
that will be able to find out whether multimedia content is real or forged. Deepfake
detection architectures that have been trained on a variety of datasets have difficulty
adapting their performance to multiple datasets. Therefore, this research aims to
prove by experimental analysis that our proposed model is better than recent com-
puter vision architecture in terms of detecting forged multimedia content combining
CNN and RNN which are based on neural networks architecture.

6.1 Limitations

Deep learning experiments often require several layers of set up that include mod-
ulating data, sanitization of data, scheduling of several parameters that can affect
performance of the architecture, customization of the architectural layers and so on.
Device performance, environment configurations, speed of resource access are some
regular constraints that may affect results acquired and may have subtle variations;
which may range from minor to major differences depending on the use cases. As we
have strictly focused on introducing the ‘evaluation of performance for our proposed’
architecture and showcase how it can be equivalent or superior to the recently de-
veloped models that are being widely used for similar tasks, we have inadvertently
omitted several aspects related to experimentational results. Below we showcase
some essential factors that can be potential causes of refutation for our work.

• Parameter Tuning In order to derive and showcase the best results, our
findings on parameter data have led to less exciting values that could not be
represented that caused us to proceed with preset standard values. Addition-
ally, in case of experimentational derivation of values, the performance on each
individual model on each individual dataset has been discarded; instead the
desired value was chosen based on the performance on a significant number
of videos and was later used for all other datasets. Many deep learning tasks
also include scheduling of learning rate, in order to fine tune convergence,
however, skipping such mechanisms was opted as these may lead to further
computational complexity; hence preferring less complexity over efficiency of
result values.

28

• Hardware Constraints The experiments were executed on google colabo-
ratory notebooks, popularly known as “Google Colab”. The notebooks are
hosted on google cloud servers and can only be run with a specified allocated
disk space of 357.27 GB and RAM of 12 GB. Though as a freely available re-
source, the amount of memory and storage provided is dramatically large, yet
for our purpose the size of the dataset and the number of data being loaded
at times exceeds the provided disk space. In addition to this, the GPU access
is limited to 12 hour per day for a single account and for training and vali-
dating models it requires almost one-third of that duration which means that
computation wise lesser time for evaluating and comparing models.

6.2 Future Work

Considering this work as an initial set up for providing a guideline on the perfor-
mance of the proposed ‘backbone convolutional network’,experimenting with the
core architecture model can be proceeded further. A primary follow-up to our cur-
rent work will include an expansion of the standard base architecture and modifica-
tion of its internal layers and experimentation with several hyperparameter tuning
and inclusion of a variety of sequence processing segments. Encompassing several
pretrained models that can fuse with the existing architecture is also a lucrative
thought to work upon. As showcased in our experimental results, hardware con-
straints have been one of the primary obstacles to make the best use of the total
number of data available. Expanding the currently used dataset and finding opti-
mum results for a large amount of data will provide insights on not only performance
in terms of accuracy but also in terms of scalability.

29

Bibliography

[1] D. Biswas, “Most shocking deepfake videos of 2021,” Analytics, 2021.

[2] S. Lyu, “Deepfake detection: Current challenges and next steps,” in 2020 IEEE
International Conference on Multimedia & Expo Workshops (ICMEW), Lon-
don, UK: IEEE, Jul. 2020.

[3] E. Strickland, Facebook AI launches its deepfake detection challenge, en, https:
//spectrum.ieee.org/facebook-ai- launches-its-deepfake-detection-challenge,
Accessed: 2022-9-20, Dec. 2019.

[4] Blog, en, https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-
detection.html, Accessed: 2022-9-20.

[5] T. T. Nguyen, Q. V. H. Nguyen, D. T. Nguyen, et al., “Deep learning for
deepfakes creation and detection: A survey,” en, Comput. Vis. Image Underst.,
vol. 223, no. 103525, p. 103 525, Oct. 2022.

[6] S. Das, S. Seferbekov, A. Datta, M. S. Islam, and M. R. Amin, “Towards
solving the DeepFake problem : An analysis on improving DeepFake detection
using dynamic face augmentation,” Feb. 2021. arXiv: 2102.09603 [cs.CV].

[7] S. Singh, R. Sharma, and A. F. Smeaton, “Using GANs to synthesise minimum
training data for deepfake generation,” Nov. 2020. arXiv: 2011.05421 [cs.CV].

[8] J. Sharma and S. Sharma, “Challenges and solutions in DeepFakes,” Sep. 2021.
arXiv: 2109.05397 [cs.CV].

[9] S. Lyu, “Deepfake detection: Current challenges and next steps,” in 2020 IEEE
International Conference on Multimedia & Expo Workshops (ICMEW), Lon-
don, UK: IEEE, Jul. 2020.

[10] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, “Celeb-DF: A large-scale challenging
dataset for DeepFake forensics,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, Jun. 2020.

[11] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture
of monkey striate cortex,” en, J. Physiol., vol. 195, no. 1, pp. 215–243, Mar.
1968.

[12] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural
networks: An overview and application in radiology,” en, Insights Imaging,
vol. 9, no. 4, pp. 611–629, Aug. 2018.

[13] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural
networks: An overview and application in radiology,” en, Insights Imaging,
vol. 9, no. 4, pp. 611–629, Aug. 2018.

30

https://spectrum.ieee.org/facebook-ai-launches-its-deepfake-detection-challenge
https://spectrum.ieee.org/facebook-ai-launches-its-deepfake-detection-challenge
https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
https://arxiv.org/abs/2102.09603
https://arxiv.org/abs/2011.05421
https://arxiv.org/abs/2109.05397

[14] I. Papastratis, Deepfakes: Face synthesis with GANs and autoencoders, en,
https://theaisummer.com/deepfakes/, Accessed: 2022-9-20, Jun. 2020.

[15] J. Brownlee, A Gentle Introduction to Generative Adversarial Networks. 2019.

[16] P. Pedamkar, Autoencoders, en, https ://www.educba.com/autoencoders/,
Accessed: 2022-9-20, Oct. 2019.

[17] V. Asnani, X. Yin, T. Hassner, and X. Liu, “Reverse engineering of generative
models: Inferring model hyperparameters from generated images,” Jun. 2021.
arXiv: 2106.07873 [cs.CV].

[18] L. Guarnera, O. Giudice, and S. Battiato, “DeepFake detection by analyzing
convolutional traces,” in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA: IEEE, Jun.
2020.

[19] Y.-Y. Kim, H. Kim,W. Lee, H.-L. Choi, and I.-C. Moon, “Black-box expectation–
maximization algorithm for estimating latent states of high-speed vehicles,”
en, J. Aerosp. Comput. Inf. Commun., vol. 18, no. 4, pp. 175–192, Apr. 2021.

[20] D. Guera and E. J. Delp, “Deepfake video detection using recurrent neural
networks,” in 2018 15th IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS), Auckland, New Zealand: IEEE, Nov.
2018.

[21] D. Suo, S. Zhang, Z. Song, S. Wang, Y. Li, and X. Fan, “Simultaneous deter-
mination of 21 sulfonamides in poultry eggs using ionic liquid-modified molec-
ularly imprinted polymer SPE and UPLC-MS/MS,” en, Molecules, vol. 27,
no. 15, p. 4953, Aug. 2022.

[22] D. Pan, L. Sun, R. Wang, X. Zhang, and R. O. Sinnott, “Deepfake detec-
tion through deep learning,” in 2020 IEEE/ACM International Conference
on Big Data Computing, Applications and Technologies (BDCAT), Leicester,
UK: IEEE, Dec. 2020.

[23] H. Zhao, T. Wei, W. Zhou, W. Zhang, D. Chen, and N. Yu, “Multi-attentional
deepfake detection,” in 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Nashville, TN, USA: IEEE, Jun. 2021.

[24] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, “Celeb-DF: A large-scale challenging
dataset for DeepFake forensics,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, Jun. 2020.

[25] O. de Lima, S. Franklin, S. Basu, B. Karwoski, and A. George, “Deepfake
detection using spatiotemporal convolutional networks,” Jun. 2020. arXiv:
2006.14749 [cs.CV].

[26] A. Singh, ConvNext: The return of convolution networks - augmented startups -
medium, en, https://medium.com/augmented-startups/convnext-the-return-
of-convolution-networks-e70cbe8dabcc, Accessed: 2022-9-20, Feb. 2022.

[27] J. Loy, A comprehensive guide to microsoft’s swin transformer, en, https :
/ / towardsdatascience . com/a - comprehensive - guide - to - swin - transformer -
64965f89d14c, Accessed: 2022-9-20, May 2022.

[28] What is LSTM - introduction to long short term memory, en, https://intellipaat.
com/blog/what-is-lstm/, Accessed: 2022-9-20, Feb. 2022.

31

https://theaisummer.com/deepfakes/
https://www.educba.com/autoencoders/
https://arxiv.org/abs/2106.07873
https://arxiv.org/abs/2006.14749
https://medium.com/augmented-startups/convnext-the-return-of-convolution-networks-e70cbe8dabcc
https://medium.com/augmented-startups/convnext-the-return-of-convolution-networks-e70cbe8dabcc
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://intellipaat.com/blog/what-is-lstm/
https://intellipaat.com/blog/what-is-lstm/

[29] R. Dolphin, LSTM networks, en, https : / / towardsdatascience . com / lstm -
networks-a-detailed-explanation-8fae6aefc7f9, Accessed: 2022-9-20, Oct. 2020.

[30] G. J. van Wyk and A. S. Bosman, “Evolutionary neural architecture search
for image restoration,” in 2019 International Joint Conference on Neural Net-
works (IJCNN), Budapest, Hungary: IEEE, Jul. 2019.

[31] Understanding LSTM networks, en, https://colah.github.io/posts/2015-08-
Understanding-LSTMs/, Accessed: 2022-9-20.

[32] CrossEntropyLoss — PyTorch 1.12 documentation, en, https://pytorch.org/
docs/stable/generated/torch.nn.CrossEntropyLoss.html, Accessed: 2022-9-20.

32

https://towardsdatascience.com/lstm-networks-a-detailed-explanation-8fae6aefc7f9
https://towardsdatascience.com/lstm-networks-a-detailed-explanation-8fae6aefc7f9
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Research Problem
	Research Objectives
	Background Studies

	Related Work
	Dataset And Preprocessing
	Preprocessing
	Dataset

	Proposed Deepfake Detection Architecture
	Motivation
	Proposed deepfake detection framework
	Short Description Of Proposed Model and Architectures Used For Comparison and Composition
	Model Details
	ConvNeXt:
	LSTM

	Experiments And Results
	Parameter Settings
	Evaluation Matrices
	Adam

	Performance Evaluation Matrices
	Cross Entropy Loss

	Result
	Graphs On Loss function Calculation

	Conclusion
	Limitations
	Future Work

	Bibliography

