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Abstract

Despite only making up 1% of all occurrences of skin cancer, melanoma is one of the
most prevalent forms to cause fatalities in recent years. Melanoma has a survival
rate of more than 50% from the early stages to the end. To survive this type of
cancer, it is essential to identify lesions on the skin early and to keep an eye out for
any complications. If skin cancer is not detected and treated early, it is among the
most fatal cancers. Of the skin cancers, which are among the deadliest, melanoma
is the most unexpected. Like most other diseases, melanoma may be treatable if
caught early enough. Due to the high cost of having a dermatologist screen every
patient and the difficulty of human judgment, an automated system for melanoma
diagnosis is required. Due to its promising pattern recognition skills, Convolutional
Neural Network (CNN) models have recently gained a lot of interest in medical
imaging. Melanoma diagnosis from dermoscopic skin samples automatically is a
difficult task. In contrast to other types, melanoma ranks as the most serious type
of skin cancer. However, those who are diagnosed early on have a better progno-
sis; several methods of spontaneous melanoma recognition and diagnosis have been
researched by different researchers for the objective of providing a supplementary
opinion to professionals. Building models using existing data has proven problem-
atic due to the imbalance between classes. However, these issues may be solved by
implementing a deep learning approach as a machine vision tool. The purpose of the
current study was to determine how well dermoscopy and deep learning classified
melanoma. In this paper, we introduce a brand-new deep learning model that was
created to categorize melanoma skin cancer. And we have compared the result of
our suggested model with pre-trained VGG16, VGG19, and AlexNet. According to
experimental data, we discovered that our model worked well and could accurately
categorize melanoma skin cancer. Also, the proposed system is competitive in the
area of melanoma detection and superior in terms of accuracy and can be employed
in the clinical decision-making procedure for melanoma skin cancer early detection.

Keywords: Convolutional Neural Networks(CNN), Classification, Skin cancer, Melanoma,
VGG-16, VGG-19, AlexNet.
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Chapter 1

Introduction

1.1 Introduction

Melanoma skin cancer incidences are increasing worldwide and are now being found
in populations with darker skin due to increased UV exposure. Like many other
types of cancer, the likelihood of effective treatment and cure is increased when
cancer is discovered in its early stages. If discovered later, the chances of survival
are greatly reduced. Image processing techniques for melanoma diagnosis have been
developed to help dermatologists. Abnormal cell growth in the epidermis is the root
cause of skin cancer, which leads to mutation and rapid expansion of skin cells,
resulting in tumors. The most deadly form of skin cancer, melanoma, is responsible
for roughly 75% of all skin cancer fatalities[5]. It is a kind of cancer that develops in
the skin’s pigment cells (melanocytes). It also has the highest rate of death among
skin cancers. Whites had a 2.6% lifetime risk of having melanoma, 0.1 for blacks,
and 0.6% for Hispanics, according to statistics[35]. Cutaneous melanoma, the most
severe kind of illness, is responsible for 90% of all skin cancer deaths[14]. Fortunately,
the prognosis is often favorable if the illness is identified and treated promptly[6].
UV radiation from the sun, or sunburn, is one of the factors contributing to the rise
in melanoma cases [39]. After so much medical research and experimentation, it is
undeniable that melanoma is caused by more than only UV light, as other body
parts that are not exposed to sunlight are equally susceptible to melanoma. There
are four different subtypes of this skin cancer. They are,
1. Superficial spreading
2. Nodular
3. Lentigo maligna
4. Acral lentiginous
It depends on the clinical appearance, progression, Anatomic size, and histologic
appearance.

1.1.1 Superficial spreading melanoma

As it accounts for 70% to 80% of all melanomas, it is the most prevalent subtype.
This type of melanoma is very much common in middle age. This type of melanoma
is frequently found in the upper back of both males and females. Its length is 6 mm,
flat and symmetric with variant colors. It begins in a non-specific manner and then
changes its shape.
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1.1.2 Nodular melanoma

Between 15% to 30% of all melanomas are caused by it, making it the second most
common kind of skin cancer. The initial radial growth phase is absent in nodular
melanoma, which is a de novo vertical growth tumor. It has a firm blue to black
papule or nodule that can be ulcerated, and men over the age of 60 are more likely
than women to have it. The trunk and head/neck region are preferred places.

1.1.3 Lentigo maligna

It is the third kind of skin cancer, accounting for about 5% to 10% of all melanomas.
Intraepidermal melanoma is represented by Lentigo maligna. Lentigo maligna affects
5% of male and female patients, who are typically older. They progress throughout
time. It usually impacts the face, neck, and arms. Melanoma of this type might
have a complicated pattern. Although the color is more uniform than in Superficial
spreading melanoma, red and white spots may appear later. Although the shape is
flat, the outline is uneven.

1.1.4 Acral lentiginous

It’s a type of lentiginous melanoma of the skin. People with darker complexions
are more prone to it. Acral lentiginous is an uncommon type of skin cancer that
impacts people with fair complexion. Acral lentiginous melanoma can be detected
on the lips, tongue, oral mucosa, soles of the feet, and palms. Males are more likely
than females to develop acral lentiginous melanoma.
Melanoma is a cancer that can be treated if caught early enough. Early melanoma
detection is accomplished by biopsy, pathology results, and dermoscopy imaging
analysis. A non-invasive imaging technique called dermoscopy is frequently used to
detect melanoma early and increase survival rates. The technique of dermoscopy
is capturing a high-resolution, enlarged photograph of a malignant tumor on the
skin and having it examined by specialists for the melanoma diagnosis. Dermoscopy
image analysis by dermatologists is costly and needs a high degree of skill to ac-
curately diagnose the issue. The use of dermoscopy images to aid in the early
diagnosis of melanoma has highlighted the requirement for precise computer-aided
diagnostic techniques. First and foremost, visual similarity between diseased and
non-cancerous cells is far too difficult to achieve. Melanoma and non-melanoma
skin cancers are difficult to distinguish. Secondly, segmenting the skin lesion from
certain skin patches is challenging because of the poor contrast. In addition, various
people’s skin problems cause cosmetically unique melanoma, even though melanoma
and non-melanoma are essentially the same on the outside. Other artifacts that com-
pound the concern by adding to blurriness and occlusions include color calibration
charts, hair, ruler lines, and veins. To help doctors diagnose melanoma, a number of
innovative techniques have been created in recent years. Two of the more effective
initiatives are machine learning and deep learning.
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1.2 Motivation

A malignant tumor is created when normal melanocytes undergo changes and ex-
pand out of control. Malignant describes a malignant tumor’s capacity to grow
and spread to other parts of the body. Melanoma can occasionally arise from a
healthy mole that a person already has on their skin. This results in modifications
to the mole that are often visible, such as adjustments to its size, color, form, or
border. Sometimes melanoma can appear on skin that doesn’t already have a mole.
Melanoma frequently responds well to surgery when it is detected early. Melanoma
is one of the worst types of skin cancer, and it can penetrate the skin deeply. The
research is stated to make people more aware of the classifications and follow-ups of
this type of skin disease. And also to identify melanoma in the least time. One of the
main factors contributing to the development of melanomas is skin exposure to UV
light. The structure of skin is examined using a technique known as dermoscopy.
Dermoscopy pictures can be used in an observation-based detection method for
melanoma. The dermatologist’s training has an impact on the dermoscopy’s accu-
racy. Dermoscopy is a method used by dermatologists to identify illnesses, although
early diagnosis is still feasible. The system’s diagnostic will contribute to improving
the diagnosis’ speed and precision. A computer will be able to extract some details,
such as asymmetry, color variation, and texture aspects. These minute parameters
might not be seen to the unaided sight of a human. So, in future if any person is
affected by melanoma than he/she could identify it in the primary stage.

1.3 Problem Statement

The most crucial kind of skin cancer is melanoma. Every year, it kills over 10,000
people in the United States. Melanoma treatment necessitates early detection, re-
organization, and treatment. It has the ability to save over 95% of the population.
Because it can acquire high-resolution images of the skin without being interrupted
by reflections from the surface, One of the most crucial techniques for analyzing skin
lesions is dermoscopy. This high-resolution imaging, which can reach diagnostic ac-
curacy of up to 80%[17], is utilized by specially trained specialists to determine the
risk of melanoma early on. However, there are not enough experienced dermatolo-
gists in the world. They are
1. The database isn’t quite up to par.
2. Computational power was limited in the past
Previous research relied on a tiny number of dermoscopy skin lesion images, there-
fore computers were unable to learn and extract useful data. Humans also lacked
creative solutions for dealing with vast numbers of photos. Due to their superior
computational power and access to large datasets that have been gathered and
made publicly available as open sources, deep learning techniques have excelled in
many domains and have been shown to outperform humans in tasks such as speech
recognition, language translation, and strategic games like Go[17]. Because widely
used pre-trained deep learning networks, such as ImageNet, are trained on different
datasets, they can’t be utilized to address skin cancer issues in general.
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1.4 Research Objective

Wherever skin is exposed to sunlight and certain areas where it is not, skin cancer
can develop. Skin cells are growing abnormally there. Up to 95% of human lives
can be saved by early diagnosis. Numerous researchers are looking into this illness.
There were so many incidents reported in the past. The patient can pass away if this
disease is discovered at its most advanced state. Due to delayed detection, many
people might die. Practitioners used to inspect the lesion area before determining
if cancer was present or not. Patients may occasionally pass away if any of the as-
sumptions made about them turn out to be false. The main goal of this study is to
develop and apply a custom CNN model to identify melanoma more accurately than
existing methods. To give you an example, Machine Learning (ML) has advanced
tremendously in recent years. Many machine learning algorithms have been devel-
oped and are being used in a variety of fields to make life easier and less dangerous
for humans. Machine learning plays a role in melanoma detection as well, and a
lot of work is being done with it. In particular, Convolutional Neural Networks
(CNN) have lately shown notable results in the analysis of medical images. The
idea is to relieve medical specialists of some of their work burdens, allowing them to
concentrate more on patient care. However, much work has still to be done in as-
sembling various deep neural architectures, and there is still more to be discovered.
So, in this study, we will introduce an efficient sequential algorithm that is per-
formed sequentially, without interruption, once from beginning to end, as opposed
to simultaneously or in parallel. Because the nature of each dataset’s properties
varies, so do the obstacles; lesion segmentation, illness categorization and detection,
location of visual dermoscopy features/patterns, and lesion attribute identification
are among these challenges[45].

Figure 1.1: Different types of skin lesions

Figure 1.1 displays the various skin lesions based on the data of the HAM10000
dataset 2018. Most dermoscopic images may contain undesired particles such as
thin and thick hair, air bubbles, gel, and occasionally various illumination effects.
As a result, reliable methods for removing noise and undesirable particles became
necessary. Some of these particles, such as air bubbles and oil, have grown less com-
mon as dermoscopy have evolved. The median filter is recommended for removing
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unwanted elements. The most crucial step in accurately assessing a lesion is seg-
mentation, as it determines the accuracy of all future phases. Precise segmentation
is difficult since there are so many skin types and textures, as well as a wide range
of lesion sizes, colors, and forms.

As a result, the proposed model intends to develop, test, and improve a very effective
deep learning-based network for classifying melanoma. One of the features of the
proposed study is the construction of numerous linked blocks to let considerable
feature information travel directly across the network while building a DNN model
for classifying skin lesions as benign or malignant on dermoscopic images. Again, a
deep neural network is built by repeatedly iterating sub-blocks with a predetermined
ratio on the validation set. Furthermore, in order to extract both low-level and
high-level feature information from lesions, each block of the network makes use of
a separate set of parameters, including the number of kernels, filter size, and stride.
The suggested model performs better with fewer filters and learnable parameters on
the HAM10000 datasets. As a result, it’s a straightforward algorithm for classifying
numerous skin malignancies.
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Chapter 2

Literature Review

Many rules have been followed to detect melanoma over the years. Some of the most
well-known ones are the ABCD rule, Pattern Analysis of Tumors, Menzies method,
7-point checklists, and 3-point checklists. Professional dermatologists utilize these
procedures to distinguish between malignant and benign melanoma. Clinical appli-
cation of skin surface microscopy was hampered until the dermatoscope was invented
because stereo microscopes were rigid and expensive[1]. They made the procedure
complicated and lengthy. The creation of the dermatoscope overcomes these chal-
lenges. It enabled quick surface microscopic analysis. Because novices find it chal-
lenging to understand photographs, Stolz et al. developed the ABCD rule, which
relies on a semi-quantitative scoring system and a multivariate analysis of just four
criteria. The four requirements are asymmetry, border, color, and differential struc-
ture. Perpendicular axes are employed to attain the lowest score for asymmetry,
which is scored in terms of color and structure. The lesions were separated into
eight segments for the border score, and the six possible lesion colors were counted
for the color score, resulting in a score ranging from 1 to 6. These 5 points are
counted for differential structure: network, homogenous areas, dots, globules, and
streak. The study discovered that if the score from melanocytic pigmented skin
lesions were higher than 5.45, it was malignant melanoma, but that a score between
4.75 and 5.45 could not rule out early melanoma.

Menzies Method contains three criteria, while Pattern Analysis includes eight[7].
Some pattern analysis criteria include the overall pattern, the pigment network, the
globules, the streaks, the blue-white veil, the blotches, the hypopigmentation, the
regression structures, and the vascular structures. Menzies’s method criteria, on the
other hand, include lesion color, pattern symmetry, and positive characteristics.

The 7-Point Checklist and the Golden Rule are two other traditional melanoma
detection guidelines[3] and the 3-Point Checklist[8]. The 7-Point Checklist includes
pigment networks, blue whitish veils, vascular structures, pigment streaks, patches,
and globules, as well as regression structures. According to dermatology residents 5,
it has a lower specificity but a better sensitivity than pattern analysis. The 3-Point
checklist requirements, on the other hand, are asymmetry, unusual network, and
blue-white structures.

Day proposes a method for determining the second border cut-off of the ABCD rule
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by using the brightness gradient of the boundary lesion[4]. The author defines a
sharp cut-off pigment as a considerable change in brightness away from the lesion
in the skin slice. The slope of the lightness values, he added, may be utilized to
determine the border cut-off. The problem with this strategy was that a substan-
tial percentage of lesions in the set were marked “0” by dermatologists, making it
difficult to interpret the results. Furthermore, running separate analyses on lesions
marked “0” and lesions marked “1” in numerous lesions with comparable distribu-
tion does not help because it is very time-consuming clinically.

Artifacts and feature extraction, border detection, and noise reduction, pattern anal-
ysis, and lesion categorization are the required four automated dermoscopic image
classification steps[10]. The hardest of these four steps is the border identifica-
tion and categorization of pigmented skin lesions. Thresholding, region growth,
clustering, Geodesic Active Contour(GAC) model, Region Based Contour(RAC)
model, Multi gradient Vector Flow(GVF), and Dermatologist level algorithm for
tumor extraction have all been created to produce an unsupervised segmentation
technique for dermoscopy (DTEA). Inefficient algorithms for hair removal lead to
over-segmentation and inadequate pattern analysis of the malignancy. Abaas et al.
describe a comparative study of hair removal strategies such as linear interpolation,
PDE nonlinear diffusion inpainting, and the exemplar-based inpainting approach in
this research.

The DullRazor hair removal algorithm was proposed by Lee et al[2], which includes
three steps: recognizing dark hair spots, bilinear interpolation to replace hair pix-
els, and an adaptive median filter to smooth the final result. This method only
works if the tumors are smooth or devoid of hair pixels, which is unlikely to be the
case with dermoscopic pictures. The nonlinear diffusion approach has the benefit
over linear interpolation in that it fills large gaps while naturally using nearby in-
formation and maintaining a crisp border. However, when hair areas are filled, it
results in some blur, which is noticeable. In addition, the computational complexity
of PDE diffusion is higher than that of linear interpolation. However, because of
its edge-preserving properties, it is excellent for tracing tumor boundaries. As a
result, the authors believe it can be utilized as a pre-processing step. Non-linear
PDE diffusion and texture synthesis are combined in the exemplar-based inpaint-
ing method. The authors also devised a quick marching system for hair removal.
It entails three steps: identifying hair using the Derivative of Gaussian (DOG), re-
fining using morphological methods, and fast marching using the inpainting method.

The partition of an image into discontinuous parts that are uniform in terms of
brightness, color, and texture is known as segmentation[36]. Its purpose is to make
an image simpler so that features may be extracted easily. Handcrafted feature-
based methods such as threshold, edge, and region-based supervised segmentation,
as well as intelligence-based supervised segmentation[44] are used. Threshold and
clustering have the advantage of being quick to deploy and not requiring spatial
properties of an image, yet being sensitive to noise. Edge and region-based tech-
niques handle specific homogeneity constraints, though seed point initialization in
some regions requires manual engagement. Although intelligence-based segmenta-
tion has a greater accuracy, it is still susceptible to noise and has some precision
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uncertainty. When dealing with enormous amounts of data, these segmentation
algorithms have demonstrated little success[22]. Deep Learning has recently revolu-
tionized machine learning and computer vision, and with regard to body recognition,
lesion detection, picture registration, segmentation, and classification, it is currently
widely employed in medical image analysis. Kawahara et al. shown[16] for the cat-
egorization of skin lesions, features derived from a neural network pre-trained on
ImageNet outperformed methods that relied on manually built human-engineered
attributes. [21]Menegola et al. discovered that optimizing a neural network that
has just been trained on ImageNet outperformed training a neural network from
scratch in their investigation. As a result, deep neural networks are being used
for segmentation. It is advantageous to transfer learning from one domain to an-
other if data is accessible, and save time by using a pre-trained CNN as a feature
extractor. In close-up skin photos, it could not be evident. Several automated pro-
cesses have been suggested in recent years to help physicians diagnose melanoma.
Among these strategies are traditional machine learning and deep learning-based
methodologies[27] [40]. Deep learning-based algorithms for medical image analysis,
such as segmentation, detection, and classification, have recently generated great
results. As a result, deep learning-based approaches for melanoma diagnosis are re-
ceiving increased attention. To get better outcomes, different research used various
CNN models for the categorization of melanoma[42]. Using pre-trained VGG-16 and
VGG-19 models on their dataset, they were able to get a 76% accuracy, but that
wasn’t good enough. To tackle this challenge, reference[30] used deep learning ar-
chitecture. Their research focused on detecting lesion attributes, segmenting lesion
boundaries, and diagnosing lesions. AlexNet[11], Xception, ResNet[19], and VG-
GNet were among the pre-trained models used, with ResNet obtaining the greatest
accuracy of 92.74 percent. On the ISIC-2017 dataset, Deep learning models were
employed in a different study[15] to carry out the three tasks of segmentation, fea-
ture extraction, and classification. The results of the experiments show a high level
of accuracy, with 75% for segmentation and 91% for classification.

In order to classify the melanoma kind and lower the false-positive rate, additional
features of skin lesion pictures were extracted in[25]. Melanoma type classification
and to reduce the false-positive rate. On the heraldic13 dataset, they used SVM,
neural networks, and random forest classifiers, with the random forest classifier
achieving the maximum accuracy of 90%. [33]employed an ensemble of Deep Neural
Networks models, such as AlexNet, VGGNet, and GoogLeNet, to classify skin can-
cer and achieved an accuracy of 84.8% on the ISIC 2017 dataset. Other research[24]
[41] [31] classified ISIC 2017 datasets with an accuracy of 76% using an ensemble of
several approaches.

Prior studies[15] [48] [34] centered on categorizing skin lesion pictures into different
cancer subtypes but could not go into great depth. Skin lesions were divided into
melanoma and non-melanoma in the study [39]. The categorization of cutaneous le-
sions into several categories was the topic of another investigation[18]. For a precise
diagnosis and to increase patient survival rates, melanomas must be divided into
subgroups[21] [27]. The goal of this study is to detect acral lentiginous melanoma
from dermoscopy images.
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According to Haenssle HA[23], 300 high-quality photos were taken into considera-
tion, 20% of which were melanomas and 80% of which were benign. There was no
room for overlap between the training, validation, and testing datasets. Out of 300
photos, two dermatologists choose 100 for possible diagnosis. Set-100 was used to
test CNN against dermatologists. A reader study at level 1 asked for melanoma
or benign nevus diagnosis. Then, 4 weeks later, they provided their diagnosis and
treatment in level-2, which included additional clinical data for 100 dermoscopy
photos.

In the skin lesion analysis toward melanoma detection study, the authors presented
two deep learning frameworks, the Lesion Indexing Network (LIN) and the Lesion
Feature Network (LFN), to handle three key issues in the processing of skin lesion
images: lesion segmentation, dermoscopic feature extraction, and lesion classifica-
tion[26]. Lesion segmentation and classification were addressed simultaneously by
the Lesion Indexing Network. The segmentation result and coarse performance of
the classifier are produced by two extremely deep completely convolutional resid-
ual networks, specifically FCRN-88, which were trained with various training sets.
The suggested lesion indexing calculation unit (LICU) measures the significance of
a pixel for the categorization of lesions. The distance map produced by LICU is
used to modify the coarse classification result[26].

The ISIC-2017 data set, which includes pictures of lesions from the three groups of
melanoma, nevus, and seborrheic keratosis, was used by the authors to evaluate their
method[28]. In the Supplementary section, further findings on the ISIC 2018 data
set with photos of lesions from seven classes—actinic keratosis, basal carcinoma, be-
nign keratosis, satiate, melanoma, lesion, and vascular lesion—are shown[28]. The
authors search for and eliminate hairs and rulers on the photos using conventional
data processing techniques. They improved the algorithm for removing hair. They
suggest using decoupled DCGANs for data creation. We create 350 pictures of
melanoma and 750 images of seborrheic keratosis using two distinct Deep Convolu-
tional Generative Adversarial Networks (DCGANs) [54], as these two classes were
significantly underrepresented in the ISIC 2017 data set in comparison to a much
larger nevus class. We call this strategy “de-coupled DCGANs” since we employ
different networks for each class[28].

The section analyzes the performance of the whole working technique presented in
the research based on four key metrics: the ability to accurately extract features
from lesion locations, the speed of computation, and the performance of segmenta-
tion[37]. For the purposes of detection and segmentation, three separate publically
accessible datasets—PH2, ISBI 2017, and ISIC 2019—are employed in this case.
On a computer running Ubuntu 18.04 and equipped with an i7 CPU, 32 GB of
RAM, and a 4 GB GPU, all operations and computations were completed. The
OpenCV image processing framework and Python were used to create the complete
system[37]. The work, which was written by numerous authors, was conceptualized
by S.B. under the guidance of R.B. and A.D. A.C. helped to develop the work’s
methodology in collaboration with Banerjee, who carried out a real investigation
and thorough analysis of data[37].

9



Different neural network algorithms for skin cancer detection and classification have
been covered in this systematic review research[46]. These methods are all non-
invasive. The method of detecting skin cancer involves several steps, including
preprocessing, picture segmentation, feature extraction, and classification. The cat-
egorization of lesion pictures using ANNs, CNNs, KNNs, and RBFNs was the main
emphasis of this review. Each algorithm has benefits and drawbacks. The key to
getting the best results is choosing the categorization method correctly. However,
because it is more directly tied to computer vision than other neural networks,
CNN performs better than other types of neural networks when categorizing picture
data[46].
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Chapter 3

Methodology

10,000 pictures in all are contained in this collection. The dataset is split into two
parts: test 950 images, which is used to assess the correctness of the trained models,
and train 9,050 images, which is employed to train the models. Malignant and be-
nign cancer photos may be found in the train section (total of 9,050 images). And
the test section has malignant (total of 475 images) and benign (total of 475 images)
cancer images. The image sizes are (300×300). Each image is of a good caliber. All
the data rights for this dataset are bound by The HAM10000.

Python is employed as a programming language to run these systems because of
how extensive its library is. To display statistical analyses and create visual graphs,
libraries like Pandas and Matplotlib are employed. As an IDE for these systems,
Google Colab and Jupyter Notebook have been used. A core i5 7th generation lap-
top served as the workstation for this study. Google Colab’s embedded RAM and
GPU are utilized along with the laptop’s integrated RAM (8 GB) and graphics zotac
1050ti (4 GB). TensorFlow was released as a Python library that is open source and
free. Dataflow is used to perform machine learning methods using TensorFlow. It
also aided in computing values and training models. The dataset was stored with
the use of Google Drive.

One of the most elegant programming paradigms ever created is neural networks.
The conventional approach to programming, which divides complex problems into
several tiny, precisely defined tasks that the computer can easily carry out, allows
anybody to tell the computer what to do. On the other hand, consumers cannot in-
struct a neural network on how to resolve an issue[29]. Instead, it derives a solution
to the issue on its own by learning from observable data. The CNN weight-sharing
tool, which decreases the number of network parameters that may be trained, aids
in preventing model overfitting, and boosts generalization, is one of the main rea-
sons to consider it in such a scenario. The concurrent loading of input by CNN’s
extracting features and classification layers enhances the output’s dependence on
the extracted features and boosts the output’s order. Three key ideas constitute
the foundation of convolutional neural networks: pooling, shared weights, and local
receptive fields[29].

The underlying conceptual model of CNN is shown in Figure 3.1, and many layers of
that model are described in the sections that follow. A CNN-based model essentially
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consists of a few processing units which are adept at handling different levels of
abstraction of incoming data. Sets of data are given as input. Then several layers,
such as convolutional layers, are run, then a pooling layer. A completely linked layer
and an output are both present at the conclusion. The input and Fully Connected
(FC) levels are separated by a number of unnoticed layers. When compared to the
buried layers, the initiatory components (with less abstraction) learn and retrieve
high-level parts (with greater abstraction)[38].

Figure 3.1: Conceptual module of CNN

Every CNN design starts with convolutional layers. It is made up of many intricately
woven convolutional kernels (filters) that work together to transform the input data
into an output feature map (N-dimensional parameters). An input volume exists
for a single convolutional layer. Some data segments are removed from the input
source, and the activation value is saved for those. The output activation volume
receives the processed activation value after further processing. The use of kernel
techniques is utilized for all communication. A kernel is a collection of constant or
integer values, each of which corresponds to a kernel’s weight. When a CNN model’s
training process starts, random numbers are assigned to each kernel weight. The
kernel then learns to extract important information when the weights are adjusted
with each training period.

Then, to break down larger picture features into smaller ones, feature maps are
subsampled using pooling layers that are created using convolutional approaches.
The most crucial characteristics (or information) for every pool stage are always
preserved when the local features are compressed. The same steps used for convo-
lution are used for pooling, including choosing the operation stride and the pooling
region’s size. Among the several distinct pooling algorithms used in various pool-
ing layers, the maximum, average, minimum, gated, and tree pooling approaches are
only a few. The most well-liked and often employed pooling strategy is max-pooling.

Fully linked layers, in which every cell in one layer is connected to every cell in the
layer above it, constitute the final part of the convolution layer. The last layer of
completely linked layers in the CNN architecture is the output unit. The term “FC
layers” refers to a sort of feedforward artificial neural network (ANN) that performs
similarly to a neural network like a perceptron (MLP) (FCLs). The fully connected
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layers accept feedback based on a set of parameters following the last convolutional
or pooling layer, which is then compressed to generate a variable and fed into the
FC layer to produce the final CNN output.

We begin by attempting to obtain a data collection of skin lesion photos from which
we can detect melanoma. The photos will next be subjected to data pre-processing.
After that, we’ll use Deep Neural Architectures like VGG-16 and VGG-19 to conduct
image segmentation. The set of data will then be split into halves for the model’s
testing and training. In 2014’s ILSVRC (Imagenet) competition, VGG-16, a con-
volutional neural network (CNN) architecture, took first place. This is frequently
acknowledged as one of the most sophisticated vision model designs ever created.
Throughout the design, the convolutional and max-pool layers are arranged in ex-
actly the same way. Two completely interconnected layers and a softmax serve as
the conclusion[32]. The fact that there are 16 layers with different values is indi-
cated by the number 16 in VGG-16. This system is quite big, with an estimated 138
million components[32]. The whole VGG-16 model’s 16 layers are seen in Figure3.2.

Figure 3.2: Basic architecture of VGG-16 model

There are 16 layers of VGG-16 model, and they are divided into 5 different types of
layers (conv, ReLU, max-pooling, softmax, and fully connected). The convolutional
layer uses a source RGB value of 224 × 224 pixels with a predetermined length.
The data is altered using a number of convolutional layers, each with a 3 × 3 visual
field (the least size required to maintain the concepts of top/bottom, right/left, and
core). A layer called max-pooling comes after the convolutional layer. The data
is processed using a combination of convolution and ReLu. In some setups, it ad-
ditionally features 11 convolution filters, which are frequently seen as proportional
modifications to the input network.
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Our next attempt is the VGG-19 model containing 19 layers. According to reports,
the VGG-19 CNN architecture can analyze huge picture datasets like ImageNet with
great accuracy. The VGG-19 model, which has over 143 million parameters, was
built using information from of the ImageNet dataset, which has 1.2 million object
classification pictures in 1,000 different object categories[13]. There are 19 easy-to-
train layers in the VGG-19, including convolutional and fully connected layers and
also max pooling, dropouts, and fully connected layers. In our method, we combine
a customized classification component with a learned convolution base, a densely-
connected classifier, and a dropout layer for regularization. Figure 3.3 shows the
VGG-19 model in its updated form.

Figure 3.3: An example of the VGG-19 model’s custom network design

The only preprocessing carried out was to subtract the mean RGB price from each
component as calculated throughout the full training set. Utilizing kernels of (3 × 3)
dimension with a stride size with one component, they were able to hide the whole
notion of the image. Through spatial cushioning, the image’s spatial resolution was
maintained. A pair of max pooling was performed across a pair of element windows
with stride. This model uses a rectified linear unit (ReLU) to integrate non-linearity,
improve model classification, and accelerate processing, as contrasted to prior mod-
els that used tanh or sigmoid functions. Implemented three fully interconnected
layers, the first two of which had a combined total parameter of 20,024,384, followed
by a layer with 1,000 channels for 1000-way ILSVRC classification, and finally, a
softmax performance.

Our next model is AlexNet where we implemented the same dataset for better ac-
curacy results. In order to leverage the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC)[9], Krizhevsky et al. [20] built AlexNet. The input picture is
filtered using AlexNet’s first layer. The required dimensions for the input picture
are width (W), height (H), and depth (D); 2272273 where D = 3 denotes red, green,
and blue. Stride is the name of the first convolutional layer that was used to filter
the input color image. It comprises 96 kernels (K), a filter (F) of size 11 × 11, and
4 additional pixel(s). The stride in the kernel map is the separation between the
responding field centers of adjacent neurons. The output size of the convolution
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layer is calculated using the mathematical formula ((WF+2P)/S)+1, where P is the
number of padded pixels, which in this case equals zero. Using this equation, the
convolution layer’s output volume is calculated to be ((22711+0)/4)+1 = 55. The
input for the second convolutional layer will be[37] [46], and there are 256 filters in
this layer. The load for each GPU is divided by two, since the work of this layer
is divided between two GPUs. The convolutional layer comes next, and then the
pooling layer. The pooling layer, where pooling may be Sum, Max, Average, etc.,
attempts to minimize the dimensionality of each feature map while maintaining key
characteristics. Utilizing a max pooling layer is AlexNet. 256 filters are the layer’s
input. Each filter has a size of, 55256 and a stride of 2 pixels. Using two GPUs will
split the work into 2727128 for each GPU, or 55/255/2256/2.

Figure 3.4: Architecture of AlexNet

The third layer is connected to the second convolutional layer’s pooled and normal-
ized output via 384 kernels, each of size 33. For the fourth convolutional layer, there
are 384 kernels of size 33, and they will be split across 2 GPUs so that each GPU
load is 33192. Each GPU load will be, 33128 since the fifth convolutional layer has
256 kernels, each of which is 33 in size. These kernels will be distributed across 2
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GPUs. It should be emphasized that no normalizing or pooling layers are used while
creating the third, fourth, or fifth convolutional layers. These 2 fully connected lay-
ers each have 4096 neurons, and they receive the output of these 3 convolutional
layers as their input. Using the training dataset ImageNet[9], Figure 3.4 shows the
general architecture of Alex-Net for classifying various classes.

Finally, comparing the results of the implementation, we used the custom CNN
model to generate higher accuracy results. RGB images measuring 224 × 224 ×
3 are used as the CNN model’s input. Weights in each layer are equivalent to
those in the one above it[47]. It is composed of consecutive layers that use convo-
lutional and pooling techniques to extract patterns from images. Figure 6 depicts
the construction of layers in the custom CNN model. As the depth of the network
increases, convolutional layers frequently have more filters despite having fewer rows
and columns. The model is constructed using layers like conv, ReLU, max-pooling,
dense, and completely linked, similar to the structure described above. Conv1-Lu1-
maxPool1 is a pooling layer that is always present after a convolutional and ReLU
layer. As the system gets bigger, there are more parameters. The ease of use of this
design is its key benefit.

Figure 3.5: Architecture of custom CNN model

The first Conv2D parameter that is required is the amount of filter which the con-
volutional layer will learn. Layers early in the network design (i.e., closest to the
actual input picture) will train fewer convolutional filters, whereas layers deeper
inside the network (i.e., nearer to the output predictions) would learn more filters.
Later Conv2D layers will learn more filters than early Conv2D layers, but fewer
filters compared to the output will be learned by later layers.
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Next, in neural networks, pooling is used to lower variance and simplify computa-
tion. Beginners frequently employ pooling techniques without understanding why
they should. Sharp features may not be visible when using the average pooling ap-
proach, since it smoothens down the image. The brighter pixels in the picture are
chosen via max pooling. It is helpful when we just care about the image’s lighter
pixels and the image’s dark backdrop. As an illustration, the digits in the MNIST
dataset are shown in white, while the background is black. Max pooling is used
as a result. Again, the flatten function lowers the multi-dimensional data tensors
to a single dimension in order to simulate the input layer, build the neural net-
work model, and appropriately feed these inputs to each and every neuron in the
model. Convolution layer to fully connected layer transitions frequently employs the
flattened layer to reduce the multidimensional input to one dimension. Configure
the layer differently depending on whether TensorSpace Model loads a pre-trained
model before startup. Next, the dropout method is used in the model. By randomly
removing units during training, the dropout method minimizes overfitting in neural
networks. The trained model functions as an ensemble model made up of several
neural networks as a consequence. To obtain the final model prediction at test time,
the ensembled networks’ predictions are averaged across all layers. We can model
dropout as training numerous neural networks and average their prediction during
testing, since certain sections of the network turn off during training.

The Rectified Linear Unit is the next most commonly used activation function in
deep learning models (ReLU). The function returns 0 for any input that is negative
and returns x for any input that is positive. Thus, it may be expressed as y = max
(0,x). Some ReLU function characteristics. There are no difficult mathematical for-
mulas involved, making it incredibly simple to grasp. It is not affected by the fading
slope issue that mostly affects other activation functions, such as sigmoid or tanh.
It features various built-in variations for certain challenging mathematical concepts,
like Leaky ReLU and Parametric ReLU. Additionally, deep learning and machine
learning also require activation functions, which essentially come in 7 different va-
rieties. In machine learning, the sigmoid serves as an activation function that is
used to introduce non-linearity into a model. It chooses which value to transmit as
output and which not to pass, to put it another way.

Y =

(
1

1 + e−z

)
(3.1)

As a result, the expected value of y will be 1 if the value of z grows to positive infin-
ity and 0 if it declines to negative infinity. Additionally, the label is classed as class
1 or a positive class if the sigmoid function result is larger than 0.5, and class 0 or a
negative class if it is less than 0.5. Adam determines individualized education rates
for different parameters using an efficient machine learning technique. Adaptive
moment estimation, as Adam is known, uses estimations of the initial and second
moment of the gradient to alter the learning rate for every weight of the neural
network. Adam may be thought of as a mix of RMSprop and stochastic gradient
descent with momentum. Similar to RMSprop, it adjusts the learning rate utilizing
squared gradients and, like SGD with momentum, utilizes momentum by using the
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gradient’s trend line rather than the gradient itself.

The architecture of the deep learning model may be thought of as its layers. Differ-
ent kinds of layers may be utilized in the models. Based on their attributes, each
of these several strata has a particular significance. Convolutional layers are used
in image processing, In problems involving NLP and time series analysis, among
others, LSTM layers are commonly employed. The dense layer, also called as a
completely connected layer, is used in the last phases of the neural network. In
order to help the model more easily determine the link between both the values of
the information it is working with, this layer helps to change the output’s dimension
from the layer before. A layer that is closely coupled to the layer above it in any
neural network means that each and every neuron in that layer is related to all the
neuron in the layer from above. The photos are categorized using a dense layer based
on the output of the convolutional layers. Every layer of a neural network contains
neurons, which calculate the weighted average of its input before processing it with
a nonlinear function called an “activation function”.

For the implementation of the model, we are required to install GPUs for achieving
extra growth on the efficiency of the models. Installing the TensorFlow PIP pack-
age was the first step. The next step was to confirm that the CUDNN and CUDA
Toolkit installations were complete. The Object detection API is more practical
and effective for building models and enhancing performance. TensorFlow needs
the NVIDIA GPU, CUDA Toolkit v11.2 cuDNN 8.1.0 to operate on our GPU. An
environment has to be created. After that, we tested it on a different terminal to
make sure everything was functional. The installation of TensorFlow is now fin-
ished. The TensorFlow Object Detection API has to then be configured on your
machine. TensorFlow Model Garden was downloaded. In the TensorFlow Object
Detection API, model and training parameters are set via protobuf. Before using
the framework, the Protobuf library must be downloaded and built. We had to
launch a fresh terminal for the modified environment variable values to take effect.
Additionally, the COCO API was set up. By downloading and installing the object
detection program, the Object Detection API may be set up. Run the following
instructions from within TensorFlow models or research. Our installation seems to
be operating as planned. By default, TensorFlow maps almost all the GPU memory
of all GPUs that are visible to the process (subject to CUDA VISIBLE DEVICES).
By minimizing memory fragmentation, this helps make greater use of the device’s
relatively valuable GPU memory resources. TensorFlow has been constrained to a
certain subset of GPUs using the tf command.

Although TensorFlow can be installed and used without Anaconda, we choose it
because of how simple it makes it to manage packages and create new virtual ma-
chines. Prior to version 20.3, pip installs a package together with any necessary
Python packages without first checking for incompatibilities. Despite the continu-
ing scenario, it would install a package and any required dependencies. TensorFlow
might become unusable if another package other than TensorFlow through pip is
installed, since a different version of the NumPy library is needed. Even when a
package seems to be operating, several things might happen. The conda package
manager has historically been distinct from pip because of this. There are numer-
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ous platforms, such as Anaconda Cloud, PyPI, and other repositories, where one
may distribute bespoke conda packages. Anaconda2 and Anaconda3 both contain
Python versions 2.7 and 3.7, respectively. However, using Python versions that have
been conda-packaged, new environments may be made. To install Anaconda, we had
to open a new terminal window and enter the appropriate command. In subsequent
phases, an Anaconda virtualization environment was required.
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Chapter 4

Input and Training Dataset

4.1 Input Dataset

The modest size and lack of diversity of the current dermatoscopy image collection
hinder the creation of neural networks again for automatic analysis of pigmented
lesions. The authors dealt with this problem using the HAM10000 (“Human Versus
Machine with 10000 trained photos”) dataset. We have used HAM10000 dataset
to put our thesis into practice[12]. The authors collected images of dermatoscopy
taken and preserved using a variety of modalities from different populations. The
final sample, which may be utilized as just a training dataset for machine learning
based on the study, consists of 10,000 dermatoscopy images. The dataset is split into
two parts: test (950 photos), which is used to assess the correctness of the trained
models, and training (9,050 images), which is used to the models are trained. More
than 50% of lesions were verified by histopathology (histo), with obey exams, ex-
pert opinion, and verification by in-vivo fluorescence microscope giving the ground
truth (confocal) for the other cases[12]. Malignant and benign cancer photos may
be found in the train section (a combined total of 4,525 images). Additionally, there
are 475 photos of both malignant and benign cancer in the test section. The picture
dimensions are (300 × 300). Each picture is of high quality. Lesions in the dataset
with plenty of photos may be tracked using the lesion id field in the HAM10000
metadata file[12].

4.2 Training Dataset

During the primary analysis, we started our implementation part with the custom
CNN model. The input libraries and layers that the model required were,

4.2.1 Conv2D

In order to generate a tensor of outputs, this layer generates a convolution kernel
that is highly integrated with the input of the layer. If the utilize bias parameter is
set to True, a bias vector is built and added to the outputs. Last but just not least,
it is delivered to the outputs if activating is not None. In order to construct a tensor
of outputs, this layer primarily generates a convolution kernel that’s also combined
with the layer input. Again, many of the convolutional layers were interleaved with
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nonlinearity. ReLU is essentially used to filter information as it travels across the
network in the forward direction. If your input is negative, it basically makes it zero
by performing an element-wise operation on it.

Figure 4.1: Conv2D architecture

4.2.2 MaxPool2d

The PyTorch class known as MaxPool2d is used in neural networks to pool across
defined signal inputs that internally comprise different input planes. In the class
definition, it accepts a number of options, such as dilation, ceil mode, size of kernel,
stride, dilation, padding, and return indices. Max pooling helps to reduce over-
fitting by providing an abstracted representation. Additionally, by reducing the
number of parameters that must be learned, it grants the internal representation
basic translation invariance and reduces computational expense.

Figure 4.2: MaxPool2d workflow diagram
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4.2.3 Flatten Layer

The input’s depth perception is condensed to its developmental continuum using
a flatten layer. It must have the shape of a linear vector with one dimension.
Direct inputs cannot be of the rectangular or cubical form. And for this reason, we
require layers that are totally linked and flat. Data is flattened when it is made into
a 1-dimensional array for input into the following layer. The TensorFlow flatten
function, which can be found in the library, lowers the input data’s two dimensions
to only one. The batch size is unaffected when doing this.

4.2.4 Dense layer

In any neural network, a layer that is highly linked to the one above it indicates that
every neuron within this layer is connected to every neuron in the layer from above.
In artificial neural network networks, this layer is the one that is most frequently
utilized. As a result, each neuron in a dense layer is employed to change the vectors’
dimension. Every neuron in the thick layer receives information from every neuron
in the preceding layers, as was previously stated.

4.2.5 Dropout layer

Dropout, a training method, randomly disregards certain neurons. They drop out
at random. As a result, any weight modifications are not provided to the cell on
the return trip, and their effects are only briefly reduced on the activation of the
following neurons. The Dropout layer arbitrarily changes input values to 0 at such a
rate of rate at each step throughout training in order to prevent overfitting. Scaling
non-zero inputs up by 1 maintains the sum of all inputs (1 – rate). In artificial neural
networks, it largely avoids overfitting by randomly removing units during training.

Next, we implemented the model VGG-16 and VGG-19. The Oxford-based Visual
Geometry Group is known as the VGG model. The model was simpler than AlexNet
and had more depth. Two models with 16 and 19 layers each were shown in the
article. Each and every CNN layer used 3 by 3 filters with stride, a pad of size 1, a
maximum pooling size of 2, and stride 2. The 16 convolutional layers of VGGNet-16
are quite attractive, and its architecture is very consistent. It contains several filters
but just 3 × 3 convolutions, like AlexNet. On 4 GPUs, it may be taught for two
to three weeks. It is presently regarded by the community as the top method for
drawing traits from photographs. The VGGNet’s weight configuration is publicly
available and has been used as a conventional feature representation in a variety
of applications and problems. However, managing the 138 million parameters in
VGGNet might be a bit challenging. VGG is possible with transfer learning. In
which the parameters are updated for improved accuracy, and you may utilize the
parameter values once the model has been pre-trained on a dataset. In spite of
the fact that many new and enhanced scoring models have been created since VGG
was initially introduced, data researchers and scientists from all over the world are
still interested in VGG16. Here seem to be a few real-world examples of VGG16
applications.
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4.2.6 Image Recognition

X-rays and MRIs are examples of medical imaging methods that may be used to
identify illnesses using VGG16. While driving, it can also be utilized to read street
signs.

4.2.7 Image Detection

In certain instances involving image detection, it can perform quite well.

4.2.8 Image Embedding Vectors

After blowing out the highest output layer of the Siamese network, the model could
be employed to train to create image embed vectors that may be used for a job like
a face recognition.
This model requires a Dense layer and dropout layer, which we already discussed
earlier. Because it necessitates correlations between extracted features and cate-
gories, GlobalAveragePooling2D has also been employed in this model because it is
more naturally compatible with the convolution structure. That is why the feature
maps may be simply understood as confidence maps for categories.

Figure 4.3: Operation of 2D global average pooling

Use global average pooling blocks instead of your convolutional neural network’s
final pooling block’s flattening block. You may substitute 2D Global Average Pool-
ing Blocks for CNN’s fully linked blocks. Again, VGG-19 has also been used in
the implementation to compare the results in identifications of melanoma. Modern
CNN With layers that have previously undergone training, VGG19 has a solid un-
derstanding of the shape, color, and structural aspects of an image. For difficult
classification tasks, the very deep VGG19 has indeed been trained on an enormous
variety of images. The VGG-19 model is an improvement over the VGG-16. Con-
volutional neural network model with 19 layers. Convolutions are stacked together
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to create the model, however a problem known as decreasing gradient restricts the
model’s depth. Deep convolutional networks are challenging to train due to this
concern.

Later, we implemented AlexNet to show better performance in detecting melanoma.
We used sufficient algorithms and libraries to generate better results. Such as,

4.2.9 ReLU

The perceptron most frequently utilized in deep learning models is Rectified Linear
Units. The function returns 0 for any input that is negative and returns x for any
input that is positive. ReLU is the maximum function given input vectors, such as
a vector from a convolved picture. Then, ReLU sets all negative numbers in the
matrix x to zero, while maintaining all other values constant. After the convolution,
ReLU, a non-linear activation function like a sigmoid, is produced. If the user input
is positive, the corrected activation function, or ReLU in short, will output the user
input; if the user input is negative, it will create zero.

4.2.10 AdaptiveAvgPool2d

The stride and kernel size are effectively specified by the user in average-pooling or
max-pooling, where they are set as hyper-parameters. If the input size changes, it
will need to be reconfigured. On the other hand, using adaptive pooling, we specify
the output size. Additionally, the stride and kernel size is automatically chosen to
meet the requirements. Simply described, adaptive average pooling is an average
pooling process that determines the appropriate kernel size required to create an
output of the specified dimensionality from the input supplied, given any input and
output dimensions.

4.2.11 Linear layer

The output features are produced by multiplying the linear layer’s input proper-
ties by a weight matrix. The input characteristics are sent to a linear layer as a
one-dimensional tensor that has been flattened, and they are then multiplied by the
weight matrix. Linear layers without bias may learn the overall average of associa-
tion between the input and the output. For instance, w would be positive if y and x
have a positive correlation, and w will indeed be negative if y and x have a negative
correlation. The value of w will be very close to 0 if y and x have no connection at all.

Furthermore, we also required the Conv2D layer for generating a convolution ker-
nel, which is convolved with the layer input. Also used maxpool2D for lowering the
parameters. Lastly, the dropout layer was also used for avoiding overfitting.

Lastly, the proposed model of our research is the custom CNN model. But the
unique optimizer that is used for building the model with more efficiency and for
higher accuracy is the Adam optimizer. Providing the “optimal” architecture in
regard to a list of restrictions or priorities is the aim of optimization. The max-
imization of factors like production, tenacity, reliability, endurance, efficacy, and
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utilization is among them. The stochastic gradient descent variant known as the
Adam optimization technique has lately gained more popularity for deep learning
applications. Rather than stochastic gradient descent, a new optimization method
called Adam could be employed to train deep learning models. Adam brings to-
gether the best elements of the RMSProp and AdaGrad algorithms to produce an
optimization method that can manage sparse gradient in noisy settings. The Adam
optimizer is faster to calculate, has fewer tuning parameters, and often gives better
results than traditional optimization techniques. As a result of all of that, Adam is
recommended as that of the preferred optimization again for the majority of appli-
cations.
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Chapter 5

Result Analysis

In this research for detecting melanoma, and it’s classification, we have implemented
our models with the HAM10000 dataset. We implemented VGG-16 and VGG-19,
AlexNet and the custom CNN model. This system was run on Google Colab and
Jupyter Notebook. The backend GPU of the Python 3 Google compute engine
(12.69 GB of shared RAM). The dataset was put on Google Drive so that Google
Colab could easily utilize it. The systems all functioned flawlessly and provided us
with the outcomes we required, which are covered in this part.

First, we use a simple convolutional neural network VGG-16 model using transfer
learning to address the melanoma classification. The model is trained with several
hyper-parameters to achieve accuracy, and binary cross-entropy is employed as the
loss function. Again, Adam optimizer is used to optimize each pre-trained model,
with a batch size limit of 15 as well as a learning rate of 0.00001. (1104). The total
number of epochs differs for the top four pre-trained CNN architectures. Thirty
training epochs are used to train these pre-trained models. These hyper-parameters
are all picked up via experience. The accuracy measure, which is the common metric
for classification issues, is defined as follows:

Accuracy =

(
TruePositive+ TrueNegative

TruePositive+ TrueNegative+ FalsePositive+ FalseNegative

)
(5.1)

When compared to other skin malignant disorders, ABCD rule identifies melanoma
mostly by gaining the minimal modifications. Your general practitioner is worried
about your skin, so if any changes take place, they will advise you to see a dermatol-
ogist who is skilled in identifying skin cancer. Asymmetry: Size and form differences
between the two parts. Some of the skin’s borders are distorted and uneven. Color:
The skin has black, pink, and brown color variations. Diameter – Tell your doctor if
the size of your melanoma changes at all. Typically, it is 6 mm in size. This method
of VGG-16 using conv, maxpooling, softmax and fully connected layers achieved
overall test accuracy of 74.05% respectively. The results are shown below,

This figure 5.1 depicts the accuracy results gained from VGG-16. We have run on
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Figure 5.1: Accuracy graph of VGG-16

30 epochs and batch size 15 during the runtime. And overall we achieved a test
accuracy of 0.7405.

Figure 5.2: Loss function graph of VGG-16

The figure 5.2 depicts the loss function that we gained from VGG-16 during the
runtime, which gradually decreased within the end of the epochs. In most cases, we
see that the loss does not diminish in the initial few starting epochs when training
a neural network. There may be several causes for this. Low learning rates are
prevalent for high regularization parameter. It is observable that, after each epoch,
the distance between train loss and test loss. This is due to the fact that once the
network understands the data and lowers the regularization loss, there is barely any
difference among test and train loss (model weights). The model is still more precise
on the training set, though.

Next, we applied the VGG-19 using Convolution layers, max pool layers, softmax
layers, Global Average Pooling, and fully connected layers achieving overall test
accuracy of 77.36% respectively. The results are shown below,
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Figure 5.3: Accuracy graph of VGG-19

This figure 5.3 the accuracy results gained from the VGG-19 model, which scored
77.36%. Because the accuracy is less cumulative than, say, mean squared error, it
can be seen to be leaking at some places. Because of this, accuracy is inconsistent
while the loss is growing quickly. This essentially implies that a fraction of cases is
categorized randomly, which results in oscillations since the proportion of accurate
random guesses varies over time. Overfitting is typically defined as being sensitive
to noise (when classification results in random results).

Figure 5.4: Loss function graph of VGG-19

While the training loss demonstrates how well the model matches training data
in figure 5.4, the validation loss demonstrates how well it fits new data. The test
loss finally drops below the train loss since normalization terms are only used when
training the model just on the training dataset, inflating the training loss. Your
loss function only includes prediction errors during training and testing, which often
results in a lower loss than the training set. And to the contrary, this may point to
underfitting in the model. Underfitting happens when a model is unable to accu-
rately reflect the training collection of data, leading to significant errors.
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Next, we implemented the convolutional neural network AlexNet model to address
the melanoma classification. The model is trained with several hyper-parameters
to achieve accuracy, and binary cross-entropy is employed as the loss function. All
pre-trained models are optimized using Adam, with a batch size of 15. The model
has five layers, and all of them aside from the output layer consist of a combination
of max pooling, fully linked layers, and ReLU activation. The results are shown
below,

Figure 5.5: Accuracy graph of AlexNet

Beyond a certain point, dropout causes the model to no longer be able to fit data
correctly. It makes sense that a larger dropout rate would cause some layers’ varia-
tion to increase, which would worsen training. Dropout has the same effect on model
capacity as all other types of regularization. That is why we can see many drops
in the test function of the accuracy curve in AlexNet model, although we gained an
accuracy result of 81.42%.

Figure 5.6: Loss function graph of AlexNet

As we can see, in the accuracy curve, the test, and train function falls correspond-
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ingly during the approximated epoch 19. The same ways the loss function curve
raised the same time due to the learning rate being high at that moment.

Next, we implemented the custom convolutional neural network model to address
the melanoma classification. It is composed of consecutive layers that use con-
volutional and pooling techniques to extract patterns from images. Similar to the
above-mentioned structure, the model is built utilizing layers like ReLU, conv, dense,
max-pooling and entirely connected. After a convolutional and ReLU layer, there
is usually a pooling layer called Conv1-Lu1-maxPool1.

Figure 5.7: Accuracy graph of custom CNN

Figure 5.8: Loss function graph of custom CNN

By dividing the entire sample count by the number of reliable forecasts, we may
calculate accuracy. According to the outcome, our model has an 88.66% accuracy
rate on this classification problem. We must be aware that model performance en-
compasses much more than model correctness. Because the accuracy of the model
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and its performance are inversely correlated, the more accurate the forecasts, the
greater the model’s performance.

When training a model, accuracy is typically taken into account and given attention.
Loss on 5.8, on the other hand, requires equal attention. By design, the accuracy
rating is the number of reliable forecasts. Values that deviate from the planned
objective state are considered losses(s).

precision recall f1-score

0 0.91 0.88 0.90
1 0.88 0.92 0.90

accuracy 0.90
macro avg 0.90 0.90 0.90

weighted avg 0.90 0.90 0.90

Table 5.1: Precision, recall and f1-score in custom CNN

The level of agreement between measurements of the same item is known as pre-
cision. Precision does not need accuracy. In other words, it is possible to be very
exact but not particularly accurate, as well as accurate without being exact. The
most accurate and precise scientific observations are made. Recall is defined as the
proportion of Positive specimens among all Positive specimens that were correctly
identified as Positive. Recall measures how well the model can differentiate Positive
samples. As the more specimens are identified, the recall rises. The f1-score is also
one of the most important evaluation metrics in machine learning. It succinctly
distills a model’s predictive power by merging accuracy and recall, two metrics that
ordinarily compete with one another. The f1-score is the modulation index of recall
and accuracy. It serves as a statistical tool for assessing performance. In other
words, a person’s performance is measured by their average of two factors: accuracy
and recall. Here, in the table, we gain the precision value of benign(0) 0.91 and
malignant(1) 0.88. Again, for recall value, we achieved 0.88 for benign and 0.92
for malignant. And finally, we gained the f1-score same for both types, which is
0.90. One parameter for assessing classification models is accuracy. The model’s
performance across all classes is often described by its accuracy metric. The average
is returned by the macro avgerage, which computes F1 for each label in the dataset
without taking the proportion into account. However, weighted average calculates
F1 for each label in the dataset and returns the average while taking each label’s
share into account. The accuracy, macro avg, and weighted avg have the same value
in all terms which is 0.90.
The performance of a classification model, often known as a classifier, using a col-
lection of test data for which the true numbers were known is usually demonstrated
using a confusion matrix. Whereas the confusion matrix alone is extremely simple to
grasp, the terminology used to describe it could be more challenging. Using a confu-
sion matrix to assess a classifier’s performance on the data set. The diagonal parts
display the percentage of points where the predicted label equals the actual label,
and the off-diagonal portions reveal the percentage of inaccurate labels the classifier
assigned. The diagonal values of the confusion matrix should be large, indicating
many precise predictions. This confusion matrix above depicts the predicted label
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Figure 5.9: Confusion matrix of custom CNN

matches and incorrect labels during the classification of melanoma. Here, 0 states
benign and 1 states malignant. The benign success rate is 417 whereas the negative
is 58. On the other hand, malignant has a success rate of 436 and the negative is
39.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

A total of 91,270 American adults were diagnosed with cutaneous melanoma in
2015, according to data from the American Cancer Society. Each year, there are
more than 90,000 new instances of melanoma in the European Union. Even though
melanoma makes up just around 1% of all skin cancers, it is the most lethal. As
one of the skin cancers with the quickest rate of growth, melanoma, early diagnosis
is essential since it may aid and strongly propose particular and effective treatment
regimens[43]. Melanoma is the most serious type of skin cancer, yet it can be fatal
if caught early enough. Utilizing supplementary imaging methods that have been
demonstrated to help in diagnosis is therefore imperative. These techniques are
based on methods created by medical professionals to find melanoma at such an
early stage. More than ever, it’s critical to focus on the early diagnosis of skin
conditions like melanoma when they spread to certain other body organs. Although
this clue has been clinically proven to be a good criterion for detecting melanoma, it
has yet to be investigated in autonomous melanoma detection systems. As a result,
a study might be conducted to discover a strange skin lesion among a group of le-
sions. Those working in the field of medical imaging have faced a severe problem: a
shortage of labeled data with which to train their systems. As a result, deep learning
could be utilized to address this concern. We created a skin diagnosis system using
deep learning algorithms in this study. Statistical analytic methods were used to
examine and test the proposed methodology. In this study, we present an updated
technique for melanoma skin cancer diagnosis that may be applied to any worrisome
lesion. This research’s objectives include determining the melanoma’s precise prog-
nosis and classifying skin cancer as either malignant or non-malignant melanoma
with the right model. The obtained findings for melanoma skin cancer diagnosis
show that the suggested technique performs well overall and with high accuracy: at
the segmentation stage, the accuracy of VGG-16, VGG-19, AlexNet, custom CNN
models are respectively 74.05%, 77.36%, 81.42%, and 88.66% respectively.

6.2 Future Work

In order to identify skin cancer from dermoscopy pictures, a deep convolutional
neural network was developed in this paper. Melanoma and non-melanoma cancers
were included in the data. The findings demonstrated the use of deep learning
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in detecting skin cancer. This method can be used in cellphones to enable skin
cancer self-diagnosis. Additionally, it can be used in smartphone-aided systems to
help dermatologists find cancerous tumors. This comparison may be extended to
more advanced convolutional neural network models in the future. Future work
on the system will be focusing on improving the clinical measuring process and
data processing, increasing the light collecting efficiency and SNR, and creating
a probe that is smaller and more versatile. Future studies may benefit from the
data on deep learning models for skin cancer obtained in this work to increase
the accuracy of melanoma skin cancer detection. Additionally, we want to apply
picture augmentation to boost accuracy and efficiency. Since only one form of skin
cancer is the subject of this study article, additional classifications of skin cancer
can be researched using the same techniques. The technology is capable of applying
to big datasets. This will be helping with the creation of more accurate picture
classification algorithms for skin cancer diagnosis.
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