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Abstract

Global Illumination is a strategy in computer graphics to add certain degree of re-
alism in case of 3D scene lighting, by trying to emulate how light rays work in real
life. Several approaches exists to achieve such kind of visual effect for computed
generated imagery. The most physically accurate approach is through ray-tracing.
It can produce results which are realistic enough, with a trade-off of being time
and computational-resource intensive, making them unsuitable for real-time usage.
For more real-time usage scenarios, a set of faster algorithm exists that utilizes ras-
terization rather than ray-tracing. Despite being faster, those still can be resource
intensive or generate physically inaccurate results. Our Generative Adversarial Net-
work based approach targets to bring close to physically accurate results based
on rasterization output data which can be obtained from a conventional deferred
rendering pipeline, while retaining speed. These rasterization output data, which
are basically screen-space feature buffers will act as the input to our deep-learning
network, which in turn will produce per-frame lightmaps that contain global illumi-
nation data, which are further used to generate a presentable frame on the screen.
Using screen-space information from a single viewpoint won’t always guarantee light
consistency, thus our approach takes into account the rasterization output data of
the surrounding of a certain viewpoint, producing more accurate global illumination.

Keywords: computer graphics, global illumination, gan, neural networks
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Chapter 1

Introduction

The realism in the context of computer graphics can depend on several factors such
as the properness of refection and refraction, ambient occlusion, and global illumi-
nation. Real-time graphics are being used in various scopes other than just video
games. For rendering vector graphics, rasterization has been the number one choice
of application developers as it gives a reasonable performance, suitable for real-time
usage. However, the rendered result can be relatively dull, unrealistic, and physically
incorrect. Current rasterizing graphics APIs provide a highly-configurable rendering
pipeline to develop and customize the rendering workflow. Such a pipeline can be
utilized to implement the aforementioned graphics realism factors. For example,
using cubemaps or screen-space data for reflection and refraction, ambient occlusion
using screen-space data, and voxel-cone tracing for indirect lighting. Many of these
approaches can bring a significant hit on performance when stacking one layer of
processing on top of another, which can result in low frame rates, overheating of
hardware, and high power usage. On top of that, using ordinary screen-space data
can often generate spurious results, especially when an object of interest goes out
of the screen or viewport.

On the other hand, a ray tracing-based renderer offers photorealistic results by
following the laws of physical lighting, especially in the case of reflections, refrac-
tions, and global illumination. In ray tracing, the properties and transportation of
photons are calculated as intended to travel in the real world. Even a basic form of
ray tracer is much simpler to implement compared to its equivalent rasterizer. But
there is a huge trade-off. The computational resource usage and time consumption
of ray tracers are higher than a rasterized solution, making them unsuitable for the
usage of real-time applications. Therefore, ray tracers are widely used where pho-
torealism is given priority over rendering speed. Mostly architectural and artistic
visualizations, film industry, etc.

However, certain amount of graphics processors are being developed in recent years,
many of which are targeting the consumer markets, and are powerful enough to
have the capability to perform ray tracing operations in real-time. They are usually
used in such a way to assist the default rasterization-based pipeline to achieve cer-
tain effects, which a rasterizer by nature is incapable of, such as physically accurate
real-time reflections and refractions. Another crucial lighting phenomenon, global
illumination or indirect lighting, is achievable in real-time by these ray tracing ac-
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celerated graphics processors. Still, one major drawback of this hardware is its price
point. In addition to that, not every system is capable of cooperating with these
devices. The scarcity and cost of these cards disable consumers of every level to
experience real-time ray tracing. Surely, these devices are costly due to the amount
and complexity of computations they need to perform to achieve their goal, which
also adds up to power consumption.

1.1 Background and Motivation

The realism in the context of computer graphics can depend on several factors such
as the properness of refection and refraction, ambient occlusion, indirect lighting
also known as global illumination. Real-time graphics are being used in various
scopes other than just video games. For rendering vector graphics, rasterization has
been the number one choice of application developers as it gives a reasonable per-
formance that is suitable for real-time usage. However, the rendered result can be
quite dull, unrealistic, and physically incorrect. Current rasterizing graphics APIs
provide a highly-configurable rendering pipeline to develop and customize the ren-
dering workflow. A such pipeline can be utilized to implement the aforementioned
graphics realism factors. Examples, using cubemaps or screen-space data for re-
flection and refraction, ambient occlusion using screen-space data, and voxel-cone
tracing for indirect lighting. Many of these approaches can bring significant hits
on performance when stacking one layer of processing on top of another, which can
result in low frame rates, overheating of hardware, and high power usage. On top of
that, using ordinary screen-space data can often generate spurious results, especially
when an object of interest goes out of the screen or viewport.

On the other hand, a ray tracing-based renderer offers photorealistic results by fol-
lowing the laws of physical lighting, especially in the case of reflections, refractions,
and global illumination. In ray tracing, the properties and transportation of pho-
tons are calculated as they are intended to travel in the real world. Even a basic
form of ray tracer is much simpler to implement compared to its equivalent ras-
terizer. But there is a huge trade-off. The computational resource usage and time
consumption of ray tracers are extremely high. These are a lot higher than the
rasterized solution. That is why it makes them unsuitable for the usage of real-time
applications. Ray tracers are widely used where photorealism is given priority over
rendering speed. Mostly architectural and artistic visualizations, film industry, etc.
Figure [1.1] shows global illumination, an aspect covered by ray tracing. Here, only
applying direct light can show unrealistic result, but incorporating indirect light as
well brings more realism. In ray tracing, it does not matter if lights are visible on
the screen, a physically correct lighting simulation will be calculated whatsoever.

However, a certain number of graphics processors are being developed in recent
years, many of which are targeting the consumer markets, and are powerful enough
to have the capability to perform ray tracing operations in real-time. They are
usually used in such a way to assist the default rasterization-based pipeline in order
to achieve a certain amount of effects, which a rasterizer by nature is incapable of,
such as physically accurate real-time reflections and refractions. Another crucial
lighting phenomenon that is global illumination or indirect lighting is achievable
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Figure 1.1: Scene lit with only direct light with on-screen light source (left). Scene
lit with direct+indirect light with on-screen light source (center). Scene lit with
direct+indirect light with off-screen light source (right).

in real-time by these ray tracing accelerated graphics processors. Still, one major
drawback of this hardware is its price point. In addition to that, not every system
is capable of cooperating with these devices. The scarcity and cost of these cards
disable consumers of every level to experience real-time ray tracing. Lastly, these
devices are costly due to the amount and complexity of computations they need to
perform to achieve their goal, which also adds up to power consumption.

1.2 Research Problems

Ray tracing is an eye-focused procedure that involves traveling through each pixel
in search of the object that should be displayed there. It is recognized as the best
method for image creation and is well-known in the film industry because it rep-
resents the reflection of light from all surfaces, creating the graphical style that
everyone is familiar with. As a result, ray tracing can improve the quality of each
frame. However, it is more challenging to perform in real-time than rasterization
because while it is easy to track and process one ray, it becomes a problem when
the ray bounces off of a surface as it turns into a countless number of reflected rays.
This rise is exponential, and calculating all of these rays will take a long time and
require more GPU power leading to more expense.

The computer capacity required to carry out real-time ray tracing is expensive at
a cost that would allow widespread adoption, which is why it took so long to enter
the game industry. The base price is prohibitively high—neither AMD nor Nvidia
provides a low-cost graphics card that supports hardware accelerated real-time ray
tracing. It is important to remember that real-time ray tracing is still a relatively
new technology in the video game business because displaying an entire game in
real-time ray tracing is still well beyond today’s hardware capabilities. Ray tracing
is only used in games that support it for a few effects, mostly shadows, lighting, some
parts of reflection, and refraction while everything else is still rasterized. There will
always be a performance trade-off for the current console generation.

3



The authors of this paper [1] have observed some drawbacks of ray tracing are as
follows: wastage of time in calculating intersections between rays and objects, ray
tracing algorithm not being able to take advantage of coherency, rendering time
not improving one bit even after using object coherency and hierarchical cluster-
ing objects, and for anti-aliasing, adequate information is not correlated with each
ray. For rendering simple scenarios, 75% of the total time is used up to calculate
the intersections between rays and objects. For complex scenes, the time spent is
95%. Other rendering methods use the advantage of coherency. However, with ray
tracing, it is much more difficult to do it. When a ray is being traced, it happens
independently, without using the benefits of the data created by the neighboring
rays.

Earlier development happened based on one of the two methods, either object co-
herency or hierarchical clustering of objects. Despite using either of the methods,
ray tracing seems to have no improvements in rendering time. The challenging issue
with anti-aliasing in ray tracing is that it does not provide enough details with an
individual ray. Rays allow us to sample a single spot in the pixel’s center. There is
no way for us to know or calculate what else is visible in the vicinity surrounding
the sample location without emitting additional rays.

Opposed to ray tracing, the voxel-cone tracing approach can be used to produce in-
direct illumination for rasterized graphics which was demonstrated in this paper [5].
It incorporates a pre-filtered hierarchical voxel octree representation of a 3D scene
and bounces off two types of light rays through it, one for Lambertian surfaces and
another one for specular ones. The indirect lighting is produced by calculating the
path of these bounced lights within the voxel octree, resulting in interactive global
illumination with temporal coherence and free from noises. However, it comes with
some costs. For instance, if there are objects within the scene that are moving from
frame to frame, the voxel octree needs to be recalculated, which can incur a certain
degree of performance penalty. Furthermore, this approach suffers from leakage of
light.

Reusing data or pixel features from already rendered frames in real-time 3D ap-
plications is a cheap way to add a few aspects of realism to the rendered frames,
known as the screen-space approach. It is majorly used in the gaming industry
and game engines. The frames which are presented on the screen are composed of
multiple sequential render passes. The images produced in a render pass can be
used to add certain effects in the subsequent render passes. This technique falls
into the post-processing category and is used to add visual effects like reflections us-
ing Screen-Space Reflections (SSR), Screen-Space Ambient Occlusion (SSAO), and
Screen-Space Global Illumination (SSGI). While it is a low-cost solution to many
problems, the disadvantage of this method is that it can generate effects from only
the objects visible on the screen. Any object that goes out of the screen or viewport
will be unable to cast effect, creating temporal inconsistencies. Figure 1.2 contains
some frames from a video by Default Cube on YouTube[27] that shows the major
drawback of screen-space global illumination. Notice the interior of the room only
gets lit enough when the light source (here the window) is visible on the screen, but
completely dark when it is off-camera.
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Figure 1.2: Lighting inconsistency of screen-space global illumination (SSGI)
[27]

Another näıve approach to realism, which is mostly used for global illumination
purposes, is using baked textures or lightmaps for scene rendering. While it incurs
almost no additional performance cost, it fails to render scenes with dynamic lights
and/or objects properly, making its use suitable only for static scenes.

1.3 Research Objectives

Our research aims to work on developing a post processing system for rasterized
3D graphics in order to enhance the visuals of rendered scenes by applying global
illumination on the frames, through analyzing the surrounding per-pixel geometric
features and lighting information with the help of an image generating neural net-
work. Conventional deferred renderers are able to generate these rendered features
with ease. These features can be used as input for the visual enhancement system.

Our research objective follows:

1. Understanding image generating and image transforming neural networks, es-
pecially GANs.

2. Determining the best fit approach for visual enhancing via diffuse global illu-
mination.

3. Generate dataset suitable for model training.

4. Develop the model and perform training.

5. Test the model against novel sample data.

6. Determine the drawbacks of the model and suggest possible ways for improve-
ment.

1.4 Our Contribution

As we have mentioned earlier in Research Problems regarding multiple drawbacks.
Firstly, conventional ray tracing is resource intensive for real-time usage. Secondly,
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hardware ray tracing supported GPUs are expensive. Last but not least conventional
Screen-Space Global Illumination suffers from incorrect lighting in case of off-screen
light sources. Out of all the drawbacks, we are focused on solving the last one in
our current research. Based on our target, we have put together our contributions:

• We have designed our proposed model in such a way that it tries to prevent
incorrect lighting scenarios in the case of off-screen light sources when it comes
to conventional implementation of screen space global illumination.

• Conventional raytracing process for global illumination is resource-intensive
and time-consuming to operate. We try to propose an approach for post-
processing global illumination systems for rasterization pipelines.

• Screen-space based global illumination solutions suffer from inconsistencies due
to objects going out of the viewport. We redefine the approach by utilizing
off-screen information.

• We use a deep learning approach that is fast enough and trained on ray-
traced renders, delivering realistic post-processing effects while being suitable
for real-time applications.

• We compare our approach with existing screen-space global illumination tech-
niques to observe the output quality of each.

• We test our solution on various consumer-grade hardware to analyze the la-
tencies and suitability for real-time usage.

1.5 Overview of Thesis

In chapter 2, we will discuss about our background. The chapter will demonstrate
the technologies, concepts, and libraries used in our research such as Ray tracing,
Global Illumination, GAN, CNN, etc. After that, in chapter 3 we will discuss related
works. Here, we will present some rundown discussions about existing literature cor-
responding to our work. Initially, we will look at global illumination and how this
technology has brought a revolutionary change in computer graphics. After that,
we will be looking into more novel approaches that brought a remarkable leap not
only in computer graphics but also in the world of computer science. These state-
of-the-art technologies are one of the reasons why many developers and researchers
can contribute and build more high-end technologies beyond human expectations.
In chapter 4, we will be scrutinizing our objective and our approaches to generat-
ing our datasets and designing our system to solve the problem on which we are
focused. We will also discuss how our data is preprocessed. After that, we will be
demonstrating how we divided our datasets and the ratio of training and testing
from the dataset. Moreover, we will be discussing how we build our proposed sys-
tem and use our dataset to train and validate. Finally, we will be demonstrating
the theoretical comparison. In chapter 5, we will analyze and compare our results
using our proposed system with an existing deep learning-based screen space global
illumination system. We will be using SSIM, MSE, and PSNR for our objective
evaluation. Later, we will do a performance evaluation between our proposed sys-
tem, the existing system, and Ray traced (Blender) using Nvidia Geforce GTX 1660
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Ti and Nvidia Geforce GTX 1050 Ti. In chapter 6, we will give an overview of our
paper and the limitations of our proposed model. Finally, in chapter 7, we will be
discussing our thoughts, limitations, and plans for our future research.
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Chapter 2

Background

In this chapter, we will discuss technologies and modules that are commonly used
in our research such as ray tracing, rasterization, global illumination, screen space
global illumination, convolutional neural network, generative adversarial network,
and last but not least, PyTorch.

2.1 Ray Tracing

Ray tracing [4] is a widely used technique for creating high-fidelity and realistic
computer graphics. Moreover, it is used to solve complex problems and equations
in modern times. Ray tracing is costly even though it is a highly parallelizable algo-
rithm. Modern games are using ray tracing to use the full potential and flexibility
offered by the GPU.

2.1.1 Ray Tracing Texel eXtreme (RTX)

In the modern era, the demand for graphical tasks is increasing exponentially. Re-
searchers are finding ways to improve how to utilize graphics to compute complex
problems and find an optimal solution. According to this paper [24], the competition
and the demand for GPUs are extremely high which resulted in a record revenue of
$11.72 billion which was achieved for Fiscal 2019 compared to Fiscal 2018, which was
about $9.71 billion. Furthermore, engineers are also aiming to increase the capabili-
ties of GPUs. The RTX series is a good example of GPU development. Researchers,
developers, and other professionals are using RTX to solve complex problems in a
short amount of time. The researchers are still attempting to reduce the rendering
latency.

RTX platform combines ray tracing, deep learning, and rasterization to structurally
transform the creative process for the developers. This platform offers API and
SDKs which allows the users to run it on advanced hardware for yielding solutions
that are capable of accelerating and strengthening images, graphics, and video pro-
cessing.

8



2.2 Rasterization

It [14] is a technique by which it takes a vector primitives and converts it into a
set of pixels to the output. It also points to the technique where 3D models are
converted into 2D projections.

2.3 Global Illumination

Global Illumination [3] is a technique by which it models how it should bounce off
light from one surface to another instead of capping itself to direct light. Global
Illumination has two steps:

1. Direct Light

2. Indirect Light

Direct Light

The light which comes directly from the light source is known as direct light. When
light heads on towards an object, referred to as direct light. It is easy to calculate
compared to indirect light.

Indirect Light

Indirect light is the reflected light that comes out from the surface. In other words,
when the light hits an object and it bounces off of the surface of that object then that
light is known as indirect light. Indirect lights are more complex than direct lighting
since it needs to handle multiple cases, especially how the light should bounce off
and which coordinates it should bounce off. In many applications, the developers
decide to handle indirect light in many ways. Light maps are commonly used for
handling indirect light.

2.4 Screen Space Global Illumination (SSGI)

SSGI [35] [36] is a feature commonly used by game engines for creating natural-
looking lighting by including dynamic indirect lighting to objects by using the depths
and color buffer of the viewport to calculate the diffuse light bounces.

2.5 Convolutional Neural Network (CNN)

CNN [9] is a neural network that consists of one or multiple convolutional layers.
The layers of CNN consist of an input layer, hidden layers, and an output layer. It
is frequently used in classification, image processing, NLP, and other applications.
Each convolutional layer consists of filter sequences addressed as convolutional ker-
nels. The filter consists of integer matrices utilized on the input’s subset pixel value
which is the same size as the kernel. Later, the result is aggregated into a single
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value for the sake of simplicity to represent a pixel in the output map. This output
consists of a series of feature maps. A feature map is an output generated by apply-
ing one filter to the previous layer. It is used to identify divergent features which are
available in the image. The goal of the pooling layer is to continuously deduct the
structural size of the image given as an input to reduce the computational numbers
in the neural network. These layers are added in between convolutional layers. Max
pooling is a commonly used pooling approach.

2.6 Generative Adversarial Network (GAN)

GAN [7] is an unsupervised deep learning model which can automatically discover
and find patterns from the input data. After finding out those patterns, the model
can be utilized to generate new output. It was initially proposed by Ian et al [7].
GAN model has two sub-models:

1. Generator

2. Discriminator

In Figure 2.1, the authors [34] demonstrated how the whole structure of GAN.

Figure 2.1: GAN Structure [34]

Generator

The verbal meaning of a generator is to generate something. In the case of the GAN
model, the generator is responsible for generating synthetic data based on the input
feature image buffer fed to the model which we can see in Figure 2.1.

Discriminator

A discriminator is responsible for recognizing the real data from the output data
generated by the generator. In other words, it classifies both real and synthetic
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data. After that, it updates and assigns new weights by utilizing back-propagation
via the discriminator loss through the discriminator network visualized in Figure 2.1.

2.7 PyTorch

An open-source framework [21] widely used in machine learning. The framework
is based on the Torch library and is commonly utilized in computer vision, and
NLP. This framework is responsible for optimizing complex calculations and linear
algebra by exploiting with or without CUDA. Currently, more than 159k users use
this framework. It is contributed by more than 2.4K. One of the reasons why
PyTorch is preferable is because of the massive community. The documentation is
readable and well organized. As a result, it is easier for the users to use PyTorch.
Moreover, it is flexible to use. PyTorch also supports data parallelism meaning its
execution is asynchronous.

Figure 2.2: Languages used in PyTorch
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2.8 Blender

Blender [16] is a cross-platform open-source 3D modeling software that offers various
features beyond modeling like rigging, sculpting, animation making, compositing,
video editing, etc. Along with a highly customizable user interface, it comes loaded
with a built-in Python interpreter, which enables us to extend its functionality even
more. Blender is capable of both rasterized and ray traced renders, using the built-
in EEVEE and Cycles render engines, respectively. Using its compositing feature,
one can view, manipulate, combine, and save intermediary graphical feature buffers
produced and used during the rendering process.

2.9 Minecraft

Minecraft [33] is an open-world video game of the sandbox variety developed by
Mojang Studios. It enables a player to roam around within a randomly generated
world. In that world, the player has to survive and create things. It provides
an achievement system and a variety of resources. The player has the freedom to
manipulate objects however he/she wants. Among the two ports of the same game,
Java port enables the player to modify the game through countless mods. Even
though it is mainly used as a game, it has been subject to scientific research [29].

2.10 Quality Evaluation Metrics

The common metrics used for analyzing outputs generated by global illumination
approximating algorithms.

Mean Squared Error (MSE)

MSE [31] is one of the most widely used metrics to measure the performance of
the metrics. The measurement is done by getting the average squared value of the
difference between the model’s prediction and the ground truth. The equation 2.1
demonstrates how MSE is calculated.

MSE = 1
n

∑n
i=1(Yi − Ŷi)

2
(2.1)

Where n is the number of data points, Y denotes the vector of observed values for
the predicted variable, and Ŷ denotes the predicted values.

Structural Similarity Index Measure(SSIM)

SSIM [2] is a commonly used metrics. It is used to measure the intuitive difference
between two homogeneous images. In this equation 2.10, SSIM takes two parameters
for continuing the calculation.

SSIM (x, y) = (2µxµy+c1)(2σxy+c2)

(µ2
x+µ2

y+c1)(σ2
x+σ2

y+c2)
(2.2)

12



Where µx and µy are the pixel sample means of x and y, σx and σy are the variances
of x and y, σxy is the covariance of x and y respectively and finally, c1 and c2 are two
constants that maintains the stability once the denominator tends to be 0 (zero).

Peak Signal-to-Noise Rate (PSNR)

PSNR [28] is widely used for measuring the restoration quality for lossy image com-
pression. During image compression, many noises are introduced. In other words, it
figures out the ratio between the maximum possible potential of the original image
and the corrupting noise power which infects the quality of the image. Equation
2.10 is used to calculate PSNR.

PSNR = 20 · log10(MAX I)− 10 · log10(MSE ) (2.3)

Where MAXI and MSE are the maximum possible pixel value of the image and
the Mean Squared Error respectively.
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Chapter 3

Related Works

This section examined previous relevant work on the subject of image composition
using deep neural networks. Since our objective is to develop a post-processing
system that produces global illumination lightmaps with the help of deep learn-
ing networks, it is necessary to correlate and compare our goal with existing deep
learning-based image enhancement techniques. Several of these, however, do not
tend to generate global illumination specifically, which is our target but follow their
own means of image enhancement. Yet, what these approaches have in common is
that they take one or multiple images as input, transform them, and produce an
enhanced output image based on the input data. Besides these, we looked into a
few non-deep-learning and non-machine-learning-based approaches as well, as soon
as those remain relevant to our goal.

Rather than rendering every aspect of the final output of a scene using neural net-
works, certain single features of lighting, such as only ambient occlusion can be
evaluated and post-processed onto the intermediary rasterized output. According
to the authors in this paper [12], camera space normals and scene depth could be
utilized to train a neural network against physically accurate ray traced renders
of global ambient occlusion. The final trained network could be evaluated during
runtime which would be equivalent to a single shader-pass. The rapidness of this
neural network-based ambient occlusion (NNAO) calculation enables it to compete
with existing screen-space ambient occlusion techniques.

According to this paper [26], the authors demonstrated how Deep Ambient Occlusion
(DeepAO) reflects an improvement to the previously mentioned Neural Network
Ambient Occlusion (NNAO). While NNAO runs fast due to its limited dataset,
it cannot deliver desirable results for scenes with diverse objects. This approach
makes the use of a convolutional neural network implementation using compute
shaders runnable in the GPU to perform pooling, activation, batch-normalization,
up-sampling, and concatenation. The encoder and decoder parts are packaged as a
shader library. This network, like other methods, also utilizes G-Buffers. By training
the it with a large dataset with a diversely classified object, DeepAO delivers better
results compared to the prior approach.

Rather than using generative adversarial networks for resolving screen space global
illumination, the paper [22] follows a different approach by training a very simple
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multi-layered convolutional neural network which consists of a feature extractor and
an image reconstructor. The network is trained with feature buffers and ground
truth which are the corresponding path traced images. This rather simple network
calculates indirect lighting pretty close to ground truth. However, it cannot resolve
light bleeding from off-screen objects.

Contrary to ambient occlusion, another way of graphical realism is rendering the
scene with proper indirect lighting. Conventional methods for calculating indirect
or global illumination in real-time using the GPU like voxel cone tracing can be
fast but with the cost of precision, compared to path tracing. The work, Deep-
Illumination [15] proposes a method of evincing indirect lighting along with soft
shadows by taking advantage of deep learning. Where the network is a U-Net,
trained with pre-computed path traced and voxel-cone tracing global illumination,
renders mapped against G-Buffers, which are frames containing screen-space diffuse
color, depth information, normals, and direct lighting information. In this experi-
ment, the authors have done four experiments based on their previous experience.
1) Reducing mean squared error and perceptual error by increasing the number of
iterations while training, 2) Producing a better approximation by including a large
amount of light object camera configuration, 3) Resulting faster convergence while
training by increasing the layer numbers that will cost execution time, and 4) creat-
ing a neural network-based on different ground truths. Upon training, the network
can approximate global illumination for dynamically and randomly placed lights,
cameras, and objects; configurations foreign to that of the training phase.

The authors in this paper [25] suggested a way to compute indirect illumination
using convolutional neural networks based on a U-Net architecture. The network
is modified to have bilateral convolutional layers instead of ordinary ones. The
approach takes advantage of a conventional OpenGL renderer to prepare direct
lighting maps and G-Buffers. Later on, these are passed on to the neural network to
determine a low-resolution indirect illumination map, which is subsequently upscaled
by albedo modulation and joint bilateral technique. The process is performed fast
enough to be implemented in interactive applications.

In the following paper [23], the authors used a conventional deferred rendering
pipeline to make use of the screen-space feature buffers which were produced dur-
ing runtime. The different phases of the rendering pipeline can be employed to
train a higher-dimensional neural network-based texture, which can be evaluated to
re-construct photorealistic graphics. This special neural texture can convey more
appearance and geometric feature information as opposed to a basic low-dimensional
feature map. In a similar fashion to how the basic feature maps are interpreted by
shader programs, the new neural alternative can be similarly evaluated in the graph-
ics pipeline. The underlying 3D scene may be less-detailed, but the output acquired
from the learned network would have more realism.

Spatially-Adaptive Normalization, often known as SPADE, is a conditional normal-
ization technique used in semantic image synthesis. Identical to batch normalization,
channel-wise normalization of the activation is followed by modulation with learned
scale and bias. To create the modulation parameters γ and β in the SPADE, the
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mask is initially projected onto an embedding space and then convolved. In contrast
to earlier conditional normalization techniques, γ and β are tensors with spatial di-
mensions rather than vectors. The generated γ and β are multiplied and added
elementally to the normalized activation.

Following a different approach from pix2pixHD [18], the authors [20] proposed a
rather novel technique for developing photorealistic images from semantically la-
beled maps, where each color represents a different type of object in the scene.
While pix2pixHD [18] relies on a conditional normalization layer, which has a ten-
dency to wash away semantic information if used with segmentation maps, in Spa-
tially Adaptive Modulation the semantic information does not decay like they do
in prior approaches. In the generator of the GAN, there is no need for an encoder
as the SPADE already bears enough encoded information, which makes the whole
network a lot lighter. Here, in the generator, a series of residual blocks consisting of
the aforementioned spatially adaptive modulators are arranged with upscaling lay-
ers in-between. This arrangement gradually upscales the features while preserving
consistency with the labeled map. These residual blocks are fed with the semanti-
cally labeled map each with their respective resolution. The final layer outputs the
generated photorealistic image.

The paper [29] shows work on training realistic image generation techniques based
on unsupervised training. Meaning, the training data set is unpaired with the 3D
projected view. Rather than relying on absolute ground-truth data, pseudo ground-
truth training images generated using the SPADE image synthesis model by giving
semantically labeled projected views of the 3D viewspace are employed for training.
The final rendered images are view-independent and frame-consistent. Meaning the
output scene frames will be congruous regardless where the scene is being viewed
from.

The author of the paper [32] shows another method of training an image enhance-
ment network to achieve photorealistic results using unpaired images. Even with
the absence of conducive reference images, the network learns to record the unique
styles of dataset images. And the learning of suitable correspondences happens
implicitly. The G-Buffers containing geometric, lighting and material information
of 3D scenes produced by a conventional rendering pipeline are utilized here. A
G-Buffer encoder network analyzes these buffers to produce multi-scaled features.
Which are then passed on to an image enhancement network, which generates a
comparatively photorealistic image. The image is further judged by an image patch
perceptual similarity metrics system called LPIPS, which measures how much con-
sistency there is between the input and output image. Another judgment is done
by a trained perceptual discriminator, which measures the realism of the output im-
age. These two metrics scores are then used to penalize the enhancement network.
In the enhancement network, image features are modulated by Rendering Aware
Denormalization (RAD), which convey better modulation results compared to the
previously mentioned SPADE.

The paper [19] stated about how the authors used transferring GANs to generate
images by exploiting limited amounts of data. In the sense of generating fine de-
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tailed imagery from rather simplistic and less-detailed visual patterns, Generative
Adversarial Networks (GANs) can be utilized. They consist of a generator, respon-
sible for trying to develop an image for a particularly given input scenario and a
discriminator, which critiques the generator on the generated image being real or
fake. However, basic GANs are confined to small and simple datasets, and resolv-
ing them may involve the use of convolutional architectures, in which the image is
up-sampled in the generator. Deep Convolutional Generative Adversarial Networks
(DC-GAN) follows exactly that path for image construction.

The authors [30] proposed NeuMIP for representing and rendering material appear-
ances variation at independent scales. They generalized conventional neural textures
mipmap pyramids to pyramids which are combined with fully connected networks.
The authors showed that their neural architecture studies Multi-scale bidirectional
texture function (MBTF) with two dimensions for each query location, both incom-
ing and outgoing direction and one dimension for the refined kernel radius. They
have achieved real-time performance in their implementation of OptiX.
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Chapter 4

Methodology

The objective of surrounding aware screen-space global illumination is to produce
comparatively realistic lightmaps from the multi-view screen-space geometric, mate-
rial, and lighting maps (G-Buffers or Feature-Buffers), as delineated previously. The
system will utilize 360° images as inputs to generate global illumination lightmaps,
which attempt to overcome the limitations of existing screen-space global illumina-
tion solutions. In order to perform the above-mentioned process, the system needs to
acquire the Feature-Buffers, generated by conventional deferred rendering pipelines
on a per-frame basis, using simple and common shader programs. To train the
neural network, the ground-truth lightmap image, which contains both direct and
indirect lighting information of a particular 3D scene frame, will be collected, and
a ray tracer will render rather than a rasterizer to preserve realism. The gener-
ated image is considered ground truth, against which the neural network is to be
trained and tested. The sequence below shows a workflow of training and testing
the network.

In brief, the steps for designing the neural post-processing network follows:

1. Dataset Preparation: We have created 3D sample scenes in software like
Blender and rendered the scenes from different viewpoints with varying envi-
ronmental conditions. The feature buffers (depth, normals, albedo/flat-color,
and emission maps) will accompany the renders. All images will be in the
same dimension.

2. Pre-processing: The pixel values of the images will be transformed into a
format that is easier for neural networks to ingest. This is our generated
hard-paired dataset.

3. Dividing: We create the dataset in two parts, one for training and the other
for testing.

4. Building the model and training: We plan to build our neural network following
GAN architecture and train it using our generated training dataset.

5. Testing: The testing will be done mathematically based on how much enhanced
the generated images feel to the human eye and how consistent the outputs
are with the inputs.
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Figure 4.1: General operation sequence of the system.
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Figure 4.2: Work sequence of the research.
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4.1 Design Principles

The approach we follow to achieve realism in rasterized renders through post-
processing is by implementing realistic lighting. Generally, there are two types of
lighting in 3D scenes. Direct lighting means light rays from an explicit light source,
such as a point-light, a spotlight, or a directional light, hit a surface, illuminate
it, and ultimately reach the viewer (camera or eye). This form of lighting is easy
and fast to calculate by ordinary hardware and renderers. The other type is in-
direct lighting, which is light bounced from lit surfaces illuminating other surfaces
in the scene, where the bounce can happen several times. This form is tough to
calculate in real-time through ray tracing by conventional graphics hardware, and
existing screen-space global illumination techniques suffer from light loss as explicit
light sources go out of view. Direct illumination alone cannot bring proper real-
ism to renders. A visualized comparison between direct illumination and indirect
illumination in Figure 4.3 [11].

Figure 4.3: Comparison between direct and indirect illumination.[11].

A neural network solution for this can be a fast approach to this problem, given that
all graphical features for a particular rendered frame from the viewpoint of a camera,
also known as screen-space data, is readily available. These features include: direct
lightmap is the image containing the directly lit surfaces by light sources; diffuse
color is the image of the flat color of each surface in the scene; emission map is the
image of surfaces that emit light on their own; environment map is the image of the
light scattered from the sky; normal map is the per-pixel normal vector directions
of each surface; and depth map is the per-pixel distance of each surface from the
viewing point. The neural network can analyze the directly-lit surfaces from the
features and predict the indirect lighting. If a directly-lit surface or emissive object
is not within the camera’s point of view (for example, only the objects behind the
camera are lit, but not visible to it), the network will not be able to predict the
desired indirect lighting, due to a lack of information. This is a drawback of the
above-mentioned approach. The fix is to give the network enough information, in
this context, to provide the visuals of the surroundings and not just what is in front
of the camera, making the system “surrounding-aware”. Our approach does exactly
that by capturing 360° imagery for each frame and utilizing a collection of cameras
rather than a single camera. This collection is called a “camera-cluster”, a rigid
arrangement of six cameras looking in six directions (front, back, left, right, up,
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down), adjacent ones placed 90° from each other, in a cube-like fashion. For this
experiment, we set each view to have an aspect ratio of 1:1 and each camera to have
a 90° field-of-view (FOV). For moderately high-resolution rendering, it would be
sufficient to employ input feature buffers of the fractional size of the original screen
presentation resolution since we are generating global illumination lightmaps, where
sharpness is not a priority. If needed, the resulting low-resolution global illumination
lightmaps can be up-scaled through 2D interpolation.

Figure 4.4: Camera cluster

The graphical features captured from all cameras are combined and fed into our
indirect lighting predicting neural network. Here, we do the combination for each
feature by placing six captured frames in a strategic positioning on a larger frame
called a “global view” which is basically a 360° rectangular image. These large
frames act as the input for the network. The production of a global view frame
is fast because pixels copied to their designated locations. The operation can be
represented by an expression:

V360 = MergeToGlobalV iew(Vfront, Vback, Vleft, Vright, Vup, Vdown) (4.1)

The front view is placed in the middle, the right view slightly to the right, the left
view slightly to the left, the back view is sliced into two halves and each slice placed
on the far sides. The top and bottom view are deformed and stretched and placed
on the top and bottom of the global view respectively, forming a full rectangle.
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Figure 4.5: Demonstration of the Global View Merging Process

Distortions exist on the up and down portions (the north and south polar regions)
of the global view. Only the top and bottom camera views are distorted with
duplicate pixels, since it is tough to accommodate all 6 views in a perfect rectangular
arrangement. However, this distortion will not be visible since only the front view
is presented to the screen, but all views are required for determining the lighting
effect from all directions.

The implementable network for this task will be based on Convolutional Neural
Network (CNN) in the core. However, a generic CNN-based network does not keep
track of location of the kernel, meaning that the convolutional kernel, while scan-
ning the input, does not know in which location of the input it is currently in. For
our view-dependent problem, it is crucial to keep track of the direction (here, it
corresponds to the location on the global view). Uber AI Labs shows [17] an ef-
fortless yet effective solution to this issue by plugging-in two additional channels
representing i and j coordinates to an existing CNN-based network, which can take
location/direction into account. On top of that, using CoordConv offers faster con-
vergence on training-supervised networks.

For our implementation, we consider the i and j coordinates to be the phi (ϕ) and
theta (θ) values of the 3D polar coordinates system when the camera-cluster is placed
in the origin. To build the coordinate channels, we place a unit sphere around the
camera-cluster in Blender, a popular open-source 3D modeling software. After that,
we shade the sphere considering red, green, and blue channels representing Carte-
sian x, y, and z values, respectively. We render for all views, stitch the views with
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the MergeToGlobalV iew function [4.1], and convert the RGB Cartesian values into
polar coordinates’ phi and theta angles, and normalize them between 0 and 1. We
do not consider the radius since it is a unit sphere. We only have to do this once
since the coordinate channels are constant across all frames, and we can simply load
it from a file prior to applying. In Figure 4.6, the coordinate map is represented as
an image where the red channel represents phi and green channel represents theta.
Distortions caused by repeated pixels are automatically taken into account through-
out the process (noticeable near the poles).

Figure 4.6: Coordinate Map, showing phi (ϕ) (in red) and theta (θ) (in green)
coordinate angles.

The whole operation sequence can be summarized by the pseudocode 1
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Function SurroundingAware():
flatColorF, normalMapF, depthMapF, lumenMapF ← RenderFrontCamera()
flatColorB, normalMapB, depthMapB, lumenMapB ← RenderBackCamera()
flatColorL, normalMapL, depthMapL, lumenMapL ← RenderLeftCamera()
flatColorR, normalMapR, depthMapR, lumenMapR ← RenderRightCamera()
flatColorU, normalMapU, depthMapU, lumenMapU ← RenderUpCamera()
flatColorD, normalMapD, depthMapD, lumenMapD ←
RenderDownCamera()

flatColor ← MergeToGlobalView(flatColorF, flatColorB, flatColorL,
flatColorR, flatColorU, flatColorD)
normalMap ← MergeToGlobalView(normalMapF, normalMapB,
normalMapL, normalMapR, normalMapU, normalMapD)
depthMap ← MergeToGlobalView(depthMapF, depthMapB, depthMapL,
depthMapR, depthMapU, depthMapD)
lumenMap ← MergeToGlobalView(lumenMapF, lumenMapB,
lumenMapL, lumenMapR, lumenMapU, lumenMapD)

coordMap ← GetCoordinateMap()

output ← NetworkModel(flatColor, normalMap, depthMap, lumenMap,
coordMap)
finalImage ← MultiplyRGB(output, flatColor)

display(finalImage)

return

Algorithm 1: General operation algorithm.

4.2 Dataset Generation

Since the input to the neural network is rendered 3D scenes in the form of feature
buffers, we need a diverse dataset consisting of several 3D scenes. Considering our
goal, we require a dataset that contains many frames of 3D scenes, both in rendered
form, using a ray-tracing based renderer and rasterized images of the same scenes
in feature buffer form, and those should cover surrounding view of camera points.
Since our requirements are too specific, we could not find any dataset online that
covers our needs. So we decided to generate our own dataset for both training and
testing purposes.

For fabrication of virtual 3D environments or scenes, we considered using the popular
sandboxing game called “Minecraft”. We created some diverse maps in Minecraft
and loaded them into a specialized tool called “Mineways” in order to convert these
maps to 3D models, so that they can be rendered later according to our settings of
choice. Here, we chose a specific portion of the maps and exported the 3D scenes as
.obj files. After exporting the files, we imported them into Blender. Inside Blender,
we have created the camera-cluster using six cameras for six views (front, back, left,
right, up, down), each having a field-of-view of 90 degrees and aspect ratio of 1:1,
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where we made the front camera act as the parent for all the remaining cameras.
This way, we can ensure that the cameras stay together and travel together as we
capture frames from various points within scenes and also maintain their orientation.

Blender has allowed us to modify the lighting conditions and use various post-
production effects. We have used daylight for most of the scenes, while we used
lighting at night for some of the remaining scenes. A few scenes have dynamic
lighting, meaning the lighting changes from daylight to lighting at night, giving the
effect of sunset or sunrise. Some scenes are outdoor-focused, and some of them focus
on indoor environments.

Instead of placing the camera-cluster in random places within the scenes and ren-
dering manually, we animated the camera-cluster itself to fly though the environ-
ments since Blender supports creating 3D animations. We just specified few check-
points within the environments, placed the camera-cluster in those checkpoints, and
recorded the camera location and rotation as keyframes. Each keyframe had a in-
terval of 25 frames. This way, we could effortlessly render all of the frames using a
single click and get an animated walkthrough.

For the train dataset, we have prepared 5300 frames from 19 scenes, each having a
resolution of 256x256. For the test dataset, we have prepared 1525 frames from 6
different scenes. All the scenes were rendered using Blender’s built-in rasterizer ren-
derer called “EEVEE” and built-in ray traced renderer called “Cycles X”. Blender’s
compositor allows us to extract feature buffers on a per-frame basis for every camera
and save them into individual files. For each frame and each camera view of the
cluster, we have collected these feature buffers: diffuse color, direct lighting, depth
map, normal map, surface emission map, and environment/sky map. These feature
buffers will act as the input to the neural network.

We have also collected ray traced renders of direct and indirect lighting for each
frame, but from the viewpoint of the front camera only since we target to pre-
dict the lighting only for the front camera view. The blend of direct and indirect
lightmaps will work as the ground truth, where the blending function is “mix add”.
It may seem redundant to collect direct lightmaps again for ray tracing as we have
already collected them for rasterization earlier. However, Blender’s ray-traced direct
lightmaps contain some extra lighting features, such as environment scatter lights
and lights from self-emitting objects, which are not available in rasterization.

The diffuse color, direct lighting, indirect lighting, surface emission map, and en-
vironment/sky map images, each consist of 3 color channels: red, green, and blue.
The normal map images each consist of 3 axis-vector channels: X, Y, and Z. The
depth map images each consist of 1 scalar channel which is the depth itself. We
saved the diffuse color, direct lighting, indirect lighting, surface emission map, and
environment/sky map images as 8-bit per channel RGB png images, the normal map
as 32-bit per channel RGB exr images, and the depth map as 32-bit per channel
single channel exr images. In addition to the images, we have also collected the
orientation data of the camera cluster for each frame. This orientation data consists
of the look vector, and up vector of the front camera, which will help in the prepro-
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cessing phase later. The extraction is performed by running a Python script within
Blender’s internal Python interpreter. The script iterates over all frames, reads the
camera orientation-vector values, and stores them into an array, which is saved as
JSON files. This process is done for each of the scenes.

Figure 4.7: Sample feature frame from the dataset.
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Figure 4.8: Ground truth sample of a frame from the dataset

4.3 Dataset Pre-processing

The dataset is complete but not ready for the network to consume yet, mostly be-
cause the images are in formats and shapes that are incompatible with our targeted
network models. Blender outputs captured images of feature buffers and renders of
each camera into separate files, and saves vector space information like depth infor-
mation and normals in raw unscaled values. To make the data compatible for our
network models, we must pre-process every frame into a suitable form. We perform
this task in two stages. The first stage is mainly concerned with transforming the
pixel values themselves. And in the second stage, the feature buffers are stitched to
form global views for surrounding-aware input.

4.3.1 Phase 1

In the first preprocessing stage, we keep the diffuse color maps untouched. The
depth map values are normalized to 0 and 1, since blender stored the depth values in
meters. The max distance value considered is 1,000 meters, any distance above that
limit is clamped to 1 automatically. The direct lightmap, emissive lightmap, and the
environment lightmaps are all combined into one feature map called the lumination
map, since all 3 can be considered as light sources for determining indirect light.
The combination is done by per-pixel addition of RGB values.

λlum = λemit + λenv + λdirect (4.2)

Here, λlum, λemit, λenv, λdirect corresponds to lumination lightmap, emissive lightmap,
environment lightmap, direct lightmap respectively.

Blender’s compositor provides surface normals in world space, which may appear
too complex for the neural network. We convert the world space data to camera
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space, meaning the normal vectors will follow the camera-cluster’s own alignment
axis as their basis. It is done by basis transformation, and we utilize the previously
recorded per-frame look and up vectors of the camera. We calculate the basis for
each frame using these two vectors, represent the basis in a 3x3 matrix (S), and
considering the normal maps’ of each pixel’s RGB values as XYZ of the normal
vector (n), we multiply the normal vectors with the pre-calculated matrix, which
gives us the per-pixel camera space normal (N). Afterwards, since the vector values
are between -1 and 1, we normalize them between 0 and 1.

β̂ = upxî+ upy ĵ + upzk̂ (4.3)

γ̂ = − lookx î− looky ĵ − lookz k̂ (4.4)

α̂ = β̂ × γ̂ (4.5)

S =

 αx αy αz

βx βy βz

γx γy γz

 (4.6)

n⃗ =

 nx

ny

nz

 (4.7)

N⃗ = S × n⃗ (4.8)
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Figure 4.9: Sample frame from the 1st preprocessing stage output

For the ray traced direct lightmap and indirect lightmap, we simply blend their per-
pixel RGB values using the mix-add blending function into a new lightmap called
the ground truth lumination. The neural network will try to generate this image by
consuming the features. The generated ground truth images will be used to train
the network and verify its accuracy.

Λlum = Λdirect + Λindirect (4.9)

Here, Λlum, Λdirect and Λindirect represents ground truth lumination values, direct
lightmap values and indirect lightmap values respectively.
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Figure 4.10: Ground Truth Lumination

4.3.2 Phase 2

In this phase of preprocessing, we combine all six view images from six cameras into
one big 360° image called the global view, which is done for all of the 4 features.
For this process, we utilize the MergeToGlobalV iew function [4.1], which takes 6
images (of each view) and outputs one rectangular image. For our experiment, this
rectangular image has a resolution of 1024x512 pixels. Nothing needs to be done for
the ground truth lumination since we only target to generate lumination data for
the front view.
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Figure 4.11: Sample frame from the 2nd preprocessing stage output

4.4 Model Architecture

The architecture we follow for our lighting prediction system is a Generative Adver-
sarial Network (GAN). To be more specific, it is a conditional GAN (cGAN), where
the output image of the network depends on the input image [13]. It is a combina-
tion of Generator network and Discriminator network [7]. The generator consumes
the rasterized feature buffers, along with the coordinate maps, and tries to gener-
ate a possible output image, regarding it as a synthetic image. The discriminator
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takes either the synthetic output or the ground truth image and also the respective
feature buffers, it learns to identify the real ground truth images from the synthetic
one based on the feature buffers. While adjusting the parameters during training,
the parameters of the discriminator are updated directly, and the parameters of the
generator are updated through the discriminator. However, we also employ L1 loss
to update generator parameters, which are calculated by comparing the synthetic
image and ground truth. As mentioned by Image-to-Image Translation with Con-
ditional Adversarial Networks [13], combining both GAN loss and L1 loss yields
better accuracy. For the combined GAN model, BCE (Binary Cross Entropy) loss
is employed, which is a part of the adversarial loss. The total generator is calculated
by using equation 4.10, where λ = 100

generator loss = adverserial loss + λ ∗ L1 loss (4.10)

In this implementation, the generator follows a U-Net architecture [10], a combina-
tion of an encoder and a decoder. The encoder part gradually downsamples inputs
and congregates information into a narrow layer. The decoder gradually upscales
the congregated information, while also concatenating information via skip connec-
tions from corresponding encoder layers [13]. In the encoder part, it maintains series
blocks of Convolution, Batch Normalization, and LeakyReLU [6] layers of count 8
with Batch Normalization being absent in the first layer. While the decoder has
a series of blocks of Convolutional Transpose, Batch Normalization, Dropout, and
ReLU layers also of count 8 with the dropout rate set to 50%. The centermost block,
also known as the bottleneck block is free from any Batch Normalization layer as
activations there are zeroed out due to the Batch Normalization operation pix2pix.
The end of the network is the output featuring 3 channels for RGB, activated by
the Tanh activation function. The discriminator is similar to the encoder portion of
the generator, but it follows a patchGAN architecture [13]. It penalizes the gener-
ator based on individual patches and outputs a realness score. It contains a series
of blocks of Convolution, Batch Normalization, and LeakyReLU layers of count 5
with Batch Normalization being absent in the first layer. The last layer delivers a
1-dimensional output, activated by a sigmoid activation function [13]. We use a base
kernel count of 64 for both networks, the intermediary layers having kernel count
multiple of the base count. The generator takes the feature buffers and coordinate
map as input, with channels from all features, concatenated to a total of 12 chan-
nels and produces an output RGB image of 3-channels. The discriminator takes all
the 12 channels the generator takes, concatenated with a 3-channel image (either
generated image or ground truth), a total of 15 channels, and outputs a probability
of realism of the image. In generator, we have 48 layers which are demonstrated in
Table 4.1 and Table 4.2 respectively. For discriminator, it contains 13 layers which
are visualized in Table 4.4.
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Figure 4.12: First image represents the generator model and second image represents
the discriminator model
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# Layer Name Shape Parameter Count

1 Conv2d [1, 64, 256, 512] 12,352

2 LeakyReLU [1, 64, 256, 512] None

3 Conv2d [1, 128, 128, 256] 131,200

4 BatchNorm2d [1, 128, 128, 256] 256

5 LeakyReLU [1, 128, 128, 256] None

6 Conv2d [1, 256, 64, 128] 524,544

7 BatchNorm2d [1, 256, 64, 128] 512

8 LeakyReLU [1, 256, 64, 128] None

9 Conv2d [1, 512, 32, 64] 2,097,664

10 BatchNorm2d [1, 512, 32, 64] 1,024

11 LeakyReLU [1, 512, 32, 64] None

12 Conv2d [1, 512, 16, 32] 4,194,816

13 BatchNorm2d [1, 512, 16, 32] (recursive)

14 LeakyReLU [1, 512, 16, 32] None

15 Conv2d [1, 512, 8, 16] 4,194,816

16 BatchNorm2d [1, 512, 8, 16] (recursive)

17 LeakyReLU [1, 512, 8, 16] None

18 Conv2d [1, 512, 4, 8] 4,194,816

19 BatchNorm2d [1, 512, 4, 8] (recursive)

20 LeakyReLU [1, 512, 4, 8] None

21 Conv2d [1, 512, 2, 4] 4,194,816

22 ReLU [1, 512, 2, 4] None

23 ConvTranspose2d [1, 512, 4, 8] 4,194,816

24 BatchNorm2d [1, 512, 4, 8] (recursive)

Table 4.1: First 24 layers of Generator
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# Layer Name Shape Parameter Count

25 Dropout [1, 512, 4, 8] None

26 ReLU [1, 1024, 4, 8] None

27 ConvTranspose2d [1, 512, 8, 16] 8,389,120

28 BatchNorm2d [1, 512, 8, 16] (recursive)

29 Dropout [1, 512, 8, 16] None

30 ReLU [1, 1024, 8, 16] None

31 ConvTranspose2d [1, 512, 16, 32] 8,389,120

32 BatchNorm2d [1, 512, 16, 32] (recursive)

33 Dropout [1, 512, 16, 32] None

34 ReLU [1, 1024, 16, 32] None

35 ConvTranspose2d [1, 512, 32, 64] 8,389,120

36 BatchNorm2d [1, 512, 32, 64] (recursive)

37 ReLU [1, 1024, 32, 64] None

38 ConvTranspose2d [1, 256, 64, 128] 4,194,560

39 BatchNorm2d [1, 256, 64, 128] (recursive)

40 ReLU [1, 512, 64, 128] None

41 ConvTranspose2d [1, 128, 128, 256] 1,048,704

42 BatchNorm2d [1, 128, 128, 256] (recursive)

43 ReLU [1, 256, 128, 256] None

44 ConvTranspose2d [1, 64, 256, 512] 262,208

45 BatchNorm2d [1, 64, 256, 512] 128

46 ReLU [1, 128, 256, 512] None

47 ConvTranspose2d [1, 3, 512, 1024] 6,147

48 Tanh [1, 3, 512, 1024] None

Table 4.2: Remaining layers of Generator

Total params 54,420,739

Trainable params 54,420,739

Non-trainable parameters 0

Table 4.3: Parameter count of generator model
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# Layer Name Shape Parameter Count

1 Conv2d [1, 64, 256, 512] 15,424

2 LeakyReLU [1, 64, 256, 512] None

3 Conv2d [1, 128, 128, 256] 131,200

4 BatchNorm2d [1, 128, 128, 256] 256

5 LeakyReLU [1, 128, 128, 256] None

6 Conv2d [1, 256, 64, 128] 524,544

7 BatchNorm2d [1, 256, 64, 128] 512

8 LeakyReLU [1, 256, 64, 128] None

9 Conv2d [1, 512, 63, 127] 2,097,664

10 BatchNorm2d [1, 512, 63, 127] 1,024

11 LeakyReLU [1, 512, 63, 127] None

12 Conv2d [1, 1, 62, 126] 8,193

13 Sigmoid [1, 1, 62, 126] None

Table 4.4: Layers of Discriminator

Total params 2,778,817

Trainable params 2,778,817

Non-trainable parameters 0

Table 4.5: Parameter count of discriminator model

4.5 Training and Testing

We have decided to build our model and have build another model that produces
screen-space global illumination using data from a single camera based on DeepIllu-
mination’s [15] architecture to perform a side-by-side comparison. We prepared all
our networks using PyTorch [21] for both training and testing purposes. Training is
done for 40 epochs on both the architectures, based on monitoring the mathematical
and visual improvement of the outputs. We utilized the benefits of hardware accel-
erated training using GPUs, specifically PyTorch’s CUDA support. The GPUs we
used were Nvidia GeForce GTX 1660 Ti and Nvidia GeForce RTX 3060 ELITE

for local training, and Nvidia Tesla T4 and Nvidia Tesla K80 for training on
the cloud, provided by Google Colab. According to Image-to-Image Translation
with Conditional Adversarial Networks [13], a batch size of 1 yields better results
for a U-Net-based generator, so we kept the frame count to 1 per batch. For all
the models, we maintained a learning rate of 0.0002 and a dropout rate of 0.5,
which protects us from over-fitting the models [13]. While training, we added the
functionality to dump generator output as images to inspect them manually while
the training process goes on. Besides that, the models were saved as files after ev-
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ery epoch, allowing us to use them for future use cases such as testing and evaluation.

The same dataset is used for both the model using our Surrounding-Aware model
and the DeepIllumination model, to perform impartial training and testing. Since
the DeepIllumination model can take feature buffers from only one camera, only
data from the front camera is fed into it. While testing, we fed samples from
the test dataset to the generator outputs a fabricated lightmap/lumination map
that contains global illumination. Lightmaps are generated for both architectures.
Those light maps are compared against the ground-truth lightmap/lumination map
for metrics calculation. Just like the training phase, the images are dumped from
memory and saved as files for future manual analysis. The training process can be
represented by the pseudocode [2]
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LAMBDA ← 100
G ← CreateGenerator()

D ← CreateDiscriminator()

Function TrainBatch(flatColor, normalMap, depthMap, lumenMap,
groundTruth):

coordMap ← GetCoordinateMap()

disScoreReal ← D(flatColor, normalMap, depthMap, lumenMap, coordMap,
groundTruth)
disLossReal ← BCELoss(disScoreReal, 1)

backPropagation(disLossReal)

fakeImage ← G(flatColor, normalMap, depthMap, lumenMap, coordMap)

disScoreFake ← D(flatColor, normalMap, depthMap, lumenMap,
coordMap, fakeImage)
disLossFake ← BCELoss(disScoreFake, 0)

backPropagation(disLossFake)
disScoreGen ← D(flatColor, normalMap, depthMap, lumenMap, coordMap,
fakeImage)
genLoss ← BCELoss(disScoreGen, 1)
genLossLi ← LiLoss(fakeImage, groundTruth)
genLoss ← genLoss + LAMBDA * genLossLi
backPropagation (genLoss)

return
Function TrainEpochs(epochCount, dataset):

for i to epochCount do
for j to datasetLength do

flatColor,normalMap,depthMap,lumenMap,groundTruth ←
LoadSample()

TrainBatch(flatColor, normalMap, depthMap, lumenMap,
groundTruth)

end

end

SaveModel(G)

SaveModel(D)

return

Algorithm 2: Training process algorithm.
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Figure 4.13: Generator loss.

Figure 4.14: Discriminator loss.
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Chapter 5

Performance Evaluation

In this chapter, we will be discussing about the experimental configurations, experi-
mental results, and the experimental findings of our thesis. In our experimental con-
figurations, we have discussed how we setup our environment for dataset generation.
After that we have elucidated our training configuration and testing configuration.
In our experimental results, we have demonstrated our result output comparison,
visual consistency analysis, quality evaluation metrics, and performance evaluation
metrics. Finally, in our experimental findings, we have explained our findings from
quality evaluation metrics and time performance. Afterwards, we have done a the-
oretical comparison between our approach and other existing approaches.

5.1 Experimental Configurations

We have set up hardware and software environments suitable for our three major
tasks: dataset generation, training the networks, and testing or evaluating the net-
works. All of these tasks are hardware accelerated, meaning each will utilize the
GPUs.

5.1.1 Dataset Generation

For generating the dataset, we have used Blender version 3. The camera cluster was
placed within the previously created 3D environments, and “multi-view” rendering
was kept enabled. In Blender’s compositor section, nodes were set up to dump
feature buffers as files. We render each scene two times, one with rendering engine
set to “Cycles X”, and another one set to “EEVEE”. We ran the “Cycles X” renders
on a machine equipped with a NVIDIA GeForce RTX 3060 ELITE GPU due to its
hardware accelerated ray-tracing feature.
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(a) Camcluster setup in Blender (Front
camera highlighted) (b) Camcluster hierarchy in Blender

The camera cluster (camcluster) is made using arranging six cameras in a cube-like
manner, each of them having an adjacent angle between them of 90°. The front
camera is made the parent of all other remaining cameras.

Figure 5.2: High-level compositor node setup for feature buffers

During rendering using EEVEE, or the rasterizer, we capture depth maps (Depth),
normal maps (Normal), diffuse color or flat color (DiffCol), direct light maps (DiffDir),
emission maps (Emit), and environment lights or sky lights (Env) from the Render
Layers for every camera. These correspond to the feature buffers, which are sent to
a custom node group for further processing.
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Figure 5.3: High-level compositor node setup for ground truth

During rendering using Cycles X, or the ray-tracer, we capture direct light map
(DiffDir) and indirect light map (DiffInd) from the Render Layers for only the front
camera. These correspond to the ground truth, which is sent to a custom node
group for further processing.

Figure 5.4: Compositor nodes for feature buffer view routing

Feature buffers from each camera need to be separated via “Switch View” nodes, so
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the combined feature buffers are sent to individual custom file saver nodes dedicated
to each camera/face.

Figure 5.5: Compositor nodes saving feature buffer to file (shown for front camera)

The custom file saver node filters out only the feature intended for it, depending on
which camera it corresponds to. The depth maps and normal maps are combined
to be saved as a 32-bit per channel RGBA exr, while every other image is saved as
8-bit per channel RGB images.

5.1.2 Training Configuration

For experimenting, we have used our local machines and Google Colab. Training and
testing were done in separate machines during the experimental phase. For training
the model, we have used NVIDIA GeForce RTX 3060 ELITE, NVIDIA Geforce
GTX 1660 Ti and NVIDIA Tesla T4 from Google Colab, all with CUDA enabled.
During the testing phase, we have tested our trained model using Geforce GTX 1660
Ti and Geforce GTX 1050 Ti. The detailed specifications for each including test
benches are
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Components
Device-1

(RTX 3060 ELITE)

Device-2

(GTX 1660 Ti)

Device-3

Google Colab

Processor
AMD Ryzen 5 3600 CPU

@ 3.60GHz

AMD Ryzen 5 3600 CPU

@ 3.60GHz

Intel(R) Xeon(R) CPU

@ 2.20GHz

GPU
NVIDIA GeForce

RTX 3060 ELITE

NVIDIA GeForce

GTX 1660 Ti
Nvidia Tesla T4

Clock speed 3.60GHz 3.60GHz 2.20GHz

RAM 16GB 16GB 12GB

Table 5.1: Hardware configuration used during training phase

5.1.3 Testing Configuration

For testing, only the generator model is loaded into the memory. Just like the
testing configuration, acceleration using CUDA is also enabled here. We chose to
use two medium range non-RTX GPUs, NVIDIA Geforce GTX 1660 Ti and NVIDIA
Geforce GTX 1050 Ti, to run the test model. The detailed specifications for each,
including test benches, are

Components
Device-1

(GTX 1050 Ti)

Device-2

(GTX 1660 Ti)

Processor
Intel(R) Core(TM) i5-7400 CPU

@ 3.00GHz

AMD Ryzen 5 3600 CPU

@ 3.60GHz

GPU
NVIDIA GeForce

GTX 1050 Ti

NVIDIA GeForce

GTX 1660 Ti

Clock speed 3.00GHz 3.60GHz

RAM 16GB 16GB

Table 5.2: Hardware configuration used during testing phase

5.2 Experimental Results

For evaluation and application purposes, we only need the trained generator model
since it is the only part participating in producing global illumination lightmaps.
The generator model can be called just like a simple function call by passing the
feature-buffer image tensors as parameters. The return value is the resulting global-
illumination lightmap image tensor. This image tensor can be compared with the
ground-truth lightmap image tensor to calculate the metrics. Or if used in appli-
cation, it (the generated image) can be blended with the flat-color/albedo image
to result the final image. However, it need not be the final image of the graphics
pipeline, as it can act as an input to further post-processing stages.

5.2.1 Render Output Comparison

For output comparison, we present a side-by-side comparison of sample frames each
containing a rasterized render using direct light only, another rasterized render but
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with our network generated global illumination lightmap blended, and a reference
image which is the ray-traced ground truth.

Figure 5.6: The sunlight that hits the floor gets scattered multiple times within the
room. (The hole in the wall is darker due to less light rays bouncing there.)

Figure 5.7: A scene mostly illuminated by sky scattering rather than direct sunlight.

Figure 5.8: The surfaces directly lit by sunlight are behind the camera, yet the
surfaces visible by the main camera are luminated by indirect light.
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Figure 5.9: Network generated result.
Shows that the generated indirect lighting is dependent on diffuse surface color and
direct color.

5.2.2 Visual Consistency Analysis

As we have dumped global illumination lightmap outputs produced by the generator
network during the testing phase, we have also done a side-by-side comparison be-
tween the two aforementioned approaches. The next two pages show a sequence of
generated animation frames from two different scenarios to compare the inter-frame
lumination consistency. All the generated frames shown are raw output, meaning
that those have not been blended with flat-color image, producing the final pre-
sentable image on the screen.
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Figure 5.10: Moving camera, stationary light. For each pair, top is DeepIllumination
[15] approach, bottom is Surrounding-Aware approach (ours)

The animation sequence (Figure 5.10) shows the camera moving into the room
while the light is stationary. Notice that in the DeepIllumination [15] approach the
luminance inside the room gradually gets dimmer or off despite the light remaining
constant due to the directly lit surfaces going out of the screen, eventually losing
consistency. While in the Surrounding-Aware approach, the indoor luminance keeps
its consistency since it can still keep information about the lit surfaces that do not
appear in the viewport.
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Figure 5.11: Stationary camera, moving light. For each pair, top is DeepIllumination
[15] approach, bottom is Surrounding-Aware approach (ours)

The animation sequence (Figure 5.11) shows an indoor environment of a room where
light gradually enters from a window at the back while the camera orientation re-
mains stationary. This emulates an animation of a sunset where the sunlight hits
the floor. In the DeepIllumination [15] approach, the luminance remains constant
despite the sunlight entering the room of the screen and responds to change or gets
brighter when enough lit surface area is present in the viewport. While in the Sur-
rounding aware approach, the room initially remains dark as there is no light in the
beginning, but gradually gets brighter as more light enters behind the viewport.
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5.2.3 Quality Evaluation Metrics

To evaluate the metrics, we need to examine the image quality using mathematical
approach. Since, we are evaluating global illumination, it is needed to assess the
locational pixel brightness difference and overall structural similarity of generated
images, tested against the ray-traced ground truth. So, we measured our mod-
els’ output quality accuracy using the common metrics used for global-illumination
technique evaluation [8]. These are Mean Squared Error (MSE) and Structural-
Similarity Index Measure (SSIM). We also calculated the Peak Signal-To-Noise Ra-
tio (PSNR) for output samples. We have recorded these measurements for every
epochs’ generated output on the test dataset.

Figure 5.12: Structural-Similarity Index Measure.

Figure 5.13: Mean Squared Error.
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Figure 5.14: Peak Signal-to-Noise ratio.

Approach SSIM MSE PSNR (dB)

Surrounding-Aware (ours) 0.90811 0.00093 30.30576

DeepIllumination [15] 0.89329 0.00108 29.63102

Table 5.3: Quality Evaluation Metrics comparison at 40th epoch.

5.2.4 Performance Evaluation Metrics

The aforementioned table presents the comparison of time taken between different
rendering approaches.

GPU DeepIllumination [15] Surrounding Aware Ray traced (Blender)

Nvidia Geforce
GTX 1660 Ti

3.3221 ms 3.3196 ms 6.77 s

Nvidia GeForce
GTX 1050 Ti

3.7817 ms 4.0210 ms 14.34 s

Table 5.4: Time Performance comparison

5.3 Experimental Findings

Here we discuss the findings upon analyzing the results.

5.3.1 Findings About Quality Evaluation Metrics

According to the metrics comparison between Surrounding-Aware approach (ours)
and DeepIllumination [15] approach, our approach outperforms the other one in all
3 metrics. For SSIM and PSNR, a higher value is desired. Whereas in the case of
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MSE, a lower value means better quality of generated output. This shows providing
enough surrounding details to a global illumination producing GAN yields better
accuracy and closer to ground-truth (ray-traced) results.

5.3.2 Findings About Time Performance

The ray-traced render times for both hardware came out to be unsuitable for real-
time usage. However, both Surrounding-Aware and DeepIllumination [15] processing
time of 3-4 milliseconds came out to be good for usage in interactive applications.
In most hardware, the DeepIllumination [15] implementation would perform bet-
ter due to its input size being comparatively smaller but considering its lacking,
judging by the visual and mathematical metrics comparison, against our approach,
it would be better to use the Surrounding-Aware system instead. To be fair, the
performance difference between the two is not much. And from our observation, our
Surrounding-Aware approach performed better than DeepIllumination [15] approach
on the “Nvidia Geforce GTX 1660 Ti” hardware.

5.3.3 Theoretical Comparison

This section compares our implementation with similar neural network related tech-
nologies those generate realistic effects for real-time rasterized graphics via either
ambient occlusion or global illumination.

Produces
Inputs

Output
Utilizes

Off-screen

Features

Underlying

Technology
Flat Color

Direct Light

Map
Depth Map Normal Map

NNAO [12] AO - - AO Image - MLP

DeepAO [26] AO - - AO Image - U-Net

Fast Screen-Space

Global

Illumination [22]

GI
Final

Image
- CNN

DeepIllumination [15] GI
Final

Image
- GAN

Surrounding-Aware

Screen-Space Global

Illumination

(our approach)

GI GI Map GAN

Table 5.5: Comparison of Our Approach with Other Existing Approaches

In the Table 5.5, AO, GI, MLP, CNN, GAN represents Ambient Occlusion, Global
Illumination, Multi Layer Perceptron, Convolutional Neural Network, Generative
Adversarial Network respectively.

In our system which utilizes a generative adversarial network, we attempt to pro-
duce global illumination for the viewport presentation. However, the output of our
implementation network is not the final image that is showed on the screen, rather a
globally illuminated lightmap that will be used in blending with the albedo/flat-color
map before it gets presented on to the screen. The input it consumes is a feature-
buffer set that contains four elements which are flat-color or albedo map, camera
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local normal map, depth map, and combined lumination map. All of these feature
buffers are rectangular 360° images (global views) of the surrounding of the camera,
which are composed from six set of images captured from six different orientations.

The implementation of NNAO [12] generates ambient occlusion using a shallow
neural network. Prediction of ambient occlusion do not require color information.
The input to its network is screen-space feature buffers that only consists of depth
maps and normal maps. It is only concerned with what is available on the screen
and not whatever is off the screen. For ambient occlusion, it makes sense since it
merely adds dark patches to corners and conjusted regions of 3D geometry already
lit by ambient light, which adds some fancy effects to renders but does not bring
realistic lighting. Offscreen light sources do not have any affect on the outputs.

DeepAO [26] also computes ambient occlusion by taking screen-space depth map
and normal map into account. However, it utilizes a deep neural network instead of
a shallow one. Even depending on a deep neural network, it still outperforms the
previously mentioned NNAO in terms of output accuracy and runtime performance.
The output ambient occlusion image is blended using a composition shader with a
flat-color buffer before presenting on to the screen.

Fast Screen Space Global Illumination [22] attempts to solve the global illumination
problem by employing a simple multi-layered convolutional neural network. The
network consumes screen space feature buffers such as diffuse color, normal map,
depth buffer/z-buffer, and local illumination map and tries to produce an image
that is presentable to the screen. Contrary to our approach, this method generates
the end image directly, rather than producing an intermediate lightmap containing
global illumination that is further processable in the graphics pipeline. However,
this approach works well for simple enough scenes.

Utilizing generative adversarial networks is performed by DeepIllumination [15].
Like most other methods, its inputs consists of depth maps, normal maps, albedo
and direct lighting, and outputs a presentable image containing global illumination.
This method does not produce intermediary global illumination lightmaps like our
approach does as well. All inputs are screen-space in nature, so any objects or lights
out of the screen do not have any effect on the final output. As a result, it suffers
from off-screen inconsistencies.
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Chapter 6

Discussion

In this chapter, we will be discussing about the limitations we faced in our thesis.

6.1 Limitations

Our implementation of generative adversarial network driven solution that utilizes
beyond screen-space data by using surrounding-aware feature buffers is not a fool-
proof solution to the global illumination problem. Surely, it can take into account
off-screen lit surfaces or light sources and produce results accordingly, in contrast to
existing SSGI solutions. But still, it has some drawbacks. Some of these include:

1. This implementation only specializes in diffuse global illumination. So, the
specular indirect lighting will not work for this implementation. To overcome
this, we might need to insert more channels into the network and extend our
dataset and pipeline to include surface glossiness as input. Also, it is required
to update the ground truth to include indirect lights caused by light bouncing
on specular surfaces.

2. The system cannot work with indirect lights in terms of refraction.

3. If some self-emitting light source or lit surface is obstructed by some other
object that is in front of the cameras, the network will not be able to take their
effect into account due to getting less information about lighting, resulting in
incorrect indirect lights. As shown in Figure [6.1], there is a narrow yet open
space between the wall and ceiling through which lights can pass. However,
it is not visible towards the camera due to being obscured, as a result, in the
ray traced render the ceiling is lit, but not in the blended network generated
result.
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(a) Network Generated Result (b) Ray traced image

Figure 6.1: Incorrect Illumination Due to Light Source Obstruction
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Chapter 7

Conclusion and Future Plans

7.1 Conclusion

Employing screen-space features to perform various post-processing operations on
top of rasterized renders can be viewed as a cheap alternative to expensive hardware
ray-tracing to achieve photo-realistic results. It can still come with the expense of
losing visual accuracy due to out-of-screen objects. Our implementation of deep
learning based global illumination solution tries to improve existing screen-space
global illumination techniques by viewing beyond the viewport, by being aware of
the surroundings. Collecting enough graphical information about the environment
rather than looking at a single direction brings visually consistent global-illumination
while retaining speed.

7.2 Future Plans

Even though we have proposed a model, we are still planning on developing it and
making it more sustainable and improved. We have also pointed more of our future
goals. These are:

1. We will work with other aspect ratios rather than the 1:1 aspect ratio which
we used here, making it more relevant with real screen resolutions such as 16:9
aspect ratio.

2. We will implement specular indirect lighting in our global illumination system.

3. We will generate a more diverse dataset and perform training and testing on
it.

4. We will find a faster alternative to ray traced rendering

5. We will implement a system to run our GAN model in generic graphics API
pipelines with the help of compute shaders.

6. We will reimplement our GAN models using Spatially-Adaptive Normalization
[20] instead of Batch Normalization as an experiment. We are going to compare
it with our existing approach.
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