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Abstract

Waste management refers to a system that starts with classifying different kinds of
waste and gradually managing it from its inception to its final disposal. Labeling
waste in a proper manner can ensure the best outcome of recycling. The reason we
think that our thesis topic will bring about a positive change in the waste manage-
ment system is because we are emphasizing on making the environment pollution
free and reuse the waste as much as we can by classifying and detecting the recyclable
stuff from the waste that are considered useless. A custom CNN model has been
implemented in our paper to classify things more accurately. Here, we have utilized
a large dataset “garbage classification” [19] with a big number of images but to train
our model, we have used 8 different classes: battery, biological, cardboard, clothes,
green-glass, paper, plastic, trash which have been augmented in order to make all the
classes equal in size which has resulted in a total of 16,000 images.Pre-trained CNN
models such as VGGNet16, Resent50, MobileNetV2, InceptionV3,EfficientNetB0
along with custom CNN models have been used and successfully achieved 87.57
percent, 94.34 percent, 96.99 percent, 95.71 percent, 35.92 percent,97.16 percent
train accuracy and 89.38 percent, 94.34 percent, 96.81 percent, 94.47 percent, 36.75
percent and 97.58 percent validation accuracy respectively.Later on, the paper also
evaluates the custom CNN model’s performance on an unseen test dataset via con-
fusion matrix. In this study, we have also proposed YOLOv4 and YOLOv4-tiny
with Darknet-53 as a method for the detection of waste. Here we have used the
same dataset which we have used in the custom CNN model. During the testing
phase, every model makes use of three different types of inputs, including videos,
webcams and images.The outcome demonstrates that YOLOv4 exceeds YOLOv4-
tiny in terms of object detection, despite YOLOv4-tiny’s advantages in aspects of
computational speed.The best YOLOv4 results are mAP 85.73 percent, precision
0.78, recall 0.84, Fl-score 0.81, and Average IoU 62.05 percent.The best YOLOv4-
tiny results are mAP 81.28 percent, precision 0.60, recall 0.87, Fl-score 0.71, and
Average loU 45.67 percent.

Keywords: Custom CNN, Resnetb0, VGG16, MobileNetV2, InceptionV3, Effi-
cientNetB0, Pretrained, Validation, Accuracy, Detection, Classification, YOLOv4,
Deep Learning, YOLOv4-tiny
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Chapter 1

Introduction

Every year, the world generates almost 2.1 billion metric tons of municipal solid
garbage, and at least 33 percent of it is not treated safely [18]. The average amount
of garbage produced by a person per day around the world is enormous .However,
the entire process of recycling has a significant hidden cost, which is created by
the categorization and the manufacturing from the recycled waste. While humans
in several nations are willing to sort their own garbage at home these days, they
may be unclear about how to identify the appropriate category of waste at the
time of discarding items. Finding an automatic method of recycling, which not
only has positive impacts on the environment but also has beneficial effects on the
economy. This has the dual effect of improving both. Garbage piling is one of
the most well-known threats to human health because it encourages the spread of
illness by carriers like flies, mosquitoes, and other insects. Soil and water may be
contaminated owing to harmful substances present in inadequately handled mate-
rials, and this is in addition to the destruction of the magnificence of biodiversity,
deforestation, and territory occupancy to give enough room for waste. Conversely,
pollution may disrupt food webs, which in turn increases the prevalence of illnesses
and health problems in both human populations and the planet’s natural habitats.
The process of dumping solid garbage which comprises paper, plastic, metal, glass,
etc., is becoming a concern as the variety of industries in metropolitan areas grows.
Burning garbage is another typical waste disposal strategic tool, although it results
in air pollution and the release of carcinogenic chemicals from the dump itself.
CNN focuses on the significant advancements made in image classification. They
are frequently combined with picture categorization and are utilized frequently for
the purpose of evaluating visual images.Garbage can be sorted and separated by
hand, but the efficiency of this method is lower. In order to overcome this challenge,
we classify waste using an algorithm that utilizes deep learning in order to achieve
results that are both superior and more effective. Garbage is identified by means of
an algorithm that a computer has been instructed to use for the purpose.

YOLOQ'’s ability to perform inferences quickly, which enables it to interpret pictures
in real time, is one of the system’s primary strengths. It functions very well in
applications like video surveillances, autonomous vehicles, and augmented reality,
amongst others.The main distinction between YOLOv4 and YOLOv4 tiny is the
significantly smaller network size.A decrease in the amount of convolutional layers
is made in the CSP’s main body. With only two YOLO layers rather than three
and fewer anchor boxes, prediction accuracy decreases. For easier implementation



on mobile and embedded devices, we offer YOLOv4-tiny as a lightweight variant
of YOLOv4 to simplify the network structure and minimize requirements. The
real-time performance of object detection is enhanced by a suggested rapid object
detection approach using YOLOv4-tiny.Based on YOLOv4, YOLOv4-tiny simpli-
fies network layout and reduces parameters for mobile as well as embedded device
development.YOLOv4-tiny’s simpler architecture has an impact on the algorithm’s
performance in terms of both prediction time and prediction probability , despite
being simpler than YOLOv4’s architecture. This is one area where YOLOv4-tiny
performs better. In comparison to YOLOv4, which has three YOLO heads, this
version only has two.Unlike YOLOv4, which was trained using 137 pre-trained con-
volutional layers, it was only trained using 29. But in terms of accuracy and other
areas YOLOv4 performs better than YOLOv4-tiny



1.1 Problem Statement

In the past, people used to get rid of their waste by digging a hole in rural areas.
Due to the relatively low population density, this method of garbage disposal was
expected to be effective. With fewer people around, there was less garbage to sort
through. However, as the population has risen, so has the amount of garbage, making
disposal a challenge. With population growth and industrialization happening all
over the world, it is important to keep cities safe and clean. Putting waste in illegal
places affects the environment if we don’t dispose of these garbage in time, then it can
lead to a lot of serious health problems and pollution [16]. It is completely obvious
that recycling is important for a number of reasons, including the economy and the
surroundings. By classifying the waste in categories and by detecting we can make
sure that both biodegradable and non biodegradable garbage are well managed . In
this way we can deduct the amount of waste that is being produced everyday and
make the disposal easier.Studies being done right now on how to automatically find
waste are hard to compare because there aren’t any benchmarks or widely accepted
standards for the metrics and data being used. [11] Which is why, Deep learning
has quickly become one of the most interesting and cutting-edge subfields within the
field of computer science research over the past decade. The public in general now
has access to systems that are both more advanced and intelligent. [16] Nowadays,
CNN is used quite frequently for the process of image classification.The accuracy
with which it can categorize images is significantly improved. Convolutional neural
networks (CNN), do not need to rely on the manual extraction of features. This is a
significant advantage of it. In the field of image detection, YOLOv4 is now among
the most used algorithms. It is a member of the YOLO (You Only Look Once)
group of object identification algorithms, and it is well-known for both its accuracy
and its quickness. In this paper we propose a waste classification system which
uses CNN as a classifier as well as waste detection systems which use YOLOv4 and
YOLOv4-tiny as detectors.



Chapter 2

Research

2.1 Research Motivation

The main motivation of our research work is to keep our nature free from the bad
effects of pollution caused by the garbage. Waste management will preserve nature,
environmental assets, and living beings. Waste can be classified and detected in order
to better manage the associated potential risks to both the environment and human
health. In addition to this, it can assist us in fulfilling our responsibilities in accor-
dance with the overall environmental duty. Proper waste management begins with
accurate waste classification and detection.The primary goals of waste management
are to decrease the amount of waste produced, reduce the effects of pollution and
protect groundwater sources. These goals are all interrelated. It is simpler to deal
with wastes and dispose of them in an appropriate manner if we categorize them into
groups and detect them according to the risks they pose to both the environment
and to human health

2.2 Research Objectives

In our research, we have used the Convolutional Neural Network (CNN) to classify
waste as well as YOLOv4 and YOLOvV4-tiny to detect waste from images which has
been separated in 8 classes. Our main research objectives are

e Understand image processing and how it works.

e To understand data pre-processing techniques like augmentation and labeling.

To understand the impact of deep learning in our model.

To classify waste of different categories more accurately.

To achieve better optimal speed and accuracy of waste detection.



Chapter 3

Related Work

3.1 Literature Review

Olugboja Adedeji et al. on their paper [1] they developed a smart method of sort-
ing garbage by using 50 layer residual net pre-train (ResNet-50).After testing the
method on the garbage image dataset, it was found to be 87 percent accurate.On
the other paper Sai Sushanth G et al. their main purpose is to sort garbage using
Al Initially AlexNet, VGG16, ResNet50, DenseNet 169 models were used. They
made use of the pre-trained architectures and six waste classification categories to
accomplish that goal. They performed this by employing the six waste classification
categories and the pre-trained structures already available to them.The accuracy for
DenseNet169 was 94.9 percent and for ResNet50 it was 93.4 percent. 2]

In another paper the authors Dipesh Gyawali et al. proposed an algorithm based
on ResNet-18. The accuracy of the original ResNet-18 is 87.8 percent. They eval-
uated the performance of several popular Deep Learning Network architectures for
garbage classification. For this purpose, they employed a convolutional neural net-
work. The hardware in the shape of a waste can be utilized to separate many types
of garbage.[3| For another article, the authors Sehrish Munawar Cheema et al. pro-
posed (SWMACM-CA) system. The primary goal of this work is to show that their
proposed system is superior to the current superior to previous methods in terms
of precision.The trained algorithm has an efficiency of over 90 percent, making it
highly powerful.[4]

Stephen L et al. in their paper, they used a dataset of 2527 images. Jpg-formatted
garbage photos with 6 categories were utilized for the training. Additionally, they
quantized and refined their baseline model, which test results that were 87.2 percent
accurate. In S6 Edge+ smartphone, model application was well installed.[5]
Dongwei Guo et al. offered a refined version of the YOLOV4 detector to identify
trash. In order to improve edge detection in deep networks, the emphasis com-
ponent is incorporated into the algorithm and Context-Based Accurate Modeling
(CBAM) is introduced to the extracting features network. TrashSet, a dataset of
45,910 photos from 47 types of urban waste collected, has also been generated. Re-
sults from tests on the TrashSet indicate that our detector performs admirably, and
mAP achieves 97.15 percent. They explore the improved YOLOV4 object detector’s
usefulness in detecting waste in this work [6]. Also Andhy Panca Saputra et al. [7]
proposed YOLOv4 and YOLOv4-tiny are used in combination with Darknet-53 to
detect objects using a deep learning algorithm. There are 4 classes of the dataset’s



3870 waste images. The results demonstrate that, when it comes to object identifica-
tion, YOLOvV4 outperforms its smaller version, YOLOv4-tiny. even if YOLOv4-tiny
performs better in terms of computing speed. Top YOLOv4 model findings include a
mAP of 89.59 percent, accuracy of 0.76, recall of 0.90 percent, F1-score of 0.82, and
an Average IoU of 64.01 percent; top YOLOv4-tiny model results include a mAP of
81.4 percent, precision of 0.59, recall of 0.83, F1-score of 0.69, and an Average loU
of 48.35 percent. As well as the author Yongchuang Yangin his research proposes a
deep learning-based classification solution for restaurant recycling. It is constructed
to use Yolov4, SSD, and fast RCNN as an experimental platform. The author of
this paper applies several novel techniques. Convolution neural network with many
targets Multiple targets can be found using YOLO v4 in a single image. Yolov4
has the maximum detection effect, according to their experimental findings, with a
detection accuracy of 77.78 percent and a detection speed of 39.3 FPS.[§]

The writers of this publication developed the Skip-YOLO system for real-world
garbage recognition using an eye for feature mapping in multiple neural networks.
Combining the multi-scale, high-dimensional feature mappings and then delivering
them to the YOLO layer allows for accurate prediction of trash kind and location.
In comparison to the YOLOv3, their testing shows a 22.5 percentage point increase
in overall detection accuracy and an 18.6 percentage point increase in average recall
rate.[9] In contrast to the ideas presented here, those of Saurav Kumar et al. in
order to train a custom dataset, the framework Darknet neural network has taken
use of the YOLOv3 method. To test the algorithm’s performance, YOLOv3-tiny was
used to conduct the detection job. According to the results of the experiments, the
suggested YOLOv3 approach achieves around 94 percent by YOLOv3, but YOLOv3-
tiny only achieves 45.96 percent. After that, YOLOv3’s mAP value stabilized at
94.99 percent (best value).[10]

This study by Meena Malik et al. presents an architecture for sorting waste into
the categories required by various benchmark methods. The categorization process
was carried out using the EfficientNet-BO architecture. This study suggested fine-
tuning with the EfficientNet-BO model for effective categorization of photos based
on geographic location. This model work through transfer learning and creates a
region-optimized classification model. It was shown that the accuracy of this model
was on par with that of EfficientNet-B3, although using a far fewer amount of
parameters.|[11]

As per Andhy Panca Saputraa et al. [12] In their study, they propose a solution
based on a deep learning algorithm, namely YOLOv4 and YOLOv4-tiny, in conjunc-
tion with the anonymized database Darknet-53, for the problem of object detection.
There are a total of 3870 photos in the collection, and they include a wide variety of
waste . The best mAP 89.59 percent , accuracy 0.76, recall 0.90, F1l-score 0.82, and
Average IoU 64.01 percent are achieved by the YOLOv4 model, whereas the best
mAP 81.84 percent, precision 0.59 percent, recall 83 percent, F1-score 69 percent,
and Average IoU 48.35 percent are achieved by the YOLOv4-tiny model. This study
also demonstrates the superior performance of mosaic-based models with reduced
subdivision values. ZICONG JIANGT1 et al propose the YOLO v4-tiny model. Ac-
cording to the authors Simulation findings demonstrate that the suggested technique
detects objects quicker than YOLOv4-tiny and YOLOv3-tiny, and with almost the
same precision as YOLOv4-tiny. It is better ideal for real-time object identification,
particularly for embedded device development. [13]



Aghilan M et al. in their article they used the CNN model and The goal of this
research was to develop a low-cost, user-friendly waste separation method for urban
homes. This technique is useful when dealing with a lot of data or a lot of parameters
since it uses less memory and runs quickly. To conclude, the final accuracy for the
CNN model was 79 percent. [14]

According to Victoria Ruiz et al. In order to train and evaluate several deep learning
algorithms for autonomously sorting waste, TrashNet dataset is utilized by them. In
particular, VGG, Inception, and ResNet, which are all types of Convolutional Neural
Networks (CNN), were compared. The best classification results came from a model
that combined Inception and ResNet and got an accuracy of 88.6 percent.[15]
According to Dip Patel et al. In this new technique, an Android app called Spot-
Garbage is introduced to identify and pinpoint trash in a geo-tagged photograph
that the user has clicked on. Inception-ResNet, a hybrid network design, produced
the greatest results, with an impressive 88.6 percent accuracy. Wang et al. used
Faster-RCNN and ResNet algorithms to identify real-time trash in urban photos.[16]



Chapter 4

Approach

4.1 Custom CNN Model

4.1.1 Data Acquisition

To train our model, we used ”garbage classification” [19] dataset, which contains a
huge number of images across 8 categories: battery, biological, cardboard, clothes,
green-glass, paper, plastic, trash that were collected through Kaggle. These photos
contain different types of biodegradable and non-biodegradable waste. From this
dataset, we have separated 400 images for our test dataset.

Figure 4.1: Sample data

4.1.2 Image augmentation

In order to expand our dataset, we performed image augmentation for 8 classes.
Rotation, scaling, flipping, transpose, grid-disportion were also done with image
augmentation parameters. The reformation was done to balance the number of
images (2000 per category) in every class to get better accuracy. This augmented
dataset is splitted into two categories: training data and validation data which have
a ratio of 8:2.



Distribution of different classes in Training Dataset
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Figure 4.2: Distribution of different classes in training dataset

Distribution of different classes in Validation Dataset
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Figure 4.3: Distribution of different classes in validation dataset
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Training And Validation
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Figure 4.4: Training and validation Dataset

4.1.3 Proposed Model

In our proposed system, we have built a custom Convolutional Neural Network
(CNN) consisting of several layers that can identify and classify images of 8 classes
(battery, biological, cardboard, clothes, green-glass, plastic, paper, trash). Our
dataset was collected from ”Garbage classification” [19]. A dataset of 16,000 aug-
mented images is provided for our proposed system.After splitting the dataset for
training and validation, we had 12,800 images as our training data and 3,200 images
as our validation data.

For our custom Convolutional Neural Network (CNN) model, we have built sequen-
tial models with many layers.

" Input Data | ‘ Classified Data |
Augmented Data Classification

i

=

Data Preprocessing L Image T

-

1

Input Random Image

Sphl Datasetinto |
Train and Validation
Folder

%

Load Custom CNN
Model

Training Train and
Validation dataset

Figure 4.5: Approach of custom CNN model
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4.2 YOLOv4 and YOLOv4-Tiny Model

4.2.1 Data Acquisition and Image Augmentation

To train our YOLOv4 and YOLOv4-Tiny model, we have used same dataset which
we have augmented for our Custom CNN model. For which, we have not done any
further augmentation for these models.

Figure 4.6: Sample data

4.2.2 Image annotation for YOLOv4 and YOLOv4-tiny

Image annotation refers to the process of assigning labels to parts of an image. La-
bels are used as data inputs towards a computer vision model, providing information
about the pictures being used as training data. To label both training and testing
images. We have utilized the Labellmg tool to create bounding boxes and produce
coordinates for every train and test images.

Figure 4.7: Example of Labellmg Images
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4.2.3 Final Dataset (YOLOv4 and YOLOv4-tiny)

For YOLOv4 and YOLOv4-tiny model, we have generated two more files. These
new files are named ”obj.names” and ”"obj.data.” The file referred to as "obj.names”
is where you can find the class names for our model and in obj.data we have added
the class number, training path, validation path and as well as a backup path where
our training weight will be saved. Because of the nature of our circumstances,
we have classified everything into one of these eight categories: battery, biology,
cardboard, clothing, green-glass, paper, plastic, and garbage. and we have created
yolov4-obj.cfg and yolov4-tiny-custom.cfg . In these .cfg files we have changed the
filter size, iteration size based on our class number. we set the weight and height
416. We have also used generate-train.py and generate-test.py to divide our dataset
into 80 percent and 20 percent to create our train and test dataset

4.2.4 Proposed Model

Our suggested system involves developing YOLOv4 and YOLOv4-tiny Model to
identify various object classes in still and moving visual media. For our pro-
posed model, we have supplied a dataset containing 16,000 augmented images with
16,000.txt files. Once the dataset was divided into train and test sets, we were left
with 12,800 images for training and 3,200 for testing.

Start
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‘ Dataset |
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Dataset

l

Experiment
Hyperparameter

l

Training and Testing

e

‘ Real-Time Testing |

o

End

Figure 4.8: Approach of YOLOv4 and YOLOv4-tiny
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Chapter 5

Dataset and Model

5.1 Custom CNN Model Architecture

5.1.1 CNN Model Architecture

Specifically we are working with a custom CNN model. As known, modern deep
learning applications want model inference to occur at the edge devices. This is
done for a number of reasons, including reducing latency, making it easier for the
network to connect to the cloud, and keeping user privacy safe. CNN is among the
most applied model families.

In convolution, a process called ”feature extraction” is utilized to separate and iden-
tify the unique characteristics of the picture to be analyzed. The feature extraction
is made up of many layers, many of which are pairs of convolutional layers also
known as pooling layers. One that uses the output of the convolutional method to
determine the image’s classification based on the characteristics that were previously
retrieved from the data. This method for extracting CNN features from datasets
aims to do it with as few characteristics as possible. It creates new features by
combining the characteristics like an existing collection of features into one. In the
CNN architecture diagram, many layers can be seen.

The architecture of a CNN includes components such as convolution layers, fully
linked layers and pooling layers. Typically, an architecture will include a stack of
convolution layers followed by a pooling layer, and then one or more fully linked
layers. Forward propagation describes the transformation of incoming data into
outgoing data at these levels.
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Figure 5.1: CNN model architecture

Convolutional Layer: We used multiple layers of 2D convolutional layers for our
proposed system. For the first layer, we gave an input size of 150x150 so that it
would match the size of the images we were using. For this layer, we set the kernel
to 32 and used "relu” activation.

Wout = [(W — F+2P)/S + 1] (5.1)

This is the Formula for output size in  Convolution layer

Max pooling layer: The Max - pooling is often used as a transitional layer be-
tween the Convolutional Layer and the Fully Connected Layer. Our model utilized
max pooling. The primary objective was to reduce the dimensions of the convolu-
tion layer to cut down on computational costs.

Fully Connected Layer: All of the neurons, weights, and biases, are all part of
the Fully Connected layer. Originally, it connected the two layers. It mainly serves
as a way to help the classification process work.

5.1.2 Custom CNN Model Architecture

Dataset Preprocessing: The data must be preprocessed before it can be used
in the custon Convolutional Neural Network (CNN) algorithm. This is a necessary
stage in the data preparation process. This procedure is used, in its most basic
form, to eliminate the variables that do not contribute in any potential to increase
the CNN model’s performance or accuracy. In contrast, this procedure provides us
the ability to conduct any and all necessary modifications on the raw data, which
improves CNN model’s performance and accuracy. Also, we’'ve customized some
features about our training dataset. This change includes the images size , batch
size, resizing, rotating, zooming, scaling and flipping them horizontally. All of these
have the following values:
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imgsize = 150 x 150

batchsize = 256

rescale = 1/255

rotation = 30

zoomrange = .4

horizontal flip = True

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

Our custom CNN model was constructed with ten Conv 2D layers.To make com-
putations run more quickly and efficiently, pooling is utilized to aggregate similar
features into larger ones. In response, the amount of trainable parameters that can
be retrieved.Then a single layer of flatten layer was applied. Overall, this is good
for the system as a whole. We also used a dense layer.Every neuron in this layer
receives the information transmitted from the preceding layers.Then in our model
we use an initial learning rate of 0.00001, This affects the rate at which the model
adjusts to the data. For compiling the model we use Adam optimizer.

Model Summary:

° model. summary ()
max_pooling2d_1 (MaxPooling
(B

convad_3 (ConvaD)

batch_normalization_1 (Batc
hNormalization)

conv2d_4& (Conv2D)

batch_normalization_2 (Batc
hNormalization)

max_pooling2d 2 (MaxPooling
20)

convad_5 (ConvaD)

batch_normalization_3 (Batc
hMormalization)

max_pooling2d_3 (MaxPooling
D)

conv2d_6 (Convab)
convad_7 (ConvaD)

batch_normalization_4 (Batc
hHormalization)

max_pooling2d_d (MaxPooling
20)

convzd_8 (ConvaD)

(None, 37, 37, 32)

(None, 37, 37, 64)

(Nane, 37, 37, 64)

(None, 37, 37, 128)

(Mone, 37, 37, 128)

(None, 18, 18, 128)

(None, 18, 18, 256)

(None, 18, 18, 256)

(None, 9, 9, 256)

(None, 9, 9, 512)

(None, 9, 9, 256)

(None, 9, 9, 256)

(None, 4, 4, 256)

(None, 4, 4, 1@24)

a

1180168

1179964

1a24

a

2360320

convad_8 (Conv2D) (None, 4, 4, 1024)

max_pooling2d_S (MaxPooling (None, 2, 2, 1824)
)

conv2d_9 (ConvaD) (None, 2, 2, 512)
max_pooling2d_6 (MaxPooling (None, 1, 1, 512)
20)

flatten (Flatten) (Nene, 512)

dense (Dense) (Nene, &4)
batch_normalization_5 (Batc (Mone, 84)
hhormalization)

dense_1 (Dense) (None, 8)

Total params: 9,981,416
Trainable params: 9,809,816
Non-trainable params: 1,680

23603208

@

4719184

Figure 5.2: Custom CNN model Visualization
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Figure 5.3: Custom CNN model Visualization

Besides the custom CNN model, our dataset also has been trained with five oth-

ers pre-trained models, which are ResNet50, VGG16, MobileNetV2, InceptionV3,
EfficientNetBO

5.1.3 ResNet50

Resnet50 is a deep convolutional neural network (CNN) that includes a total of 50
layers, 48 of which are convolutional layers, as well as one MaxPooling layer and
one Average Pooling layer. Residual Neural Network, often known as ResNet, is an
alternative for Artificial Neural Network (ANN), a form of neural network where a
network is built by stacking blocks of leftover data. Using this approach, a network
that has already been trained on more than twenty-four thousand pictures captured
from a “Garbage Classification” dataset [19]. As the input, a 150x150x3 image is
used, and then a MaxPooling layer containing a 3x3 filter is added on top of that.
Ultra-deep neural networks are trained by using ResNetb0 , which means it may
include hundreds or even thousands of layers and yet perform exceptionally well.
In a word, Resnet is the most well-known neural network that is used to solve a
number of issues related to computer vision.
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Figure 5.3: ResNet50 architecture
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ResNet50 Model Summary

° model . summary()

[C» Model: "sequential”

Layer (type) Output Shape Param #
“resnetsev2 (Functional)  (Nome, 5, 5, 2048) 23564800
flatten (Flatten) (None, 51208) ]

dense (Dense) (None, 512) 26214912
dropout (Dropout) (None, 512) @

dense_1 (Dense) (None, 8) 4104

Total params: 49,783,816
Trainable params: 26,219,816
Non-trainable params: 23,564,800

Figure 5.4: ResNet50 model Summary

5.1.4 VGG16

VGG16 which is a form of CNN is widely regarded as one of the most effective
computer vision models ever created. The model’s creators evaluated the networks
and increased the depth using an architecture with extremely tiny convolution filters
(3x3), that showed a significant improvement above the state-of-the-art at the time.
They boosted the number of weight layers from 16 to 19, which raised the number
of tunable features to about 138. It is a well-known technique for classifying images
and may be easily implemented using transfer learning. The number ”16” indicates
that there are 16 weighted layers in VGG16. With 5 Max Pooling,3 Dense layers
and 13 convolutional. VGG16 has a total of 21, but just Sixteen weight layers. The
convolution and max pool layers in the design all have the same structure.

VGG-16
veRERREREEHERREEERETEL | N
2Mzzs 228 zzzE zzzs zzzs 3EE WS

8|8 |88 §8/8* 888~ 838 S

Figure 5.3: VGG16 architecture
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VGG16 Model Summary

° model. sumnary( )

C» Model: "model”

Output Shape Param &
Layer)  [(Hone, 158, 150, 3)] g

blockl_convl {Con (None, 158, 158, B4) 1782
blockl_conv2 (ConvzD) (None, 158, 158, 64) 36928
blockl_pool (MaxPooling2D) (None, 75, 75, 64) &
blockd_convl {Conv2D) (Mone, 75, 75, 128) 7IESE
block2_conv2 {Conv2D) {None, 75, 75, 12B) 147534
block2_pool (MaxPooling2D) (None, 37, 37, 128) 8
blockd_convl {Conv2D) (None, 37, 37, 256) 295168
blockd_conv2 (None, 37, 37, 256) sopeds
blockd_convd {Conv2D) (None, 37, 37, 256) Sopeag
block3_pool (MexPooling2l) (None, 18, 18, 2568) &

(Mone, 18, 1B, 512) 1182160
blockd_conv2 {Conv2D) (None, 18, 1B, 512) 2355888
blockd_convd {Conv2D) (None, 18, 1B, 511) 2355888
blockd_pool (MaxPooling2D) (None, 8, 9, 512) 8
blockS_convl {Conv2D) (None, 9, 9, 512) 2355888
blockS_conv2 {Cenv2D) (None, ©, 9, 512) 2350888
blockS_convd {Conv2D) (None, ©, 9, 512) 2355888
blockS_pool (MaxPooling2D) (None, 4, 4, 512) 8
flatten (Flatten) (None, B192) 8
dense (Dense) (None, 512) 4194316
drupout (Dropout) (None, 512) 8
dense_1 (Dense) (None, B) 4184

Figure 5.5: VGG16 model Summary

5.1.5 MobileNetV2

The convolutional neural network MobileNetV2 is designed to function effectively
on mobile platforms. Its foundation is an inverted latent architecture with residual
connections between the levels of the bottleneck. In order to filter features, the
additional expansion layer uses a non-linear component in the form of compact
fully convolutional completely connected layers.. A total of 32 filters make up the
first fully convolutional layer in MobileNetV2’s architecture, which is followed by 19
remaining bottleneck layers.
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Figure 5.3: MobileNetV2 architecture
MobileNetV2 Model Summary

° model . summary ()

[C» Model: "sequential 2"

Layer (type) Output Shape Param #
“nobilenetv2_1.00.224 (Funct (None, 5, 5, 1280) 2257984
ional)

average pooling2d 2 (Averag (MNone, 2, 2, 1288) ]
ePooling2D)

flatten_2 (Flatten) {Mone, 512@) a
dense & (Dense) (None, 512) 2621952
dropout_a (Dropout) (Mone, 512) (7}
dense 7 {Dense) {Hone, 58) 25658
dropout_5 (Dropout) {MNone, 5@) @
dense & (Dense) (Hone, 8) 48

Total params: 4,985,994
Trainable params: 3,060,310
Mon-trainable params: 1,845,184

Figure 5.6: MobileNetV2 model Summary

5.1.6 InceptionV3

More research has shown that Inception Networks are more computationally efficient
than their predecessors, both in terms of the amount of parameters produced by the
network and the cost to the user . It is important to maintain the computational
benefits of an Inception Network if at all possible. Label Smoothing, Factorized 7
x 7 convolutions, as well as an auxiliary classifier are just a few examples of how
the Inception-v3 design of convolutional neural networks improves upon previous
versions.
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Figure 5.3: InceptionV3 architecture

InceptionV3 Model Summary

Figure 5.7: InceptionV3 model Summary

5.1.7 EfficientNetBO

According to studies, EfficientNet is among the most effective models since it can
get the best results in imagenet and transfer learning for image classification. The
various models available in EfficientNet range from B0 to B7. The foundation of
the EfficientNet framework is the EfficientNet-BO version. The whole structure of
EfficientNet-B0, with its 237 layers with 11 M trainable parameters, is shown in
Figure. This model uses a mobile inverted bottleneck convolution layer and a 3*3
receptive fields to ensure that features are preserved throughout all layers.

21



s o0 (313 (8]3 (8] (23 (8] (3]s 3ls (2)s (2] [B): 8] o) o)
’ §§*§f§§ﬁ§ﬁ §§§§§§§§ é%é*géésééh

Figure 5.3: EfficientNetB0 architecture

EfficientNetBO Model Summary

Model: "sequential 2"

Layer (type) Qutput Shape Param #
efficientnetb® (Functional) (None, 5, S5, 1288) 4849571
global_average_pooling2d 2  (None, 1288) -]
(GlobalAveragePooling2D)

batch_normalization_4 (Batc (None, 1288) 5128
hNormalization)

dense_2 (Dense) (None, 8) le248
batch_normalization_5 (Batc (None, 8) 32
hNormalization)

activation_2 (Activation) (None, B8) -]

Total params: 4,064,971
Trainable params: 12,824
Non-trainable params: 4,852,147

Figure 5.8: EfficientNetBO model Summary
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5.2 YOLOv4 and YOLOv4-Tiny Model
Architecture:

5.2.1 YOLOv4 Architecture:

The ”You only look once v4” (YOLOv4) algorithm is a deep learning technique
used for object detection. It is well-known for its rapid response time and pinpoint
precision while recognizing things in real time. YOLOv4 incorporates a number of
cutting-edge methods into its design, which is built on a fully convolutional neural
network. CSPDarknet53, a more advanced and complicated variant of Darknet53,
serves as the foundation for YOLOv4’s core network. By combining convolutional
layers with Cross-Stage Partial Networks (CSP), CSPDarknet53 is able to decrease
the network’s reliance on parameters while simultaneously increasing its perfor-
mance.Convolutional layers in YOLOv4 diminish the spatial resolution of the fea-
ture maps before the network’s output layers make their final detections. Objectness
scores Predicting bounding boxes, and class probabilities for such a portion of grid
cells falls under the purview of each layer of output. Anchor boxes are used in
YOLOv4 to make more precise bounding box predictions. The network can learn
to optimize the size and shape of anchor boxes, which are predetermined bounding
boxes, to better match the elements in the image. It can identify objects of varying
sizes and shapes because of its usage of three anchor boxes for each output layer.
Here in our YOLOvV4 model we have customized

BatchSize = 64 (5.8)
NetworkSize = 416x416 (5.9)

M az Batches16000, Steps12800and14400 (5.10)
Filters = 39 (5.11)

Classes = 8 (5.12)

Here shows the architecture of YOLOV4 :
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Figure 5.9: YOLOvV4 architecture
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5.2.2 YOLOv4-tiny Architecture:

The Yolov4-tiny approach was developed from the ground up to provide signifi-
cantly quicker object detection times than the original Yolov4 method. Although
the Yolov4 technique uses the CSPDarknet53 network as its backbone, the Yolov4-
tiny approach employs the CSPDarknet53-tiny network. The CSPBlock module,
rather than ResBlock module in the residual network, is used in the CSPDarknet53-
very small network.Splitting the feature map in half and then combining the halves
using cross stage residual edge is what the CSPBlock module does. Hence, the
gradient flow is enabled to spread over two distinct network channels, thereby in-
creasing the correlation difference of gradient data. In comparison to the ResBlock
module, the CSPBlock module improves the convolution network’s ability to learn.
Yolov4-tiny eliminates the Mish activation function from the Yolov4-tiny network
and instead utilizes the LeakyReLU function as the activation function. Instead
of spatial pyramid pooling as well as path aggregation network used by Yolov4 to
speed up object identification, the Yolov4-tiny technique instead employs a feature
pyramid network in order to extract feature maps at various sizes. Annotation tools,
such as Labellmg, are used to label each image in the collection, resulting in a text
file that describes the images. Here in our YOLOv4-tiny model we customized

BatchSize = 64 (5.13)
NetworkSize = 4162416 (5.14)

M ax Batches16000, Steps12800and14400 (5.15)
Filters = 39 (5.16)

Classes = 8 (5.17)

Here is the architecture of YOLOv4-tiny which is given below:

Figure 5.10: YOLOvV4-tiny architecture
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Chapter 6

Result and Analysis

6.1 Custom CNN Model

After developing the CNN model for our proposed system, we proceeded to train
and validate the model with our processed dataset. We ran 65 training epochs and
attained an accuracy of 97.16 percent on the training data as well as 97.58 percent
on the validation dataset.
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Figure 6.1: Last 5 Training and Validation Accuracy
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For our test dataset where we have separated 400 images. We calculate our test
dataset accuracy,precision,recall, f1 score using a confusion matrix.

Confusion matrix :

A N x N matrix used to analyze the model is called a confusion matrix. In the matrix,
the actual goal values are compared with the values that the machine learning model
says they should be. This gives us a complete picture of the way our classification
model works and what kinds of mistakes it makes.

True Positive (TP):

The real result was good, just like the model thought it would be.

True Negative (TN):

Both the calculated and the theoretical values are identical. The model predicted
that the number would be negative, which is exactly what happened.

False Positive (FP):

When the estimation is false, this is a type 1 error. The model predicted a good
result, but the real work turned out to be bad. The Type 1 Error is another term
for it.

False Negative (FN):

When the estimation is false, this is a Type 2 error. The model said that the result
would be negative, but the real result was satisfactory.

Precision and Recall: Precision reflects the proportion of accurately predicted
favorable outcomes.

Precision =TP/(TP + FP) (6.1)

The amount of real positive cases that our model accurately identified is known as
recall.

Recall =TP/(TP + FN) (6.2)

F1-score: As the Fl-score is the harmonic average of both recall and precision, it
provides a centralized view of these two measurements. It reaches its highest value
when Precision equals recall.

Flscore = 2/(1/Recall + 1/ Precision) (6.3)

Accuracy: The proportion of correctly predicted classes is a measure of a clas-
sification problem’s accuracy. Just divide the entire number of predictions by the
overall number of accurate estimations to get the accuracy rate.

Accuracy = (TP+TN)/(TP+ FN + FP+TN) (6.4)

Here, TP = True Positives.
FP = False Positives.
TN = True Negatives.
FN = False Negatives.
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Figure 6.4: Confusion Matrix

In Fig 6.4: the confusion matrix for the Custom CNN Model is provided. The
confusion matrix clearly shows one sample was incorrectly sorted into battery and
just two misclassified for cardboard.We can also see that three sample was incorrectly
stored in clothes and plastic and for four biological and paper. Lastly we can see
the trash is giving the lowest performance which gave us 10 misclassified sample.

Table I: Confusion Matrix

Precision | Recall | fl-score | support
battery 0.96 0.98 0.97 50
biological 0.98 0.92 0.95 50
cardboard 0.96 0.96 0.96 50
clothes 0.92 0.94 0.93 50
green-glass 0.94 1.00 0.97 20
paper 0.96 0.92 0.94 50
plastic 0.81 0.94 0.87 50
trash 0.95 0.80 0.87 50
acuracy 0.93 400
micro avg 0.94 0.93 0.93 400
weighted avg | 0.94 0.93 0.93 400

Table I indicates the classification report. From this report we can see the Precision,
Recall, f1 score, Accuracy. after calculating true positive,true negetive, false positive,
false negetive it calculated this Precision,Recall,f1 score. And from this three it gave
us accuracy.
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We have also trained our model with the default pre-trained CNN models such as
VGG16, ResNetb0, MobileNetV2, InceptionV3, EfficientNetBO Outcomes are given
below ;

6.1.1 Pretrained Model

ResNet50
Training and validation accuracy
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Figure 6.7: ResNet50 Training and Validation Accuracy
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Figure 6.8: ResNet50 Training and Validation Loss
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VGG16
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Figure 6.9: VGG16 Training and Validation Accuracy
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Figure 6.10: VGG16 Training and Validation Loss
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InceptionV3
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Figure 6.11: InceptionV3 Training and Validation Accuracy
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Figure 6.12: InceptionV3 Training and Validation Loss
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MobileNetV2
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Figure 6.13: MobileNetV2 Training and Validation Accuracy
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Figure 6.14: MobileNetV2 Training and Validation Loss
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EfficientNetBO
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Figure 6.15: EfficientNetB0 Training and Validation Accuracy
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Figure 6.16: EfficientNetB0 Training and Validation Loss
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Table II: Table of Comparison

Model Name | Train Accuracy | Val Accuracy | Parameters [M]
Custom CNN 97.16 97.58 9.9
ResNet50 94.97 94.34 49.7
VGG16 87.57 89.38 18.9
MobileNetV2 96.99 96.81 4.9
InceptionV3 95.71 94.47 23.9
EfficentNetBO 35.92 36.75 4.1

Table II shows the comparison between custom CNN model along with other pre-

trained models.

Here, the results of five pre-trained CNN models and our custom CNN model are
shown. Comparing the six models, we can state that our custom CNN model delivers
almost the same results to the other five pre-trained models, which is an incredibly

satisfying outcome for

us.

Training Accuracy

Figure 6.17: Model Training Accuracy
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Validation Accuracy

Figure 6.18: Model Validation Accuracy

6.2 YOLOv4 and YOLOv4-tiny Model

6.2.1 YOLOv4-tiny Model

From our YOLOv4-tiny model we have noticed that the time needed to complete the
training process using YOLOv4-tiny is approx 5 hours. The YOLOv4-tiny model
produces the mAP of 81.28 percent and an average loss of 0.2816. Other than these
we also got the precision 0.60, recall 0.87, Fl-score 0.71, and Average IoU 45.67
percent.

The Average Loss and mAP for YOLOv4 is shown in the below figure :

mAPE
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c:0.0% |
Loss

18.0-

18.0 ! | Bi%_82%_gex_ Be% —gun l e g% | eex
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[]

1600 3200 4800 6400 8000 2600 11200 12800 14400 16
current avg loss = 0.28i6  iteration = 16000  approx. time left = 0.03 hours
Press 's' to save : chart.png - Saved Iteration number in ofg max_batches=16000

Figure 6.19: Average loss and mAP
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The output of test images:

Figure 6.21: Testing image detection

The output of webcam test images:

Figure 6.22: Testing image detection
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The output of video images:

Figure 6.23: Testing image detection

6.2.2 YOLOv4 Model

From our YOLOv4 model we have noticed that the time needed to complete the
training process using YOLOv4 is approx 24 hours. The YOLOv4 model produces
the mAP of 85.73 percent and an average loss of 2.2254. other than these we also
got the precision 0.78, recall 0.84, Fl-score 0.81, and Average IoU 62.05. percent.
The Average Loss and mAP for YOLOv4 is shown in the below figure :

mAPE

85.6% |
C:0.0%
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Figure 6.24: Average loss and mAP
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The output of test images:

Figure 6.26: Webcam image detection

The output of webcam test images:

Figure 6.27: Testing image detection
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The output of video test images:

Figure 6.28: Testing image detection

6.2.3 Comparison between YOLOv4 and YOLOv4-tiny

Figure 6.29: mAP results of YOLOv4 and YOLOv4-tiny

To summarize we can say that YOLOv4 is taking more time to compute but it is
giving us better results. Though we couldn’t complete the full iteration of 16000, it
has given us more accurate result than YOLOv4-tiny. To conclude, YOLOv4-tiny
provides the result more faster but it is not as accurate as YOLOvA4.
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Chapter 7

Conclusion

The largest cities in developing countries are expanding quickly. In spite of major
investment, the city’s waste management system remains outdated and dependent
on processing performed by hand. The number of people working to bring this in-
dustry up to date is minimal, making it among the very few that has yet to benefit
from modern science and technology. Our study’s ultimate goal is to improve upon
existing methods for sorting garbage in order to facilitate more efficient and cost-
effective recycling. In this paper, we are proposing a system that will classify waste
by using custom CNN model.We have trained our dataset which contains images
and evaluated models using Custom CNN, VGG16, ResNet50, MobileNetV2, In-
ceptionV3, EfficientNetB0 and made a comparison between them. We have utilized
the YOLOv4-tiny architecture for purposes of detection. This architecture, which
is less complicated than the YOLOV4 architecture and affects the performance of
the algorithm in terms of predicting probability and predicting time, respectively.
YOLOv4-tiny is capable of doing computations more quickly than its predeces-
sor. The ability to detect and categorize things using our custom CNN model and
YOLOvV4-tiny model can contribute to the creation of an automated system for sort-
ing garbage, which in turn can facilitate the recycling of more garbage. In this way,
the findings of this study can contribute to cleaner environments and more pleasant
urban settings.To summarise what we’ve learned, we can conclude that the YOLOv4
algorithm is more time-consuming to calculate, but it produces more accurate re-
sults. Although we were unable to finish the entire iteration of 16000, the results
that it is producing are more accurate than those produced by YOLOv4-tiny. So, it
is safe to claim that YOLOv4-tiny provides us with results more quickly, but they
are not as exact as those provided by YOLOvA4.
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