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Abstract

Transport Mode detection has become a crucial part of Intelligent Transportation
Systems (ITS) and Traffic Management Systems due to the recent advancements in
Artificial Intelligent (AI) and the Internet of Things (IoT). Accurately predicting a
person’s mode of transportation was challenging for many years until the compu-
tational power of smartphones and smartwatches expanded dramatically over time.
This is a result of the numerous sensors built within smart devices, which enable the
worldwide cloud server to acquire sensory data and anticipate a person’s method
of transport using multiple machine learning models. Currently, all smart devices
and vehicular edge devices are interconnected by Vehicular Edge Networks (VEN).
However, as the data are shared globally, the security of an individual’s data is ques-
tioned, and hence a significant portion of the population is still unwilling to share
their sensory data with the global cloud server. Also, the processing time for the
massive amount of sensory data should be considered. In this paper, we present a
distributed method, Federated Ensemble-Learning in VEN, in which a vast amount
of data is used to train the model while the training data is kept decentralized.
Federated Ensemble-Learning (FedEL), a hybrid approach, is proposed to enhance
the performance of federated strategies. In addition, a majority voting ensembling
method has been developed as part of the federated strategy to determine the mode
of transportation of local customers. Two machine learning algorithms, XGBoost
and Random Forest, and one deep learning technique Multi-Layer Perceptron (MLP)
are trained with data from each local client. A prediction is then maintained based
on a majority vote among the three models. The class with the most votes is taken
into account, while the others are discarded. The FedEL technique has been shown
to be highly effective on the TMD dataset, with an accuracy of 94-95% for the 5-
second window dataset and 98-99% for the half-second window dataset, based on
extensive testing.

Keywords: Transport Mode Detection; Artificial Intelligence; Internet of Things;
Intelligent Transportation System; Vehicular Edge Network; Deep learning; Feder-
ated Learning; Federated Ensemble-Learning; Decentralized; Majority Voting; XG-
Boost; Random Forest; Multi-Layer Perceptron
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Chapter 1

Introduction

1.1 Overview

In recent years, road safety has become one of the biggest concerns of human civ-
ilization. According to a report by the Dhaka Tribune, the year 2021 saw more
traffic accidents than in 2020, with 6284 people killed and 7468 wounded over the
same time period in Bangladesh [1]. Many promising students have lost their lives
on the roads of Bangladesh in the past few years due to road accidents. Besides,
immense traffic congestion has also affected people around the world. Daily com-
mutes have become nightmares due to traffic congestion. There is traffic congestion
in all of the world’s mega-cities at various points during the day. In contrast, pan-
demonium and inefficiency dominate the traffic in Dhaka. According to a survey by
the World Bank, Over the past ten years, the average traffic speed in Dhaka has
dropped from 21 km/h to 7 km/h, and it may plummet below walking pace by 2035.
Another study by the BRAC Institute of Government and Development estimates
that Dhaka’s heavy traffic costs the economy USD 11.4 billion annually and takes
up almost 5 million working hours each day. To calculate the amount of money
lost due to traffic, the cost of lost time is added to the cost of operating vehicles
for the additional hours [2]. The effective management of this problem of growing
traffic on roads is posed by recent technological advancements and rising urbaniza-
tion [3][4]. Several stakeholders, including governmental organizations and vehicle
manufacturers, are making substantial efforts to address this issue by implementing
numerous Intelligent Transportation Systems (ITS). Over the years, a variety of In-
telligent Transportation Systems have been used, which has decreased the number
of incidents involving traffic [5][6][7]. The ITS systems act as a network between
Road Side Units (RSU) and the Internet of Vehicles (IoV). The network is known
as the Vehicular Edge Network (VEN). Inside the VEN, modern ITS systems work
by connecting internal and exterior sensors, such as density sensors, traffic cameras,
and speed sensors, in real time. To process the data from the sensors for real-time
traffic control, several ITS have installed cloud servers [8].
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Inside the ITS, transport mode detection has multiple applications. It can help
in managing traffic and finding optimal paths. Moreover, traditional transporta-
tion studies involve thorough surveys of commuters and modes of transportation.
However, these are only fixed for a certain time and do not account for new envi-
ronments. Thus, previous studies could have been more efficient [9][10]. Therefore,
smartphone-based transport mode detection can be a scalable solution to the stud-
ies of transportation that can also be employed in dynamic settings. In addition,
the ability to identify a person’s mode of transportation can help reduce a vehicle’s
carbon emissions. Individuals can choose their mode of transportation by examin-
ing the carbon emissions of a certain vehicle on their smartphones or other smart
devices [11]. Also, the detection of a person’s mode of transportation can aid in the
monitoring of their health using smartphone applications. These applications use
transport mode identification to classify an individual’s movement into a number of
categories and track the calories burned based on their mode of transportation.

This study proposes a FedEL-based transport mode detection system to handle
traffic concerns and road safety. The system is an ITS system in VEN. All the IoV,
smartphones of passengers, and other smart road components, such as traffic signals
and smart bus stops, will have an integrated mobile edge device in this system.
These devices, including smartphones or smartwatches of pedestrians, will function
as end nodes and will be linked via the vehicular edge network. This integration
will help to improve the transport mode detection of a person and, as a result, will
lead to less traffic congestion since all the edge devices will have knowledge about
the other devices in the system.

Moreover, if there is any signal or traffic congestion when accelerating the car, the
speed of the vehicle will gradually reduce with the received information from the
vehicles upfront from the Vehicular Network in the edge device, utilizing the fuel of
the vehicle efficiently. Furthermore, the majority of residents in a city rely on public
transportation. People waiting for buses at bus stops will be able to see the current
position and anticipated arrival time of buses on their route.

Additionally, emergency vehicles such as ambulances, fire trucks, and civil defense
vehicles would be prioritized on the roads. Other vehicles will be notified if an
emergency vehicle is coming and will be able to make room for the emergency
vehicle using this information. Furthermore, there is concern about privacy because
so many devices are linked. User device privacy could be protected by the federated
learning approach.
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1.2 Problem Statement

Revolutionary advances in computing and communication technology, as well as the
expanding use of AI and the IoT, have all contributed to significant improvements in
current ITS. This has resulted in vehicles becoming part of the Internet of Vehicles.

Additionally, as a large number of vehicles and other edge devices are linked through
a vehicular edge network, it is difficult for centralized cloud servers to handle and
evaluate transportation data [12]. Vehicle-to-vehicle communication, mobile edge
computing, and cloud server-to-vehicle sharing are all part of the IoV and modern
ITS. Terminals for data transmission initiate the whole trio of data exchange relating
to moving vehicles. When compared to the limited network capacity on the Internet
of Vehicles, data interchange becomes a problem due to the growing number of mo-
tor vehicles and the rising requirement for individualized consumer products today.
Data processing at the network’s edge is a challenge for the system. An additional
essential purpose is an analysis of sensory input at resource-constrained edge de-
vices using hybrid machine learning approaches in order to make educated decisions
with enhanced prediction accuracy. Due to the vast number of connected devices,
there are still concerns surrounding data privacy when utilizing conventional ma-
chine learning methods. Traditional cloud-based machine learning techniques need
centralized data storage either at a data center or on a cloud server. However, this
creates significant problems, such as unacceptable latency and inefficient communi-
cation [13].

As opposed to that, vehicle-related data sharing is often costly in terms of delay
due to the difficulty of predicting vehicular mobility. In contrast, effective network
routing often requires a full view of the IoV system as a whole. For the IoV system as
a whole, the design of an intelligent network routing architecture with collaborative
data exchange becomes crucial [14].

As a decentralized machine learning approach, federated learning is utilized to pro-
tect the privacy and reduce latency. It may use the processing capacity of several
learning agents to accelerate learning and provide data owners with improved pri-
vacy protection [15].

According to [16], communications between local clients and the central server pro-
vide federated learning, which may also be used to improve the effectiveness of
wireless systems. During the training process, updated model parameter sets are
still being exchanged between the central server and local clients, using up a lot of
communication resources, particularly as soon as the fragmented local clients are a
large number of wirelessly connected devices, as in Internet-of-Things (IoT) appli-
cations. Compressing the data to be transmitted and maximizing the use of limited
communication resources to address the issue. For federated learning, several data
compression and communication resource management approach with wide applica-
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bility may be used. In addition, both prunings of neural networks and the pruning
of parameters in neural networks reduce the training communication cost.

Moreover, whereas federated learning conducts training on edge devices which leads
to lower accuracy of the system most of the time, test data operations are carried out
on a centralized cloud server. In this study, the central cloud server is the Vehicular
Edge Cloud, and everything is connected via the Vehicular Edge Network. Therefore,
the question that this research tries to answer is:

How can Federated Learning reduce latency and protect privacy in wireless mobile
edge computing with the integration of the Federated Ensemble-Learning approach
at the edge devices to classify the edge data with higher accuracy in Vehicular Edge
networks as a whole Intelligent Transportation System?

This study will investigate a FedEL model to answer the above question.
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1.3 Research Contribution

In this research, we develop and analyze a distributed learning technique that in-
cludes the idea of the Ensemble-Learning. In particular, we develop a novel Feder-
ated approach-based Ensemble Learning technique to improve the performance of
the Federated Learning technique, in order to detect the transportation mode. The
ensemble of a neural network and two other conventional ML methods is imple-
mented which are MLP, Random Forest, and XGBoost. More specifically, the main
contributions of this study are summarized as follows:

• We introduce a novel Federated approach based Ensemble Learning technique
which is named Federated Ensemble-Learning (FedEL) technique in order to
minimize the errors of the Federated approaches in Vehicular Edge Networks
as a whole Intelligent Transportation System.

• We design an ensemble learning method based on majority voting collaborat-
ing MLP, Random Forest, and XGBoost inside the federated approach where
the RF and XGB trees are trained locally and the exact trained local trees
are passed to the corresponding global models for prediction. But the MLP
neural network gets updated with weight computation based on the FedAvg
technique.

• We develop a custom Multi-Layer Perceptron-based Federated Learning ap-
proach inside the Federated approach in order to compare and evaluate the
proposed FedEL technique.

• We perform extensive experiments on the well-known TMD dataset imple-
menting multiple centralized and decentralized approaches including the pro-
posed FedEL technique which has the best performance.
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Chapter 2

Literature Review

Many characteristics have been presented to us as a result of technological growth.
Different types of technology may now be found in car systems. Vehicles now contain
highly specialized onboard equipment as well as improved storage and calculation
capabilities thanks to integrated mobile devices. The Federated Learning approach
can be easily implemented on vehicles using VEN due to the reasons. Numerous
pieces of research have been studied related to our proposed system and model. The
study is elaborated briefly.

2.1 Intelligent Transportation System

Combining edge computing with digital twinning-enabled Internet of Vehicles has
the potential to implement computing-intensive applications and enhance intelligent
transportation capabilities. By updating digital twins of vehicles and offloading ser-
vices to edge computing devices, inadequate computational resources in vehicles can
be compensated for. Due to the computational intensity of Digital Twinning-enabled
IoV, Edge Computing Devices would become overloaded with excessive service re-
quests, thereby degrading service quality. The problem is addressed by analyzing
a multi-user offloading system in which the Quality of Service is reflected by the
response time of services. Then, a service offloading method with deep reinforce-
ment learning is proposed for Digital Twinning-enabled IoV in edge computing; it
is denoted by the acronym Service Offloading. Service Offloading uses a deep Q-
network, which combines the value function approximation of deep learning and
reinforcement learning, to obtain optimal offloading decisions. Eventually, com-
parative method experiments demonstrate that Service Offloading is effective and
adaptable in a variety of environments [17].
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Authors in [18] look into how edge computing technology can be used to jointly op-
timize the information and physical fusion-based intelligent transportation systems.
The monitoring points in this article are set up at various traffic crossings, and data
is gathered using both long-term memory networks and short-term memory net-
works at each traffic intersection. The experimental results demonstrate that edge
computing technology can assist in the processing of traffic circumstances in the
information- and physics-integrated intelligent transportation system, considerably
increasing each system’s overall productivity.

[19] built a framework for Maritime Transportation System security and privacy
compliance while minimizing latency and power consumption while evaluating real-
time data at the networks’ edges. By evaluating the longevity, belief, and trust-
worthiness of each transaction, the inclusion of blockchain technology and smart
contracts into the frameworks helps to validate each block’s transactions at edge
nodes and reduce various security risks. Additionally, using the framework, various
classification models to forecast dangerous vessels using real-time maritime datasets,
were offered.

2.2 Vehicular Edge Network

Along with personal vehicles such as cars, jeeps, and microbuses, public transporta-
tion such as buses plays an important role in the everyday lives of city residents.
Even though bus transportation is one of the most crucial aspects of daily life, there
is no simple and convenient system in place. A study [20] presented a solution to
address this issue by combining a decision tree, a hidden Markov model, and naive
bayes with a central server. All vehicles and road parts must be connected to a
single network in order to create a unified transportation and traffic system.

The Vehicular Edge Network is another solution to the problem stated above where
there is a central Vehicular Edge Cloud server (VEC). In cloud-based vehicular
networks, a study [21] presented a hierarchical VEC offloading system. The study
examined the task offloading process and came up with a Stackelberg game to model
it and devised a distributed method for determining the ideal VEC server strategies,
which maximize revenue while maintaining computation task latency limitations.
Also, analytical and numerical statistics are used to confirm the revenue increase in
the suggested strategy. Also, researchers in [22] suggested a vehicular edge cloud
offloading (VECC) architecture for offloading the local computations of intelligent
vehicles onto the edge cloud. They used a stochastic fair allocation (SFA) technique
to assign randomly the minimum needed resource blocks to allowed vehicular users
and to address the advantages of VECC.

Mashael Khayyat et al. proposed a distributed deep learning approach to acquire
near-optimal computational offloading decisions using a group of concurrent deep
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neural networks for a multilevel vehicular edge-cloud computing network in which an
optimization problem is presented to reduce the vehicle’s time and energy consump-
tion [23]. The study [24] investigated the use of machine learning technologies in
an intelligent vehicle network. The study has examined the specific problems in ve-
hicular communication, networking, and security, as well as machine learning-based
solutions.

Figure 2.1: Visual Representation of a Vehicular Edge Network

Figure 2.1 shows the visual representation of a vehicular edge network across a road
along with Road Side Units and Mobile Edge Servers. In the network, the vehicles
and pedestrians are connected.

2.3 Road Side Unit

An RSU is a device that is placed alongside a road and is used to gather traffic
data from a specific area. This data is then sent to traffic control devices and a
central traffic management center. In addition, the RSU can provide information
to intelligent vehicles about future traffic conditions. An RSU can gather traffic
data using a variety of methods. Triangulation is one technique that uses mobile
devices as covert traffic monitors. The mobile phone network receives signals from
the phones that an RSU can pick up. Triangulation techniques are used to gather,
evaluate, and transform this data into information on traffic flow. As long as there is
a cell phone that is turned on inside the vehicle, this technique works for all kinds of
vehicles. Vehicle re-identification is a different technique that makes use of distinc-
tive identification from in-vehicle gadgets like Bluetooth MAC addresses or RFID
toll tags. Multiple RSUs can identify a specific vehicle as it moves along a route
and log a time stamp. To ascertain speed, trip times, and traffic flow for a road
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segment, this data is exchanged and evaluated. This technique needs the vehicle’s
technology to communicate a special ID. Wireless connection between components
is a common feature of contemporary automobiles and can be employed for this
reason. Additionally, data on traffic movement can be gathered using the V2I con-
nectivity offered by intelligent cars. GPS or satellite navigation systems, inductive
loop detection, traffic video cameras, and audio detection are further techniques for
acquiring data on traffic flow. RSUs combine information from various sources to
develop a thorough understanding of traffic flow on a particular road stretch. In
order to provide a more accurate picture of traffic conditions than any one sensor
method could, they do this by utilizing data fusion techniques, which intelligently
blend data from many sources [25].

Figure 2.2: Road Side Unit

Figure 2.2 shows the visual representation of a Road Side Unit where it is gathering
data from the vehicles. This helps construct a vehicular edge network.

2.4 Mobile Edge Computing

Authors in [26] mentioned the issue with the traditional cloud-based machine learn-
ing (ML) approach, that it requires the data to be centralized in a cloud server
or data center and as a result, serious issues related to unacceptable latency and
communication inefficiency occur. Mobile edge computing (MEC) was proposed to
bring intelligence closer to the edge. Nonetheless, it still requires personal data to
be shared with external parties. All these things raise security and privacy concerns
for the users. To address this issue, Federated Learning in mobile edge computing
(MEC) was proposed. Federated Learning (FL) can serve as an enabling technology
in mobile edge networks since it enables the collaborative training of an ML model
and also enables DL for mobile edge network optimization. However, in a large-scale
and complex mobile edge network, heterogeneous devices with varying constraints
are involved. In their paper, they described the fundamentals of DNN model train-
ing, federated learning (FL), and system design for federated Learning (FL). Later
they described the challenges related to that which include communication cost,
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resource allocation, data privacy, and security. In addition to that, they discussed
the implementation of FL for privacy-preserving mobile edge network optimization.

Feng et al. [27] highlighted an issue in the mobile edge computing (MEC) system.
Due to the unreliable wireless transmission circumstance and resource constraints in
the MEC systems, both the performance and training efficiency of federated learning
cannot be guaranteed. To solve it they proposed an optimization design of feder-
ated learning (FL) in the mobile edge computing (MEC) system. They introduced
the paradigm of federated learning (FL) in mobile edge computing (MEC) devices.
Then, they proposed the idea of deploying federated learning (FL) in mobile edge
computing (MEC) devices. They provided an iterative algorithm to find an optimal
solution. Model sparsification and parameter quantization was used to remove re-
dundant data and get rid of long-digit input. First, a closed-form upper bound of
model accuracy loss was derived, which is an efficient metric to evaluate the quality
of federated learning. Then, an optimization problem is formulated to improve the
model accuracy and training efficiency of federated learning with a limited budget
of computation and communication resources. With a balanced dataset, they found
a 9.80% performance increase and 7.80% for an unbalanced dataset using their op-
timization algorithm.

Figure 2.3: Mobile Edge Computing Severs

Figure 2.3 shows the visual representation of the wireless connections of Mobile Edge
Computing Servers to edge devices and a centralized global cloud server.
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2.5 Federated Learning

Federated Learning is a distributed ML approach. It could be used efficiently in wire-
less communication. Federated learning is facilitated through connections between
regional users and the main server, which may also be utilized to improve wireless
system performance. Throughout the training process, the central server and local
clients continue to exchange updated model parameter sets, consuming significant
communication resources, especially when the distributed local clients are a large
number of wirelessly connected devices, as is the case with Internet-of-Things (IoT)
applications. Compressing the data to be sent and making optimal use of limited
connection resources were developed to remedy the problem. Numerous data com-
pression and communication resource management strategies may be employed for
federated learning [28]. Jakub et al. [29] demonstrated two methods to minimize
uplink communication costs: structured update and sketching update. In structure
update, they directly learned an update from a constrained space parameterized
with fewer variables. In contrast, in sketched updating, a complete model update
is learned and then compressed using a mix of quantization, random rotations, and
subsampling before being sent to the server.

Choosing FL over traditional ML gives it an advantage. In contrast to traditional
ML strategies based on centralized training on cloud servers, the authors in [30]
describe an FL-based framework for distributed training of ML models as an efficient
learning strategy for vehicular networks and edge intelligence. Machine learning
algorithms have been developed to learn from sensor measurements. The current
trend in vehicular network machine learning is to use centralized algorithms, in
which a sophisticated learning algorithm is taught on local sensor data from edge
devices. The purpose of federated learning (FL) is to bring machine learning down
to the edge. The training technique is identical to that of machine learning, with the
exception that FL does not require the transfer of the entire dataset. This makes it
easier to deal with the ever-growing datasets at the edge devices of the vehicle.

The authors of [31] investigated the topic of clustered FL in vehicular networks.
They attempted to bridge the gap between clustering in vehicular networks and
clustering in FL by inventing a mobility-aware learning method for clustered FL. In
the suggested design, vehicle-to-vehicle communication is considered a benefit for
overcoming the communication bottleneck of FL in vehicular networks. Additionally,
FL safeguards privacy via decentralized learning.

The thesis in [32] introduced GTR, a low-rank theory-based traffic data recovery
system driven by edge computing. First, the authors conducted exploratory ex-
periments using a large-scale Intelligent Transport System traffic dataset. The re-
sults showed the major problem of missing traffic data as well as its spatiotemporal
connections. They implemented a Local Search-based Suboptimal Edge Node De-
ployment Algorithm and an FPC-based Accurate Traffic Data Recovery Algorithm
inspired by the observation based on low-rank theory.
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Yuanshao et al. [33] introduced a system for identifying a person’s mode of transport
while preserving their privacy, using Federated Learning (FL). The system is based
on an attention-augmented model architecture and utilizes FL to identify the travel
mode without accessing raw GPS data. It is shown to be more accurate than previ-
ous centralized models, and is also able to handle non-Independent and Identically
Distributed (non-IID) GPS data that is commonly found in the real world. In order
to maintain accuracy with non-IID data, the system employs a secure data-sharing
strategy that adjusts the distribution of local data for each user. The effectiveness of
the proposed model is demonstrated through experiments on a real-world dataset.

The field of privacy-preserving Transportation Mode Identification (TMI) is an im-
portant area of research in the development of intelligent transportation systems.
Crowdsourcing has been proposed as a cost-effective way to train TMI classifiers
using federated learning (FL), which enables data sharing without compromising
user privacy. However, traditional TMI approaches often require access to labeled
data, which may not be available in real-world applications. To address this issue,
[34] proposed a semi-supervised FL approach called Mean Teacher Semi-Supervised
Federated Learning (MTSSFL). MTSSFL trains a deep neural network using a semi-
supervised FL framework, allowing for accurate and private Transport Mode Iden-
tification classification using crowdsourced data without the need for large amounts
of labeled data. MTSSFL incorporates consistency updating to improve the training
of local models that only have access to unlabeled data by incorporating the global
model in their gradient updates.

Figure 2.4: Distributed Concept of Federated Learning

Figure 2.4 shows the local and global concept of Federated Learning. Here multiple
local devices are connected to a global server where the training of ML occur locally
and the final prediction takes place in the global model of the global server.
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2.6 Ensemble Learning

Researchers in [35] proposed a semi-supervised deep ensemble learning approach for
travel mode identification that requires only a small amount of annotated data. This
approach takes GPS trajectories of varying lengths as input and utilizes a custom
feature engineering process to extract latent information. A new deep neural network
architecture was also introduced to map this latent information to the desired travel
mode. An ensemble was created by utilizing the annotated data to generate proxy
labels for the unannotated data, allowing both types of data to contribute to the
learning process. Through extensive case studies, it was found that the proposed
approach performed significantly better than the approaches with partially-labeled
training data.

Hong et al. [36] proposed a method for identifying modes of transportation (also
referred to as locomotion recognition) using data obtained from Android mobile
devices. The method, which was submitted as the solution for Team Jellyfish in
the Sussex-Huawei Locomotion-Transportation recognition challenge, aimed to de-
velop a body position-independent classifier utilizing data from commonly available
sensors on a phone, including the accelerometer, gyroscope, magnetometer, and
barometer. The proposed solution was an ensemble of XGBoost and neural network
classifiers. By training the models using this method and combining XGBoost and
neural network models, a strong performance on the validation data set (considering
hand position) was achieved.

Zhibin et al. [37] proposed a hybrid transportation mode inference method based
on ensemble learning using only GPS data. To distinguish between modes, a sta-
tistical approach to extract global and local features from segmented trajectories
was employed, which was then used in the classification stage. To improve perfor-
mance, tree-based ensemble models (Random Forest, Gradient Boosting Decision
Tree, and XGBoost) instead of traditional methods (K-Nearest Neighbor, Decision
Tree, and Support Vector Machines) were implemented. The efficacy of the pro-
posed approach was demonstrated through experiments on the GEOLIFE dataset,
where the XGBoost model achieved a classification accuracy of 90.77%. To reduce
model complexity, a tree-based ensemble method for accurate feature selection was
used.
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Figure 2.5: Ensemble Learning

Figure 2.5 shows how the ensemble learning method works by incorporating multiple
models and makes predictions.

We can see from the above discussion that Ensemble approaches increase the accu-
racy of models. Integrating it with Federated Learning can improve the performance
of the system by improving latency and training the model locally. The proposed
FedEL works similarly.
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Chapter 3

Dataset, Data Analysis, and Data
Pre-processing

3.1 Description of the Data

The most major and important component of our thesis is the dataset. The dataset
we acquired is called Transport Mode Detection (TMD), and it analyzes a user’s
mode of transportation from observations of the individual or the surrounding re-
gion. The objective of TMD is to determine the potential mode of transportation
for a user, which might include driving, walking, etc. Applications that are essential
for monitoring traffic conditions, providing travel assistance, etc., are enhanced by
this information. Thirteen respondents, ten of whom were men and three of whom
were women, had smartphones that were used to collect the data from sensors. The
data set consists of 226 labeled files that are updated continuously and reflect the
same amount of actions, or more than 31 hours’ worth of activity. 26 percent of
the data were classified as being on foot, 25 percent as driving a car, 24 percent as
sitting motionless, 20 percent as being on a train, and the remaining as being on a
bus [38].

Data cleaning procedures are carried out, such as removing exclusion measures from
the sensors and making the speed and sound sensors’ values positive, etc. Numerous
sensors, including proximity and ambient (sound, light, and pressure) sensors, pro-
duce a single data value that can be used directly in data sets. All of the others, on
the other hand, yield several values relating to the coordinate system in use, making
their values significantly correlated with orientation. We can utilize magnitude, an
orientation-independent measure, for nearly all applications.

After the pre-processing for cleaning the data is done, it is divided into two-time
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windows, one for 5 seconds and the other for half a second. After the division, four
features are extracted from the sensors which are minimum, maximum, mean, and
standard deviation.

Thirteen users, designated U1 to U13 in the datasets broken into half-second and
five-second windows, had their smartphones used to gather the data. Five modes
of data collection were used. Car, Still, Walking, Bus and Train are among them.
The half-second window dataset’s initial dimension is 62585 × 70. The half-second
window dataset also has a dimension of 5893 × 70. The datasets’ features are
values that have been recorded by various kinds of sensors. such as the gyroscope,
accelerometer, rotation vector, and orientation, among others. (More details can be
collected from [39])

In the ‘target’ feature, many transportation modes are allocated. It is used to train
the FedEL model and predict the transportation mode.

3.2 Data Analysis

One of the most crucial steps when dealing with any type of data is exploratory
data analysis. Since the thesis tends to focus on data, it is essential to thoroughly
evaluate the data and prepare the datasets for model fitting.

First, the interaction between the modes and users is examined. Figure 3.1 and Fig-
ure 3.2, respectively, display the connection of users with the mode of transportation
for a half-second window and a five-second window. They illustrate which users are
connected to specific modes. Due to the fact that the data was initially collected
and then separated into windows, the same behavior can be seen in both datasets.

Figure 3.1: User-Transportation mode relation for half-second window dataset
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Figure 3.2: User-Transportation mode relation for 5-second window data-set

Second, the value counts for each of the modes across both datasets are then exam-
ined. How many data points are there for each of the five modes of transportation
for the datasets for the half-second and 5-second windows are shown in Table 3.1
and Table 3.2, respectively. We can see that there are more data points in the
half-second window than in the five-second frame. Because the dimensions of the
five-second window dataset and the half-second window are drastically different.

Mode Value Count
Car 12518
Bus 12517
Train 12517
Walking 12517
Still 12516

Table 3.1: Value counts for different modes in the half-second window data set

Mode Value Count
Car 1180
Still 1179
Train 1179
Bus 1178
Walking 1177

Table 3.2: Value counts for different modes in the 5-second window data set

Furthermore, 70 features in each dataset are recorded. The features are captured
data from different kinds of smartphone sensors and from the sensory data, 4 fea-
tures are extracted as mentioned before which are minimum, maximum, mean, and
standard deviation. Data were extracted from 15 sensors. Table 3.3 contains the list
of the sensors of the users’ android smartphones. Both calibrated and uncalibrated
data were captured from the sensors. In the datasets, numerous cells were null. The
imbalance state of the datasets is addressed in the data pre-processing part.
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Sensors
Activity recognition

Accelerometer
Game Rotation Vector

Gravity
Gyroscope

Light
Linear Acceleration
Magnetic Field
Orientation
Pressure
Proximity

Rotation Vector
Step-counter

Sound
Speed

Table 3.3: List of Sensors

3.3 Data Pre-processing

In both of the datasets, there are many cells with missing values, so handling the
missing values comes first. Features that have more than 60 percent of their values
missing are removed. Furthermore, 0 is assigned to the features that have partial
null values. Additionally, the feature, ’id’ is removed because it does not carry any
significance.

Transport Mode Encoded Value
Bus 0
Car 1
Still 2
Train 3

Walking 4

Table 3.4: Categorical Encoded Values for Transport Modes

Then, it is seen in the dataset that the maximum values are float64 type except
for 4 features. Two of them are int64 type and the rest are object type. Two of
the object type features are ‘target’ and ‘user’. The ‘user’ column is dropped and
categorical encoding is applied to the ‘target’ features. This means numeric values
are assigned instead of the object type data which is shown in Table 3.4.
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Figure 3.3: Correlation Heat-map Before Updating for Both Datasets

Additionally, the correlation coefficient equation 3.1 demonstrates the correlation
between the features which is the Pearson product-moment correlation coefficient
[40]. The features, in this case, are a and b. Numerous features are shown to be
highly connected, which indicates they heavily rely on one another. These features
are unable to add new information to the model. As a result, features having a
connection of above 70 percent are dropped. Figure 3.3 shows the correlation heat-
map for both of the datasets with 70 features before updating. After updating by
removing the highly correlated features, only 20 remain for the 5-second window
dataset. The 5-second window dataset shrinks to 5893 × 20 in size. Figure 3.4
portrays the correlation heat-map with 20 features and ‘target’ after updating the
dataset. Also, after updating by removing the highly correlated features, only 24
remain for the half-second window dataset. The half-second window dataset shrinks
to 62585 × 24 in size. Figure 3.5 portrays the correlation heat-map with 24 features
and ‘target’ after updating the dataset. We currently have two cleaned datasets
with crucial features. Finally, the 5-second window dataset has 20 features and the
half-second window dataset has 24 features.
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c =

∑
(ai − a′) (bi − b′)√∑

(ai − a′)2
∑

(bi − b′)2
(3.1)

Figure 3.4: Updated Correlation Heat-map for 5-second window dataset
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Figure 3.5: Updated Correlation Heat-map for half-second window dataset

In order to anticipate outputs, the features and the label are finally split into X
and y. Additionally, the Min Max Scaler is utilized to transform features’ values
between 0 and 1. It addresses the issue of outliers and the models’ propensity to
select higher values. The Min-Max Scaler equation is shown in 3.2. The Min-Max
scaling or normalization is a technique of taking values between a minimum and a
maximum value [41].

MinMaxScaler =
X −Xmin

Xmax −Xmin

(3.2)

Finally, the label and target data are divided into train and test groups in an 8:2
ratio. 80 percent of data are kept for training and 20 percent of data are kept for
testing. Now the data is completely ready to fit in the models.
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Chapter 4

Methodology, Architecture, and
Model Specification

4.1 System Architecture- A Vehicular Edge Net-

work

The goal of the Vehicular Edge Network (VEN) architecture is to collect sensory
data from smartphones or mobile edge devices through Road Side Units (RSU) via
wireless transmission and utilize federated learning (FL) and mobile edge computing
(MEC) in the MEC servers, to ensure data security in Internet of Vehicles (IoV)
systems and enable intelligent data sharing, to effectively allow the exchange of
collaborative data, particularly with regard to the data and VEN topology, as shown
in Figure 4.1 and Figure 4.2. The figures show an Intelligent Transportation System
based on VEN, powered by Federated Ensemble-Learning. The Figure 4.1 shows
the data gathering through RSUs and mobile edge computing and local training in
the local MEC servers which are incorporated with the RSUs. Figure 4.2 shows
the centralized global cloud server where multiple locals are connected. Specifically,
user data is often sensitive and confidential since it may disclose the latitude and
private details of a driver. The 3 key levels of the system architecture of the VEN we
took into consideration are the Data capturing layer (DCL), the Mobile edge server
layer (MESL), and the Vehicular edge cloud layer (VECL). In the system, sensory
data are captured from edge-centric devices of vehicles and from the smartphones
of passengers and pedestrians using RSU. This data is processed and trained in
a decentralized way with the blessing of federated learning in mobile edge servers
through edge computing. In this study, the RSU and MEC servers are thought to
be incorporated together. At each local point, the RSU is used for capturing data;
where a MEC server is present along with RSU where the data processing and the
local training are done. Later, the data is sent to the vehicular edge cloud server
which is the centralized global cloud server; there the processing occurs in the global
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Figure 4.1: Local Server Data Collection and Computing

server, and real-time transport mode prediction is done in this layer. The transport
mode of the vehicles that are present on that point is detected with the proposed
FedEL method. As the data is not shared with the global server and is trained in a
local server instead, it does not get exposed to a centralized area on a large scale.
As a result, the privacy of the data is secured by the blessing of a decentralized
federated learning approach. After the detection, this information is updated with
a web application to get it accessed by a passenger waiting at various locations to
avail the public transportation or for checking traffic congestion at each place. Also,
this information can assist people in avoiding accidents by avoiding busy roads. The
drivers of the vehicles can also access the information through the web app connected
to the vehicular edge network. The drivers can view the information on the edge
device installed on the vehicles or smartphones and choose the correct path to reach
the destination faster by avoiding congested roads. Additionally, drivers can make
paths for emergency vehicles based on the information if any emergency situation
arrives like an accident or fire situation. Furthermore, transport mode detection can
also help in studies on transport, reducing carbon emissions, and fitness tracking.
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Figure 4.2: Global Server Architecture of FedEL enabled VEN

The combination of all of these makes it a whole ITS inside VEN which is FedEL
enabled.

Data Capturing Layer (DCL): The DCL consists of collecting data using RSU
from the sensors of the edge devices and mobile phones inside buses, cars, trains, or
pedestrians standing at different places of a particular point besides an RSU.

Mobile Edge Server Layer (MESL): There exists a MEC server at each point
within the Road Side Units. The main objective of this layer is to store the collected
data in the MEC server where it is processed and edge computations are done
before it could be sent to the VECL which is a centralized global cloud server. The
collected data is collaborated and passed through pre-processing and the FedEL
implementation process which is the local training starts on the collected data in
the MEC server.
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Vehicular Edge Cloud Layer (VECL): This is the final layer of the VEN where
the data is sent from the MESL from different RSU points and passes through final
processing or computational processes (if needed). It is the centralized global cloud
server. Here real-time transport mode prediction is done in this layer through global
computations of the FedEL part. After the transportation modes are predicted with
FedEL it is shown on a web application to users as mentioned before.

4.2 Overview of the Proposed System

The complete overview of the proposed system of our work is portrayed in Figure 4.3.

First, we load the dataset into the system. After, exploratory data analysis is done.
Following data analysis, data pre-processing takes place. In the pre-processing part,
the data is also scaled. Then, data is split into features and labels. Additionally,
the data is divided into a ratio of 8:2 for the train and test sections where 80% of
the data is used to train the model and the remaining 20% data is used to test the
model.

After getting the pre-processed data, now it is prepared for fitting into the Federated
approach. Later, 3 global models are initialized which are RF, XGB, and MLP. Here,
the ensemble technique is implemented. Then data get fit in the local models of 3 of
the models. Furthermore, for MLP neural network, weights get updated and local
RF and XGB trees are passed into their corresponding global models. Then the
prediction is done using majority voting. Finally, the results get evaluated with the
required metrics.

Figure 4.3: Overview of the Proposed System
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4.3 Experimental Setup

The proposed Federated Ensemble-Learning method and other implementations are
developed on the AMD Ryzen 5 3600 system, with 16GB RAM and Nvidia RTX2060
6GB graphics memory, and also with 256GB SSD storage. Every implementation is
designed and developed in a python programming language with NumPy, Pandas,
sklearn, and TensorFlow libraries, and the results are plotted using the Matplotlib
and Seaborn libraries of python.

4.4 Model Specification

A series of implementations have been done in order to complete this thesis. Firstly,
some usual machine learning techniques have been implemented to observe the re-
action of the data. Decision Tree (DT), Random Forest (RF), XGBoost (XGB),
Support Vector Machine (SVM), and K-Nearest Neighbour (KNN) have been im-
plemented on the 5-second and half-second window datasets. Later, Multi-Layer
Perceptron (MLP) was implemented. This neural network performs quite well on
both of the datasets. After, we approached Federated Learning with MLP which
is implemented to ensure the privacy of the sensory data. Moreover, to enhance
the performance further, an ensemble technique with majority voting inside fed-
erated has been proposed which is called the Federated Ensemble-Learning. The
ensemble technique is fit in the Federated MLP approach. While ensembling, Ran-
dom Forest and XGBoost have been selected alongside MLP based on accuracy and
cross-validation scores which will be discussed later in the result analysis part.

4.4.1 Random Forest

Random Forest is an ensemble learning method that is used for classification and
regression tasks in machine learning. It is a collection of decision trees, where each
tree is trained on a randomly selected subset of the data and makes predictions based
on the majority vote of all the trees in the ensemble. Random Forest is known for
its ability to handle large datasets and high-dimensional spaces, as well as its ability
to handle missing values and outliers in the data. One of the main benefits of using
Random Forest is that it reduces overfitting, which is a common problem in decision
tree models. Overall, Random Forest is a powerful and widely-used machine learning
algorithm that is known for its robustness and high accuracy. The data fit well in
Random Forest and ensembling multiple decision trees, it provides a fruitful solution
to the study. Figure 4.4 shows the architecture of Random Forest. For classification
problems, Random Forest computes how nodes on a decision tree branch using 4.1
which is the Gini index. Also, the decision is taken based on the entropy which is
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derived using 4.2. In the equations, Gidx is the Gini index, Entr is the entropy, xa

signifies the probability of the class ‘a’, and z represents the total number of classes.

Gidx = 1−
z∑

a=1

(xa)
2 (4.1)

Entr =
z∑

a=1

−xa ∗ log2(xa) (4.2)

Figure 4.4: Random Forest Architecture

4.4.2 XGBoost

XGBoost (eXtreme Gradient Boosting) is a powerful and popular machine-learning
algorithm that is used for classification and regression tasks. It is an implemen-
tation of gradient boosting, which is a boosting algorithm that combines multiple
weak learners to create a strong learner. XGBoost is known for its high speed and
accuracy, as well as its ability to handle large and complex datasets. It also has
several advanced features, such as regularization, parallel processing, and handling
missing values, which make it a popular choice for many machine learning practi-
tioners. Overall, XGBoost is a powerful and widely-used machine learning algorithm
that is known for its high performance and flexibility. The boosting method works
optimally on the data. Figure 4.5 shows the XGBoost architectural tree for the
5-second window dataset and Figure 4.6 shows the XGBoost architectural tree for
the half-second window dataset. The XGB works using 4.3 and 4.4. The M0 is
the initially defined model to predict the target t. The model is associated with
a surplus t-M0. The f1 is a new model which is fit to the previous surplus, t-M0.
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Finally, M0 and f1 get combined to pass the boosted version of M0 to M1. In M1

the error decreases significantly. This is how the computations take place till nth

iteration using 4.4.

M1(x) = M0(x) + f1(x) (4.3)

Mn(x) = Mn−1(x) + fn(x) (4.4)

Figure 4.5: XGBoost Tree for 5-second window

Figure 4.6: XGBoost Tree for half-second window
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4.4.3 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is a type of neural network that is used for classifi-
cation and regression tasks in machine learning. It is composed of multiple layers
of artificial neurons, with each layer connected to the next through weighted con-
nections. MLP is known for its ability to learn complex relationships in the data
and make predictions based on those relationships. One of the main benefits of
using MLP is that it can be trained to approximate any continuous function, which
makes it a flexible and powerful tool for many machine-learning tasks. However,
MLP can be prone to overfitting, especially when the number of layers and neurons
is too large, and it can be sensitive to the initialization of the weights. Overall,
MLP is a widely-used and powerful machine learning algorithm that is known for
its ability to learn complex relationships in the data. In our implementation, there
is a total of 4 layers which include an input layer, 2 hidden layers, and an output
layer. Figure 4.7 shows the architecture of the MLP neural network of our imple-
mentation. The model is implemented on both the 5-second and half-second window
datasets. The 5-second window dataset has 20 features after pre-processing and for
the half-second window, it is 24. Consequently, the MLP neural network has 20
inputs when implemented on the 5-second window dataset and 24 inputs for the
half-second window dataset. It is shown from 1 to n in the Figure 4.7.

Moreover, each of the hidden layers has 256 neurons and the output layer has 5
neurons as there are 5 labels in our datasets which are Bus, Car, Still, Train, and
Walking. We get a total of 72,453 parameters and 73,477 parameters for the 5-
second window data and half-second window data respectively. All the parameters
are trainable. Furthermore, the ReLU activation function is added at the end of each
hidden layer and the softmax activation function is added at the output layer. Also,
there are 2 dropouts of 40% is added after each of the hidden layers to eradicate
overfitting. Sparse Categorical Crossentropy loss function and Adam optimizer are
used to compile the model first on both of the datasets. Additionally, 60 epochs and
128 batch sizes are considered to perform the operations for both of the datasets.
Table 4.1 and Table 4.2 show the model summary for 5-second window and half-
second window datasets respectively. The weights in these two neural networks at
each layer are calculated using 4.5 where w is the weight, lr represents the learning
rate which is 0.01 in this case. Also, ep and pd define the expected values and
predicted values respectively and i is the input vector. It is basically the bias getting
added to the weight. The activation function ignites the neurons. Rectified Linear
Unit (ReLU) is used in these neural networks as mentioned before.

w = w + lr ∗ (ep − pd) ∗ i (4.5)
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Figure 4.7: Multi-Layer Perceptron Neural Network Architecture

Layer Output Shape Parameters
inputLayer (None, 20) 20

Dense: hiddenLayer1 (None, 256) 5376
Activation: ReLU (None, 256) 0
Dropout: 40% (None, 256) 0

Dense: hiddenLayer2 (None, 256) 65792
Activation: ReLU (None, 256) 0
Dropout: 40% (None, 256) 0
outputLayer (None, 5) 1285

Activation: softmax (None, 5) 0

Table 4.1: MLP Model Summary for 5-second window dataset
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Layer Output Shape Parameters
inputLayer (None, 20) 24

Dense: hiddenLayer1 (None, 256) 6400
Activation: ReLU (None, 256) 0
Dropout: 40% (None, 256) 0

Dense: hiddenLayer2 (None, 256) 65792
Activation: ReLU (None, 256) 0
Dropout: 40% (None, 256) 0
outputLayer (None, 5) 1285

Activation: softmax (None, 5) 0

Table 4.2: MLP Model Summary for half-second window dataset

4.4.4 Federated Learning

Federated Learning is a machine learning approach that enables the training of
a model using data that is distributed across a large number of devices, such as
smartphones, tablets, or laptops. The main advantage of federated learning is that
it allows the training of a model without the need to centralize the data, which
helps to preserve the privacy and security of the data. In federated learning, a
global model is trained using data from multiple local devices, and the local devices
receive updates to the model from the global model. This process is repeated until
the global model has converged to a satisfactory level of accuracy. Overall, federated
learning is a powerful and useful machine learning approach that enables the training
of models on distributed data while preserving the privacy and security of the data.
As a decentralized approach, federated learning often provide less accurate result
than usual. Numerous variations of federated learning are present. The Federated
Averaging (FedAvg) method has been used in this study. The weight averaging in
FedAvg is computed using 4.6 where wp+1 is the central model weight parameter,
L is the number of total participants, sl represents the samples of participant l, s
denotes the samples of all participants, and wl

p+1 is the local model weight parameter
of participant l.

wp+1 =
L∑
l=1

sl
s
∗ wl

p+1 (4.6)
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4.4.5 FederatedMLP

FederatedMLP is a type of federated learning algorithm that is used to train a
multi-layer perceptron (MLP) model on data that is distributed across multiple
devices. FederatedMLP uses the same basic principles as federated learning, but
it is specifically designed to train MLP models. In FederatedMLP, a global MLP
model is trained using data from multiple local devices, and the local devices receive
updates to the model from the global model. This process is repeated until the global
model has converged to a satisfactory level of accuracy. FederatedMLP is a useful
tool for training MLP models on distributed data, as it allows the training of a
model without the need to centralize the data, which helps to preserve the privacy
and security of the data. In the implementation, 5 local clients are created. For the
5-second window dataset, the size of the training dataset is 4714. These data are
distributed to 5 clients for training. Each client gets 942 data points. Also, for the
half-second window dataset, the size of the training dataset is 5068. These data are
distributed to 5 clients for training. Each client gets 10013 data points. The MLP
neural network in Figure 4.7 is built inside this approach. 200 communication round
is initialized. Moreover, the Sparse Categorical Crossentropy loss function and SGD
optimizer with a 1% learning rate is used to compile the model. Algorithm 1 shows
step by step workflow of the Federated MLP approach.

In the algorithm, the Sf is the scaling factor which is computed by equation 4.7,
4.8, and 4.9 inside the WeightScalingFactor() function with client batched data, Cb

and client names which are the keys of the dictionary Cb. In the equations, gc, lc,
Cc

b , and bs are the global counts of the total training data points across clients, local
counts of data points held by a single local client, the cardinality of Cb, and client’s
batch size respectively. The WeightScalingFactor() function determines the fraction
of the total training data that all clients have is made up of local training data for
each client. The Sw gets the scaled weights from each of the local model’s weights
based on the value of their scaling factor held by Sf . Additionally, the WA holds
the sum of the scaled weights. It gets the sum of the scaled weights together of all
the clients’. It has the sum of the listed scaled weights which is equivalent to the
scaled average of the weights. In the algorithm, the calculation of Sf and Sw is the
operation of FedAvg which is shown in 4.6.

gc = (
∑

Cc
b for all clients) ∗ bs (4.7)

lc = Cc
b for single local client ∗ bs (4.8)

Sf =
lc
gc

(4.9)
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Algorithm 1 Federated MLP

INPUT: Cb : Dictionary of client and their data as client batched data,
Cr : Number of communication rounds, Cl : Number of Clients,
Is : Input Shape, C : Number of classes

OUTPUT: Tm : Transport mode
1: Initialize global model, Gm as MLP
2: Gm ← BuildMLP (Is, C)
3: for each communication round Cr = 1, 2, 3... do
4: Update global weights, WG from Gm

5: Initialize scaled local weights, Ws as an empty list
6: for each key of Cb = C do
7: Initialize local model, Lm as MLP
8: Lm ← BuildMLP (Is, C)
9: WL ← SetWeight(WG)

10: Fit Cb for each C in Lm

11: Sf ← WeightScalingFactor(Cb, C)
12: Sw ← (Sf * WL) for each WL

13: Update Ws with Sw

14: Clear Session
15: end for
16: WA ← (

∑
scaledweights) for each Ws

17: WG ← SetWeights(WA)
18: Update Gm with WG

19: Do classification with the trained model, Gm

20: Predict the Tm : Gm →Tm

21: return Tm

22: end for

4.4.6 Federated Ensemble-Learning

A hybrid approach named Federated Ensemble-Learning is proposed to boost the
performance further in a federated approach. An ensembling technique with major-
ity voting is established inside federated learning. In this technique, we have ini-
tialized 5 local clients. Each local client’s data is trained with two machine-learning
algorithms and one deep-learning algorithm which are Random Forest, XGBoost,
and MLP. The data get trained locally with MLP first with the received weights
from the global model. After the training locally, the local weights get updated
and it also updates the global model weights. Later, Random Forest and XGBoost
fit data locally for each client and pass the trees to the global model for Random
Forest and XGBoost. As Random Forest and XGBoost are not neural networks,
they do not have any assigned weights. That is why instead of updating weights,
data is getting fit in the local Random Forest and XGBoost locally and the trees
get assigned to the global model for both of the approaches. This is how hybrid en-
sembling with a neural network and two non-neural networks is done. Subsequently,
the prediction of the classes is made with the 3 models. After that majority voting
decides which prediction to keep based on the voting of the 3 models. The predicted
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class with the highest votes is considered and the remaining one is discarded (if
any). For example, [3, 3, 3, 1, 0, 3], [3, 1, 1, 3, 0, 4], and [3, 1, 1, 3, 0, 4] are
predicted classes for 3 models. These are the predicted classes for MLP, XGBoost,
and Random Forest respectively. The predicted class for index 0 is 3 for all three
models. So 3 is considered as the final predicted class here. Moreover, for index 1,
the first model says 3 but the other two say 1; consequently, 1 is considered here.

Similarly, all of the indexes are providing the final predicted value through voting.
Also, for 3 different votes, a class will be chosen randomly. In that case, the success
probability is only 33%. But this is an extremely rare case as all the 3 models have
very high accuracy. Most of the time they vote in the same class. As a result,
the error rate falls by a considerable margin and we get an accurate result most of
the time even after using a decentralized (federated) method. Figure 4.8 shows the
architecture of the Proposed Federated Ensemble-Learning technique.

Figure 4.8: Proposed Federated Ensemble-Learning Architecture
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Furthermore, the data processing and data distribution are exactly the same as the
FedMLP. The MLP neural network in Figure 4.7 is built inside this approach. 200
communication round is initialized. Moreover, the Sparse Categorical Crossentropy
loss function and SGD optimizer with a 1% learning rate is used to compile the
model. Which is the exact same setting as Federated MLP. Algorithm 2 shows step
by step workflow of the FedEL technique. In the algorithm, the scaling factor, Sf

is computed by equation 4.7, 4.8, and 4.9 inside the WeightScalingFactor() function
similar to the FedMLP Algorithm. The Sw and WA are also computed as Algorithm
1.

Algorithm 2 Proposed Federated Ensemble-Learning Technique

INPUT: Cb : Dictionary of client and their data as client batched data,
Cr : Number of communication rounds, Cl : Number of Clients,
Is : Input Shape, C : Number of classes

OUTPUT: Tm : Transport mode
1: Initialize global model 1, Gm1 as MLP
2: Gm1 ← BuildMLP (Is, C)
3: Initialize global model 2, Gm2 as XGBoost
4: Initialize global model 3, Gm3 as Random Forest
5: Initialize local model 2, Lm2 as XGBoost
6: Initialize local model 3, Lm3 as Random Forest
7: for each communication round Cr = 1, 2, 3... do
8: Update global weights, WG from Gm1

9: Initialize scaled local weights, Ws as an empty list
10: for each key of Cb = C do
11: Initialize local model 1, Lm1 as MLP
12: Lm1 ← BuildMLP (Is, C)
13: WL ← SetWeight(WG)
14: Fit Cb for each C in Lm1

15: Fit Cb for each C in Lm2

16: Fit Cb for each C in Lm3

17: Sf ← WeightScalingFactor(Cb, C)
18: Sw ← (Sf * WL) for each WL

19: Update Ws with Sw

20: Clear Session
21: end for
22: WA ← (

∑
scaledweights) for each Ws

23: WG ← SetWeights(WA)
24: Update Gm1 with WG

25: Gm2 ←Lm2

26: Gm3 ←Lm3

27: P1 ← ClassPrediction(Gm1)
28: P2 ← ClassPrediction(Gm2)
29: P3 ← ClassPrediction(Gm3)
30: Tm ←MajorityV oting(P1, P2, P3)
31: return Tm

32: end for
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Chapter 5

Result Analysis

5.1 Performance Evaluation Metrics

The proposed Federated Ensemble-Learning technique for transport mode detection
has been proven to be effective through extensive experimentation with the TMD
dataset. Its superiority over other centralized and decentralized approaches has been
demonstrated through the use of well-known performance metrics such as accuracy,
precision, recall, F1-score, and confusion matrix. These results demonstrate that
the Federated Ensemble-Learning technique is a reliable and effective method for
transport mode detection using sensory data fetched from smartphones.

Accuracy: The accuracy metric displays what percentage of all samples correctly
identified the various transport mode classes. The accuracy of the proposed method
has been evaluated with the test dataset using 5.1.

Acc =
Sc

Tc

(5.1)

where Acc, Sc, and Tc represent the accuracy, the correctly detected transport mode
category samples, and the total number of samples respectively.

Precision: The proportion of samples for the same transportation mode that can
be accurately identified out of all the predictions is known as the precision metric.
The suggested method’s precision was evaluated on the test dataset using 5.2.

Pr =
Tp

Tp + Fp

(5.2)

where Pr, Tp, and Fp represent the precision, the true positive, and the false posi-
tive, respectively.
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Recall: The recall metric is defined as the proportion of truly recognized transporta-
tion mode samples out of the total number of samples of the same transportation
mode. On the test dataset, the proposed method’s recall metric was calculated using
5.3.

Re =
Tp

Tp + Fn

(5.3)

where Re, Tp, and Fn represent the recall, the true positive, and the false negative,
respectively.

F1-score: The F1-score metric is the harmonic mean of the precision metric and the
recall metric. Based on the precision and recall values of a model, it presents a score
for relative performance. The F1-score of the proposed approach was determined
on the test dataset using 5.4.

F1 = 2 ∗ Pr ∗Re

Pr +Re

(5.4)

where F1, Pr, and Re represent the F1-score, the precision, and the recall, respec-
tively.

Confusion Matrix: An N*N square matrix, where N is the number of classes in
a multi-class classification task, is referred to as a confusion matrix. Five different
modes of transportation were taken into consideration, giving N a value of 5. In
a confusion matrix, the rows stand in for the expected classes, while the columns
represent the true classes. As a result, a confusion matrix shows how the actual and
expected modes of transportation might be compared.
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5.2 Experimental Result Analysis

Model Precision Recall F1-Score Accuracy CV Score
XGBoost 97% 97% 97% 97% 96%

Random Forest 98% 98% 98% 98% 98%
Decision Tree 92% 92% 92% 92% 92%

SVM 84% 84% 84% 84% 55%
KNN 94% 94% 94% 94% 92%

Table 5.1: Evaluation Metrics Result for Traditional Machine Learning Models for
5-second window dataset (20 Features)

Model Precision Recall F1-Score Accuracy CV Score
XGBoost 96% 96% 96% 96% 77%

Random Forest 99% 99% 99% 99% 78%
Decision Tree 98% 98% 98% 98% 93%

SVM 86% 86% 86% 86% 34%
KNN 98% 98% 98% 98% 63%

Table 5.2: Evaluation Metrics Result for Traditional Machine Learning Models for
half-second window dataset (24 Features)

First, the data is trained and tested with 5 traditional machine-learning models as
mentioned earlier which are XGBoost, Random Forest, Decision Tree, Support Vec-
tor Machine (SVM), and K-Nearest Neighbour (KNN). Table 5.1 and Table 5.2 show
the evaluation metrics results of the models for 5-second window and half-second
window datasets respectively. It is observed that all of the models perform well
on both of the datasets apart from SVM. Additionally, the cross-validation (CV)
score for KNN is not satisfactory for the dataset with 24 features. Cross-validation
is a powerful technique for evaluating machine learning models as it allows for an
unbiased estimate of performance, and it makes use of all the data available for train-
ing and testing. It estimates the performance of a model on independent datasets.
Moreover, even though Decision Tree has a better overall outcome compared to the
rest of the models, Random Forest and XGBoost are selected for the ensembling
technique as they perform better in ensembling methods. Also, Random Forest is
just an ensemble of numerous Decision Trees. Consequently, the traits of Decision
Trees are received inside Random Forests. Overall, Random Forest and XGBoost
are comparatively the best fit for the proposed technique as they have a very good
response as shown in the tables.
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Dataset Accuracy Precision Recall F1-Score Loss
5-second window
(20 Features)

92% 93% 91% 92% 0.26

Half-second window
(24 Features)

97% 98% 97% 97% 0.09

Table 5.3: Evaluation Metrics Result for Multi-Layer Perceptron

Figure 5.1: MLP Accuracy and Loss Curve for 5-second window dataset (20 Fea-
tures)

Second, the Multi-Layer Perceptron (MLP) neural network is implemented to fit
into a federated averaging approach. This deep-learning approach performs well
for both of the datasets. Accuracy, precision, recall, f-1 score, and loss (sparse
categorical crossentropy) of MLP for both of the datasets is shown in Table 5.3. It
is observed that the results get better for bigger datasets. With more features and
bigger size, it is performing better in the half-second window dataset as the half-
second window dataset has more than 50K training data and the 5-second window
dataset has less than 5k training data. The performance boost-up is noticeable. The
accuracy jumps from 92% to 97% for the half-second window dataset and the loss
decreases from 0.26 to 0.09. Figure 5.1 and Figure 5.2 show the MLP model accuracy
and loss for training and validation data for the 5-second window and half-second
window datasets respectively. Both of the figures show that the accuracy curves are
upward and the loss curves are downward which is going on as the number of epochs
increases. Also, the validation data is following the characteristics of the training
data.
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Figure 5.2: MLP Accuracy and Loss Curve for half-second window dataset (24
Features)

Model
Communication
Round Number

Precision Recall F1-Score Accuracy

Federated
MLP

198 87% 86% 86% 86.18%
199 87% 86% 86% 86.00%
200 86% 86% 86% 85.75%

Federated
Ensemble-
Learning

198 95% 95% 95% 94.91%
199 95% 95% 95% 94.83%
200 95% 95% 95% 95.10%

Table 5.4: Evaluation Metrics Result of Federated Approaches for 5-second window
dataset (20 Features)

Furthermore, a federated approach called Federated MLP is implemented first us-
ing the MLP neural network. As federated learning is a decentralized approach,
inaccuracy increases due to distributed training. From Table 5.4 and Table 5.5, it
is observed that for Federated MLP the accuracy dropped from 92% to 86% for
the 5-second window dataset and it dropped from 97% to 90.5% for the half-second
window dataset. The observation is from the last three communication rounds of
200 communication rounds. Though FedMLP started with 30% accuracy for the
5-second window dataset and 58% accuracy for the half-second window dataset, it
increases as the communication round proceeds but gets saturated after a certain
point of time. In this case, it is 86% and 90.5% for the FedMLP. The accuracy,
precision, recall, and F-1 score do not seem optimal for the system. That is why
our proposed technique, Federated Ensemble-Learning gets introduced. Table 5.4
and Table 5.5 are showing the dominance of the proposed method over the usual
federated approach for both of the datasets. It dominates FedMLP in every case.
It occurs due to the technique of ensemble. The FedEL is designed inside the same
setup as the FedMLP approach. The only difference is integrating Random Forest
and XGBoost with the ensemble method along with MLP which is discussed earlier.

Consequently, where MLP made mistakes with the FedMLP approach, Random
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Model
Communication
Round Number

Precision Recall F1-Score Accuracy

Federated
MLP

198 91% 90% 90% 90.42%
199 90% 90% 90% 90.28%
200 91% 91% 91% 90.54%

Federated
Ensemble-
Learning

198 99% 99% 99% 98.58%
199 99% 99% 99% 98.64%
200 99% 99% 99% 98.61%

Table 5.5: Evaluation Metrics Result of Federated Approaches for half-second win-
dow dataset (24 Features)

Forest and XGBoost rectify the mistakes with majority voting. This is how the
proposed method achieves 95% accuracy after 200 communication rounds for the
5-second window dataset and almost 99% accuracy after 200 communication rounds
for the half-second window dataset. The accuracy is similar since the first communi-
cation round as Random Forest and XGBoost tree is passed after the first iteration.
Because of that, they return to the correct class through majority voting. Both of
them do not have to update weights at each iteration and make the model better,
unlike MLP. As a result, they are able to classify the labels properly from the be-
ginning. Again, the accuracy is better on the half-second window dataset due to the
bigger size and more features than the 5-second window one. From this observation,
it can be perceived that collecting data frequently (in a half second) is more fruitful
rather than collecting data with a pause (5-second gap) from smartphones or edge
devices.

Figure 5.3: Comparison Curves for FedMLP and FedEL on Both Datasets
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The Figure 5.3 shows the comparison curves for FedMLP and FedEL on both
datasets. It is observed that for the FedMLP approaches, the accuracy starts at
a lower point initially and then reaches a saturated point as the communication
rounds proceed. The saturated points are slightly greater than 86% for the 5-second
window dataset and just above 90% for the half-second window dataset which started
from 30% and 58% respectively. But for the proposed FedEL technique, the accu-
racy starts at the peak of it and holds it till the last. It happens due to the ensemble
of RF and XGB. Even though there are some ups and downs in the 5-second window
dataset but for more data, in the half-second window dataset, the line stays stable
holding an accuracy close to 99%.

Transportation
Mode

5-second Window
Dataset

Half-second Window
Dataset

Value Count Accuracy Value Count Accuracy
Bus 237 82% 2490 89%
Car 223 87% 2546 92%
Still 247 85% 2536 91%
Train 209 84% 2416 87%

Walking 263 90% 2529 94%

Table 5.6: Accuracy Scores on Different Transportation Modes of Communication
Round Number 200 for Federated MLP Approach

Transportation
Mode

5-second Window
Dataset

Half-second Window
Dataset

Value Count Accuracy Value Count Accuracy
Bus 242 93% 2535 98%
Car 235 94% 2543 99%
Still 236 97% 2438 99%
Train 238 95% 2504 99%

Walking 228 96% 2497 98%

Table 5.7: Accuracy Scores on Different Transportation Modes of Communication
Round Number 200 for Proposed Federated Ensemble-Learning Technique

Moreover, Table 5.6 and Table 5.7 show the accuracy scores on different trans-
portation modes of communication round number 200 for both of the federated
approaches. The value counts for the 5-second window dataset sums to 1179 and for
the half-second window dataset, it is 12517 which is the total size of the test data.
The value count is the finding of the number of each transportation mode. It is
seen that the proposed FedEL technique dominates the FedMLP approach in every
mode. An observation is that the Bus transportation mode has the least accuracy
for both of the models on both of the datasets. But it is negligible for the FedEL
approach on the half-second window dataset.
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(a) 5-second Window Dataset (b) half-second Window Dataset

Figure 5.4: Confusion Matrix for Federated MLP

(a) 5-second Window Dataset (b) half-second Window Dataset

Figure 5.5: Confusion Matrix for Federated Ensemble-Learning

Additionally, Figure 5.4 and Figure 5.5 portray the confusion matrix of FedMLP
and FedEL respectively for both of the datasets. It consists of true and false values
which are derived from precision and recall. Numerous false values are observed for
the FedMLP approach compared to the FedEL approach. FedEL on the half-second
window dataset is the most accurate matrix compared to the others. Even though
it has a big number of false values for Bus but the percentage is very low which is
negligible.

43



(a) 5-second Window Dataset

(b) half-second Window Dataset

Figure 5.6: Accuracy on Different Models (Rounded Values)

Finally, the Figure 5.6 shows the comparison of accuracy on different models. From
the figure, it is observed that our proposed FedEL model outperforms almost ev-
ery implemented centralized and decentralized model if enough data is provided
for training the model. The proposed model achieves a promising result with an
accuracy of 98.6% which is almost 99%. This approach can be used as a solution
to secure the privacy of the sensory data from smartphones and other edge devices
because even after being a distributed approach, it has excellent accuracy and preci-
sion in classifying target labels like the transport mode detection of this study. This
method can assist in detecting the transportation mode with smartphone or edge
device data securely.
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Chapter 6

Conclusion

The transportation and traffic systems are being advanced due to the ITS, which is a
blessing brought about by the progression of modern technology. The system would
not function properly without TMD as one of its components. In order to address
road issues, the Vehicular Edge Network connects all of the vehicles and vehicular
edge devices on the roads. In addition, the Federated Learning (FL) approach has
been implemented because, in contrast to conventional machine learning, FL does
not require the transfer of all data in order to complete the learning process. This re-
sults in a reduction in the complexity of the ever-growing database for edge devices
that the vehicle utilizes. Our proposed Federated Ensemble-Learning model out-
performs practically every other implemented centralized and decentralized model
with promising results. This is due to the fact that it is a hybrid model that was
established using the ensemble technique. If sufficient training data are available,
then our model accomplishes great results. Our strategy can be utilized to protect
the privacy of the sensory data collected by smartphones and other edge devices
because, despite being a distributed method, it possesses outstanding accuracy and
precision in classifying target labels, such as the detection of transport modes in
this research. This is made possible by the fact that our strategy retains excellent
accuracy and precision in categorizing target labels. In wireless mobile edge com-
puting at the edge devices, the suggested technique offers a solution to the problem
of reducing latency while also protecting users’ privacy. This would allow for more
precise classification of edge data within Vehicular Edge Networks, which are part
of the whole Intelligent Transportation System.
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6.1 Challenges

First, at least one neural network approach was required in order to implement
the FedAvg method as a distributed ML. Finding the correct one was not easy.
After numerous experiments with Extreme Learning Machine, Deep Belief Networks,
Long Short-Term Memory, and MLP, we found the most accurate approach with
the correct combinations of layers and other parameters which is MLP. Also, the
process requires strong hardware resources to be trained and validated fast on a
large dataset. This issue is addressed by completing the operations in a moderately
high-performance system powered by AMD Ryzen 5 3600 CPU and Nvidia RTX2060
GPU. It can perform even faster in a better system.

6.2 Limitations

The federated approach of RF and XGB is not addressed in this research by handling
weights. The proposed method passes locally trained trees of RF and XGB to their
corresponding global models. The data gets full security here as it is trained locally
and passes the trained model to the global model but there are no operations of
weights and no use of FedAvg for these two models. As federated approaches are
already well-built, this study made an effort to propose a new approach by ensemble
learning instead of average weights locally. Additionally, due to the limitations of
resources, the method is not evaluated in actual distributed systems using real-world
data. As a result, the latency improvement in wireless edge devices compared to
centralized approaches is not assessed.

6.3 Future Work

In future research on the proposed technique, an attempt will be made to fit the
FedEL model on time series data integrating Long Short-Term Memory (LSTM)
as the neural network. The success of this attempt might assist in controlling and
maintaining the traffic flow effectively in a distributed way. An AI-based smart
traffic management system can be introduced grounded by the method. Also, the
performance of the overall system in the real world will be measured by implementing
a VEN topology powered by Road Side Units incorporating Mobile Edge Computing
Servers which will be the proposed FedEL enabled.
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