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Abstract

This paper is intended to be a practical guide in terms of getting up and running
with reinforcement learning. Ideally, it aims to bridge the gap between practi-
cal implementation and the theories available for RL. The theory of reinforcement
learning involves two main components: an environment, which is the game itself
and an agent, which performs an action based on its observation from the environ-
ment. Initially, no in-game rules will be given to the agent and it will be rewarded
or punished based on the action that it will take. The goal is to increase Proximal
Policy Optimization (PPO) to maximize the reward that our agent will get, so over
time it will learn what action to take in order to do so. Therefore, we will develop
an AI agent that will be able to learn how to play one of the most popular arcade
games of all time, Street Fighter. We preprocess our game environment and apply
hyperparameter tuning using PyTorch, Stable Baselines, and Optuna to do it. This
approach will basically train different types of RL architecture and find a model with
the most weighted parameters. Moreover, we are going to Fine Tune that model and
run our test cases on it. We are going to see how a reinforcement learning algorithm
learns to play.

Keywords: Reinforcement Learning, Neural Networks, Games, AI, Proximal Policy
Optimization
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Chapter 1

Introduction

Artificial Intelligence and Gaming, in spite of mainstream thinking, do not manage
everything well together. Is this a disputable assessment? Indeed, it is, however, we
will make sense of it. There is a distinction between Artificial Intelligence and Arti-
ficial way of behaving. We do not maintain that agents in our games should outfox
players. We believe they should be however brilliant as it seems to be important to
give tomfoolery and commitment. We would rather not stretch the boundary of our
ML bot, as we ordinarily do in various Industries. The adversary should be flawed,
mirroring a human-like way of behaving. However, games are not just diversion.
Preparing a virtual agent to beat human players can show us how to streamline var-
ious cycles in a wide range of fun and engagement. This is how Google DeepMind
managed its well-known AlphaGo to beat the most grounded Go player in history
and scored an objective that was viewed as incomprehensible at that point. In this
paper, we will foster an AI agent that can figure out how to play the well-known
game Street Fighter, without any preparation. To do it, we execute Reinforcement
Learning algorithms. [2]
So, what is Reinforcement Learning in a nutshell and where does it fit in the big
world of machine learning and data science? Reinforcement learning focuses on
teaching agents through trial and error. In general, you’ve got an agent and it
learns based on the reward that it gets. It will try to perform a different action if
it does not get the reward or it will perform an action multiple times if it gets a
bigger reward for that specific action. Moreover, Reinforcement Learning is based
on actively engaging with an environment which brings us to how the framework
actually fits together [14]. Therefore, there are four key points we will have to
consider whenever we are working within reinforcement learning as shown in figure
1. They are the agent, the environment, the action and reward plus observations.

Figure 1.1: An overview of Reinforcement Learning

Agent: Think of your agent as something which is operating within an environment,
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so this might be a machine learning model, might also be a person or a player if
you’re working in a game environment. A policy usually governs it (decides what
action to take).
The Environment: This is where an agent is actually operating in. For instance,
in our case the player is operating within the game environment, so it is getting a
reward based on what it actually does there.
Reward & Observations: The player (agent) will see what’s happening within
the environment. For example, the player in the game will be able to see what is
around them, so in terms of observation, it will see what the game environment
actually looks like and then it will also see what reward it accrues based on the
actions it takes.
Action: Generally, the player might walk around the environment, it might do
something and accumulate a point. It might do something else and does not accu-
mulate a point. It might even lose a life that might be a negative reward.
As it was stated in [1], a really good way to get your head around this is to think of
how we might go about training a dog. For example, we want to teach a dog how to
sit or how to lay down. Our player (agent) in this case is going to be the dog because
we are trying to train our player to be able to take the right action. Now the reward
in this case is us giving the dog a treat every time they do the right thing. Initially,
you might say sit and the dog might not actually do anything and in this case it has
taken an action of doing nothing and in this particular case the environment that
it’s working with is the environment with yourself in it. The dog will eventually see
that it gets no reward because it did not sit down so it might try something else. So,
in this case you might say sit again and it might then sit and then it will get a treat.
Ideally, it will then start to learn what action to take in response to the environment
in order to maximize the reward. Therefore, it is observing the command that you
are giving to be able to take the right action, and this is how reinforcement learning
works. Your agent tries to take an action in order to maximize its rewards in response
to the observations within the environment. It is a little bit different in terms of
how you might work with tabular deep learning and machine learning because your
agent is actively engaging with a simulated or a real environment and in this case
we are going to be dealing with simulated environments. [8]

Figure 1.2: Reinforcement Learning in Dog Training

1.1 Research Problems

A reinforcement framework ”teaches itself,” as it were, by gathering reward signals
in light of various activities and states through which the agent runs. In any case,
it must be directed by human hands at fundamental levels somewhat. Perhaps the
greatest inquiry is additionally one of the most natural: What should be rewarded?
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That is simple enough with regards to, say, a straightforward game. The agent
figured out how to score a point, give that agent a prize. In any case, what’s the
significance here with regards to a recommendation system? Leading reinforcement
learning researcher John Langford made sense of it via counterexample. One might
possibly abuse Personalizer to attempt to anticipate the number of promotions to
put on a site. To do as such, you could attach the award to how much income
created per occasion. The framework would cheerfully decide to litter your site
with advertisements, and users would presumably escape. The methodology ought
to be to adjust the reward to the drawn out objective as best as could really be
expected, Langford said. That is, at times far from simple or easy. The example
intricacy, for example, can shoot up while looking for transient intermediaries — or,
in other words, it can require a truly lengthy investment before the model becomes
dependable. ”There’s somewhat of a strain between the most normal statement
of the issue, which might include simply upgrading the drawn out remuneration,
and the most manageable rendition of the issue to an address, which might include
streamlining momentary intermediary,” he said. ”That is one of the finesses in
attempting to approach reinforcement learning issues really.” [15]
At an appropriate arrangement of logged encounters with insignificant association
with the environment, the offline RL chips away when the agent works on its ar-
rangement with new encounters. This terminates the requirement for the training of
AI agents to scale. In any case, it proposes the test where assuming that the model,
which is being prepared with a current dataset, makes a move unique in relation to
the information assortment agent, one can’t decide the award gave to the learning
model. Another issue, as recommended by Google AI, is the distributional shift.
This happens when the RL algorithms should figure out how to go with choices that
contrast from the choices taken in the dataset to work on over the verifiable data.
[16]
According to [16], Facebook did a research to imitate DeepMind’s AlphaZero. In
their mission, it was showed when joined with the inaccessibility of code and mod-
els, the outcome is that the methodology is truly challenging, on the off chance that
certainly feasible, to replicate, study, refine, and broaden. Neural networks are hazy
secret elements whose operations are mysteries to even the makers. They are addi-
tionally expanding in size and complexity, upheld by colossal datasets, processing
power and long periods of training. These variables make RL models extremely
challenging to repeat. Lately, there’s been a growing development in AI to neu-
tralize the supposed reproducibility problem, a high-stakes variant of the exemplary
it-dealt with the my-machine coding issue. The crisis appears in issues going from
AI research that specifically reports algorithm races to admired results because of
weighty GPU capability. The Leiden Institute of Advanced Computer Science paper
proposes utilizing the ’minimal traces’ idea. The thought upholds re-reproduction of
activity arrangements in deterministic RL conditions, permitting commentators to
check, re-use, and physically review trial results without requiring enormous figure
bunches. Different arrangements incorporate following and logging tests, submit-
ting code and making a metadata repository. Second, as opposed to having entrants
present their agents, which might possibly be prepared with research-lab levels of
GPU wattage, they’re expected to submit code prepared utilizing the coordinators’
machine. At last, they likewise acquaint randomizing components with ensured
results track across various game renditions.
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By keeping the actual training on coordinators’ machines, with purposely confined
computing power, the opposition likewise addresses the test of access. For all around
financed research labs, admittance to elevated degrees of processing power isn’t quite
a bit of an issue. Yet, those assets are not so very much disseminated somewhere
else. At the end of the day, to arrive at much more noteworthy levels, reinforcement
learning should be both sample efficient and equitable. [15]

1.2 Research Objectives

This research aims to develop a reinforcement learning model which will be able to
play an arcade game called Street Fighter. In order to do that we are going to set
up the gym retro environment with the Street Fighter ROM or effectively the game
cartridge. Moreover, we are going to perform Hyperparameter Tuning using a library
called Optuna, which is a critical step to build any machine learning model. This
will help us to produce a good model for our reinforcement learning environment.
Finally, we will be fine tuning our model using stable baselines. Therefore, the
objectives of this research are:

• To understand different types Reinforcement learning algorithms and how they
work.

• Implement the RL algorithms using different Python packages.

• To augment a model which learns to play a game without any supervision.

• To test and evaluate the model.
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Chapter 2

Literature Review

As game universes develop more tremendous and complex, ensuring they are playable
and bug-free is turning out to be progressively hard for engineers. Furthermore, gam-
ing organizations are searching for new instruments, including artificial intelligence,
to assist with beating the mounting challenge of testing their products. Another
paper by a group of AI specialists at Electronic Arts shows that deep reinforcement
learning agents can assist with testing games and ensure they are adjusted and fea-
sible. In the previous 10 years, AI research labs have utilized reinforcement learning
to dominate complex games. All the more as of late, gaming organizations have ad-
ditionally become keen on involving reinforcement learning and other AI strategies
in the game improvement life cycle.

2.1 Network of RL Architecture

Figure 2.1, depicts different type reinforcement learning architecture which are com-
monly used in game industry.

Figure 2.1: Network of RL Architecture [7]

Reinforcement learning (RL) encompasses a diverse set of techniques, which are
commonly divided into two broad categories: model-based RL and model-free RL.

5



The development of model-free RL is more active currently, but this does not mean
that model-based RL is not useful. The main idea behind model-free RL is that
it uses the current state values to make predictions, while model-based RL uses
predictions about the future state of the model to generate the best possible action.
[7]
In this paper, we will focus on model-free RL and specifically look at the PPO
algorithm. However, it is worth noting that the best algorithm for a particular
use case depends on the type of action space that is being used. For example, the
A2C algorithm works well with box, discrete, multi-discrete, and multi-binary action
spaces, while DQN works only in discrete spaces. Therefore, it is crucial to choose
an algorithm that is compatible with the action space of the problem at hand. It is
essential to know which algorithm should be used for a specific action space, but the
different algorithms should be considered as options to choose from, as some may
perform better than others.

2.2 Related Work

2.2.1 StarCraft

Players need to defeat the enemies by performing actions according to real-time game
states in StarCraft. Including temporal and spatial reasoning, opponent modelling,
multi-agent collaboration and adversarial planning, designing a machine learning
model is difficult. With limited flexibility and intelligence, human experiences and
replays are the only basis of most models, as of now. The first stage to solve Star-
Craft AI is to study the micromanagement. To tackle micromanagement scenario,
an algorithm for optimizing Greedy Markov Decision Processes in an episodic man-
ner, zero-order method was introduced, which performs better than policy gradient
and DQN [4]. Multi-agent deep reinforcement learning technique named BiCNet is
used to play StarCraft combat games. The technique utilizes bi-directional neural
networks to acquire the ability to collaborate and employs actor-critic reinforcement
learning as its structure. BiCNet effectively learns a few helpful techniques, and is
versatile to different undertakings, showing preferred exhibitions over GMEZO. In
previously mentioned works, researchers predominantly creates concentrated tech-
niques to play micromanagement. To reuse the information between different mi-
cromanagement situations, they likewise consolidate curriculum transfer learning
figuring out how to this technique. This further develops the example proficiency,
and beats GMEZO and BiCNet in enormous scope situations. This technique has
preferred execution over different strategies in micromanagement tasks. There are
a few testing StarCraft II micromanagement undertakings, and utilize incorporated
preparing and decentralized execution to learn helpful ways of behaving. This at
last beats cutting edge multi-agent deep reinforcement learning methods. [5]

2.2.2 MOBA and Dota2

RTS games is the origin of Multiplayer Online Battle Field (MOBA), and it con-
tains two teams, moreover, there are five players in each team. Five players in a
group should participate to eliminate adversaries, redesign legends, and ultimately
obliterate the enemy base, to beat the rival. However, research on MOBA games
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is still at an early stage, resulting in fewer studies than in traditional RTS games.
Dataset analysis and contextual analysis are the works that are mostly done on
MOBA. However, MOBA received more attention from researchers recently, due to
a progression of forward leaps that DRL accomplishes in game AI.The most pop-
ular mobile MOBA game in China is a simplified version of Dota, known as King
of Glory. The architecture of this game contains Tree Search and deep neural net-
works. In 1v1 MOBA scenario, MCTS-based deep reinforcement learning algorithm
is efficient and can be utilized as it was demonstrated in experimental results. Ope-
nAI is responsible for proposing most of the extraordinary works on MOBA. DRL
technique with self-play is also successful in 5v5 Dota2 scenario as it was in 1v1 and
2v2, according to the demonstration of their results. The neural network contains
LSTM layer as its core component making a simple model architecture. OpenAI
Five has mastered the skills of pursuing, navigating through a forest, trickery, group
fighting and strategizing for the team’s victory, and it defeated human champion
OG with a score of 2:0, using the support of proximal policy optimization algorithm
and massively distributed cloud computing. Their works on MOBA research with
DRL techniques truly opens a new door. [13]

2.2.3 DeepMind lab

Based on Quake3, OpenArena has an extension of a 3D first-person game platform
called DeepMind lab. This platform is more composite containing more realistic
physics and richer visuals compared to other first-person game platforms. The UN-
REAL agent has an average performance of 87% compared to expert human players,
and it results in an average increase in learning speed of 10 times when compared
to A3C on a challenging set of DeepMind lab tasks. Continual learning has made
quick progress, as learning agents became more dynamic. In DeepMind lab, there
is a consideration of an implicit sequence of tasks to test consistent learning profi-
ciency [9]. Unicorn, a novel agent design, exhibits solid nonstop learning and beats
a few standard agents on the proposed space. A method was introduced that uses
teacher agents to initiate the training of another learning agent. When performing
various tasks and testing on the DMLab-30 suite, the introduced training method
significantly improves the sample efficiency of new agents, and it outperforms the
previous demonstration by 42%.

2.2.4 Minecraft

Across different game modes, players can assemble innovative manifestations, de-
signs, and work of art across a sandbox construction game called Minecraft. Re-
cently, Project Malmo has become a popular platform for AI research in gaming,
particularly for working with 3D data that varies widely. It is an experimental
platform that is based on the popular game Minecraft. It upholds an enormous
number of situations, including route, critical thinking errands, and endurance to
cooperation. A clever Q-learning approach was proposed [12] with state-activity
reflection and warm beginning involving human thinking to learn compelling strate-
gies in the Microsoft Malmo cooperative AI challenge. One of the major challenges
in Minecraft is the ability to transfer information from one task to another. A
DRL (deep reinforcement learning) agent that can transfer information by learning
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reusable skills, which can then be integrated into a hierarchical DRL network (H-
DRLN).H-DRLN (hierarchical deep reinforcement learning network) demonstrates
superior performance and low learning complexity compared to standard DQN in
Minecraft, and has the ability to transfer information between related Minecraft
tasks without additional training. To settle the fractional or non-Markovian percep-
tions issues, another DRL algorithm was proposed in view of counterfactual lament
minimization that iteratively refreshes an estimate to an aggregate cut advantage
work. On challenging Minecraft first-person navigation benchmarks, this algorithm
has the potential to significantly outperform existing techniques. [3]
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Chapter 3

Methodology

3.1 Environment Preprocessing

Generally, in machine learning or deep learning data pre-processing is the most im-
portant step and it is no different for reinforcement learning [10]. Even though,
we are not dealing with datasets for this particular project, getting the environ-
ment in an appropriate state is very important for its training. Some important at-
tributes of the Street fighter game environment are, “enemy matches won”, “score”,
“matches won”, “continuetimer”, “enemy health” and “health”. Therefore, to pre-
process our environment, we did observation preprocess first. In this step, we calcu-
lated the change in pixels from our current frame versus our last frame in order to
capture movement and then we dropped pixels from the frames to train faster. We
did this by gray-scaling and reshaping our frames.

Figure 3.1: Gray scaling and reshaping of a frame to drop pixels

Moreover, we filtered actions which is a parameter available inside the Gym Retro
package. Then changed our reward function to “score” initially. The reward function
could be any of the attributes from our environment. For example, if we set the
reward function to “enemy health”, then it might get points every time the health
of the enemy decreases and it might even lose points every time the agents’ health
decreases.
To be more comprehensive, we created a method called ”init”, to inherit from the
base environment (the game) and set up the ”observation space” and ”action space.”
Here, the ”observation space” is a ”box” shape of 200, 256, 3 with a data type of
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uint8. Then we reshaped the ”observation space” to 84 by 84 by 1 to make it a
gray-scaled frame with a smaller number of pixels. We set the ”action space” to
”multibinary” with 12 options, and changed it to a ”discrete observation space”. To
set up an instance of the game, an additional parameter was added. This filters out
the actions in the environment to only give valid button combinations rather than
all multi-binary values.
Moreover, we also created a method called “step”. This method allows the agent
to take a step in the environment, processing the observation, calculating the frame
delta, reshaping the reward function and returning the processed observation, frame
delta, and reward. The step method will use the base environment to take a step
and return the unprocessed ”observation”, ”reward”, ”done” and ”info” values.

3.2 Custom Environment

For our research, we created a class in Python to be used as a custom environment,
including a number of methods that were initialized in order to create the environ-
ment. These methods include ”init,” ”step,” ”render,” ”reset,” and ”pre-process.”
The ”init” method gets called when the environment is created, and ”step” is the
method that defines what actions are taken in the environment. ”Render” is the
method used for rendering the environment, and ”reset” is the method called to
restart the environment.

Figure 3.2: The output of our custom environment

Upon examination of the action space, it was determined that it is multi-faced
but not zoomed in enough. Further examination of the shape revealed it to be
satisfactory. The pre-processed values were visible as they were being rendered
separately. Upon initial testing, it was determined that the last frame could be
obtained as expected. However, an issue arose in which renders were not being
returned. Restarting the kernel resolved this issue, shutting down any existing
game frames and allowing the re-import of necessary components. The observation
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space and action space were determined to be in good condition upon re-creating
the environment. The pre-processed environment was also examined, revealing an
ungrayscaled version being used with the base render class. However, it was noted
that a higher number of rewards were being obtained as a result of scoring hits. As
such, the score will increment accordingly.
It has been determined that the system is only able to see the pixel values that have
undergone changes. As we continue to run the program, no changes have occurred
upon initiation of the environment and taking steps. The movement of our agent was
evidently visible, as well as the movement of the opponent. It can be observed that
the system returns the changes in pixel values to the game. This is an advantage of
using the frame delta method, as it does not pick up unnecessary information such as
changes in the health bar. By noting the movement of the opponent, the agent can
be trained on when and how to respond appropriately. It is important to validate
that the agent is able to comprehend the information it is receiving. Through testing,
the movement of pixels can be monitored. The question of whether or not changes
without using frame delta would have yielded different results has been raised, as
it has been previously experimented with. However, this is an important aspect
of the process. Occasionally, frame changes may occur. In order to capture these
changes, we implemented the process of stacking multiple frames. This will also
involve processing the last four frames, allowing for the observation of movement in
relation to movement, effectively tracking trajectories.

3.3 Proximal Policy Optimization

As we have discussed earlier that the four key elements of reinforcement learning
are agent, reward, environment and action. The character in our game is the agent
and it can take some actions such as moving forward or backward, jumping and
throwing punches. Inside the game environment, it might get a reward depending
on the results of the actions that it took. The model controlling our game character
learns what actions to take inside the environment in order to maximize that reward.
Since, both of our action space and observation is much more sophisticated now,
we decided to use the Proximal Policy Optimization (PPO) algorithm to perform
reinforcement learning. Table 1 lists different types of action spaces and observation
spaces with which the PPO algorithm works.

Table 3.1: Significance of PPO algorithm under different types of action space and
observation space

Space Action Observation
Discrete Yes Yes
Box Yes Yes

MultiDiscrete Yes Yes
MultiBinary Yes Yes

Dict No Yes

OpenAI’s Proximal Policy Optimization (PPO) is a reinforcement learning algo-
rithm that strives to find a compromise between ease of implementation, sample

11



efficiency, and tuning simplicity [6]. PPO employs a policy gradient method of
learning, which occurs online and not via stored offline data like DQN. PPO does
not have a mechanism to save past experiences like a replay buffer, instead it learns
from its interactions with the environment directly. Policy gradient methods are
typically not as efficient in terms of the amount of experience required as methods
like Q-learning because they use the collected experience only once before discarding
it for updating the model.
During the learning process, the agent creates and constantly evolves the observa-
tions and rewards used to teach the model in reinforcement learning. Here, a model
is trained through the interactions of an agent with an environment, rather than
using a fixed dataset in supervised learning. This can make the training process
more unstable compared to supervised learning. Additionally, the success of rein-
forcement learning is more sensitive to the selection of hyperparameters such as the
initialization of the model, because it has a high learning rate. This means that the
policy network may collect data under a poor policy, leading to the possibility of
failure to recover.
The OpenAI team created proximal policy optimization (PPO) to address the dif-
ficulties of reinforcement learning. PPO is a policy gradient method that aims to
be easy to implement, efficient with sample usage, and simple to adjust. It learns
directly from the environment rather than stored data like DQN. Therefore, PPO
does not use a replay buffer and discards experience after it is used for a gradient
update. Policy gradient methods like PPO are generally less efficient with sample
usage compared to queue learning methods, which can reuse stored experience. In
PPO, the policy gradient is often first established by taking the average of the log
of the policy actions multiplied by a calculated approximation of the advantage
function, as shown in equation 3.1.

Êt[logπθ(at|st)Ât] (3.1)

The policy πθ is a neural network that takes the observations of the states from the
environment as input and outputs the suggested actions as output. The function Ât

estimates the value of the selected action in the present state. In order to compute
the advantage, we require a baseline estimation and the discounted total of rewards.
The calculation of the advantage occurs after the series of episodes from the envi-
ronment has been obtained, meaning that all rewards are already known and there
is no need for estimation using the discount or return. The return

∑∞
k=0 δ

krt + k,
commonly referred to as the discounted sum of rewards, it is the total of all rewards
received by the agent for each time step of the current episode. The discount factor
”gamma” assigns a weight to rewards, typically between 0.9 and 0.99. This factor
takes into account that the agent places a higher value on rewards received at an
earlier time compared to those received later.
The second part of the calculation of advantage is an estimate of the expected value,
also known as the value function. The function predicts the overall rewards that will
be received from the current point in the episode by factoring in the decrease of future
rewards in the prediction of the total return in the episode, it is based on the present
state. As the agent interacts with the environment, the neural network responsible
for representing the value function is frequently refined through supervised learning,
using the experience gained during training. We input the states, and the neural
network attempts to forecast the total discounted rewards that will be obtained
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starting from that particular state. However, the value estimate produced by the
neural network will be inaccurate due to variance, as the network does not always
predict the exact value of the state. Finding the deviation between the estimated
baseline and the discounted rewards determines the advantage estimate Ât. This
advantage estimate measures the extent to which the action taken by the agent was
better than the expected outcome given the state it was in. To achieve the final
optimization goal of enhancing the policy, we take the product of the log probabilities
of the policy’s actions and the advantage function.
The goal of the objective function is to increase the likelihood of choosing actions
that are predicted to lead to above-average returns in similar situations in the future,
and decrease the probability of actions that are predicted to have below-average
returns. However, using gradient descent on a single batch of collected experience
may result in the network parameters being updated to a point where the noisy
estimate of the advantage function becomes completely inaccurate. This can ruin
the policy if gradient descent is continued to be used on a single batch of collected
experience. To prevent the updated policy from deviating too far from the current
policy when it is updated, the ”Trust Region Policy Optimization” (TRPO) paper
introduced adding a KL divergence constraint to the optimization objective [6],
which served as the foundation for PPO. This constraint ensures that the updated
policy stays in the region where it is known to work well. But the KL divergence
constraint can make the optimization process more complex, and can sometimes
cause undesired training outcomes. PPO addresses this issue by incorporating the
constraint directly into the optimization objective as shown in eqauation 3.2,

rt(θ) =
πθ(at|st)
πθold(at|st)

(3.2)

The probability ratio rt(θ) is a measure of the likelihood of an action in the updated
policy in comparison to the probability of the same action in the prior policy network.
The value of rt(θ) will be greater than 1 if the action is more likely according to
the updated policy, and between 0 and 1 if it is less likely when evaluated on a
series of actions and states. The objective of TRPO is obtained by multiplying the
advantage function with rt(θ). The central objective function used in PPO can be
written as shown in equation 3.3,

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)] (3.3)

The PPO algorithm aims to optimize an objective function, which is the expectation
operator, that is computed over a set of several sequences of states and actions. The
operator is the least of two expressions. The primary expression, rt(θ) × Ât, is
the standard objective for policy gradients and favors the selection of actions that
result in a large positive advantage compared to the baseline. The second term
is comparable to the first, but it incorporates a truncated form of the rt(θ) ratio
obtained through a clipping procedure between 1 − ϵ and 1 + ϵ (where ϵ is usually
0.2). We take the minimum of these two terms to obtain the final result.
The objective function in PPO is designed to handle both positive and negative
values of the advantage estimate. The plot in figure 3.3 illustrates how the objective
function behaves for different values of the advantage estimate.When the advantage
function is positive on the left half of the diagram, the chosen action resulted in a
better outcome than expected. On the right half of the diagram, the action had
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an estimated detrimental effect on the outcome. Observe how the loss function
flattens on the left side when ’r’ becomes too large, this happens when the action is
much more probable under the current policy as compared to the old policy. In this
case, the objective function is truncated to prevent the action update from being
overdone. When the action is believed to have a negative impact on the outcome,
and the value of ’r’ approaches zero, the objective flattens on the right side of the
diagram. This indicates actions that are less frequently taken by the current policy
compared to the previous one. It serves to prevent updates that would decrease the
probability of taking these actions to zero.

Figure 3.3: LCLIP surrogate function plots and its effects on objectives and policy
updates.[6]

The advantage function is prone to noise, so we want to avoid relying on a single
estimate when determining our policy. The objective function on the right side
of the plot will only be in the shown region if the last gradient step significantly
increased the probability of the selected action (thus resulting in a large ’r’) and
also led to a worse policy due to a negative advantage estimate. In this case, the
PPO objective function allows us to reverse the effects of the last gradient step.
The function is negative, which means the gradient will indicate that we should
decrease the probability of the action by an amount proportional to the negative
action. The unmodified version of the objective function only has a smaller value
when compared to the clipped version in this case, therefore it will be selected by
the minimize operator.

Figure 3.4: Proximal Policy Optimization Algorithm [6]
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PPO’s objective function promotes conservative policy updates that do not deviate
too far from the current policy. Unlike the objective function in TRPO, PPO’s is
simple and does not require calculating additional constraints or KL divergences.
In fact, the simpler PPO objective function often outperforms the more complex
TRPO version.
PPO utilizes two alternating processes. In the first process, the current policy is
employed to interact with the environment, resulting in the creation of episode
sequences. We determine the advantage of these sequences by calculating the fitted
baseline estimate of the state values. In the second process, all of the gathered
experience is utilized to perform gradient descent on the policy network through the
use of the PPO objective, which is stabilized through the application of clipping.

Figure 3.5: Workers gather game experience, optimize, evaluate agents, and monitor
through the system. [11]

By using PPO and separating it into two different threads, the agent in the OpenAI
5 system was trained effectively [11]. While thousands of remote workers utilized a
recent copy of the policy network and a GPU cluster to interact with the environ-
ment, the gradient descent on the network weights was performed using the collected
experience from these workers. It was necessary for the workers to regularly update
their local versions of the policy network to ensure that they were using the most
current version. The final loss function used in the training of the agent was a com-
bination of the clipped PPO objective mentioned earlier and two additional terms,
as shown in equation 3.4,

LPPO
t (θ) = Êt[L

CLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)] (3.4)

The loss function also includes a first additional term that updates the baseline
network, which estimates the expected reward that can be obtained from a specific
state. The value and policy outputs are separate components of the same network,
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yet they are integrated into the same computation process and can be combined in a
single loss function. The network for estimating value and the network for selecting
the optimal action have a number of shared parameters because both require similar
feature extractions from the current state observation. These common parts of the
network are included in the same objective function.
The entropy term is included in the objective function to encourage the agent to ex-
plore during training. The policy head of PPO produces parameters for a Gaussian
distribution for each action type, rather than outputting probabilities for differ-
ent actions like a discrete action policy. During training, the policy employs these
distributions to generate a continuous value for each action. Entropy reflects the
unpredictability of the outcome of a random variable and determined by its prob-
ability distribution. It represents the average number of bits needed to encode the
outcome of the variable. By maximizing entropy, the variable will have a wide range
of possible values, leading to the most uncertain outcome. This is why the entropy
term causes the policy to behave randomly until the other terms in the objective
function become more dominant.
PPO has become a popular algorithm in deep reinforcement learning due to its
simplicity in implementation and tuning, as well as its ability to perform at or above
the current state-of-the-art on a variety of tasks. The hyperparameters c1 and c2 are
used to balance the different parts of the loss function. PPO was not created with
an emphasis on sample efficiency, but rather to address the complexity and user-
friendliness issues present in many other algorithms. It retains the stability and
reliability of TRPO while being easier to implement, requiring only minor changes
to basic policy gradient methods. To summarize, PPO is a reliable and easy-to-use
policy gradient technique that can be applied to numerous reinforcement learning
tasks.
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Chapter 4

Implementation and Results

4.1 Hyperparameter Tuning

In this step, we began training our model. Instead of training it directly with
high parameters, we performed Hyperparameter Tuning. Hyperparameter tuning
is crucial in reinforcement learning as the algorithms can be affected by various
hyperparameters [17]. To accomplish this, we needed three libraries: PyTorch,
the deep learning framework that Stable Baselines runs on; Stable Baselines, the
package/library where most of our reinforcement learning will take place; and Op-
tuna, an optimization framework that can be applied to many algorithms, which
makes it convenient to tune hyperparameters. For Proximal Policy Optimization
(PPO), the parameters we adjusted are n steps, gamma, learning rate, clip range,
and gae lambda.
We then saved each model and reloaded the best one for fine tuning later on. More-
over, we performed hyperparameter tuning using the PPO algorithm where we set
up 10 trials. We trained for 10000 n steps in each trial.
Table 4.1 shows the results of the best performing parameters, while Table 4.2 shows
the results of the worst performing parameters.

Table 4.1: Result of the best performing parameters

ep len mean 5000
ep rew mean 7200
entropy loss -5.62
approx kl 0.14903

clip fraction 0.31400
clip range 0.31900

learning rate 0.00005
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Table 4.2: Result of the worst performing parameters

ep len mean 2346
ep rew mean 2000
entropy loss -2.36
approx kl 0.15423

clip fraction 0.57642
clip range 0.88794

learning rate 0.00231

4.2 Fine Tuning

After completing the hyperparameter tuning process, we reloaded the weights from
the Optuna trial that performed the best and continued training. To do this, we first
set up a callback. We used a key dependency called Base Callback for this. This
step basically logs the entire saved model at a certain check frequency to a specific
log path. This allows us to automatically save the reinforcement learning model
as we go through training. This also means that if anything goes wrong, we now
have different versions of the model saved at different stages of training. Finally, we
trained the best model for an additional 100000 n steps. The results of the model
after training are shown in Table 4.3.

Table 4.3: Results after training for 100000 n steps

ep len mean 11000
ep rew mean 18500
entropy loss -9.61
approx kl 0.55383

clip fraction 0.59872
clip range 0.83451

learning rate 0.0000202
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4.3 Result and Analysis

As shown in Figure 4.1, we selected a combination of high-performing models from
the Hyperparameter Tuning phase, including our best-performing model. The graph
illustrates a marked decrease in mean episode length and reward. While this pattern
is also evident in our model, the results begin to improve at around 68,000 n steps.
This suggests that our model exhibits a similar trend, but eventually outperforms
the other models in terms of performance metrics.

Figure 4.1: Graphical representation of episode length mean and episode reward
mean

Figure 4.2 illustrates the performance of the clip fraction parameter during the
training phase. The clip fraction of our top performing model was relatively stable
throughout training, indicating consistent and stable learning.

Figure 4.2: Performance of the clip fraction parameter
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Additionally, figure 4.3 shows that the entropy loss was minimal during the training
period, suggesting an increase in information gain.

Figure 4.3: Entropy loss during training

Moreover, the value loss for our best-performing model also increased significantly at
75,000 n steps of training, likely due to the exponential increase in reward. However,
once the reward leveled off, the value loss decreased accordingly as shown in figure
4.4.

Figure 4.4: The value loss of the model

Also, figure 4.5 shows that the explained variance of our fine tuned model has been
more consistent compared to other hyperparameter tuned models.Despite deviating
towards the negative axis at around 82,000 steps, it successfully returned to its
neutral position. This confirms that the predictions made in the actor-critic network
of the proximal policy optimization algorithm were relatively accurate.
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Figure 4.5: Explained variance of the model during training

Furthermore, as illustrated in Figure 4.6, the approx kl remained close to 0 during
the entire training phase. This indicates that the KL divergence constraint effec-
tively ensured that the updated policy remained within the region where it was
known to perform optimally. This suggests that the training was able to main-
tain a balance between exploration and exploitation which is crucial for the policy
optimization process.

Figure 4.6: Approximate KL divergence of the model during training

In the evaluation phase, we found that the agent we trained was successful in de-
feating three opponents in individual multiplayer games over the course of three
different episodes. However, in the fourth episode, the opponent was an inanimate
object and the goal was to destroy it within a set time limit. Our agent was unable
to achieve this objective because it was only trained in an environment where there
was no time limit and the opponents were actively attacking.
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Chapter 5

Conclusion

In conclusion, reinforcement learning for game AI is a complex area. Recent ad-
vancements in the field of Artificial Intelligence have led to significant growth and
development in the research. The focus of this paper was to demonstrate the ability
of a character in an arcade game, and we believe similar techniques can be applied
to other scenarios and tasks, leading to more successful outcomes. As we have seen
in the Literature Review chapter, various DRL algorithms have been used in a num-
ber of successful video games, from single-agent, 2D perfect data to multi-agent, 3D
imperfect data, and have achieved human-level performance.Despite the progress,
there are still some major obstacles in utilizing DRL techniques in this area, par-
ticularly when it comes to multi-agent video games that involve 3D imperfect data.
Creating a high-level game AI requires the development of new and improved DRL
methods that can be applied to challenging and complex environments. Despite the
obstacles, there are many opportunities for further research and development in this
field. Applications such as robotics and autonomous driving use raw sensory inputs
in their domains, and these data can be used to enhance the learning of behaviors
using reinforcement learning. There are still a number of challenges that have not
been thoroughly investigated in this area, and it could be a promising direction to
pursue further research in the future.

The findings of our study revealed that our agent was unable to defeat an opponent
who possessed the same character and abilities. During the training phase, the
underlying reinforcement learning model may have difficulty distinguishing between
characters because the game was presented in a gray-scaled format, causing this
outcome. Despite this setback, the results obtained were considered satisfactory.
However, it is worth mentioning that during the training process, some limitations
were identified in the gym retro environment which was built some time ago. One
of these limitations is the absence of the game integration feature, which allows for
continuing from a specific game state or level. In light of these findings, we plan
to make significant improvements to the model by fine-tuning it on each individual
level, utilizing a technique similar to curriculum learning in our future work.
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