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Abstract 
 

Regulator of Telomere Helicase 1 (RTEL1) is a protein-coding gene that encodes an essential 

DNA helicase which is thought to be involved in preserving the telomere and genetic stability. 

Germline mutations in the RTEL1 gene have been clinically associated with Hoyeraal-Hreidarsson 

syndrome (HH), a more severe version of Dyskeratosis Congenita (DC). Missense mutations are 

also reported in several other non-communicable diseases, namely high-grade glioma, 

astrocytomas, glioblastomas, myeloid neoplasms, breast and lung cancers. Despite the fact that 

various research has sought to link RTEL1 mutations to specific disorders, no thorough 

investigation on germline missense mutations has been performed yet. In this study, we attempted 

to investigate functionally and structurally deleterious nonsynonymous or missense SNPs of the 

RTEL1 gene using an in-silico approach. Initially, out of 1392 missense SNPs reported in the 

dbSNP database, 43 SNPs were filtered out through 10 bioinformatics-based web servers. With 

subsequent analysis using 9 in-silico tools, these 43 nsSNPs were further shortened to 13 most 

deleterious nsSNPs. Following analysis of mutated protein structures, secondary structure, 

evolutionary conservancy, conservation profile, surface accessibility, domain & cluster, PTM site, 

and interatomic interaction also revealed the detrimental effect of these 13nsSNPs on RTEL1 

protein. In-depth investigation of these mutations through molecular docking demonstrated a 

striking change in the interaction pattern of DNA with F15L, M25V, Y228C, G706R, and R729C 

mutant proteins suggesting the more severe consequences of these mutations on protein structure 

and functionality. Thus, these insights will pave the way for extensive analysis of RTEL1 gene 

variants in the future along with the advancement of precision medicine and other treatment 

modalities. 

 

Keywords: RTEL1, telomere, genetic stability, germline mutations, Hoyeraal-Hreidarsson 

syndrome, Dyskeratosis Congenita, missense, SNPs, bioinformatics tools, molecular docking.  
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1.1 Background 

 

The human genome is not identical among individuals, there are inherent distinctions among racial 

and ethnic groups, as well as between healthy people and people who are prone to illness. Around 

99.9% of the DNA sequences in the human genome are the same around the world, and the 

remaining 0.1% of the genome contains unique variations for each individual. This variance in 

each person's DNA is the product of random mutations (Forsberg et al., 2000). Single nucleotide 

polymorphism (SNP), which is a single base substitution in alleles, is the most prevalent type of 

mutation among them. SNPs occur in every 1,000 base pairs in the genome (Collins et al., 1998) 

and can be found in both coding and non-coding regions. It is estimated that SNPs account for 

90% of the sequence variation in the human genome, which may operate as a possible genetic 

marker as well as impose a neutral or detrimental effect on protein function and transcription 

factor-mediated regulations (Goswami, 2015). Variants in the non-coding region have been 

demonstrated to have an impact on the function of cis or trans-regulatory elements, UTR, and 

intron which might disrupt the affinity of transcription factors, various epigenetic factors, 

alternative splicing, and mRNA stability (Mansur et al., 2018). But the most significant SNPs are 

thought to be located in the coding region and nearly 50 thousand SNPs have been registered in 

this region up until now(Collins et al., 1998). The SNPs in the coding region are categorized as 

Synonymous and Non-synonymous SNPs. Synonymous SNPs are not responsible for causing any 

alteration in the amino acid sequence of protein while the non-synonymous SNPs, particularly 

missense SNPs, are to blame for amino acid substitutions in the protein sequence thus altering the 

activity of the protein. According to earlier research, nsSNPs account for about 50% of the 

mutations linked to a number of genetic illnesses (Doniger et al., 2008; Radivojac et al., 2010), as 

well as several autoimmune and inflammatory conditions (Azad et al., 2012; Begovich et al., 2004; 

Sobieszczyk et al., 2011). 

 

Telomeres, which serve as the termini of linear chromosomes, are made up of certain repeating 

sequences or tandem (TTAGGG) hexamer DNA repeats along with a crucial single-stranded 3′-

overhang at the end (Jain & Cooper, 2010; O’Sullivan & Karlseder, 2010). Shelterin complex, a 

set of six proteins, uses the repeating telomeric motif as a platform to protect telomeres from fusion 
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and degradation(de Lange, 2009). In order to protect the chromosome extremities from DNA 

damage response, telomeres may take on a lariat structure in which the 3′ G-overhang invades the 

double-stranded telomere to create a T-loop with the help of shelterin complex (Griffith et al., 

1999a). 

 

Figure 1: The structure of Human Telomere. 

 

Moreover, the 3’G-rich overhang also promotes the formation of G-quadruplex or G4 DNA that 

acts as an obstacle for DNA replication machinery(Gilson & Géli, 2007). Additionally, each 

replicative cell cycle results in telomere shortening due to DNA processing and incomplete DNA 

replication. This phenomenon is counteracted through telomerase enzyme, which can lengthen this 

overhang to compensate for losses. As a result of the inability of maintaining the telomere length 

and protecting it from cellular degrading factors, telomere dysfunctionality, apoptosis, senescence, 

and genomic instability might occur.  

 

Regulator of telomere elongation helicase 1 (RTEL1) is an essential iron-sulfur (FeS)-containing 

DNA helicase, which is a member of the DEAH subfamily of the Superfamily 2 (SF2) helicases 

and also categorized as a RAD3-like helicase with a 5′ to 3′ helicase activity. It is located at 

chromosome 20q13.33, and contains thirty-five exons. Various isoforms are produced through 

alternative splicing results in multiple transcript variants and in human the two main isoforms are- 
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isoform 2 (1219 amino acid) and isoform 6 (1300 amino acid), both differ in C terminal region 

(LeGuen et al., 2013a). RTEL1 is a multidomain protein, that includes a RAD3-like helicase 

domain that contains helicase type 2 ATP binding domain and C terminus (DEAD2 and Helicase 

C2) domains, DEAH box, PCNA interacting motifs or PIP boxes, Harmonin N-like domains and 

RING-finger domain (Glousker et al., 2015; Vannier et al., 2014). This gene is essential for 

telomere regulation, DNA repair, and genome stability that interacts with proteins in the shelterin 

complex to preserve the telomere. In embryonic stem cells, deletion of the mouse Rtel1 gene 

caused telomere loss and chromosomal abnormalities, indicating the necessity of the gene for both 

maintenance of telomere and genome integrity (Ding et al., 2004). Furthermore, it has been noted 

that human RTEL1 interacts with TRF1 and TRF2, pointing to its recruitment to telomeres (Sarek 

et al., 2015; Sfeir et al., 2009).  

DNA secondary structures such as trinucleotide repeats, G-quadruplexes, or the intermediates 

formed during the 3R process must be processed correctly in order to maintain genome stability 

and reduce pathological consequences (Vannier et al., 2014). Several studies have suggested the 

role of RTEL1 as an anti-recombinase that combats harmful recombination and limit the crossover 

in meiosis. Homologous recombination (HR) is an essential biological activity for DNA double-

strand break repair (DSB) that is necessary for the replication of DNA and the development of 

crossovers during meiosis.  Homologous recombination also helps in the formation of T-loop at 

the end of the telomere (Griffith et al., 1999b; R. C. Wang et al., 2004), an important event that 

prevents the telomere being recognized as a breakpoint by the DNA repair system and protects it 

from degradation. During homologous recombination, the displacement loop (D-loop) forms as an 

intermediary structure due to the invasion process. The T-loop structure of telomere DNA also 

contains D-loop (de Lange, 2004). The processing mechanism of the secondary structure or the D-

loop formed during HR can develop crossover or non-crossover products. The RTEL1 gene 

maintains the crossover homeostasis through the physical separation of strand invasion events, 

which encourages non-crossover repair through synthesis-dependent strand annealing (SDSA) and 

during DNA repair and meiotic recombination procedures, it facilitates the breakdown of D loop 

recombination intermediates (Barber et al., 2008; Uringa et al., 2010). Additionally, through 

resolving G-quadruplexes created during telomere replication, mouse Rtel1 has also been linked 

to disassembling T loops and preventing telomere fragility, which collectively maintains the 

dynamics and integrity of the telomere (Vannier et al., 2012). Besides, Frizzell et al. demonstrated 



 

5 
 

the association of RTEL1 in unwinding trinucleotide repeat to prevent triplet repeat-mediated 

chromosome fragility.  

The common expression of the RTEL1 gene is found in the testis, appendix, spleen, endometrium, 

adrenal, prostate, bone marrow, and 20 other tissues. The mutation in the RTEL1 gene has been 

linked to a variety of human diseases, including dyskeratosis congenita, Hoyeraal-Hreidarsson 

syndrome, glioma, glioblastoma, pulmonary fibrosis, bone marrow failure, breast cancer, and other 

malignancies. 

 

Dyskeratosis congenita (DC) and its phenotypically acute form Hoyeraal–Hreidarsson syndrome 

(HHS) is a group of inherited diseases characterized by significantly short telomeres and a wide 

range of clinical manifestations. Due to the defective telomeric biology, the patients with DC are 

distinguished by the characteristic appearance of nail dystrophy, abnormal skin coloration, and 

mouth leukoplakia, while some additional symptoms, including intrauterine growth retardation, 

cerebral hypoplasia, and bone marrow failure, have been seen in patients with HHS. This results 

in an early manifestation of the diseases as well as poor prognosis in patients with HHS (Lee, 

2013). Bone marrow failure is the leading cause of death in DC and HHS, however, mortality from 

malignancy and pulmonary fibrosis also happens more frequently than usual(Deng et al., 2013). 

Despite the mutations in the most common genes such as KDC1, TERT, TINF2, TERC, NOP10, 

NHP2, WRAP53, and CTC1, studies have linked the mutation in the regulation of telomere 

elongation helicase 1 (RTEL1) gene to the pathogenesis of HHS. In this context, several clinical 

research has been performed and discovered novel mutations of RTEL1 in patients with HHS. 

Deng et al. reported a family with compound heterozygous mutations (nonsense: R974X and 

missense: M492I mutation) in RTEL1, where the patients were observed to have severely 

shortened telomere and length-independent telomere defects in blood cells and fibroblast cells, 

respectively. Additionally, they demonstrated the suppression of DNA damage response and the 

inability of active telomerase for the maintenance of stable telomeres in fibroblast and 

lymphoblastoid cell lines (LCLs) in patients with RTEL1 mutation. The mutation M492I was 

identified to reside in an evolutionarily conserved region, and exhibited more severe onsets in 

patients with this mutation, suggesting an increased risk of cancer predisposition. The nonsense 

variant R974X was also reported in two sperate studies, denoted as R998X and both studies used 
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a 1,243-amino acid transcript variant (NM_032957) for their analysis. Ballew et al. documented 

three mutations in RTEL1 in two independent families, where the Arg1010X mutation was found 

to have an autosomal dominant inheritance in the first family and Arg998X and Glu615Asp 

mutations as compound heterozygote autosomal recessive inheritance in the second family. The 

finding demonstrated the deletion of the pCNA interacting protein (PIP) motif as a result of the 

mutations Arg1010X and Arg998X, and a high conservation profile of substitution Glu615Asp in 

the helicase domain. In contrast to the splice variants shown in Deng et al. investigation, the variant 

Arg998X was discovered to have an alternative 24 aa exon, pointing to the usage of distinct cell 

lines in these two studies. However, both investigations indicate the negative impact of the 

mutation on RTEL1 activity and telomere preservation. Furthermore, Walne et al. did a larger 

investigation on 10 patients from 7 different families with familial HHS and found 11 biallelic 

autosomal recessive mutations in RTEL1, among which one mutation has been previously 

documented in the NHLBI Exome variant server. It was shown that people with RTEL1 mutations 

had telomere lengths that were considerably shorter. Intriguingly, the authors detected increased 

T-circles in HHS patients with RTEL1 mutation, which is consistent with the results of the study 

done on mice, whereas Deng et al. observed a decrease in RTEL1deficient cells and an increase in 

ectopically expressed RTEL1 fibroblast and LCLs cells which had active telomerase level. These 

findings imply that the manifestation of RTEL1 deficiency depends on the organism and cell type, 

along with the techniques used in the detection process. Moreover, any discernible variations in 

T-circle levels were not seen in HHS cases carrying the DKC1 gene, demonstrating that aberrant 

T-circle formation is only present in HHS patients with RTEL1 mutations (Lee, 2013).    
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Figure 2: Schematic diagram of 18 mutations found in individuals having dyskeratosis congenita (DC) 

and Hoyeraal–Hreidarsson syndrome (HH) from different studies. (Adapted from Vannier et al., 2014) 

 

The risk of tumorigenesis or cancer predisposition due to RTEL1 mutations is not only observed 

in the case of HHS or DC but interestingly it has been also connected to predispositions of brain 

malignancies like gliomas, astrocytomas, and glioblastomas(Egan et al., 2011; Lin et al., 2021; Liu 

et al., 2010). The RTEL1 gene has thus been suggested to be a tumor suppressor gene for the 

emergence of brain malignancies(Wrensch et al., 2009). However, recent studies have also shown 

that the RTEL1 gene locus is amplified in a number of malignancies, including gastrointestinal 

and breast tumors (Bai et al., 2000; Muleris et al., 1995). In many cellular circumstances, it is 

conceivable that either overexpression or downregulation of the RTEL1 gene could lead to the 

formation of cancer or tumorigenesis in many different ways. But among them, the most prevalent 

mechanism of cancer formation due to RTEL1 is thought to be defective G4 unwinding. 
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Figure 3: Illustration of RTEL1-deficient cells undergoing malignant transformation. (Adapted from 

Hassani et al., 2023) 

 

 R-loops, a co-occurrence known for its intimate relationship between G4-DNA and RNA 

structures, happens to increase due to deficient functionality of RTEL1 in cells. A number of 

separate investigations demonstrated that the regulation of G4-DNA/R-loops is facilitated by 

RTEL1 and cells with depleted RTEL1, observed to have the inability to unwind G4-DNAs, 

leading to an increase in R-loops formation which in turns increase the transcription-replication 

collisions (Hassani et al., 2023). This ultimately leads to genome instability and the emergence of 

cancer.  

DNA replication stress, produced by oncogene activation during tumorogenesis, causes  G4/R-

loop forming loci for example, common fragile sites (CFSs) and telomeres to remain under-

replicated during interphase, which is compensated through mitotic DNA synthesis (MiDAS) (Wu 

et al., 2020). The mechanism of MiDAS depends on the RTEL1 protein, where the recruitment of 

RTEL1 to the affected loci is facilitated through SLX4, which in turn assists in attracting RAD52 

and POLD3 protein—both essential for MiDAS (Wu et al., 2020).  This suggests the necessity of 

RTEL1 in the maintenance of genomic stability through the resolution of conflicts between the 

replication and transcription machinery. On the other hand, Takedachi et al. showed SLX4-RTEL1 

complex increases the recruitment of proteins to nascent DNA, strongly associated with active 

RNA pol II, which also facilitates the co-localization of FANCD2/RNA pol II. Therefore, the 
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interaction of SLX4 and RTEL1 is necessary for replication fork development and abolishment of 

this interaction has been observed in patients with HHS and cancer.  

 

Functional variations caused by SNPs might have detrimental or beneficial effects on protein 

structure or function (Capriotti & Altman, 2011). Damage to protein structures and disruption of gene 

regulation are examples of detrimental impacts (Barroso et al., 1999). Additionally, changes in the 

protein sequence may ultimately have an impact on changes in the dynamics, translation, 

hydrophobicity,(Petukh et al., 2015) charge, shape, and inter/intra protein interactions, 

endangering cells(Bee et al., 2010; Chasman & Adams, 2001; Kucukkal et al., 2015). This information 

supports the notion that nsSNPs, particularly missense SNPs, are connected to several human 

disorders. The use of computational methods in recent studies on nsSNPs successfully revealed 

the possible relevance of mutation in comprehending the molecular pathways of numerous 

disorders (Adiba et al., 2021; Mondal et al., 2022; Rajendran et al., 2018). Analysis of nsSNPs' 

structural and functional properties could help with the creation of tailored treatments based on 

genetic variation. Despite the tools' questionable accuracy, combinatorial usage of a variety of 

algorithms made it possible to ensure the precise prediction of the effect of a certain mutation. 

Moreover, the computation analysis is important for primary filtration, as working with a large 

number of SNP data in laboratory experiments would be expensive and time-consuming.  

The mutation in the RTEL1 gene can cause multiple discrepancies not only in telomere biology 

but also in cellular replication and DNA repair mechanism as well. A broader spectrum of clinical 

complications in patients with DC and HHS who have inherited RTEL1 mutation has been 

observed in multiple clinical studies. In addition, the effect of a mutated RTEL1 gene may vary 

depending on the cell type and the mutation that occurred in the gene. Even though the RTEL1 

gene has been the subject of multiple genome-wide association studies, the majority of the RTEL1 

SNPs have not yet been thoroughly studied for their potential to cause disease. It is still unclear 

how nsSNPs affect the RTEL1 protein in terms of disease etiology and to our best knowledge, 

there hasn't been any comprehensive in silico analysis of the RTEL1 gene done till now to detect 

all the potential nsSNPs associated with the functional and structural change of the protein. 
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The design and execution of this study are based on the following objectives: 

➢ To identify the most deleterious nsSNPs in the RTEL1 gene. 

➢ To elucidate the impact of genetic variation on the protein’s structure and stability.   

➢ To attain molecular-level insights on SNP-mediated protein’s functional divergence.   

 

 

  



 

 
 

Chapter 2  

Materials & Method
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Figure 4: Illustration showing the workflow of this study 
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2.1  Data Retrieval 
 

The SNP data of the RTEL 1 gene was acquired from the available human GRCh37 genome SNPs 

in NCBI dbSNP [https://www.ncbi.nlm.nih.gov/snp/?term=] database. Relative data about the 

RTEL1 gene and the amino acid sequence (FASTA format) of RTEL1 protein were collected from 

NCBI [https://www.ncbi.nlm.nih.gov/]and UniProtKB (Universal Protein Knowledgebase) 

[https://www.uniprot.org/] databases, respectively.  

 

2.2 Retrieval of 3D Structure & Quality Checking  
 

The AlphaFold structure of the Human RTEL1 protein was retrieved from the UniprotKB 

(Universal Protein Knowledgebase) [https://www.uniprot.org/] database. The validation of the 

retrieved structure was checked using SAVES [https://saves.mbi.ucla.edu/] server. Taking the 

PDB file as input, SAVES returns the output of five programs. The results of ERRAT, VERIFY, 

PROVE, and PROCHECK Ramachandran plot were analyzed to estimate the validation of the 

AlphaFold structure of the native protein.  

 

2.3  Functional Impact Prediction 
 

To determine the functional consequences of nsSNPs that were retrieved from the dbSNP database, 

ten bioinformatics-based web tools i.e., PMut, SuSPect, PredictSNP, PredictSNP2, SIFT, SNAP2, 

SNP & GO, PROVEAN, Polyphen2, PANTHER were used to ensure the veracity and stringency 

of the results. SNPs that were commonly identified as deleterious by all of these ten algorithms, 

were considered as high-risk nsSNPs.   

PMut [http://mmb.irbbarcelona.org/PMut/] anticipate the pathological mutations on protein 

FASTA sequences, where a score >0.5 indicates disease effects of nsSNPs and <0.5 indicates the 

neutral effects of nsSNPs on the given protein’s functionality (López-Ferrando et al., 2017). 

SuSPect [http://www.sbg.bio.ic.ac.uk/~suspect/]   (Disease-Susceptibility-based SAV Phenotype 

Prediction) webserver predicts single amino acid variants associated with the disease with 82% 
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accuracy (Yates et al., 2014). PredictSNP [https://loschmidt.chemi.muni.cz/predictsnp/] is a 

consensus classifier with eight integrated established prediction tools to predict the mutations 

related to the disease.(Bendl et al., 2014).  

PredictSNP2 [https://loschmidt.chemi.muni.cz/predictsnp2/] is a unified web platform with six 

integrated prediction tools that predicts the pathogenic effect of SNPs in distinct genomic regions 

(Bendl et al., 2016).  SIFT (Sorting Intolerant from Tolerant) [https://sift.bii.a-star.edu.sg/] predicts 

the impact of an amino acid alteration on protein depending on the sequence homology and 

physical property of amino acids, where score <=0.05 indicates damaging and >0.05 is tolerant 

(Sim et al., 2012).  

Next, PROVEAN (Protein Variation Effect Analyzer) [https://www.jcvi.org/research/provean] 

was used for the prediction of the damaging impact of nsSNPs on protein sequence (Choi & Chan, 

2015). The PROVEAN score which is generated by averaging the delta alignment scores of variants 

and reference protein query sequence concerning homology sequence, helps to separate the 

nsSNPs as deleterious (score <= -2.5) and neutral (score >-2.5) variants. SNAP2 

[https://rostlab.org/services/snap/] is another neural network-based web tool that gives prediction 

scores between -100 to +100 which indicates strong neutral to strong impactful variants (Hecht et 

al., 2015). SNP & GO (SNP & Gene Ontology) [https://snps.biofold.org/snps-and-go/snps-and-

go.html] is an SVM-based classifier that classifies polymorphisms as a neutral variation or disease-

associated variation (when probability score >0.5) (Calabrese et al., 2009). Polyphen2 

(Polymorphism phenotype v2) [http://genetics.bwh.harvard.edu/pph2/] analyzes the potential 

effect of amino acid substitution on the function and structure of protein and based on the 

probabilistic score it provides the result as benign, possibly damaging and probably damaging 

(Adzhubei et al., 2010). PANTHER (Protein Analysis Through Evolutionary Relationship) 

[http://www.pantherdb.org/tools/csnpScoreForm.jsp] employs PANTHER-PSEP (Position 

Specific Evolutionary Preservation) method to distinguish disease-related variants from neutral 

variants in the human protein. It estimates the likelihood of nsSNPs disrupting protein functionality 

by calculating the evolutionary preservation of the amino acid residues where a long preservation 

period indicates greater chances of nsSNPs causing a functional impact on protein (Tang & Thomas, 

2016). 
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2.4  Structural Impact Prediction 
 

The structural impact of nsSNPs on the RTEL1 protein was analyzed using 9 distinct web tools. 

For the change in stability and phenotypic effect prediction, seven tools (DUET, mCSM, SDM, I-

Mutant, INPS-MD, MUpro, Dynamut) and two webservers (HOPE, MudPred2) were used 

respectively. 

DUET [http://biosig.unimelb.edu.au/duet/] predicts the alteration in the stability of protein due to 

the introduced mutation by combining the SDM and mCSM approaches, therefore, both SDM and 

mCSM predicted results come together with DUET (Pires et al., 2014). In this tool, the PDB file 

of the wild-type protein along with the single mutation information were provided as input and the 

server gave the result of the change in folding free energy or value of ΔΔG in kcal/mol where the 

negative value indicates destabilization and a positive value indicates stabilization of the structure. 

MuPro [http://mupro.proteomics.ics.uci.edu/] predicts the effects of a single-site amino acid 

substitution on the stability of protein with 84% accuracy using protein sequence and mutation 

information (Cheng et al., 2005). I -Mutant 2.0 [https://folding.biofold.org/i-mutant/i-

mutant2.0.html] assess the protein stability change from a given protein sequence and provide 

information about the state of stability as a decrease or increase in stability upon possible mutation 

along with Reliability Index. The INPS-MD (Impact of Non-synonymous mutations on Protein 

Stability – Multi Dimension) [https://inpsmd.biocomp.unibo.it/inpsSuite/default/index] can also 

predict the stability change of protein from both protein sequence and structure (Savojardo et al., 

2016). The FASTA sequence was given as input and ΔΔG value was provided as output, where 

all the negative values were considered as destabilizing nsSNPs. 

The webserver MutPred2 [http://mutpred2.mutdb.org/] uses machine learning-based algorithms 

that enable the prediction of pathogenicity of amino acid substitutions in proteins with a 

probabilistic score along with a list of specific alterations of the molecular mechanism (Pejaver et 

al., 2020). This tool predicts the pathogenicity of a given FASTA sequence of the protein. The 

effects of harmful nsSNPs on protein structure were examined using the HOPE 

[http://www.cmbi.ru.nl/hope/home] server. By combining data from numerous sources, such as 

sequence annotations, tertiary structure, homology models from the Distributed Annotation 

System (DAS) servers, UniProt database, etc., the Project HOPE server foresees the structural 
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effects of nsSNPs(Venselaar et al., 2010). The wild-type protein sequence was used as the input, 

and before starting the analysis, specific mutation sites and targeted mutations were specified.   

 

2.5  Comparative Modeling & Evaluation of mutated 3D structures 
 

The three-dimensional (3D) model of the mutant proteins was obtained through comparative 

modeling in Modeller 10.2 [https://salilab.org/modeller/] standalone software.  The AlphaFold 

structure of wild-type protein was used as a template for the generation of altered protein structure. 

Each model was initially optimized using the variable target function approach with conjugate 

gradients and subsequently refined using molecular dynamics and simulated annealing in Modeller 

10.2 (Webb & Sali, 2016). After completion of the 3D model generation, PyMOL 2.5 

[https://pymol.org/2/] software was utilized for analyzing the root mean square deviation (RMSD) 

value of each mutant structure. By superimposing native and mutant structures, this tool forecast 

the RMSD value, which aids in identifying the closet related structural analog.  

 

2.6  Secondary Structure Analysis 
 

To analyze the secondary structure, all 10 variants sequence along with the native sequence were 

evaluated using PDBsum [http://www.ebi.ac.uk/thornton-srv/databases/cgi-

bin/pdbsum/GetPage.pl?pdbcode=index.html ]. Taking sequence as input, the server returns the 

best match structure list of the given sequence and from there the closest matched structure was 

selected. This database provides several information of the protein structure across different pages 

or tabs which can be accessed from the top of the page denoted as TOP, PROTEIN, CLEFT, etc 

(Laskowski et al., 2018). From the protein tab, the secondary structure information of the protein 

was collected. Here, only the wiring diagram and structural motif information from the protein tab 

were selected for analyzing the in-depth information about the secondary structure of all 10 mutant 

and wild-type structures.  
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2.7  Identification of Domain and Cluster 
 

Mutation 3D [http://mutation3d.org/] was utilized to assess the arrangements of SNPs on protein 

models or structures and to look for the functional domain information of the SNP positions 

(Meyer et al., 2016). Through the complete-linkage clustering procedure, this tool also identifies 

clusters of amino acid substitutions in protein structure which indicates the positions that have the 

most impact on the structure of a protein. For the analysis of the functional domain and cluster of 

the filtered SNPs, the protein symbol along with the mutations was submitted to the Mutation 3D 

web interface.  

 

2.8  Prediction of Post Translational Modification Sites 
 

MusiteDeep [https://www.musite.net/] was employed to predict the putative PTM sites in RTEL1 

protein. Utilizing a deep learning-based algorithm and depending on the confidence threshold, with 

a default cut-off of 0.5, MusiteDeep predicts and identifies the desired PTM sites in the sequence 

(D. Wang et al., 2020). The FASTA format of the protein sequence was submitted to the server 

with the selection of all prediction models.  

 

2.9  Conservation, Surface Accessibility & Evolutionary Relationship 

  

The evolutionary conserved amino acid position in RTEL1 protein was interpreted using ConSurf 

[https://consurf.tau.ac.il/consurf_index.php] web server (Ashkenazy et al., 2016). In this server, 

the evolutionary profile is computed by searching for homologous sequences along with multiple 

sequence alignment, followed by generating a phylogenetic tree using a neighbor-joining 

algorithm. Moreover, through the Bayesian method (Mayrose et al., 2004)or a maximum 

likelihood algorithm(Pupko et al., 2002), this tool enumerates a site-specific conservation score 

from 1 to 9, with 9 representing a highly conserved position. The analysis can be done by using 

protein structure or protein sequence (Berezin et al., 2004). Here, to anticipate the conservation 

score and color scheme, the FASTA format of the protein sequence was inserted as input with 

default parameters. 
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NetSurfP-2.0 [http://www.cbs.dtu.dk/services/NetSurfP/]  is a sequence-based web server that 

employs convolutional and long short-term memory neural network architecture to predict 

structural features such as surface accessibility, structural disorder, and secondary structure for 

each amino acid position (Klausen et al., 2019). To assess the surface accessibility of each amino 

acid residue of the RTEL1 protein, the protein sequence was run within the default parameter in 

the NetSurfP-2.0 server.  

A phylogenetic tree of the ten closest matches to the human RTEL1 protein, determined by 

BLASTp search [https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins], was constructed in 

MEGA11 software using the maximum likelihood technique and a bootstrap parameter of 

1000(Tamura et al., n.d.). This enables us to elucidate the evolutionary relationship of the RTEL1 

protein. The tree was then visualized using the Iroki web server [https://www.iroki.net/] (Moore 

et al., 2020). 

 

2.10 Interatomic Interaction Prediction 
 

The interatomic interaction was predicted by implementing several programs of PyMOL 2.5 

software [https://pymol.org/2/]  which helps to visualize the change in atomic interaction in amino 

acid residues due to any single mutation. For this, the PDB file of the mutant structures or wild 

type structure was opened in PyMOL and from the sequence, the specific amino acid residue was 

selected. The polar contacts of selected residue with other atoms were searched for and the distance 

between the atoms was measured.   

 

2.11 Molecular Docking Analysis  
 

Using the HDOCK [http://hdock.phys.hust.edu.cn/] web server, molecular docking with telomeric 

DNA corresponding to PDB ID 1W0U, was performed on the selected most harmful mutant 

structures, along with the native structure. HDOCK server can perform docking on both the 

FASTA sequence and pdb file to predict the binding complexes between protein and nucleic acid 

by following the hybrid docking approach (Yan et al., 2017, 2020). For the input molecule in the 
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server, protein structure (both wild type and mutant) and DNA structure were provided as receptor 

molecule and ligand molecule respectively.  

From literature, the HHD2 (Harmonin Homology Domain 2) domain of RTEL1 was found to 

interact directly with DNA (Kumar et al., 2022). Therefore, to specify the binding site, the 

positions of the HHD2 domain (A1059, V1060, S1061, A1062, Y1063, L1064, A1065, D1066, 

A1067, R1068, R1069, G1075, S1077, Q1078, L1079, L1080, A1081, A1082, T1084, K1087, 

D1090, and D1134) mentioned in the literature were used here as a receptor binding site residue 

and  TTAGGG motif and its complementary sequence positions were selected from both strands ( 

chain C and chain D) of DNA for ligand binding site residue. From the provided HDOCK result, 

docked models were chosen based on the following criteria: smaller docking score, confidence 

score >=0.5, and smaller RMSD value and subjected to DNAproDB [https://dnaprodb.usc.edu/] to 

visualize the interaction patterns that each complex formed (Sagendorf et al., 2017, 2020).  
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3.1  SNP Annotation 
 

The Single Nucleotide Polymorphism data about the human RTEL1 gene was retrieved from the 

NCBI dbSNP database. Among the total 20734 SNPs from the search result, 25 are inframe 

deletions, 17554 are in the intronic region, 1392 are missense (non-synonymous), 2522 are non-

coding variants, and 781 are synonymous. For this study, only the nsSNPs or missense SNPs (a 

total of 1392) were filtered for subsequent analysis. 

 

3.2 Assessment of RTEL1 Protein Structure 
 

The tertiary structure of the protein determines its properties and capacity for interacting with 

ligands. As no crystal structure was found in the protein data bank for human RTEL1 protein, 

therefore, the AlphaFold structure of RTEL1 protein was taken from UniProt. The structure was 

validated using the SAVES server, where ERRAT provided 91.1036 for the overall quality factor, 

Verify-3D revealed that 52.83% of the residues have an average 3D-1D score of 0.2, and PROVE 

predicted a total of 4.9% buried outliner protein atoms. The Ramachandran plot, which is available 

in PROCHECK, was utilized to further evaluate the quality of the 3D protein structure. The plot 

from the AlphaFold model revealed that 93.7% of the residues are in the favored region, 10.9% 

are in the additional allowed region, 2.0% are in the generously allowed region and 3.4% are in 

the disallowed region. 

 

Table 1: Ramachandran plot parameters of RTEL1 wild-type protein’s AlphaFold structure.   

Ramachandran Plot Statistics for AlphaFold Structure 

Residues in most favoured regions (%) 83.70% 

Residues in additional allowed regions (%) 10.90% 

Residues in generously allowed region (%) 2.00% 

Residues in disallowed region (%) 3.40% 

 



 

22 
 

 

Figure 5: Ramachandran plot of native RTEL1 derived from PROCHECK 

 

The general conclusions drawn from the aforementioned results pointed to the good quality of our 

protein structure, which allowed it to be used to subsequent investigation. 

 

3.3  Determination of functional consequences of RTEL1 nsSNPs  
 

The functional impact of nsSNPs on RTEL1 has been assessed using a total of ten tools.  

SIFT predicted 441 as damaging, where 88 had a low confidence score. Therefore, after 

eliminating the redundancies, 353 remained as the most functionally detrimental ones.  Out of the 

submitted 1392 nsSNPs, the PROVEAN server identified 489 as potentially harmful. PolyPhen-2 

and Panther anticipated 386 and 579 as probably damaging ones respectively. Both of these tools 

generate three types of results: benign, possibly damaging, and probably damaging; however, only 

the probably damaging outputs from Polyphen2 and Panther were selected because this indicates 

the most deleterious SNPs with the highest confidence score. Moreover, SuSPect provides a list 

of scores ranging from 0-100 for each variant that is likely to be disease-causing and the 

recommended cutoff is 50 for the most deleterious ones. Therefore, 72 disease-causing variants 

with a score>=50 were chosen from the SuSPect output.  
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Table 2: High-risk nsSNPs anticipated by five web tools. 

SNP ID Variants SIFT PROVEAN PolyPhen2 Panther SuSPect 

rs1296968885  F15L Deleterious Deleterious Damaging Damaging Disease 

rs2089974057  M25V Deleterious Deleterious Damaging Damaging Disease 

rs1044603913  T44M Deleterious Deleterious Damaging Damaging Disease 

rs1163455875  T49M Deleterious Deleterious Damaging Damaging Disease 

rs1407364310 L50P Deleterious Deleterious Damaging Damaging Disease 

rs778739638 C54F Deleterious Deleterious Damaging Damaging Disease 

rs554402067  S113P Deleterious Deleterious Damaging Damaging Disease 

rs963067934  T115S Deleterious Deleterious Damaging Damaging Disease 

rs746010778 H116P Deleterious Deleterious Damaging Damaging Disease 

rs1333433189 S140F Deleterious Deleterious Damaging Damaging Disease 

rs746931551 R141W Deleterious Deleterious Damaging Damaging Disease 

rs1242481082 R141Q Deleterious Deleterious Damaging Damaging Disease 

rs772748212  P225L Deleterious Deleterious Damaging Damaging Disease 

rs1188469323  N227D Deleterious Deleterious Damaging Damaging Disease 

rs923910999  Y228C Deleterious Deleterious Damaging Damaging Disease 

rs764165415  D231V Deleterious Deleterious Damaging Damaging Disease 

rs398123019 E251K Deleterious Deleterious Damaging Damaging Disease 

rs1454150484 A252V Deleterious Deleterious Damaging Damaging Disease 

rs748740521  H253Y Deleterious Deleterious Damaging Damaging Disease 

rs1386490624  P460L Deleterious Deleterious Damaging Damaging Disease 

rs2090629066  T478N Deleterious Deleterious Damaging Damaging Disease 

rs1012871786  G480R Deleterious Deleterious Damaging Damaging Disease 

rs773057452 T481M Deleterious Deleterious Damaging Damaging Disease 

rs786205700  P484L Deleterious Deleterious Damaging Damaging Disease 

rs374168761 F559L Deleterious Deleterious Damaging Damaging Disease 

rs535749230  A621V Deleterious Deleterious Damaging Damaging Disease 

rs753779060  R624Q Deleterious Deleterious Damaging Damaging Disease 

rs2090674658 S628G Deleterious Deleterious Damaging Damaging Disease 

rs766112578 E629K Deleterious Deleterious Damaging Damaging Disease 

rs1262691904 R639C Deleterious Deleterious Damaging Damaging Disease 
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rs1484865003  R639H Deleterious Deleterious Damaging Damaging Disease 

rs1262230406  G640D Deleterious Deleterious Damaging Damaging Disease 

rs367688683  G645D Deleterious Deleterious Damaging Damaging Disease 

rs1323023332  L646F Deleterious Deleterious Damaging Damaging Disease 

rs1177091623  P647L Deleterious Deleterious Damaging Damaging Disease 

rs16983886  K659N Deleterious Deleterious Damaging Damaging Disease 

rs760108811 G696R Deleterious Deleterious Damaging Damaging Disease 

rs1176364985  R697Q Deleterious Deleterious Damaging Damaging Disease 

rs1416515129 R700Q Deleterious Deleterious Damaging Damaging Disease 

rs1332347156  G706R Deleterious Deleterious Damaging Damaging Disease 

rs1472657490  P725R Deleterious Deleterious Damaging Damaging Disease 

rs1555811919  R729C Deleterious Deleterious Damaging Damaging Disease 

rs2090803986 H960R Deleterious Deleterious Damaging Damaging Disease 

 

PredictSNP integrates the results of six (MAPP, PhD-SNP, Polyphen1, Polyphen2, SIFT, SNAP) 

best-performing tools while PredictSNP2 combines the results of five top tools (CADD, DANN, 

FATHMM, FunSeq2, GWAVA) and gives a consensus score. Here, only the consensus score from 

both of these tools was taken into consideration, where PredictSNP and PredictSNP2 identified 

309 and 364 as deleterious, respectively. In addition, 280 nsSNPs were found to be pathological 

in P-Mut, 505 nsSNPs were predicted to be impactful in SNAP2, and 166 nsSNPs were found to 

be disease-associated in SNP and GO.  

Table 3: High-risk nsSNPs predicted by five web tools. 

SNP ID Variants PredictSNP PredictSNP2 P-Mut SNAP2 SNP &GO 

rs1296968885  F15L Deleterious Deleterious Disease Effect Disease 

rs2089974057  M25V Deleterious Deleterious Disease Effect Disease 

rs1044603913  T44M Deleterious Deleterious Disease Effect Disease 

rs1163455875  T49M Deleterious Deleterious Disease Effect Disease 

rs1407364310 L50P Deleterious Deleterious Disease Effect Disease 

rs778739638 C54F Deleterious Deleterious Disease Effect Disease 

rs554402067  S113P Deleterious Deleterious Disease Effect Disease 

rs963067934  T115S Deleterious Deleterious Disease Effect Disease 
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rs746010778 H116P Deleterious Deleterious Disease Effect Disease 

rs1333433189 S140F Deleterious Deleterious Disease Effect Disease 

rs746931551 R141W Deleterious Deleterious Disease Effect Disease 

rs1242481082 R141Q Deleterious Deleterious Disease Effect Disease 

rs772748212  P225L Deleterious Deleterious Disease Effect Disease 

rs1188469323  N227D Deleterious Deleterious Disease Effect Disease 

rs923910999  Y228C Deleterious Deleterious Disease Effect Disease 

rs764165415  D231V Deleterious Deleterious Disease Effect Disease 

rs398123019 E251K Deleterious Deleterious Disease Effect Disease 

rs1454150484 A252V Deleterious Deleterious Disease Effect Disease 

rs748740521  H253Y Deleterious Deleterious Disease Effect Disease 

rs1386490624  P460L Deleterious Deleterious Disease Effect Disease 

rs2090629066  T478N Deleterious Deleterious Disease Effect Disease 

rs1012871786  G480R Deleterious Deleterious Disease Effect Disease 

rs773057452 T481M Deleterious Deleterious Disease Effect Disease 

rs786205700  P484L Deleterious Deleterious Disease Effect Disease 

rs374168761 F559L Deleterious Deleterious Disease Effect Disease 

rs535749230  A621V Deleterious Deleterious Disease Effect Disease 

rs753779060  R624Q Deleterious Deleterious Disease Effect Disease 

rs2090674658 S628G Deleterious Deleterious Disease Effect Disease 

rs766112578 E629K Deleterious Deleterious Disease Effect Disease 

rs1262691904 R639C Deleterious Deleterious Disease Effect Disease 

rs1484865003  R639H Deleterious Deleterious Disease Effect Disease 

rs1262230406  G640D Deleterious Deleterious Disease Effect Disease 

rs367688683  G645D Deleterious Deleterious Disease Effect Disease 

rs1323023332  L646F Deleterious Deleterious Disease Effect Disease 

rs1177091623  P647L Deleterious Deleterious Disease Effect Disease 

rs16983886  K659N Deleterious Deleterious Disease Effect Disease 

rs760108811 G696R Deleterious Deleterious Disease Effect Disease 

rs1176364985  R697Q Deleterious Deleterious Disease Effect Disease 

rs1416515129 R700Q Deleterious Deleterious Disease Effect Disease 

rs1332347156  G706R Deleterious Deleterious Disease Effect Disease 

rs1472657490  P725R Deleterious Deleterious Disease Effect Disease 
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rs1555811919  R729C Deleterious Deleterious Disease Effect Disease 

rs2090803986 H960R Deleterious Deleterious Disease Effect Disease 

 

Among 1392 nsSNPs, 43 were deemed to be functionally harmful by all ten different tools and the 

remaining SNPs were assumed to be neutral in at least one of these tools. So, by taking into 

consideration only the common variants predicted by all ten tools, 43 nsSNPs (Table 1) were 

filtered out for further analysis.    

 

3.4  Determination of Structural Impact of RTEL1 nsSNPs 
 

For the determination of the structural impact of nsSNPs on RTEL1 protein, the filtered nsSNPs 

from the upstream analysis were subjected to nine different tools. Among these nine tools, seven 

were utilized for the prediction of stability change, and two were used for phenotypic effect 

prediction. 

 

3.4.1 Analysis of protein stability 
 

The change in the structural stability of RTEL1 protein due to the introduction of point mutations 

was predicted through seven bioinformatics-based web tools. The 43 deleterious nsSNPs were run 

to check the structural stability of proteins in the DUET server, which includes the results of both 

mCSM and SDM. mCSM, SDM, and DUET predicted 36, 30, and 33 nsSNPs as destabilizing for 

RTEL1 protein, respectively. To increase the accuracy of our predictions of changes in protein 

stability caused by single AA mutations, all 43 variants were analyzed through I-Mutant, INPS-

MD, Mupro, and Dynamut. I-Mutant anticipated 34 and MuPro analyzed 41 as stability-decreasing 

nsSNPs. Moreover, 40 nsSNPs with a negative ΔΔG score were considered destabilizing in the 

INPS-MD result. Lastly, by combining the structure or NMA-based prediction (ΔΔG ENCoM) 

and vibrational entropy change (ΔΔS ENCoM) between mutant and wild-type structures, Dynamut 

provides the ΔΔG prediction score for each amino acid substitution. Here, 22 nsSNPs were 

predicted to be destabilizing by Dynamut. 
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Table 4: Destabilizing nsSNPs identified by seven in silico tools 

nsSNPs  mCSM SDM DUET I-Mutant INPS-MD MuPro Dynamut  

F15L Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  

M25V Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  

S113P Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  

H116P Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  

R141Q Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  

Y228C Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  

A252V Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  

G480R Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  

R639H Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  

G645D Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  Decrease  

 

Combining the findings from seven tools, 14 nsSNPs were identified frequently by all of these 

tools as being extremely detrimental based on their effects on the structural stability of proteins. 

 

3.4.2 Prediction of Phenotypic Effects 

 

The phenotypic effects of 14 functionally damaging SNPs were computed using MutPred2 and 

Project HOPE. Together with the P-value and probability score, some predictions made using 

MudPred2 were: loss or gain of allosteric site, catalytic site, helix, relative solvent accessibility, 

increase in various types of modification such as transmembrane protein, DNA, ligand, metal 

binding, or ordered interface, etc. Besides that, a MutPred2 score was given, with a cutoff of 0.50, 

which determines the overall probability of pathogenicity. The score goes from 0 to 1, and as the 

score rises, it becomes more likely that the SNP-induced alterations can influence the molecular 

mechanism of disease. Out of 14 total SNPs, 13 were identified as having higher pathogenic 

potential. Additionally, the mutations were submitted to HOPE for analysis. According to HOPE 
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results, 9 of the 14 mutant amino acids differed in charge, 2 differed in the level of hydrophobicity, 

and all of the 14 mutant residues were predicted to differ in size from the wild-type residue. These 

differences in size, charge, and hydrophobicity can interfere with the interactions of the nearby 

amino acid residues and also with protein folding.  Aside from these, amino acid substitution also 

has an impact on numerous other attributes. For example, substitutions, where proline or glycine 

was a wild-type or changed amino acid, may disrupt the conformation by interfering with the 

rigidity or flexibility of the structure as prolines are rigid and glycine is a more flexible amino acid.  

 

 

Table 5: Damaging nsSNPs predicted by MutPred2 and Project HOPE.   

nsSNPs   MutPred2 HOPE 

F15L Damaging  Damaging  

M25V Damaging  Damaging  

S113P Damaging  Damaging  

H116P Damaging  Damaging  

R141Q Damaging  Damaging  

Y228C Damaging  Damaging  

A252V Damaging  Damaging  

G480R Damaging  Damaging  

R639H Damaging  Damaging  

G645D Damaging  Damaging  

 

Finally, 13 nsSNPs were repeatedly recognized by MutPred2 and Project HOPE web server as 

being particularly harmful based on their effects on protein phenotype. These SNPs were found to 

induce a decrease in protein stability along with having a negative impact on the other properties. 
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3.5  Three Dimensional Structure Prediction for Mutant Proteins 
 

In order to investigate whether the selected nsSNPs cause any alteration in the resultant protein, 

comparative 3D modeling along with a structural comparison between native and mutant structures 

was carried out through Modeller 10.2 followed by PyMOL 2.5 software. To generate the sequence 

for each individual variant, the wild-type amino acid residues located in the selected deleterious 

SNP positions in the RTEL1 protein sequence were replaced with the mutant amino acid. The 

mutated protein sequence was then utilized in Modeller 10.2 to develop the 3D structure for each 

variant using the AlphaFold structure as a template. 

Next, the RMSD values of the mutant models were examined in PyMOL 2.5 for the investigation 

of structural similarity between the native and mutant structures. All the mutant models were 

observed to have a high RMSD value (Table 6) when superimposed over the native structure. As 

the larger RMSD value demonstrates greater deviation between wild-type and mutant structures, 

all 13 nsSNPs were therefore taken into consideration for the following investigation. 

Table 1: RMSD value of 13 mutant models generated through PyMOL 

Mutated Protein Model RMSD 

F15L 0.471 

M25V  0.393 

R141Q  0.455 

Y228C  0.449 

A252V  0.685 

G480R  0.437 

R639H 0.396 

G645D  0.526 

R697Q  0.511 

R700Q 0.580 

G706R   0.418 

R729C 0.607 

H960R  0.574 
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3.6  Investigation of the Impact of nsSNPs on Secondary Structure 
 

The prediction of secondary structure conformation of RTEL1 and 13 mutants were performed in 

the PDBsum web tool. From the output of the tool, it was found that both the wild-type and mutant 

structures have the same number of strands, sheets, beta hairpins, and beta alpha beta units. Apart 

from the number of helix-helix interactions, which remained the same in the native and M25V 

mutant structure, the number of helices and helix-helix interactions were increased in mutant 

structures compared to the native structure. Additionally, in all mutant structures, the amount of 

beta and gamma turns was reduced which is shown in Table 7. 

Table 2: ProMotif information of native and mutant protein 

Protein  Sheets 

beta 

alpha 

beta 

units 

beta 

hairpins 
strands helices 

helix-

helix 

interacts 

beta 

turns 

gamma 

turns 

Wild-type 4 3 3 20 53 74 67 14 

F15L 4 3 3 20 58 80 41 7 

M25V 4 3 3 20 60 74 43 10 

R141Q 4 3 3 20 58 76 40 9 

Y228C 4 3 3 20 58 77 42 9 

A252V 4 3 3 20 58 75 40 9 

G480R 4 3 3 20 57 75 43 9 

R639H 4 3 3 20 58 75 41 7 

G645D 4 3 3 20 58 79 40 8 

R697Q 4 3 3 20 58 77 41 10 

R700Q 4 3 3 20 57 76 41 10 

G706R 4 3 3 20 58 81 40 8 

R729C 4 3 3 20 58 75 42 9 

H960R 4 3 3 20 58 77 40 8 

 

Furthermore, in the native structure, positions W89 to D105 had a large number of closely packed 

beta turns, whereas, in the mutant structures, this varied widely (either entirely absent or 2/3 beta 
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turns were present). Besides, F15L, M25V, A252V, G480R, R639H, G645D, R697Q, and R700Q 

mutants showed more tightly packed beta and gamma turns after position A429 than R141Q 

Y228C, G706R, R729C, and H960R mutants.  
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Figure 6: Analysis of the secondary structures of wild-type and mutated RTEL1 proteins using PDBsum. 

It displays the changes brought on by nsSNPs in terms of alpha helices, beta strands, and other patterns. 

 

3.7  Identification of Domains and Clusters 
 

Mutation 3D was used to predict mutant positions in domains and clusters, and the tool predicted 

two domains based on the submitted data. Dead 2 domain (111–272) contains R141Q, Y228C, and 

A252V mutants, and Helicase C2 domain (545–731) contains R639H, G645D, R697Q, R700Q, 

G706R, and R729C mutants. Moreover, the tool projected three ModBase models. The original 

model featured two clusters, including R639H, R697Q, R700Q, and G706R in one cluster and 

M25V, A252V, and G480R in the second cluster. The second model, on the other hand, featured 

one cluster, which housed R639H, R697Q, R700Q, and G706R. Furthermore, the third model lacks 

a cluster. 
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Figure 7: Domain & cluster information of nsSNPs represented in linear protein model. Clusters of (A) 

ModBase Model 1 and (B) ModBase Model 2 are shown in red and blue boxes (on the right side).  

Helicase C2 (right) and Dead2 (left) domains are indicated as a light blue transparent box in the 

highlighted green region of the linear model and the position of amino acid substitutions are portrayed in 

vertical lines 

 

According to the findings of Mutation3D, seven mutants were found to be part of a cluster, which 

indicates that these mutations may have the greatest impact on the structure of the protein. Even 

though the rest of the mutants were not predicted to form clusters, we kept all of them for further 

analysis as those were predicted to be deleterious in former investigations. 

 

3.8  Effect of nsSNPs on Post Translational Modification Sites  
 

Post Translational Modification (PTM) entails the procedure by which proteins are chemically 

modified and induce conformational changes that allow the protein to be functional and participate 

in specific biological activities. To predict the potential PTM sites in RTEL1 and the effects of 

SNPs on PTM sites, MusiteDeep was used. A total of 8 types of 74 PTM sites were predicted for 

the protein sequence. Among all the selected deleterious SNPs, only the R639 position was 

predicted to be in a methylation site. Studies have linked methylation to the fine-tuning of a variety 

of biological processes, resulting in the formation of numerous diseases (Ramazi & Zahiri, 2021). 

Thus, amino acid alteration in position 639 can be anticipated to result in PTM impairment, which 

might disrupt the stability of a protein or have an overall negative impact on it. 
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3.9  Analyzation of Evolutionary Relationship of RTEL1 Protein and 

Conservation Profile & Surface Accessibility of nsSNPs  
 

Despite the evolutionary change, amino acid residues essential for a variety of biological functions, 

including genome integrity, typically persist. Because of this, it is frequently believed that the 

degree of residue conservation indicates how crucial a location is to preserve the stability and 

functionality of a protein. In this regard, the conservation profile and surface accessibility of the 

13 nsSNPs were analyzed through the ConSurf and NetSurf web tools, along with inspecting the 

evolutionary relationship of RTEL1 protein by using MEGA 11 software.  

 

3.9.1 Evolutionary Relationship 
 

The MEGA 11 program was used to analyze the conservation of the selected 13 SNP positions in 

ten different species along with phylogenetic analysis in order to determine the evolutionary 

relationships between these species. Then the tree was displayed by Iroki to examine evolutionary 

conservation.  According to the findings, all of the amino acid positions are conserved among these 

ten species. Moreover, Pan paniscus, Pan troglodytes, and Gorilla gorilla are the three species that 

have been found to share the largest genetic similarity with human RTEL1 protein. So, according 

to the phylogenetic tree, it can be said that the RTEL1 protein is more conserved in primates.  
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(A) 
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(B) 

 

Figure 8: (A) Evolutionary conservancy of 13 nsSNP position analyzed through multiple sequence 

alignment. (B) Graphical depiction of the evolutionary relationship of human RTEL1 with its closest 

relatives. 

3.9.2 Analysis of Evolutionary conservation 
 

To determine the conserved positions in the amino acid sequence of RTEL1 protein, the ConSurf 

server was used. Using the Bayesian approach, the ConSurf online browser assessed the degree of 

conservation of each protein residue along with identified potential structural and functional 

residues. The result showed twelve structural (buried) residues, two functional (exposed) residues, 

and one identified as exposed residue out of the fifteen residues that were filtered out from the 

upstream study, with the highly conserved profile. On the conservation scale of 1-9, thirteen 

positions exhibit the highest conservation profile with a conservation score of 9, and one position 
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(F15) has a high level of conservation with a conservation score of 8. However, position R729 

scored 7 which still falls under the highly conserved category.  
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Figure 9: Evolutionary conservation profile prediction of RTEL1 protein using ConSurf web server. All 

of the nsSNPs identified as harmful belonged to highly conserved regions in the RTEL1 protein. 
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3.9.3 Evaluation of Surface accessibility 
 

With the percentage scores, NetSurfP-2.0 estimated the surface accessibility of each amino acid 

site of the RTEL1 protein. The relative surface accessibility of each position in the amino acid 

sequence was predicted at a threshold of 25%, which meant that amino acid residues with scores 

of more than 25% were expected to be exposed, whilst residues with scores of less than 25% were 

assumed to be buried. Among thirteen selected positions, - R141, R639, and R729 each received 

a score of more than 25%. These amino acid residues were therefore anticipated to be in an exposed 

position, while the remaining 10 locations were expected to be in the buried zone, scoring less than 

25%. 

Table 3: Surface accessibility result of 10nsSNPs from NetSurf2.0 

Class 

assignment 

Amino 

acid 
Sequence name 

Amino 

acid 

number 

Relative Surface 

Accessibility 

B F sp_Q9NZ71_RTEL1_HU 15 0.116 

B M sp_Q9NZ71_RTEL1_HU 25 0.012 

E R sp_Q9NZ71_RTEL1_HU 141 0.315 

B Y sp_Q9NZ71_RTEL1_HU 228 0.076 

B A sp_Q9NZ71_RTEL1_HU 252 0.034 

B G sp_Q9NZ71_RTEL1_HU 480 0.15 

E R sp_Q9NZ71_RTEL1_HU 639 0.287 

B G sp_Q9NZ71_RTEL1_HU 645 0.061 

B R sp_Q9NZ71_RTEL1_HU 697 0.145 

B R sp_Q9NZ71_RTEL1_HU 700 0.17 

B G sp_Q9NZ71_RTEL1_HU 706 0.005 

E R sp_Q9NZ71_RTEL1_HU 729 0.429 

B H sp_Q9NZ71_RTEL1_HU 960 0.097 

 

As any modification of amino acids in any highly conserved position is much more harmful than 

in any non-conserved position as well as the residues in the buried or exposed zone can also 

potentially hamper the structure of proteins and their interactions. Therefore, the outcomes from 
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the aforementioned techniques indicated that the thirteen selected nsSNPs may have a significant 

impact on the RTEL1 protein.  

 

3.10 Prediction of Interatomic Interaction  
 

PyMOL2.5 software was used to evaluate ten mutated proteins chosen from upstream analyses to 

visualize the changes in interaction patterns with nearby amino acid residues. 

In the case of the substitution of phenylalanine with leucine at position 15, no alteration in 

interatomic interaction was observed. In the native structure, methionine at position 25 interacts 

with four nearby residues (Gln21, Gln22, Val28, and Leu29), whereas due to the substitution of 

methionine with valine, the number of interacting residues decreased to three and the distance 

remained quite similar to that of the wild-type residue. For the substitution of arginine with 

glutamine at position 141, only one interaction with Cys145 remained intact in the mutant, with 

the distance being decreased to 2.8 and the rest of the interactions were completely eliminated. 

Upon cysteine replacement of tyrosine at position 228, the distances with Pro225 and Asn227 

atoms in the mutated RTEL1 protein structure were increased to 3.3 and 3, respectively, whereas 

the wild-type residue showed no interaction with Asn227. When comparing wild-type and mutant 

amino acids, it was found that the A252V mutation did not significantly alter the interaction pattern 

and that the distance between the neighboring residues (Val255 and Thr478) remained nearly 

unchanged. The distance between Gly480 and the nearby Ser479 residue was 2.9, as shown in 

Figure. Due to the glycine being replaced with arginine, the distance was reduced to 2.8, and three 

additional interactions with neighboring Thr44, Gly696 and Gln693 were introduced in the mutant 

structure. The mutation G645D formed an entirely new interaction with Ser527, Leu646, and 

Arg714 at a distance of 2.6, which was not seen in the wild-type residue. Moreover, the distance 

between Arg639 (wild type) and nearby Gly555, Asp635, Asp704, Tyr705, and Ala707 residues 

was 3, 3.4, 2.7, 2.9, and 2.9, whereas for His639 (mutant), the values were 3 and 2.9 for Gly555 

and Ala707, respectively, and the rest of the interactions were not observed to persist in the mutated 

protein structure. Furthermore, when arginine was replaced with glutamine, the structure relaxed 

because five of the six interactions observed in the wild-type amino acid (Leu631, Asp632, 
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Phe633, Gly696, and Arg697) were completely eliminated in the mutant amino acid, while the 

remaining interaction (Asp704) showed the slightest increase (2.9 to 3.3) in distance. The mutant 

at position 960, on the other hand, had little effect on the interaction, where the interaction with 

Tyr922 was canceled out along with minimal fluctuation in other interactions with other 

neighboring atoms (as shown in the figure). Finally, among the rest 3 mutations, two mutations 

showed complete elimination of two interactions while the other showed the addition of two new 

interactions. In the case of R697Q, interaction with Ser628 and Leu631 was eliminated and the 

interacting distance with both Ala694 and Arg700 increased by at least 1Å. Similarly, contacts 

with nearby Pro725 and Val732 were unaffected by the cysteine substitution at position 729 in the 

mutant, and the distance was increased to 3.1 with Pro725 and reduced to 3.2 with Val732. Last 

but not least, when glycine was switched out for arginine at position 706, two new interactions 

with Gly638 and Gly640, at distances of 2.7 and 2.6, as well as a minor increase in the interacting 

distance with atoms comparable to the wild-type, were noticed (shown in Figure). 
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Figure 10: Analyzation of the effect of nsSNPs on the interaction pattern with the neighboring residues.  

The distance from nearby amino acid atoms in (A) F15L, (B) M25V, (C) R141Q, (D) Y228C, (E) 

A252V, (F) G480R, (G) R639H, (H) G645D, (I) R697Q, (J) R700Q, (K) G706R, (L) R729C, and (M) 

H960R mutant structure are visualized using PyMOL2.5. 

 

3.11 Molecular Docking 
 

Due to RTEL1 being an essential DNA helicase, molecular docking of native and 13 filtered 

mutant proteins was performed with telomeric DNA. Active residues of the HHD2 domain in 
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RTEL1 were extracted from the literature and used for specifying the DNA binding site in the 

HDOCK docking server.  

A total of 14 molecular dockings were performed in the HDOCK server, which predicts binding 

complexes using a hybrid algorithm, to predict binding affinity. Some deviation in the orientation 

of the molecular complexes has been observed. Eight mutants (F15L, M25V, Y228C, A252V, 

G480, R639H, R697Q, and R729C) have been predicted to have a less negative docking score 

when binding with DNA than the wild type, indicating a less stable binding complex. Besides, 

three of the other mutants showed a more negative docking score, which might result in a more 

rigid binding complex, leading to a discrepancy in the functionality of proteins. The bound 

conformations revealed significant differences between the mutant and wild-type molecules when 

visualized in the DNAproDB web-based tool. All of the mutant proteins deviated from the wild 

type when binding to DNA, not only in terms of interacting residues but also the number of 

hydrogen bonds, Van der Waals interactions, and nucleic acid interactions. Additionally, in 

comparison to the wild type, the DNA has been observed to bind with entirely new residues in the 

F15L, M25V, Y228C, G706R, and R729C mutant proteins. 

 

Table 4: Analysis of binding affinity and interaction of wild-type and mutant protein with DNA 

Docked 

Molecules 
Interacting Residues  

Total 

HW 

Count 

Total 

VdW 

count 

Total 

Nuc.Int.

Count  

Docking 

Score  

Confidence 

Score 

Ligand 

rmsd 

(Å) 

AF-DNA 

H1123,D1090,R1121, 

P1122, K1087,Q1014, 

A1011,T1010, Q1015, 

E1020 

9 70 25 -162.78 0.5636 163.85 

F15L-

DNA 
P943,K944,Q1078 2 40 11 -108.52 0.3037 150.61 

M25V - 

DNA 

N947,P887,Q950, 

K1005,T1007,S1009 
1 2 6 -147.45 0.4873 150.56 

R141Q - 

DNA 

R433,A1011,K1087, 

R1121,P1122,D1090, 

H1123,Q1126 

1 45 19 -199.3 0.7283 159.89 
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Y228C - 

DNA 
W441,Q291,T287  0 24 12 -159.8 0.5488 147.01 

A252V - 

DNA 

A1011,E1020,K1087, 

Q1014,Q1015, 

Q1088,R1121 

2 57 26 -137.35 0.4371 158.6 

G480R - 

DNA 

R895,Q954,Q1088, 

K1087,R1121, 

D1089,D1090 

0 19 11 -129.01 0.3966 166.48 

R639H - 

DNA 

A440,A1101, 

K1106,W441 
0 24 11 -137.36 0.4371 147.05 

G645D - 

DNA 
R433,S1009,T1010, 

A1011,A1012,K1087, 

Q1088,D1089,D1090, 

R1121,H1123 

5 46 23 -180.79 0.6493 154.45 

R697Q-

DNA 

A440,T443,K1087, 

Q1088,D1089,D1090, 

R1121, H1123 

3 40 16 -147.01 0.4851 160.21 

R700Q-

DNA 

Q436,R447,K1087, 

Q1088,D1090,R1121, 

P1122, H1123, H1124 

5 72 20 -177.62 0.6347 156.1 

G706R-

DNA 
E312,E313,T287, 

A316,K319,W441 

0 21 9 -186.84 0.6763 146.61 

R729C-

DNA 
T1007,S1077, 

Q1078,A1081 

1 9 7 -131.14 0.4068 157.55 

H960R-

DNA 

T1010,A1011,Q1014, 

K1087, 

Q1088,D1089, 

D1090,R1121,P1122, 

H1123 

7 82 24 -196.81 0.7183 166.68 



 

46 
 

 

(A) 

 

(C) 

 

(E) 

 

(B) 

 

(D) 

 

(F) 



 

47 
 

 

(G) 

 

(I) 

 

(K) 

 

(H) 

 

(J) 

 

(L) 



 

48 
 

 

(M) 

 

(N) 

Figure 11: Graphical representation of molecular docking using DNAproDB. Illustration of docking 

result of DNA with (A) native, and mutant (B)F15L, (C) M25V, (D)R141Q, (E)Y228C, (F) A252V, (G) 

G480R, (H) R639H, (I)G645D, (J) R697Q, (K) R700Q, (L) G706R, (M) R729C, and (N) H960R protein 

are shown above. 
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Chapter 4 

Discussion
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The advancement of technology and high throughput sequencing techniques enable us to construct 

genomic databases over the past few years. These massive, expanding databases are converted into 

useful information using a variety of bioinformatics tools and techniques (Tenenbaum, 2016; 

Vamathevan & Birney, 2017). Therefore, the demand for bioinformatics tools and techniques is 

increasing now. Moreover, in vitro procedures involve a significant number of labor with no 

assurance of successful results, in this regard cost effective and time-saving computational 

analyses are preferred prior to work in the laboratory, especially in case of mutagenesis, functional 

or structural characterization of protein or working with any particular gene of interest in genomic 

data analysis research. Thus, bioinformatics analysis can help to create in vitro experiments that 

are specifically targeted, saving time and other resources (Mustafa et al., 2020). The goal of this 

study was to investigate the functional effect of germ-line SNPs of the RTEL1 gene from available 

databases. These findings may be useful for future research on the RTEL1 gene, RTEL1-related 

disorders, and the development of its therapeutics. 

The essential helicase, RTEL1 is a member of the superfamily 2 (SF2) helicases, which comprises 

a RAD3-like DNA helicase, as well as the iron-sulfur (Fe-S) cluster helicase family, that includes 

xeroderma pigmentosum group D (XPD) and Fanconi anemia complementation group J. (FANCJ) 

and DEAD/H box DNA helicase (Uringa et al., 2010; Vannier et al., 2014). RTEL1 dissembles 

recombination intermediates as well as breaks down telomeric loop or T loops and restricts 

excessive meiotic crossing over. Studies have shown the function of RTEL1 in DNA replication 

machinery and its association with maintaining the proper DNA replication, stability of replication 

fork, and maintenance of telomere integrity. Moreover, the role of RTEL1 has been also observed 

in suppressing the homologous recombination in double-stranded break repair. In addition, 

according to Vannier et al., RTEL1 may also play a role in telomere protection by breaking up G-

quadruplexes, a complex DNA structure that is present at telomeres, and preventing replication. 

This would prevent telomeres from degradation and the manifestation of a fragile telomere 

phenotype. The deficiency of RTEL1 in different cell lines has proven the increasing risk of 

telomere fragility and genomic instability. In humans, mutations in the RTEL1 gene have been 

proven to cause a genetic rare hereditary disease called Dyskeratosis congenita (DC) and its severe 

form Hoyeraal–Hreidarsson syndrome (HHS). People with these diseases have shown to have 

some major clinical signs such as bone marrow failure, accelerated aging, intrauterine growth 

restriction, developmental defects, microcephaly, cerebellar hypoplasia, immunodeficiency, and 
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cancer predisposition. Telomeres are excessively short for their ages in every patient with RTEL1 

deficiency who has been identified to date, demonstrating the importance of RTEL1 in controlling 

telomere size in humans(le Guen et al., 2013). Not only the shortening of telomere length, but also 

an abnormally increasing rate of spontaneous 53BP1 foci (a marker of DNA damage), presence of 

anaphase bridges, a marker of genomic instability, and telomeric aberrations such as losses of sister 

telomeres, terminal deletions, etc. were also noted in the cells of three patients with RTEL1 

deficiency (LeGuen et al., 2013b). Additionally, an increasing rate of T-circle has been observed 

in a variety of RTEL1-deficient individuals' cell types (Deng et al., 2013). The discovery of RTEL1 

mutations in DC/HH patients highlights the crucial function of RTEL1 in maintaining telomere 

integrity and genomic stability in humans. It is possible that RTEL1 expression dysregulation or 

less harmful alterations could contribute to the emergence of malignancies. Moreover, idiopathic 

pulmonary fibrosis has been linked to heterozygous missense variations in the RTEL1 gene. The 

role of RTEL1 has also been found in diseases like gliomas, glioblastomas, and breast cancer.  

Even though RTEL1 mutations and their association with human disorders are commonly 

identified in a variety of studies, no in silico analysis has been performed to date to anticipate 

harmful nsSNPs of our targeted gene. Therefore, the purpose of this project is to develop a 

bioinformatics strategy for identifying the most deleterious nsSNPs and their impact on the 

structure and functionality of the RTEL1 protein.  

Our initial classification of nsSNPs was based on how they might affect the structure and 

functionality of RTEL1 protein. Different bioinformatics tools have different threshold cut-off 

values for classifying SNPs as damaging or benign, which can occasionally lead to misleading 

predictions for SNPs with prediction scores that are close to the threshold cut-off value. Therefore, 

to overcome this limitation, a total of 19 web tools depending on the structural and sequential 

homology approaches were used to predict functionally and structurally deleterious nsSNPs.  It 

should be noted that for the analysis, we employed the isoform 2 (1219 amino acid) sequence as it 

is represented as a canonical sequence in the Uniport database. Using ten computational SNP 

prediction tools—SIFT, PROVEAN, Polyphen-2, PANTHER, SuSPect, PredictSNP, 

PredictSNP2, P-Mut, SNAP2, and SNP&GO, —we screened out 43 significantly harmful nsSNPs 

from the 1392 nsSNPs mentioned in the NCBI dbSNP database. Based on the prediction scores 

produced by these ten web tools, the 43 harmful nsSNPs were chosen. The structural impact of the 

filtered nsSNPs was analyzed in two categories— mCSM, SDM, Duet, I-Mutant, INPS-MD, 
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MuPro, and Dynamut was used for the prediction of stability change, whereas Mutpred2 and 

Project HOPE were utilized for phenotypic effects prediction.  

Protein stability, which governs protein conformational shape, determines how well a protein 

performs its function. Protein misfolding, disintegration or aberrant protein aggregation can occur 

as a result of any alteration to the stability of the protein (Witham et al., 2011). According to 

research, amino acid changes that reduce the stability of proteins by a few kcal/mol are accounted 

for 80% of missense mutations that are linked to diseases (Wang & Moult, 2001). The ΔΔG value 

that we received as an output from the tools was used to assess the pathogenicity and the 

consequences of  SNPs on the protein’s stability. The protein's net free energy balance between its 

folded and unfolded states is represented by the ΔG value. The folding free energy change, or 

ΔΔG, separates the mutant from the wild type which measures the effect of mutation on the 

protein’s stability (Zhang et al., 2012). Hence a decline in ΔΔG value implies that the protein is 

losing its stability. Thus, we concentrated on the effects of the 43 harmful nsSNPs on the stability 

of the RTEL1 protein. Of these 43 nsSNPs, 14 nsSNPs (F15L, M25V, R141Q, Y228C, A252V, 

G480R, F559L, R639H, G645D, R697Q, R700Q, G706R, R729C, H960R) were commonly 

predicted to have negative ΔΔG value by ten web servers, indicating a destabilizing effect on the 

protein. The phenotypic consequences of these variants were examined through MutPred2 and 

HOPE where MutPred2 predicted every potential gain, loss, or modification of different molecular 

properties and HOPE thoroughly examined them. Except for the F559L mutation, all of the 

mutations were predicted as having a damaging effect on the protein. SNPs with glycine as wild-

type residues (G480R, G645D, G706R) are highly conserved due to their small size and less steric 

hindrance of side chains, a crucial aspect for protein flexibility. The flexibility required for protein 

function is therefore compromised by its replacement (Parrini et al., 2005). Additionally, 

conformational flexibility is the primary factor influencing the aggregation tendency of protein, 

thus any alteration in protein flexibility may increase the likelihood of protein being aggregated 

and forming fibril (Board et al., 1990; Valerio et al., 2005). Moreover, arginine is a positively 

charged amino acid, variants where arginine is replaced with amino acids of the neutral or same 

charge (R141Q, R639H, R697Q, R700Q, R729C) will possibly cause loss of interaction with other 

molecules, whereas, in case of H960R, it is predicted by HOPE to cause repulsion of ligand or 

other molecules of similar charges. Apart from these, changes in size and hydrophobicity due to 

the SNPs may also result in a destabilizing effect on proteins or a potential loss of external 
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interactions. Because of the disparity in size, M25V is projected to result in an empty space in the 

core of the protein. Because of the twofold inherent hydrophobicity, cysteine is an essential amino 

acid for maintaining the stability and structure of proteins. Mutation with the introduction of 

cysteine has been observed to have a destabilizing effect on membrane protein (Iyer & Mahalakshmi, 

2019). HOPE predicted that variants containing mutant cysteine residues (Y228C, R729C) would 

result in a shift in the hydrophobicity level, which would be detrimental to the protein. This result 

was also verified through the evaluation of interatomic interactions where all of the mutations have 

been observed to gain or lose some interactions with nearby atoms due to the substitution of amino 

acids. The most significant changes were observed in R141Q, Y228C, G480R, R639H, G645D, 

R700Q, G706R and R729C mutations. Besides, the domain and cluster information of these 13 

nsSNPs were identified through Mutation3D. Two domains were identified in the RTEL1 protein 

where R141Q, Y228C, and A252V mutations are in the Dead_2 domain and R639H, G645D, 

R697Q, R700Q, G706R, and R729C mutations are in Helicase C_2 domain. Also, a total of 7 

mutations (M25V, A252V, G480R, R639H, R697Q, R700Q, G706R) were found to form cluster.  

The correct folding of a protein is necessary for the formation of accurate structure which in turn 

ensures proper functional attributes of the protein. The most advantageous structures from an 

energetic standpoint are secondary structures, which facilitates further three-dimensional folding, 

essential for super secondary structures, tertiary structure, motifs, and domains (Khan & Vihinen, 

2007). Beta and gamma turns are thought to play a vital role in a significant subset of the secondary 

structure of proteins and any alteration to these could impair the protein's overall functionality, 

which, depending on its associated function, could lead to various diseases. In secondary structure 

analysis, it has been found that all 13 mutations contain fewer beta and gamma turns than the wild 

type. All of the mutant structures displayed a larger RMSD value when mutant and wild-type 

structures were superimposed, which justifies the structural deviation resulting from single amino 

acid substitution in the protein. Additionally, evolutionary conservation of the protein sequence 

plays an essential role in evaluating the adverse effect of mutation on species. Therefore, using the 

ConSurf server, first, we identified the evolutionary conservation profile of each amino acid 

position in the RTEL1 protein, where all of the SNP positions were predicted to be conserved in 

the protein. For further evaluation, we execute multiple sequence alignments of ten different 

species using Mega11 software, and the result showed that all 13 positions are homologous in ten 
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species. The phylogenetic tree also showed the conservation of RTEL1 protein is mostly found in 

primates, chimpanzees and gorillas are the closest relatives of humans. 

The molecular docking investigation of telomeric DNA with native and 13 nsSNPs revealed 

alterations in binding affinity, which point to a shift in the interaction pattern of the complex. 

Docking is basically a technique of measuring the optimal orientation of two molecules when they 

are bonded together to form a stable complex. Usually, the better-orientated the ligand is at the 

binding pocket of the receptor, the more negative the binding affinity becomes (Kastritis & Bonvin, 

2013). Hence, less negative binding affinity demonstrates the change in the binding orientation of 

the ligand to the receptor molecule, resulting from the substitution of amino acid residues. Out of 

13 mutations, 8 mutations —F15L, M25V, Y228C, A252V, G480, R639H, R697Q, and R729C 

were found to have less negative docking score than the wild-type protein, indicating a less stable 

binding complex. On the other hand, compared to the complex generated by the wild-type protein, 

mutations like R141Q, G645D, R700Q, G706R, and H960R revealed a stiffer DNA binding 

complex with a more negative docking score. Moreover, in the binding pocket, there was a 

discernible reduction of H-bond and Van der Waals interactions. Interestingly, a remarkable 

change in the receptor-interacting residues has been observed in F15L, M25V, Y228C, G706R, 

and R729C mutations, where the DNA was found to bind with a different spectrum of residues 

than the wild-type. Besides, among these four, three mutations were found to belong to the Dead_2 

(Y228C) and Helicase C_2 (G706R, and R729C) domains.  Dead_2 domain is a part of RAD3-

related DNA binding helicases which are involved in DNA repair, regulation of transcription, and 

metabolic process of nucleic acid and nucleotide.  Whereas the Helicase C_2 domain falls under 

the C terminal helicase domain which is thought to be necessary for helicase activity (Vannier et 

al., 2014), and the common phenotypic outcome seen in patients with HHS or DC, particularly 

short telomeres is predicted to be responsible for the altered activity of C terminal domain (Ballew 

et al., 2013; Vannier et al., 2014). Therefore, the mutations in these two domains of RTEL1 protein 

could impose a more deleterious effect. Moreover, according to Mutation 3D analysis, M25V and 

G706R belonged to the mutation cluster and Kamburov et al. reported that mutations in cancer 

tissues have a tendency to form clusters in specific positions of protein. Thus, cluster-forming 

mutations could possibly cause diseases due to the damaging impact on the protein’s functionality.  
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Conclusion 

  

Our study identified 13 significant nsSNPs from the huge SNP database of the RTEL1 gene. These 

mutations were discovered to have a deleterious impact on the structural and functional properties 

of the RTEL1 protein which may disrupt the original conformation of the native protein. This 

extensive study can therefore be very helpful in future research on RTEL1, opening the door to 

the possibility of looking into potential disease-causing SNPs, and facilitating the identification of 

potent drugs or pharmacological targets. Hence, to validate these findings, experimental 

mutational research, genome-wide association studies, and clinical-based studies are further 

required.  
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