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Abstract

The task of image captioning is a complex process that involves generating textual
descriptions for images. This technology is extremely beneficial for a wide range of
applications, such as assisting people with visual impairments, monitoring surveil-
lance systems, content generation, image indexing, and automatic annotation of
images for producing data for training AI-based image generation models. Much of
the research done in this particular domain, especially using transformer models, has
been focused on English language. However, there has been relatively little research
dedicated to the context of the Bengali language. This study addresses the lack of
research in the context of Bengali language and proposes a novel approach to auto-
matic image captioning that involves a multi-modal, transformer-based, end-to-end
model with an encoder-decoder architecture. Our approach utilizes pre-trained Ef-
ficientNet Transformer Network. To evaluate the effectiveness of our approach, we
compare our model with a Vision Transformer that utilizes a non-convolutional en-
coder pre-trained on ImageNet.The two models were tested on the BanglaLekhaIm-
ageCaptions dataset and evaluated using BLEU metrics.

Keywords: Image Captioning; Image Encoders; EfficientNet; Vision Transformer;
BanglaLekhaImageCaptions; BLEU; Transformer Architecture
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The next list describes several symbols & abbreviation that will be later used within
the body of the document

BERT Bidirectional Encoder Representations from Transformers

BLEU Bilingual Evaluation Understudy

CNN Convolutional neural network

GCN Graph convolutional network

GRU Gated Recurrent Unit

LSTM Long short term memory

RNN Recurrent neural network
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Chapter 1

Introduction

Image Captioning is the process of automatically generating, syntactically and gram-
matically appropriate, textual information from an image. With the advent of deep
learning, computer vision, and natural language processing, the task of generating
texts from images has become one of the cornerstones for a plethora of applications
in this field of research. Past endeavors in neuroscience [1] have revealed a relation-
ship between language and visual processing in the human brain. Likewise, recent
advancements in artificial intelligence and computer vision have made deep learning
models of various architectures capable of processing images and generating texts.
However, this is a rather difficult task since it fuses two of the most important do-
mains in artificial intelligence: Natural Language Processing and Computer Vision.

Some of the applications of Image Captioning involve the inclusion of more ac-
cessibility features on the internet to allow visually impaired people to seamlessly
interact and engage with visual and multimedia content online; monitor large-scale
surveillance systems to avoid undesirable events, and improve AI-based medical as-
sistants for monitoring patients. More importantly, image captioning models, with
reliable caption prediction capabilities, can be utilized for the automatic annotation
of image data such that an AI-based image generation model can be trained using
these large annotated datasets.

Our contributions to this study are the following:

1. Data Cleaning: The dataset was full of errors, with a significant portion of
the image samples having mismatched captions. These samples were corrected.
Both models demonstrated improved captioning capabilities as a result.

2. Training an EfficientNet Transformer Network: The model was the best
performing one among the two.

3. Training a Vision Transformer Network: The model’s performance ex-
hibited relatively less capability in predicting the captions. This limitation
is a common feature of transformer models when trained on limited dataset
sizes.

4. Understanding the limitations of this field of research: We analyze the
current limitations in Bengali image captioning models in terms of resources
and their methodologies.
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Chapter 2

Research Problem

Various taxonomy of architectures has previously been explored by researchers, most
of which were inspired by an encoder-decoder architecture from neural machine
translation [2]. The main objective of these models is to establish a relationship be-
tween an image and a sequence of words. Images are encoded using visual encoders,
mainly deep CNNs, whereas word or subword sequences are mapped to word vec-
tors. A Recurrent Neural Network (RNN) based, sequence to sequence, generative
model is employed as a decoder [3] for generating word sequences based on image
features. A simple fully connected layer is also used as a decoder in some models.

Among the different approaches proffered in research, two architectures have been
attested to be the most effective in literature: the inject and merge model [4]. The
merge model typically aggregates the two encoded feature vectors (image and word)
using addition, concatenation, or multiplication. Two different pre-trained feature
extractors can be employed, one tasked as an image feature extractor and the other
as a text feature extractor to create word embeddings. The word vectors or the
word embeddings are then fed to an RNN which encodes the linguistic representa-
tions. The image features are then used along with the RNN output to condition
the predictions. A fully connected layer is usually employed for this prediction task.
Inject models, on the other hand, tend to incorporate the image features somewhat
early in the generation process. According to Tanti et al (2018), there are three
different variants of this architecture: init-inject, pre-inject, and par-inject. This
architecture combines the concerns of the image with each input word to the RNN,
with the encoding at the encoder to incorporate linguistic and visual information
together. The merge model uses the exact same representation for every word out-
put, whereas the inject model allows the image representation in the hidden state
vectors of the RNN to change after each time step. The merge model is superior to
the latter due in part to the multimodal nature of its architecture. This helps the
merge model avoid generating less stereotyped and generic captions.

Contemporary art, however, revolves around transformer-based architectures. These
mostly comprise pre-trained visual and text encoders and a transformer-based de-
coder. Bidirectional Encoder Representations from Transformers (BERT) models
[5], which are often incorporated in language models, are also applied to image
captioning as text encoders.

2



2.1 Image Encoders

Convolutional neural networks (CNN) have been the staple of computer vision tasks
for the past decade. They are useful for their ability to capture spatial and temporal
dependencies in an image accurately, via convolution operations with relevant filters.
In the task of image captioning, an effective representation for the visual encoding
pipeline can be achieved using various approaches, and these approaches can be clas-
sified into four main categories, three of which are CNN-based: 1. non-attentive
methods - these are CNNs that focus on the global features of an image. Their goal
is to derive high-level, fixed-sized representations from input images. 2. additive
attentive methods - these are proposed approaches based on additive attention
[6] that make up for the shortcomings of the global representations by introducing
more granularity along with time-varying visual features in their encodings, thus
allowing greater flexibility. Additive attention incorporates the visual content using
either grids or regions. 3. graph-based attention - these include hand-designed
graphs that are placed on top of images to mark regions of interest that are con-
volved with relevant filters for object instance detection before being proceeded by
a graph convolutional network (GCN) [7] . In doing so, the model is able to capture
both spatial and semantic relationships between various regions of an image, using
a pre-trained classifier and geometric inferences, respectively. Several variants of
this GCN architecture were employed in [8] and [9] . 4. self-attentive methods -
these are transformer-based approaches, as proposed in [10], which utilize the most
relevant parts of the input sequence in a flexible manner by a weighted combination
of all of the encoded input vectors to obtain refined representations and capture
long-term dependencies in input sequences.

2.2 Language models

Language models allow us to predict the next word of a given sequence with a prob-
ability. For the task of image captioning, this prediction is explicitly conditioned
on the visual representations of the image in concern. In addition, each word that
is predicted in the sequence is also conditioned on the previous words in the se-
quence. The various strategies employed for generative language models include –
1. Long short term memory (LSTM), a superior variant of RNN, is tasked with
word prediction at each time step by applying softmax on the hidden states when
projected onto a vector space having the same dimension as the vocabulary length,
where the hidden state represents the visual encodings [11] . This was further im-
proved by introducing additive attention in [12] by replacing the static global vector
representations of images, that reside in the hidden state, with time-varying rep-
resentations to better align the word and visual features. The LSTM layers can
also be stacked using a recurrent convolutional architecture, as proposed in [13] , to
capture higher-order relations. 2. CNNs. Convolution operations with kernels on
feature vectors are also used for feature extraction and hence can be utilized as a
language model by combining the image feature maps with word embeddings as seen
on [14] and then feeding the output to a CNN model for which the sequences are
right masked. Despite being capable of leveraging parallel training, this approach
falls short in terms of performance when compared to its transformer-based coun-
terparts. 3. Transformer-based architectures, which are essentially decoders used as

3



set-to-sequence generative language models, perform self-attention operation on the
word embeddings, followed by a cross-attention operation which is finally proceeded
by a feed-forward dense layer. The generative attribute of the model is incorpo-
rated by introducing a masking mechanism to make the generation of the sequence
unidirectional.

2.3 Datasets

The most commonly used dataset in image captioning that is widely used for bench-
marking new models and architectures includes the Microsoft COCO [15] , which
has over 120,000 training examples annotated with five captions each. Flickr8k,
Flickr16k, and Flickr30k are some of the datasets that were previously used for
testing, with 8,000, 16,000, and 30,000 training examples respectively.
We have used the BanglaLekhaImageCaptions dataset[16] which we obtained from
Mendeley.com[17] and this dataset has been used in [16]. The BanglaLekhaIm-
ageCaptions dataset[16] consists of approximately 9154 images with two reference
captions per image. Figure 2.1 visualizes a few samples from the dataset.
The dataset presented some challenges, as it contained a significant amount of inac-
curacies and inconsistencies that required correction. Additionally, the dataset was
limited in size.

Figure 2.1: BanglaLekhaImageCaptions Dataset

4



2.4 Evaluation metrics

Various automatic scoring methods are exercised in literature for evaluation with the
most popular one being BLEU [18] (Bilingual Evaluation Understudy), which is also
widely used in machine translation tasks to evaluate machine-translated text. BLEU
is considered a robust metric as it is language-independent, intuitive, and easy to
compute. It is defined by the total number of n-gram occurrences in the reference
text divided by the total number of n-grams in the predicted word sequence. An n-
gram is a contiguous sequence of n items from a given sample of text or speech. The
items can be words, phonemes, or other units of speech or text. In BLEU metrics,
n-grams are used to compare a machine-generated translation to a human-generated
reference translation. The idea is that a good translation should have a high degree
of lexical and phrasal overlap with the reference translation. By comparing n-grams
of the machine-generated translation to the reference translation, the BLEU metric
can estimate the extent to which the two translations match. The n-grams are
usually calculated up to a length of four, e.g. - unigram, bigram, trigram, and 4-
gram. For example, in the sentence ”the cat in the hat,” the bigrams are ”the cat”,
”cat in”, ”in the”, and ”the hat”. Similarly, trigrams would be ”the cat in”, ”cat in
the”, ”in the hat”.
The BLEU-1 metric calculates the precision using only unigrams (single words). The
BLEU-2 metric calculates the precision using bigrams (pairs of words). The BLEU-3
metric calculates the precision using trigrams (triplets of words), and the BLEU-4
metric calculates the precision using 4 grams (sets of four words). For example, if a
translation contains 50 percent unigrams, 30 percent bigrams, 10 percent trigrams,
and 10 percent 4-grams that match the reference translation, the BLEU score would
be calculated as follows:
BLEU-1 score = 50 percent, BLEU-2 score = 30 percent, BLEU-3 score = 10 per-
cent, BLEU-4 score = 10 percent. The final BLEU score is a weighted average of the
individual scores, with higher n-grams given more weight. BLEU scores are com-
monly used to evaluate the performance of machine translation systems, but they
can also be used to evaluate the quality of other types of text generation systems.
METEOR [19] is another evaluation system based on unigram precision and recall.
This is calculated as follows

Score = Fmean · (1− Penalty) (2.1)

where, Fmean is the weighted recall and precision of the total matching unigram
occurrences in the reference text and the predicted text, and the penalty is the
cost for a given alignment of a set of unigrams. Another popular metric is CIDEr
[20] which is based on cosine similarity between TF-IDF weighted n-gram of the
predicted caption and its corresponding reference captions.
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Chapter 3

Research Objectives

In this study, we implemented a total of two models that are entirely transformer-
based with slight modifications to their architecture. The main challenge we faced
was the lack of variety in training examples while working with the BanglaLekhaIm-
ageCaptions dataset. The captions were not standardized, meaning annotations of
the dataset did not seem to follow a particular scheme i.e. some captions were
too verbose whereas, others were too short, and lacked consistency in their ways of
describing the pictures. Our workflow can be summarized as follows:
1. Clean and preprocess the available data.
2. Apply augmentations to images.
3. Implement the EfficientNet-Transformer network.
4. Implement the Vision Transformer model.
5. Tune hyperparameters.
6. Evaluate the models using the metrics discussed in the previous section.
7. Understand and analyze the models’ limitations.

Figure 3.1: A summary of the research workflow.
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Chapter 4

Literature Review

This section aims for a detailed review of some of the past research in image cap-
tioning in Bengali language and some transformer-based image captioning models
in English language. Additionally, we also review some unconventional image cap-
tioning model architectures reported in some previous works.

4.1 Bengali

A total of 9 different approaches, to our knowledge, have previously been explored
for captioning in Bengali language.

The authors in [21] employed a CNN-LSTM based architecture that pursues the
state-of-the-art top-down approach for automatic image captioning. Training exam-
ples were subsampled based on a goodness score to achieve better generalization.
FastText’s [22] pre-trained word embeddings were used for text feature extraction
and image features were extracted via InceptionResnet [23] and VGG-16 [24] . Par-
inject and merge architectures were adapted to achieve competitive scores.

[25] is the first paper where the authors constructed their very own annotated dataset
called ‘BanglaLekhaImageCaptions’ [17] in Bangla which mostly represents the con-
text of Bengali culture and its people. A pre-trained VGG16 model was used for
image feature extraction and encoding. A stacked LSTM layer was tasked to sequen-
tially predict the captions from the encoded image features and the textual features
(word embeddings) obtained using an embedding layer.

In [16] a pre-trained VGG16 model was used as a feature extractor. The images
in the dataset were mapped to 25 distinct classes of the pre-trained weights. A
LSTM layer was used to generate text sequences from the image vectors. The CNN
was trained for some epochs and its weights were transferred to the LSTM layer for
further training. And finally, the previously trained CNN was fitted on top of the
LSTM layer and was trained for a final few epochs to yield results.

[26] proposed a deep learning pipeline that uses two CNN models as its image
feature extractors. These include a pre-trained InceptionV3 [27] and Xception [28]
on the ImageNet dataset. Local attention mechanisms(or Bahdanau attention) were
employed to align the decoder RNN with the relevant input sequences from CNN-
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based encoders. A Gated Recurrent Unit(GRU) was used as the RNN decoder.

A noble encoder-decoder architecture was proposed in [29] . A new dataset called
BNATURE was constructed and annotated. InceptionV3 was used as the encoder
followed by a bidirectional GRU layer as the decoder to generate the captions. Fur-
thermore, the authors used beam search and argmax to refine the quality of the
captions generated by the model.

The authors in [30] proposed a multimodal approach to image captioning where
the text and image features were extracted using CNN-based encoders. Images were
encoded using pre-trained ResNet-50 [31] , and text features were obtained using
one-dimensional convolution layers with a Global Max Pooling layer at the end.
Both the features were then fed to a fully connected (dense) layer which acts as a
simple decoder.

A hybrid encoder-decoder model with two embedding layers side-by-side, along with
two other models with a single unit embedding layer, was proposed in [32] . Two
word embedding models: fastText and a pre-trained GloVe [33] embedding model
were employed as text feature extractors for the reference captions. Likewise, two
pre-trained models, InceptionResnetV2 and Xception, both trained on ImageNet,
were used separately to encode the images. The image feature vectors and the text
feature vectors were concatenated before being fed to a fully connected layer (or the
decoder layer) to generate the corresponding captions.

[34] is the first paper (to our knowledge) that employed a transformer model for
image captioning in Bengali language. The authors proffered an encoder-decoder
architecture that comprised the InceptionV3 model as an image encoder, a trans-
former encoder block, and a decoder block. This model was compared with a sec-
ond model which utilized a visual attention-based encoder-decoder architecture that
comprises an attention mechanism-infused CNN as an image feature extractor, an
embedding layer as a text feature extractor, and a Gated Recurrent Unit (GRU) as
a decoder.

The authors in [35] proposed a ResNet-transformer-based encoder-decoder model
that employs a pre-trained ResNet-101 model for image feature extraction. A sim-
ple word embedding model was used for encoding word sequences. The image feature
vectors are passed on to a transformer encoder whereas the word embeddings are fed
to the decoder. The image feature vectors are then combined using cross attention
operation with the output of the masked self-attention in the decoder.

4.2 English

Conventional encoder-decoder architectures use a CNN encoder for the images but
in [36] , the authors proffered a sequence to sequence CNN-free architecture, namely
the Vision Transformer [37] , where a noble image encoder pre-trained on ImageNet
was utilized as an image encoder. The images were, at first, divided into fixed-sized
patches and transformed into 1D patch sequences which are then passed through an
embedding layer, followed by a learnable positional embedding layer. The resulting
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output was then used to perform cross attention operations with the word feature
vectors to predict words.

[38] proposed a noble approach to the transformer-based encoder-decoder archi-
tecture where a stack of memory-augmented encoding layers was used to encode
multi-level visual relationships from the input image, with a priori knowledge. This
was followed by a stack of (meshed) decoder layers that read from the output of each
encoding layer and sequentially generate the output caption with the intra-modality
and the cross-modality interactions modeled via scaled dot product attention.

In [39] a multi-view image encoder architecture that utilized the Faster RCNN [40]
architecture with three different backbone CNN models was proposed along with the
base transformer encoder and decoder. The image representations from the multi-
view encoder output were then passed to the transformer encoder. In addition, the
word representations were preprocessed using GloVe word embedding followed by an
LSTM layer before being fed to a transformer decoder. The model was tested with
both single and multi-view encoders and evaluated based on appropriate caption
metrics.

9



Chapter 5

Methodology

5.1 Neural Networks

Neural networks are composed of layers of interconnected nodes, called artifi-
cial neurons or simply ”neurons.”A neural network typically consists of three
types of layers: the input layer, one or more hidden layers, and the output
layer. The input layer is responsible for receiving and passing the input data
onto the hidden layers. Each neuron in the input layer receives a single ele-
ment of the input data as its input and passes that input on to the next layer.
The hidden layers are responsible for processing the input data and producing
intermediate output. Each neuron in a hidden layer receives input from some
number of other neurons in the previous layer and uses that input to compute
and output a single value. It can be mathematically represented as:

output = f(
n∑

i=1

(weighti ∗ inputi) + bias)

Here, the function f is the activation function, which determines the output of
the neuron given the weighted sum of its inputs and the bias term. The weights
(w1,w2,.....,wn) are the parameters of the neuron that determine how much
each input contributes to the output, and the bias is an additional parame-
ter that allows the neuron to shift the output along the y-axis. The output
layer is responsible for producing the final output of the neural network. Like
the hidden layers, each neuron in the output layer receives input from some
number of neurons in the previous layer and uses that input to compute and
output a single value using the same equation as before. The number of neu-
rons in the input layer is determined by the size of the input data, and the
number of neurons in the output layer is determined by the number of output
classes or the number of output variables that the neural network is intended
to predict. The number of hidden layers and the number of neurons in each
hidden layer are typically chosen through a process of trial and error, based
on the complexity of the problem being solved.

The key steps that are involved in training a neural network are as the follow-
ing:
Input pipeline and preprocessing: The input pipeline is responsible for loading
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the data and getting it into the right format for the neural network to con-
sume. This typically involves loading the data from a file or database, splitting
it into training and validation sets, and normalizing or preprocessing the data
as necessary. Preprocessing may include steps such as scaling, centering, or
changing the data format to fit the model’s requirement.
Forward Propagation: Once the data is prepared, the next step is forward
propagation, where the input is passed through the network to compute the
output. During forward propagation, the input is passed through the different
layers of the network, where the weights and biases of the neurons are applied
to the input to produce the output. The output is then used to compute the
loss.
Backpropagation: After the forward propagation, comes the backpropagation
where the error is calculated and propagated back through the network to up-
date the weights. The goal of backpropagation is to adjust the weights of the
neurons in the network so that the output produced is closer to the desired
output, which reduces the error.
Gradient descent: Backpropagation computes the gradients of the parameters
(weights) with respect to the loss function, which describes how much the pa-
rameters contribute to the error. The optimizer uses these gradients to update
the parameters in a direction that minimizes the error. Gradient descent is
a commonly used optimizer, which iteratively updates the parameters of the
network by subtracting the gradient of the loss function with respect to the
parameters, multiplied by a learning rate.
There are other types of optimizers as well like Stochastic Gradient Descent,
Adam, RMSprop etc, and depending on the problem, dataset, and model ar-
chitecture one may suit better than others. It has been further discussed in
section 5.2.

5.1.1 Activation Function

An activation function is a mathematical function that is applied to the output
of a neuron in a neural network. It determines whether the neuron should be
activated or not, based on whether the output meets certain criteria. Activa-
tion functions are used to introduce non-linearity into the network, as most

Figure 5.1: The Biological Neuron Graph and the Neural Network
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real-world data is non-linear. There are several different types of activation
functions that are commonly used in neural networks. Some common activa-
tion functions include:
Sigmoid: This is a smooth, S-shaped function that maps any input to a value
between 0 and 1. It is often used in the output layer of a binary classifica-
tion model, as it can be interpreted as a probability. It is mathematically
represented as follows:

sigmoid: f(x) =
1

1 + e−x

Tanh: This function is similar to the sigmoid function, but it maps the input
to a value between -1 and 1. It is often used in the hidden layers of a neural
network. Mathematically it is represented as:

tanh: f(x) =
ex − e−x

ex + e−x

ReLU (Rectified Linear Unit): This function is a simple linear function that
returns the input if it is positive, and returns 0 if it is negative. It is fast to
compute and has been shown to work well in practice. Mathematically, it can
be represented as follows:

ReLU: f(x) = max(0, x)

Leaky ReLU: This is a variant of the ReLU function that allows a small, non-
zero gradient when the input is negative. It can help to prevent the ”dying
ReLU” problem, where some neurons in the network become inactive and stop
learning. Its mathematical representation is as follows:

Leaky ReLU: f(x) = max(0.1x, x)

It’s important to choose an appropriate activation function for the neural
network, as it can significantly impact the model’s performance. It’s also
possible to use different activation functions for different layers in a neural
network, depending on the task at hand.
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Figure 5.2: Commonly used activation functions in Neural Networks

5.2 Optimizers

Optimizers are algorithms or methods used to adjust the parameters of a ma-
chine learning model in order to minimize a loss function. The loss function
measures how well the model is able to predict the correct output for a given
input, and the goal of the optimization process is to find the set of model pa-
rameters that result in the lowest possible loss. There are many different types
of optimizers available, and each has its own set of strengths and weaknesses.
Some common optimizers include stochastic gradient descent (SGD), Adam,
RMSprop, and AdaGrad.
SGD is a simple and widely-used optimizer that updates model parameters
by taking the gradient of the loss function with respect to the parameters and
moving in the opposite direction.
Adam is a variant of SGD that uses adaptive learning rates and is generally
considered to be more efficient and effective.Adam optimizer is efficient as it
combines the benefits of both gradient descent and momentum optimization.
Gradient descent is a simple optimization algorithm that updates the model
parameters by taking a step in the opposite direction of the gradient of the
objective function with respect to the parameters. This is a good optimiza-
tion strategy when the objective function is relatively smooth and the gradient
is well-behaved. However, when the objective function has many local min-
ima, or when the gradient is noisy, gradient descent can be slow to converge.
Momentum optimization is a variation of gradient descent that tries to alle-
viate these problems by adding a momentum term to the update rule. The
momentum term causes the optimization to continue in the direction of the
gradient for a certain number of steps, which can help the optimization escape
from local minima and converge faster. Adam combines the ideas of gradient
descent and momentum optimization by keeping track of an exponentially de-
caying average of the gradient, as well as an exponentially decaying average
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of the squared gradient. These moving averages are used to update the model
parameters, with the idea that the moving averages will give a more accu-
rate estimate of the gradient and its variance, even in the presence of noise.
This makes Adam algorithm adapts to the structure of the data and converges
faster.
RMSprop is another variant of SGD that uses a moving average of the squared
gradient to scale the learning rate, which can help to prevent oscillations and
divergence during optimization.
AdaGrad is an optimizer that adaptively adjusts the learning rate for each
model parameter based on the historical gradient information, which can help
to prevent overfitting and improve convergence.
We have used Adam optimizer because image captioning is a high-dimensional
problem where the objective function can be very complex and have many local
minima.

5.3 FeedForward Neural Networks

A feedforward neural network is a type of artificial neural network in which
the connections between the units do not form a cycle. This means that in-
formation flows through the network in only one direction, from the input
layer to the output layer, without looping back. In a feedforward neural net-
work, the input data is processed through a series of hidden layers, and finally,
the output is produced. Each layer consists of units, also known as neurons,
which perform calculations on the data. These calculations are based on the
weights and biases associated with each unit, which are adjusted during the
training process to optimize the network’s performance. Feedforward neural
networks are widely used for tasks such as classification, regression, and pre-
diction. They are simple to understand and easy to implement, and they can
be trained using a variety of algorithms, such as backpropagation and stochas-
tic gradient descent. However, they are limited in their ability to process
temporal or sequential data and can struggle to model complex relationships
between variables.

Figure 5.3: Fully-Connected, FeedForward Neural Network
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5.4 Layer Normalization

Layer normalization is a technique that is used to scale the input layer of a
neural network. It is similar to batch normalization, but rather than normal-
izing the activations of the batch, it normalizes the activations of the hidden
units in a layer. The layer normalization method is designed to overcome the
drawback of dependency on batch size. It is not sensitive to the scale of the
input data, and hence, stabilizes the hidden units of the network, eventually
improving the network’s performance. The outcome from the previous layer
significantly affects the outcome of the present layer. Therefore the layer nor-
malization statistics are computed over all hidden sections in the same layer
to overcome the covariate shifting problem by fixing the mean and variance of
the summed input within a layer. The computed layer normalization statistics
are as follows:

µl =
1

H

H∑
i=1

ali (5.1)

σl =

√√√√ 1

H

H∑
i=1

(ali − µl)2 (5.2)

Here H is the number of hidden units in a layer and, µ and σ are the normal-
ization terms

5.4.1 Weight re-centering and re-scaling:

Layer normalization is successfully achieved by re-centering and re-scaling the
normalization invariant. Unlike other normalization methods, batch normal-
ization and weight normalization, the layer normalization can vary with the
individual scaling of the single weight vectors, rather it is invariable to scaling
of the whole matrix and a relocation of the inputted weights in the weight
matrix. For instance, if there are two sets of model parameters with weight
W and W’ which varies by a scaling factor δ with addition to all the inputted
weights are moved by a constant vector γ it leads to

W ′ = δW + 1γT

While implementing layer normalization the two models determine the same
outcome:

h′ = f(
g

σ′ (W
′x− µ′) + b) = f(

g

σ′ ((δW + 1γT )x− µ′) + b) (5.3)

= f(
g

σ
(Wx− µ) + b) = h.

However, if layer normalization is executed for the input before the weights
the outcome will not remain the same after re-scaling and re-centering.
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5.4.2 Dataset re-scaling and re-centering:

This method is also invariant to dataset re-scaling and re-centering by different
aggregated inputs of neurons remains unchanged in varying conditions and
under individual training cases. The normalization scalars µ and r are used to
re-scale x by δ to a new point to x’.

h′
i = f(

gi
σ′ (w

T
i x

′ − µ′) + bi) = f(
gi
δσ

(δwT
i x− δµ) + bi) = hi (5.4)

5.5 Batch Normalization

For training deep neural networks, batch process regulates the inputs within
each layer by deducting the mean value of the batch while the batch standard
deviation is divided. This increases the ability of generalizing of the model.
Thus stabilize the learning process. It is particularly and most effectively
used for training deep convolutional neural network and is been used as a
regularization method.
Batch normalization does not normalize the activation of the entire layer,
it works in small batches of training data and normalizes the activation of
a layer. To make sure that each feature map is independent, each feature
map within the layer is normalized separately. Training is done by computing
the mean and standard deviation of the activation for each small batch and
normalizing the activation. The normalization is done using the mean and
standard deviation of the activation of the whole set while speculating.
Computing mean and Standard Deviation:

µ =
1

m

∑
i

z
[l]
i (5.5)

σ2 =
1

m

∑
i

(
z
[l]
i − µ

)2

(5.6)

Normalizing the vectors z[l] as follows:

z(i)norm =
z(i) − µ√
σ2 + ε

(5.7)

Here, the epsilon, ε, is a small constant added to the variance to prevent
division by zero.

5.6 Softmax

N-dimensional vector with real values in the range (0, 1), where the output
vector is scaled to make sum of all the elements to 1 which makes it a probabil-
ity distribution over the N classes, is produced from an N-dimensional vector
of real numbers in Softmax function. Softmax provides a smooth gradient
which makes it easier to optimize during training a set of data.
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Figure 5.4: components of Softmax function over R2 with λ = 1.

softmax(zi) =
exp(zi)∑
j exp(zj)

(5.8)

1 ≤ i ≤ N

Here, the values from the neurons of the output layer, also known as logits, are
represented by z. The exponential e acts as the non-linear function. Lastly,
the values are divided by the sum of all the exponential values in order to
normalize.
If λ = 1, it is referred to as the standard softmax function, which is visualized
in Figure 5.4

In multi-class classification problems, the softmax function is implemented in
conjunction with the cross-entropy loss function. The difference between the
predicted probability distribution and the true distribution is determined by
the cross-entropy loss function which makes it easy to be optimized.

5.7 Categorical Cross Entropy

During model training, loss functions are utilized in the forward propagation
stage as the last step to evaluate the model’s goodness of fit on the training
batch. Categorical cross entropy (CCE) is used as a loss function in multi-
class classification problems. It is inspired by the concept of entropy from
information theory and bears similarities with the concepts of KL (Kullback-
Leibler) divergence and log loss.
The entropy H of a discrete random variable X is a measure of the amount
of uncertainty or randomness in the variable, with a probability distribution
p(x), and is defined as follows:

H(X) = −
∑
x

log (p(x)) (5.9)

In the equation above, a larger value of H(x) corresponds to a greater un-
certainty and vice-versa. Consequently, the term ”cross-entropy” refers to a
measure or a means for quantifying the differences between two probability
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distributions for a given random variable. Hence, categorical cross-entropy
is a measure of the differences between the predicted probability distribution
over the classes and the true probability distribution. It is a probabilistic loss
function that is calculated as the negative log of the predicted probability for
the true class:

CCE(ŷ, y) = −
∑
i=1

yi log(ŷi) (5.10)

where, y is the target label and ŷ is the softmax induced model output or
logits. As mentioned in the previous subsection, this loss function is used
with a softmax activation function to compute the loss. In the case of an
image captioning model, this is useful for optimizing a conditional probability
distribution which allows the model to compute a target token given an image
and the previous tokens in its caption sequence.

5.8 Convolution

One of the key challenges in image recognition is the variability in the position, scale,
and appearance of objects in an image. Convolutional Neural Networks (CNNs) is a
deep learning neural network developed to address this challenge. CNNs are designed
to process multidimensional spatial data, such as an image, which allows them to
learn spatially hierarchical representations of the input data. The architecture of a
CNN consists of multiple layers, including convolutional layers, pooling layers, and
fully connected layers.
In a CNN, the convolutional layers utilize kernels, also known as filters, to extract
features from the input image. These filters are intended to identify specific charac-
teristics such as edges, textures, and shapes from the image. The filters are applied
using a sliding window approach, moving across the entire image to create a feature
map. After that, the feature map goes through a non-linear activation function like
ReLU to add non-linearity to the model. The feature map is then reduced in di-
mension by using a pooling technique like max-pooling which preserves the essential
features while reducing the spatial dimensions of the feature map. This process is
repeated multiple times, with each successive layer detecting increasingly complex
features in the image. The final output of the convolutional layer is usually passed
through one or more fully connected layers for classification or further processing.
Figure 5.5 demonstrates the convolution operation performed for a 3× 3 kernel on
a zero-padded 5× 5 image.
The convolutional mathematical expression for a 2D image, I of size M × N is as
follows:

F ⋆ I(x, y) =
M∑

j=−M

N∑
i=−N

F (i, j)I(x− i, y − j) (5.11)

Here, F represents the convolution filter, the star notation between F and I rep-
resents convolution and i represents the number of neighboring horizontal pixels
that will be considered on each side of the pixel and j represents the number of
neighboring vertical pixels that will be considered on each side of the pixel.
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Figure 5.5: The convolution operation

5.9 Supervised Learning

Using a labeled training dataset, a neural network is trained to, give a desired
output to be mapped from the input in supervised learning. The training
data consists of pairs of input data and the corresponding correct output. The
objective here is to determine a general rule that maps input to expected and
accurate output.
During the training phase of a supervised learning neural network, the network
makes predictions about the output given a specific input, and the network
adjusts its internal parameters (weights and biases) to minimize the difference
between the predicted labels and the ground truth, as indicated by the training
data. This process is repeated for multiple input-output pairs in the training
data. Once the network has been trained, it can then make predictions on
new, unseen data and generalize to inputs it has not seen before.

On basis of prior experiences, by using supervised learning the model can

Figure 5.6: Supervised Learning Pipeline
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predict the labels on unseen data which is one of the main advantages of
supervised learning. It is a widely used learning method in real-world problems
i.e. fraud detection, spam filtering, etc.
However, these models are not perfect for taking care of complex tasks. On
times when the test dataset is different from the training dataset, it fails to
predict the correct label. Furthermore, supervised learning is time-consuming
as it needs a lot of computation time.

5.10 Transfer Learning

Transfer learning allows a machine learning model that has already been
trained on one task to be used as a starting point for a new, related task,
rather than training a new model from scratch. This can be useful when there
are limited resources, such as data or computing power, available for the new
task. Transfer learning allows the model to utilize its knowledge from the
original task as a foundation for learning the new task, rather than starting
with no prior knowledge.
Some of the layers of the model are mobilized and trained using the new data
to fine-tune a pre-trained model for downstream tasks. The layers that are
immobilized are still used in the model, but their weights remain unchanged
during training.
Although it is possible to train CNNs from scratch for small datasets, it takes
extremely huge amounts of processed data, and computational power, while
being time-consuming and expensive to make them reliable for practical use.
To overcome this problem transfer learning has been introduced and is widely
used across the domain. The benefit of using transfer learning is that a large
dataset is not needed for training. Moreover, as pre-trained weights can be
used and only the weights of the last couple of layers, transfer learning requires
less computational power.

5.11 Word Vectors and Embeddings

Word vectors and word embeddings help us represent the meaning of a word
mathematically. Word embeddings allow computers to discern words with
similar meanings and group them by representing them as real-valued vectors.
A low-dimensional embedding space for words allows lexical and semantic
meanings to be learned and represented in a distribution. The similarities
between such words can be computed using the cosine dot product or cosine
similarity.

sim(w1, w2) = cos (θ) =
w⃗1.w⃗2

||w⃗1|| ||w⃗2||
(5.12)

Word vectors, on the other hand, transform text sequences into sequences of
integers. When working with a small corpus, it is desirable to have a simple
yet efficient input pipeline to pre-process text data and extract meaningful
features. Hence we resort to the latter for our use case.
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5.12 Vision Transformer Network

Figure 5.7: Vision-Transformer architecture
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5.13 EfficientNet-Transformer Network

Figure 5.8: EfficientNet-Transformer architecture

5.14 Image Encoders

a. EfficientNet

EfficientNets, as proposed in [41], are based on convolutional neural networks
which utilize a carefully balanced and scaled architecture to improve perfor-
mance and optimizations. The scaling method offers uniform scaling of depth,
width, and resolution by utilizing the concept of compound coefficients. The
common scaling parameters for a baseline model may be defined as Fi, Li,
Hi, Wi and Ci where Fi denotes the operator, Li denotes the length of the
network, Hi and Wi denotes the spatial dimensions of the input tensors and
finally Ci denotes the number of channels. A simple ConvNet N composed of
multiple layers can hence be defined as:

N = ⊙i=1,2,...sF
Li
i (X⟨Hi,Wi, Ci⟩) (5.13)

and, the parameters for the scaled model are defined as width (w), depth (d),
and resolution (r), which are all dependent on one another. Deeper ConvNets
have the ability to extract complex and lower-level features for images of higher
resolutions. However, such models may have the tendency to suffer from the
vanishing gradient problem. Wider models are often implemented at smaller
scale and can capture fine-grained features. Higher-resolution input images
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correspond to better accuracy with the appropriate depth and width of the
ConvNet. Hence, it is important to coordinate a balance between the three
parameters. This implies a multidimensional scaling of the model rather than
the traditional single-dimensional scaling. The compound scaling method uses
a compound coefficient to uniformly scale the network in a principled way:

depth(d) = αϕ (5.14)

width(w) = βϕ (5.15)

resoloution(r) = γϕ (5.16)

where α, β, and γ are hyperparameters that are to be determined via grid
search. The compound coefficient ϕ, on the other hand, is defined by the user
and it controls the number of resources allocated to the parameters whereas, α,
β, and γ these three parameters, themselves, are indicators that determine how
these resources are to be assigned. Our model employs the EfficientNetB1 ar-
chitecture, which was pre-trained on ImageNet. The input images were resized
to 224 x 224 as per the requirement stated by its authors in the literature. The
EfficientNetB1 architecture is visualized figure 5.9 where the MBConv block

Figure 5.9: EfficientNetB1 architecture

refers to a variant of the inverted residual block that was originally proposed
for the MobileNetV2 architecture [42]. The MBConv block aims to increase
the efficiency of a network by reducing computational requirements while pre-
serving its ability to extract relevant features. This is achieved through the use
of a depthwise convolution, which applies unique filters to each input channel,
and a pointwise convolution, which combines the output from the depthwise
convolution using a 1x1 convolution to adjust the number of channels. A tech-
nique called ”bottleneck” is also employed, which reduces the number of input
channels before the depthwise convolution through a 1x1 convolution, further
decreasing computational costs. MBConv is a key component of EfficientNet,
a model that utilizes this block while also scaling network depth, width, and
resolution to achieve improved image classification results with increased effi-
ciency.

b. Vision Transformer (ViT) Encoder

Vision Transformer encoders, as proffered in [37] , are fundamentally different
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from ConvNets (CNN-based architectures) in the sense that they lack the in-
ductive biases of ConvNets. In other words, they are not translation invariant
and, they lack a locally restricted receptive field which helps reduce the input
region of the deeper layers. Transformers, furthermore, are by design permu-
tation invariant meaning - the model does not assume any spatial relationship
between features (unlike ConvNets). This is largely due to their inability to
process grid-structured spatial inputs. They are, instead, designed to process
sequential data.
Vision transformers are designed to convert these spatial inputs of shape
RH×W×C to sequential data by dividing the spatial input into fix sized 2D
patches.

xp ∈N×(P 2·C) (5.17)

N = HW/P 2 (5.18)

where P is the patch size, C is the number of color channels, and N is the value
for the resulting number of patches that is computed using the height(H) ×
width(W ) resolution of the image. Each patch is treated as a sequence token.
These patches are then flattened and fed to a linear layer to obtain their
projection embeddings, also known as patch embeddings. The positions of
these embeddings are encoded using a positional embedding layer to retain
the positional information(e.g. patch position) of the patches. Finally, the
resulting outputs are fed to a standard transformer encoder.

5.15 The Transformer Architecture

a. Self-Attention

As we have seen in Chapter 1, sequence-to-sequence models utilize the encoder-
decoder architecture by encoding the input sequences in the intermediate or
hidden state vector and then passing the context vector derived from the hid-
den state vectors to the decoder to generate the output sequences. This context
vector c, which is simply the sum of the encoder hidden states (h1, ... , ... ,
hT ), stores all the information in the hidden state in a compressed form. A
standard sequence-to-sequence model computes a sequence of outputs (y1, ...
, ... , yT ) from a given sequence of inputs (x1, ... , ... ,xT ) by iterating over
the following equations.

ht = sigm(W hxxt +W hhht−1) (5.19)

yt = W yhht (5.20)

This vanilla architecture, however, suffers from its inability to capture proper
information from input sequences beyond a certain length. Attention is in-
corporated, as a workaround, with these sequential inputs to overcome the
bottlenecking of the maximum sequence length and its inability to encode in-
formation from all time steps in the context vector c by introducing a direct
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Figure 5.10: The transformer model architecture

connection to each time step. This is essentially a scalar value or a score, as-
signed to each hidden state, that describes the relationship or the “alignment
score” between the all hidden states in the encoder and the previous hidden
state in the decoder. In other words, for each hidden state hj of the encoder
we compute a scalar weight.

c = q( {h1, ...., hTx}) (5.21)

where, q is some non-linear function. Each element in the context vector is
computed as follows

ci =
Tx∑
j=1

αijhj (5.22)

and the weight αij of each hidden state hj is computed as follows:

αij =
exp(eij)∑Tx

k=1 exp(eik)
(5.23)

where,

eij = a( si−1, hj) (5.24)

where, a is some alignment score function, which determines the type of at-
tention employed and si−1 denotes the previous hidden state of the decoder
which is computed in the previous time step as si by

si = f( si−1, yi−1, ci) (5.25)
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where f is some non-linear function. The resultant context vector c is thus a
weighted sum of the hidden states in the encoder. During inference, a pre-
dicted output sequence element yi is computed as

p( yi|y1, ........, yi−1, X) = g( yi−1, si, ci) (5.26)

where g is some non-linear function, which is the softmax function in our case.
Self-attention is a key component of the transformer architecture, which, in-
stead of looking for an input-output sequence alignment, computes the align-
ment scores between the elements of the sequence itself, which is simply im-
plemented by tweaking the alignment score function a and its parameters.

b. Scaled Dot Product Attention

It is a scaled attention function or alignment score function that can be pa-
rameterized with three different representations as inputs, namely queries(Q),
keys(K), and values(V ). These three representations are initialized by a sim-
ple matrix multiplication between the token embedding representation of se-
quences X and three different arbitrarily initialized, learnable weight matrices:

Q = XWQ (5.27)

K = XWK (5.28)

V = XWV (5.29)

and the attention score is calculated as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (5.30)

where dk denotes the dimension of the input keys, queries and values. Here,

softmax
(

QKT
√
dk

V
)

is the self-attention matrix which is a softmax function

mapping of the value of the dot product of Q and K scaled by 1√
dk

and, V is
the value matrix.

c. Multi-head Attention and Masked Multi-head attention

Multi-head attention expands on the idea of self-attention, where multiple
sets of attention scores are computed in parallel using multiple sets of learned,
linear projections. The output vectors, also called attention heads, are con-
catenated and the resultant vector is linearly projected (WO) one final time
to aggregate the attention scores before being passed on to the next layer.

MultiHead(Q,K, V ) = Concat(head1, ..., headk)W
O (5.31)

where headi = Attention(QWQ
i , KWK

i , V W V
i )

Each multi-head attention block is followed by a normalization layer and a
residual connection whose outputs are then fed to a feed-forward network
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Figure 5.11: Multi-head Attention

which is also followed by a normalization layer and a residual connection.
This whole concept is visualized in figure 5.11.

Masked multi-head is a modified version of multi-head attention which makes
its appearance in the bottom-most layer of the decoder. It processes the token
embedding output sequences in a similar fashion as the multi-head attention,
but it hides the information regarding the prediction of the token in the next
position using a masking matrix M which is composed of zeros and −∞.

MaskedAttention(Q,K, V ) = softmax

(
QKT +M√

dk

)
V (5.32)

This forces the decoder to only make predictions based on the previously
predicted tokens in the output sequence (refer to the last equation of 5.4).
Hence, the mask changes accordingly for every new token that is computed in
the output sequence.

d. Layer Normalization and Residual Skip Connections

Layer normalization [43] aims to reduce the covariate shift, the shift in the
distribution of data between the training set and the test set, across batches
of the training set by normalizing the summed inputs of the hidden layers
independently and, hence, fixing the mean and variance of the summed inputs
within each layer. The layer normalization statistics over the lth hidden layer
in a feed-forward network are computed as follows:

µl =
1

H

H∑
i=1

ali (5.33)

σl =

√√√√ 1

H

H∑
i=1

(ali − µl)2 (5.34)
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where al is the vector representation of the summed inputs to the neurons
in that layer and H is the dimension of that hidden layer, alongside µ and σ
being the mean and standard deviation of the distribution across that layer
respectively.
Residual skip connections are used to allow the representations of different
levels of processing to interact. In a transformer model, it introduces a linear
component to the sub-layers which improves the optimization and performance
of the model and helps eliminate the degradation problem with deeper net-
works [23][31]. The residual skip connections along with layer normalization
are implemented as follows:

y = LN(F (xi,Wi) + λx) (5.35)

where y is the normalized output, x is the input tensor, F denotes the weighted
feed-forward layer parameterized by W, and λ denotes the modulating factor
that controls the relative importance of the skip connection. LN is the nor-
malization function, with learned parameters γ and β:

LNγ,β(a
l) = γâl + β, where al ∈ RH (5.36)

and âl =
al − µl

√
σl2+ ∈

, where âl ∈ R (5.37)

Note: al and x both denote the same input tensor in the equations above.

e. Cross-Attention

Cross-attention, performed in the decoder - which is the same operation as
multi-head attention but with inputs of different modalities - mixes the em-
bedding sequences of the image representations and the text representations.
The text embedding sequences are used as input queries and the image em-
bedding sequences play the role of the key and value inputs, thus, introducing
information from the input sequence to the decoding layers by doing so. This
allows for the decoder to predict the next token in the output sequence. This
last step is repeated with every new output token that is generated, and is
added to the output sequence which is used as key input in the next decoder
layer.

f. Sinusoidal Positional Encoding

Sinusoidal positional encoding is used to provide the model with positional
information of the words in the sequences. This enables the model to deal
with relative positions of words in a sequence while maintaining the consis-
tency of the length each of time step between words across sequences of dif-
ferent lengths and, to capture long term dependencies of words in sentences.
Positionally encoding the input vectors compensates for the model’s lack of
recurrence.

Sine and cosine functions of different frequencies were employed to positionally
encode the word embedding representations. The position vector PϵRd for the
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kth token within a sequence of length d is given as follows:

p⃗ = f(k) (5.38)

where, the ith positions in p⃗ is computed as follows

pk,2i = sin

(
k

100002i/d

)
, (5.39)

pk,2i+1 = cos

(
k

100002i/d

)
(5.40)

The result is a d dimensional vector for each token k consisting of pairs of
sines and cosines defined over a set of frequencies which decrease across its
dimension.

5.16 Experimental Setup

The dataset required some cleaning as there were several samples with caption mis-
match. A total of 816 such samples were discarded. For each model, we used an
80:20 ratio for splitting the BanglaLekhaImageCaptions dataset into training and
test sets, 6670 samples belonging to the training set and 1668 samples in the test
set, with a batch size of 32. The captions were tokenized, with a ‘ < start >′ and an
‘ < end >′ token added to the beginning and the end of each caption sequence, and
then encoded to their corresponding vector representations using the TextVectoriza-
tion class from Keras. The training set consisted of 4646 unique tokens (vocabulary
size). An Adam optimizer was employed with a variable learning rate over the course
of training using a custom learning rate schedule with warmup steps set to 4000 and
the post warmup learning rate set to 1× 10−3. Callbacks such as ModelCheckpoint
and EarlyStopping were used to halt training in case the model starts to overfit and
to save the best model for evaluating the caption metrics, respectively.
The models were trained for a total of 50 epochs each for an entire day on a single
NVIDIA Tesla P100 GPU along with 16 GB of RAM and a Ryzen 7 3700x CPU.

a. Efficient-Net Transformer

Images were resized to 299 x 299. 3 encoders and 3 decoders, two atten-
tion heads each, were employed, with the last layer being a linear layer with
its dimension equal to the size of the vocabulary of the training set captions
from which the sequence was generated. The projection layer dimension and
the hidden state dimension were both set to 2048.

b. Vision Transformer

A Huggingface vision transformer model (vit-base), pre-trained on the Im-
ageNet dataset with 14 million images and 21 thousand classes by Google
researchers [44] , was used to implement this model. The model used a patch
size of 16 x 16, 768 hidden state dimensions, 3072 projection dimensions, and
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12 encoders with 6 attention heads each. For our task 4 decoders with 6 at-
tention heads each were used. The dimension of the output of the decoder
layer was equal to the vocabulary size. Finally, the hidden state dimension
was kept the same as the encoder. Input images had to be resized to 224 x
224 to satisfy the input size requirement of the pre-trained model.
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Chapter 6

Results and Discussions

6.1 EfficientNet

The EfficientNet Transformer was able to predict the captions with reasonable ac-
curacy. The reference captions appeared to be more subjective and specific in some
instances whereas the model predicted the captions in a more generalized manner.
This demonstrates a primary limitation of the dataset not having enough variations
to its reference captions for each image. The first image depicts a man standing in

Figure 6.1: Examples of predicted sequences by the EfficientNet Transformer net-
work
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the middle of a paddy field. The model describes it as a man walking by whereas
the reference text also addresses the environment in which the person is pictured.
The second image portrays a child pointing at a camera. The model was able to
recognize the presence of the child. However, the reference captions acknowledge
the child pointing at the camera while sitting on a chair. The last image is a picture
of multiple boats in a river. The model predicts that there are a bunch of people
riding a boat whereas the reference text describes it in a similar manner.

6.2 Vision Transformer pre-trained on ImageNet

Dataset

The vision transformer model, on the other hand, performed poorly due to its archi-
tectural complexity. The predicted captions lacked proper grammar and sentence
semantics. A certain set of words appeared in pairs repeatedly at the end of the
predicted sequence in multiple instances. While the sentences bore some correspon-
dence to their image, they lacked proper grammatical syntax.

Figure 6.2: Examples of predicted sequences by the pre-trained Vision Transformer
network
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6.3 Summary of training result

Table 6.1: Summary of Training Results

Model BLEU1 BLEU2 BLEU3 BLEU4
EfficientNet Transformer 0.425 0.264 0.174 0.134

Vision Transformer(vit-base) 0.185 0.0940 0.0487 0.0339

EfficientNet Transformer, with its simpler architecture, outperformed the more com-
plex Vision Transformer Network. The former had relatively far less training param-
eters than the latter. Shallower models outperform deeper models when trained on
small datasets [45]. Both models suffered from overfitting when trained with one de-
coder and one encoder (in the case of EfficientNet). However, increasing the number
of encoders and decoders for the EfficientNet transformer network seemed to yield
better results. The Vision transformer model, on the other hand, still suffered from
severe overfitting as the pre-trained transformer encoder came with 12 encoders by
default. The EfficientNet Transformer Network achieved a BLEU-1 score of 0.42459
whereas the Vision Transformer model scored lower, 0.18521 in BLEU-1. A similar
trend is observed across BLEU-2, BLEU-3, and BLEU-4.

6.4 Comparison with Prior Art

Table 6.2 details a comparison of our results against other methods explored in
literature. The best-performing model, EfficientNet Transformer, achieved results
similar to the InceptionV3 GRU merge model with a BLEU-1 of 0.425 against 0.425.
In previous literature, the authors annotated and added more samples and, hence,
increased the size of their dataset to improve their models’ performances.

Table 6.2: Comparison with prior art

Model BLEU1 BLEU2 BLEU3 BLEU4
Our Proposed model

(EfficientNet Transformer) 0.425 0.264 0.174 0.134
Inception V3 GRU [29] 0.425 0.279 0.236 0.164

Inception V3 Transformer [34] 0.567 0.460 0.385 0.319
CNN+ResNet-50[merge] [30] 0.651 0.426 0.278 0.175
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Chapter 7

Conclusion and Future Work

Previous literature in English suggests using reinforcement learning [36] to fine-
tune the transformer model for improved performance. Furthermore, more data on
Bengali image captioning must be produced and made available in public domains.
In addition, reference caption per image in the publicly accessible Bengali dataset
should be increased to a number close to or greater than what is available in English
for better performance.
The purpose of this study was to investigate the effectiveness of using transformer
models with pre-trained EfficientNet and Vision Transformer image encoders to
generate captions for images. However, due to the limited amount of training data,
both models experienced significant overfitting. Despite the EfficientNet transformer
model showing better results than the Vision Transformer due to the latter’s exces-
sive depth, the lack of availability of Bengali image captioning dataset in terms of
quality and quantity remains a significant obstacle to improving the models’ perfor-
mance.
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