
PDFGuardian: An innovative approach to
Interpretable PDF Malware Detection using XAI

with SHAP Framework

by

Tahsinur Rahman
19101146

Nusaiba Ahmed
19101236

Shama Monjur
18201125

Fasbeer Mohammad Haque
19101269

Naweed Kabir
19101053

A thesis submitted to the Department of Computer Science and Engineering in
partial fulfillment of the requirements for the degree of B.Sc. in Computer Science

and Engineering

Department of Computer Science and Engineering
School of Data and Sciences

BRAC University
January 2023

©2023. BRAC University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Tahsinur Rafsan
19101146

Nusaiba Ahmed
19101236

Shama Monjur
18201125

Fasbeer Mohammad Haque
19101269

Naweed Kabir
19101053

i

Approval

The thesis/project titled “PDFGuardian: An innovative approach to Interpretable
PDF Malware Detection using XAI with SHAP Framework ” submitted by

1. Tahsinur Rahman(19101146)

2. Nusaiba Ahmed (19101236)

3. Shama Monjur (18201125)

4. Fasbeer Mohammad Haque (19101269)

5. Naweed Kabir (19101053)

Of Fall, 2022 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 26, 2023.

Examining Committee:

Supervisor:
(Member)

Dr. Muhammad Iqbal Hossain
Associate Professor

Department of Computer Science and Engineering
BRAC University

Program Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam
Professor

Department of Computer Science and Engineering
BRAC University

Head of Department:
(Chair)

Sadia Hamid Kazi,PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Abstract

As the world is moving more and more towards a digital era, a great majority of
data is transferred through a famous format known as PDF. One of its biggest
obstacles is still the age-old problem: malware. Even though several anti-malware
and anti-virus software exist, many of which cannot detect PDF Malware. Emails
carrying harmful attachments have recently been used in targeted cyber attacks
against businesses. Because most email servers do not allow executable files to be
attached to emails, attackers prefer to use non-executable files like PDF files. In
various sectors, machine learning algorithms and neural networks have been proven
to successfully detect known and unidentified malware. However, it can be difficult
to understand how these models make their decisions. Such lack of transparency
can be a problem, as it is important to understand how an AI system is making
decisions in order to ensure that it is acting ethically and responsibly. In some cases,
machine and deep learning models may make biased or discriminatory decisions or
have unintended consequences. Hence, Explainable AI comes into play. To address
this issue, this paper suggests using machine learning algorithms SGD(Stochastic
Gradient Descent), XGBoost Classifier, and deep learning algorithms Single Layer
Perceptron, ANN(Artificial Neural Network) and check their interpretability using
Explainable AI (XAI)’s SHAP framework to classify a PDF file being malicious or
clean for a global and local understanding of the models.

Keywords: malware, PDF, PDF-analysis, cybersecurity, SGD, machine-learning,
detection, deep learning, artificial neural network, algorithm, Single Layer Percep-
tron, Extreme Gradient Boosting, Explainable artificial intelligence, Shapley Addi-
tive Explanations, ANN, SHAP, XAI, XGBoost, classifiers

iii

Dedication

We would like to dedicate this thesis to our parents, who have supported us in every
step of our lives, our dearest supervisor who has guided us through this entire thesis
and motivated us to push forward in research and lastly to our faculties who have
provided valuable responses and given time and effort into making the best versions
of ourselves and the thesis.

iv

Acknowledgement

First and foremost, glory be to the Great Allah, with whose help we were able to
finish writing our thesis without any issues.
Secondly, we would like to thank our supervisor, Dr. Muhammad Iqbal Hossain, for
his kind advice and support. He came to our aid anytime we needed it.
Thirdly, we would like to thank Faisal Ahmed Sir for his assistance and guidance
during the whole research study. He never hesitated to provide a hand and gener-
ously donated his time to make suggestions and insightful criticism.
And lastly, our parents, without whom it could not have been possible. We are
currently preparing to graduate thanks to their kind prayers and support.

v

Table of Contents

Declaration i

Approval ii

Abstract iii

Dedication iv

Acknowledgement v

Table of Contents vi

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2

1.2.1 Static Analysis: . 2
1.2.2 Dynamic Analysis: . 2

1.3 Objective and Contributions . 3

2 Literature Review and Related Work 4
2.1 Literature Review . 4

2.1.1 Malware Injection Techniques in PDF Files 4
2.1.2 PDF Structure and its Vulnerable Features 5

2.2 Algorithms/Models/Existing Techniques 7
2.3 Explainable AI and Its Significance 9

2.3.1 Choice of XAI Framework . 10

3 Methodology 11
3.1 Dataset Description . 11

3.1.1 Data Collection and Extraction 11
3.1.2 Dataset Pre-processing . 14

3.2 Proposed Model/Workplan . 17
3.2.1 Work Plan . 18

3.3 Model Implementation Review . 20
3.3.1 Perceptron Model . 20
3.3.2 Artificial Neural Network . 23

vi

3.3.3 XGBoost Classifier . 27
3.3.4 Stochastic Gradient Descent(SGD) 30

4 Results and Discussion 33
4.1 Model Evaluation . 33
4.2 Model Classification Analysis . 34
4.3 SHAP Analysis . 37

4.3.1 Perceptron . 39
4.3.2 SGD . 41
4.3.3 XGBoost Clasifier . 43
4.3.4 ANN . 44

4.4 The Analogy of SHAP Analysis of Models 45

5 Conclusion and Future Work 46

Reference 49

vii

List of Figures

3.1 Pseudocode Part 1 . 12
3.2 Pseudocode Part 2 . 13
3.3 Pseudocode Part 3 . 13
3.4 Pseudocode Part 4 . 13
3.5 KDE plots before transformation . 14
3.6 KDE plots after transformation . 15
3.7 Correlation Heatmap . 16
3.8 Chi-square Test . 17
3.9 Work Plan . 19
3.10 Perceptron Confusion Matrix . 21
3.11 Perceptron ROC . 22
3.12 Model Accuracy of ANN . 24
3.13 Model Loss of ANN . 24
3.14 ANN Confusion Matrix . 25
3.15 ANN ROC . 26
3.16 XGBoost Confusion Matrix . 28
3.17 XGBoost ROC . 29
3.18 SGD Confusion Matrix . 31
3.19 SGD ROC . 32

4.1 Force Plot Perceptron . 39
4.2 Waterfall Plot Perceptron . 39
4.3 Feature Clustering Plot Perceptron 40
4.4 Feature Importance Plot Perceptron 40
4.5 Force Plot SGD . 41
4.6 Waterfall Plot SGD . 41
4.7 Feature Clustering Plot SGD . 42
4.8 Feature Importance Plot SGD . 42
4.9 Force Plot XGBoost . 43
4.10 Feature Clustering Plot XGBoost . 43
4.11 Feature Importance Plot XGBoost 43
4.12 ANN Decision Plot . 44

viii

List of Tables

3.1 Perceptron Accuracy Scores . 21
3.2 Perceptron Classification . 21
3.3 ANN Accuracy Scores . 25
3.4 ANN Classification . 26
3.5 XGBoost Accuracy Scores . 28
3.6 XGB Classification . 29
3.7 SGD Accuracy Scores . 31
3.8 SGD Classification . 32

4.1 Model Computational Report . 34
4.2 Complete Classification Report . 35
4.3 Contingency Classification Report . 36

ix

Chapter 1

Introduction

Portable Document Format (PDF), was created by Adobe in 1992 and is currently
one of the most widely used formats for documentation. It is completely free to
use and supports procedures that need encryption and digital signatures, as well
as file attachments and metadata. Businesses as well as individuals use PDF files
to distribute and save information in the United States and throughout the world.
It is how invoices, contracts, and a variety of other business papers are frequently
sent. E-commerce benefits greatly from modern technology such as PDF. It also
consists of a broad variety of documents, including publications, catalogs, tax forms,
and infographics. Because of this versatility, photos, text, e-Signatures, videos,
website links, and a variety of other types of content are also used. With this
wide array of usage, PDF files have become an easy tool for spreading malware.
To detect such malware, ML, deep learning, and neural network are some effective
tools that can be applied. The applications and results of these models can be
explained further using the SHAP framework of XAI. With the popularity of data
science-based solutions increasing, it has become an important tool in the field of
artificial intelligence for understanding the behavior of machine learning models
and for providing interpretable and transparent explanations of their predictions. A
dataset of PDF files was collected and labeled as either malicious or clean to evaluate
the effectiveness of using XAI with these machine and deep learning algorithms.
The SGD, XGBoost, Single Layer Perceptron, ANN, and deep learning algorithms
were then trained and tested on the dataset using the SHAP framework to provide
explanations for their predictions. The results of the experiment showed that the use
of XAI with these algorithms was effective in detecting PDF malware with a high
degree of accuracy. Additionally, the white box SHAP explanations provided insight
into the decision-making process of the models, allowing for a better understanding
of their predictions and any potential biases or assumptions they may have made.

1.1 Motivation

With the rapid development of technology, people around the world have adapted
to an extensive range of devices and software for their daily uses for business and
educational purposes. Due to the COVID upsurge since 2019, the use of digital
documentation software has increased. Businesses have shifted their information
and work materials online [19], and educational institutions have started to take
assignments and project presentations in the form of PDF files. Security bank

1

statements to form fill-up printing documents have been passed around from person
to person using PDF files. Moreover, because it is one of the most widely used
ways to share or transmit information, phishing and other sorts of assaults have
also targeted it. Malware can cause great damage to a computer’s network. It
is used by hackers to steal passwords, destroy information, and disable machines.
This malware can steal critical data, slow down the computer, interrupt everyday
operations, restrict file access, and, if not stopped, rapidly propagate throughout
the network. It is very difficult for antivirus systems to detect complex embedded
malicious codes as it is hidden inside the functions of PDF. Thus, it is crucial to
prevent malware in such a useful tool as PDF.

1.2 Problem Statement

Malware detectors, such as viruses and spyware scanners, are the most common
kind of malware protection. Unfortunately, both researchers and malware devel-
opers have demonstrated that these scanners, which identify malware by matching
patterns, may be attacked by simple code. These technologies depend on semantic
signatures and static analysis techniques like model checking and theorem-proving
transformations to detect threats. However, attackers are trying hard to hide the
malicious program, resulting in dynamic signatures for their attacks. Because of
the nature of PDF and its support for embedded JavaScript, attackers have a wide
range of choices for developing dynamic exploit code, including techniques such as
embedded objects, dynamic and complex code, encoding, and cryptography. As a
result, it can distinguish two types of problems.

1.2.1 Static Analysis:

Binary obfuscation is a technique that aims to obscure the true application code
to make it difficult for an outsider who does not have access to the sources to
understand what the program is supposed to do [1].

• The bulk of past obfuscation methods has included working on the program’s
source code.

• It is not always easy to get hold of source code.

• Malware developers utilize NP-Hard problems and opaque constants. The use
of opaque constants in a method may be developed to conduct a variety of
modifications to obscure a program’s control flow, data locations, and data
use.

• Lack of skilled personnel to conduct the analysis effectively.

1.2.2 Dynamic Analysis:

• Malware may operate differently in the safe environment than it does in the
real-world run time environment.

• To be monitored, the malware sample must be run in a secure environment
for a specific length of time.

2

• The monitoring procedure takes time, and it must verify that execution mal-
ware does not infiltrate the platform [21].

• Difficult and time-consuming to pinpoint the precise location of an error [21].

In simpler terms, we would encounter both static and dynamic difficulties that must
be resolved concurrently to protect PDF files against malware threats.

1.3 Objective and Contributions

Machine learning and deep learning models have been helping the human world
greatly without any doubt. As past studies have suggested the use of certain algo-
rithms, it is yet important to decide whether one should be relying on the models or
not especially in such a field of malware detection in cybersecurity. Artificial intel-
ligence (AI) systems that have the ability to give justifications for their choices and
behaviors are referred to as explainable AI. This is crucial because it enables users
to comprehend how an AI system makes decisions, boosting user confidence and en-
suring that the system is behaving ethically and responsibly. Given that it enables
programmers to comprehend how the system came at a given choice, explainable AI
can also aid in the detection and correction of AI system flaws. Overall, explain-
able AI is essential to guaranteeing the justice, accountability, and transparency
of AI systems. The purpose of this research is to develop a detection system for
PDF malware, by using machine learning models: SGD, XGBoost Classifier, Single
Layer Perceptron, and an ANN model which would be explained using Explainable
AI. The aim is to use different models to figure out whether a file is malicious or
not. The models’ abilities to distinguish between clean and malicious PDF files are
observed and compared. The main objectives are the following:

1. Understanding malware and how it works

2. How malware is embedded and how it can be prevented

3. Understanding dataset parameters for supervising the model for malware de-
tection

4. Develop the Machine Learning model and evaluate the model based on its
performance

5. Use SHAP Explainers to check each model’s interpretation and its feature
contributions.

3

Chapter 2

Literature Review and Related
Work

2.1 Literature Review

A few basics of certain issues must be covered to properly understand the solution
for the malware invasion. This includes how a PDF file works, where malicious
writers can insert or disguise their code, and how an attacker employs the malware-
producing technique. It’s crucial to comprehend the benefits of applying machine
learning and deep learning to the problem as well as how to deal with it utiliz-
ing the current static and dynamic techniques of malware insertion as well as how
Explainable AI helps make better decisions.

2.1.1 Malware Injection Techniques in PDF Files

Malware is a malicious software that infiltrates a computer by posing as a genuine
program. Phishing emails, fraudulent installers, infected attachments, and phishing
websites are the most prevalent ways for them to be installed [17]. To persuade
consumers to install malware, hackers make it look appealing. Since the applica-
tion appears to be legitimate, most people are unaware that it is malware. In fact,
antivirus programs are unable to identify the problem, the hidden codes blend in
seamlessly into the appearance of a typical PDF file. This may be accomplished by
including seemingly harmless links and attachments that connect to their system. As
attackers’ techniques for creating malicious code have become more sophisticated,
various studies have been conducted to detect and analyze malicious code. Malware
is classified into two types: executables and non-executables [17]. There are many
ways in which malicious files are injected. Therefore malware detection is required.
Malware detection is a technique that is designed to detect malware. It is done in
several ways such as Signature-Based Detection, Heuristic Analysis, Sandbox, etc
[24].

In order to figure out and develop an effective mechanism it is important to consider
how the malware interacts with the PDF formats. In general, PDF files are an easy
target due to the fact that PDF files are generally non executable files, i.e. without
an active application or feature running. Most users consider PDF files to be static
documents that contain only output from an executable program and not itself, for

4

example, the output of a JavaScript program in the background [18]. Most PDF
attacks use built-in features or embedded codes, executed by the PDF reader, to
exploit vulnerabilities. While there are many that fall under that criteria, the most
prevalent scenarios are as follows:

An action is considered a regular feature in a PDF. This has led to the use of
the OpenAction feature to set the malware or exploit to be triggered by opening the
PDF, as it is disguised as a normal action. [4], [5].

Another method is to utilize the Launch action, which offers the operating system
special commands that allow it to launch an application when the user clicks OK
on the confirmation prompt [4].

Arguably, the most difficult to combat is the use of GotoEmbedded actions. This is
the process of hiding encrypted, malware-affected PDF files or hyperlinks [3] within
the main PDF. This will load the hidden PDF file as soon as the main PDF file is
loaded. This type of threat is difficult to prevent as the main PDF is harmless and
hence the embedded files slip through along with the main file [4], [5].

A final common scenario is the usage of Universal Resource indicators to point users
to another infected source [9]. The most common use of it is to redirect users to
malicious websites, or steal personal data from that particular device [18]. This is
mostly done by using multiple functions like JavaScript and OpenAction.

2.1.2 PDF Structure and its Vulnerable Features

The overall structure of a PDF file must be comprehended to understand how in-
formation is stored inside it and which sections are vulnerable. The trailer, header,
cross-reference, and object are the four main components. The header is followed by
the body, which contains even more elements. Numbers, strings, streams, dictionar-
ies, and booleans make up the majority of the data. In this case, streams are PDF
files, which often contain simple text, fonts, and graphics, as well as JavaScript. A
list of objectives may be found on the cross-reference board. The trailer section at
the conclusion comprises PDF files and cross-reference table positioning data[11].
A PDF file has a lot of features that operate in layers. However, not all features
are vulnerable. Features like header storage and unique address storage have an
extremely low chance of being attacked. Therefore, only a few features with their
susceptibility are researched.

• JavaScript and JS- A JavaScript action is an object that contains JavaScript
code and either a string or a pointer to a string or stream object. The PDF
standard enables the assessment of JavaScript operations at various times
during the life of a PDF file within a PDF reader [6]. Obfuscation is a method
of disguising the true content of data or the true functioning of program code.
A PDF document can be obfuscated to conceal numerous of its attributes [6].
JavaScript code, on the other hand, maybe obfuscated to limit readability.
This can, in turn, reduce the static analysis of the PDF files [14].

5

• Open Action- When creating a PDF document, OpenOffice and LibreOffice
commonly include OpenAction. Its function is to display the first page of the
document when you open it for the first time [22]. When files run, the open
action can point to a JavaScript or JS file in order to run. An attacker can
easily inject malicious code in this section using the “GO TO R” or “GO TO
E” methods. The “GO TO R” method usually includes links that, when a file
is opened, will lead the file into opening a link or URL from which the attacker
can work. The “GO TO E” causes the file to go into an embedded file that
runs hidden without the user noticing [20].

• AA- Using a Universal Resource Indicator, URI action provides access to
external resources. By combining that functionality with Javascript, OpenAc-
tion, or PDF forms, an attacker can trick a user into visiting a hostile website
or stealing data. This action is often started with AA which is an automatic
action [22]. So, if an attacker uses the feature, he can automatically refer to
any site or file that contains a virus without the user noticing. This is usually
the case with PDF files that are opened via a web browser such as google
chrome or firefox.

• Object, EndObject, Objstream, and Trailer- The PDF document is
divided into header, body, cross-reference table, and trailer sections. The
body contains objects that carry insight into the actual content [10], [3]. The
trailer holds the root object as well as cross-reference table position data for
the objects in the body section. PDF apps(for example, PDF readers) support
executing JavaScript code inside the file which implies that any function can
be executed dynamically using the JavaScript API [10]. Stream objects have
no size limits, and some part of the stream performs malicious behaviors.
Therefore, the attacks are usually hidden inside objects, which allows us the
first identification of a possible malicious attack.

• Startxref Xref - The abbreviationXreff stands for external references. A list
of objects along with their location and status within the file is contained in
the Xref table, also known as the cross-reference table [4]. The Xref tool, as the
name suggests, enables you to add external references to your design. Other
drawings, PDF files, photos, point cloud data, and other types of external
references are also possible. A Startxref, the location of the final Xref table,
and %%EOF, which should finish the file, are all included after the trailer
[10]. The Startxref returns the URL to the specified process link. These can
be checked for the presence of suspicious content and cut the search time
down, as the Xref and Startxref tables will contain references of the entire
layer system of PDF, much like the table of contents inside any document.

• Stream, EndStream, and Encrypt- The stream is a sequence of bytes of
binary data that vary in length. Normally, the stream is expected to con-
tain large image files or page composition objects [19]. It is harder to detect
embedded code in files since streams can contain all kinds of data, including
scripts and binary files, and they can also be encrypted and encoded. The
name/filter specifies the compression method. More than one filter may be
present in a stream. A PDF file may be encrypted for extra security, in which
case a password is required to read or alter the contents. The encryption could

6

easily contain such passwords which could be used by the user for other fields.
When attackers enable and edit passwords, they can not only view content
but also prevent the user from accessing the PDF or modifying contents by
injecting a new password. Shellcode encryption is one of the most important
forms of encryption-based attacks [12]. The security of such PDF files is often
overlooked as it easily hides under the layers that systems perceive to be their
own.

• Page- Pages are the least susceptible to any malware injection. However, it
can be a key indicator of whether a file contains malware or not. For instance, if
a PDF file’s page count is larger than the actual page numbers for its contents,
it may indicate that some material has been concealed, which may be a sign
of potential attacks inside subsequent layers.

• XFA- XML Forms Architecture (XFA) offers a template that enables fillable
fields and establishes the form’s design or looks [6]. It may be used to up-
date forms, perform calculations, verify output, and preserve modifications
for forms that have been filled out because it is embedded in PDF. In many
cases, ignoring XFA resulted in false positives as identifiers could not recognize
the format and hence previous works sometimes considered it to be suspicious
when it was not.

One of the most prevailing attacks is against PDF files, which are more versatile
than other document formats. The majority of malicious PDF documents contain
binary or JavaScript code that exploits vulnerabilities and causes damage [19]. Ex-
perts have been making great efforts in PDF manipulation for more than a decade.
The majority of talks focused on the worrying rise in these cyberattacks and how
the perpetrators made use of a PDF file’s structure. Only a few of the many recom-
mended methods were implemented. New methods for a getaway have been found
in more recent investigations. However, the field falls short in terms of precision and
general considerations of many forms of attacks. In previous research, combining
static and dynamic features increased the detection rate of hazardous Mobile Apps,
and it is worth investigating in the context of PDF malware. This hypothesizes that
combining static, dynamic, and hardware features can increase the evasion resistance
of the classifier [18].

2.2 Algorithms/Models/Existing Techniques

The most basic and prevalent way of detecting malware is to compare files with
traits of known malware and sniff out traces. While this leads to quick results, the
trade-off is accuracy and it is not difficult to bypass this method. So, there are 4
methods used today that are relatively much more effective than the rest.
There are some well-known PDF-based attacks:

• OpenAction

• Launch action

• Embedded files

7

• GotoEmbedded action

• URI action

While there are other ways available, they tend to focus on 21 properties that
are typically seen in malicious files (obj, endobj, stream, endstream, xref, trailer,
startxref, /Page, /Encrypt, /ObjStm, /JS, /JavaScript, /AA, /OpenAction, /Acro-
Form, /JBIG2Decode, /RickMedia).

Some well-known methods used to detect such anomalies are explained below:

1. Static Analysis: This is a process that directly looks into the PDF content. It

uses tools like PDFiD or Peepdf which scans the entire PDF and counts the
occurrences of the features. This is commonly used for a quick overview of the
condition of the PDF [22].

2. Dynamic Analysis: In contrast to the static analysis, the dynamic analysis is

performed at run-time. In some instances, PDF files are not executed on PDF
readers. For this reason, the analysis needs to run on a vulnerable machine
[22] or in a virtual machine, for example, a malware analysis environment [3].

3. Hardware Malware Detection (HMD): Hardware Malware Detection is yet an-

other modern way, and it differs from the previous two as it tries to detect
malware at the hardware level. The micro-architecture features, for example,
the frequency of opcodes, and comparisons of opcode signatures are vital to
this method. The values of these features are collected and analyzed to check
for any irregular behavior [22].

4. Machine learning: Machine learning is a very convenient tool when solving

the problem of detection. The objective is to give it an idea of what harmful
malware may seem like and use data sets and a test train split to train the
machine. This gives the machine an idea of what to look for and thus detects
data it may not have even encountered before. This is a very robust and flex-
ible method as it is constantly adapting and evolving, and static analysis can
be performed on it to give an even more accurate result.

While they can be individually implemented it is important to note that the best
methods of PDF malware detection today usually consist of more than only one of
these methods, and are usually implemented together with machine learning to cre-
ate an effective system for the detection of PDFmalware [22]. Pareek’s technique was
based on feature extraction and machine learning algorithms (LMT, Naive Bayes,
Bayes Net, and J48) without JavaScript emulation techniques [10]. Schmitt, Gassen,
and Gerhards-Padilla use both static and dynamic strategies to spot malicious ac-
tivity in a simulated environment [6]. Jeong, Woo, and Kang detected malware on
PDF file byte streams using convolutional neural networks(CNN) [17]. Corum sug-
gested a creative, learning-based approach to identifying PDF malware that makes
use of image processing and visualization methods [15]. Cuan, Damien, Delaplace,
and Valois used SVM to detect malware [13]. S. R. Gopaldinne, H. Kaur, P. Kaur,

8

G. Kaur, and Madhuri suggested the use of Artificial Neural Networks (ANN), and
K-Nearest Neighbors (KNN) [23].
There are currently some malware analysis tools present. The first notable tool
is FileMon which detects changes to the file system efficiently, as well as detects
questionable searches performed. However, a deficiency is that it picks up a large
number of file changes even when the system is resting or idle [11]. Alternative tools
are Norman Sandbox and JoeBox, both of which are dynamic analysis tools. Nor-
man Sandbox runs the program in a secure, controlled virtual environment that is
designed to act similarly to a host computer and the malware affects it accordingly.
JoeBox on the other hand maintains a log of all performed actions regarding file
system, registry, and more. [11].

Despite the fact that these methods exist, the majority of them have significant
rates of false positives and negatives, making it impossible to utilize the models’
accuracy to forecast whether or not a PDF is infected in the end. The earlier study
was more static-based, which meant that run-time flaws could not be detected. The
dynamic analysis that was later studied exhibited increased redundancy and false
alarm rates. The majority of recent talks center on widely used features that hackers
may exploit, failing to take into account rare instances of serious assaults on other
features. This raises the worry that any unusual attack method utilized by the
attackers might soon gain popularity as an injection method utilizing disregarded
characteristics. Hence, it is crucial to have a comprehensive detection system that
will examine both static and dynamic-based detections, as well as any feature with
a high risk of infiltration. By applying higher advanced models for accuracy and
hyper-tuning parameters, this may be successfully accomplished with machine learn-
ing and deep learning models. Although previous works were successful in making
a good model with optimal accuracies and f1 scores, no research was found talking
about its reliability and assurance. As research has been made in the past on the
detection of malware, many fields of cyber security had implemented Explainable
AI for a better understanding of the models. However, this sector was completely
lacking in PDF malware detection specifically. Thus, there was a need for such
implementations in this sector as well. As studies had been made it was deter-
mined that this paper will aim to use the SHAP framework from the Explainable AI
(XAI) algorithms to investigate the models which are considered to be more optimal
than models used in the past using machine learning algorithms and deep neural
networks.

2.3 Explainable AI and Its Significance

Explainable artificial intelligence (XAI) refers to the development and use of artifi-
cial intelligence (AI) systems that can provide interpretable and transparent expla-
nations of their behavior. It includes both the development of AI algorithms and
models that are interpretable, as well as the development of techniques for explain-
ing the predictions and decisions made by more complex, non-interpretable models
[26].
The target of XAI is to provide insights into how AI systems are making their pre-
dictions and decisions and to identify any potential biases or assumptions that the
systems may be making. It can be important when AI systems are being used to

9

make decisions when the predictions of the AI system need to be understood and
explained, or when the use of AI systems is regulated [15]. Essentially, using XAI
techniques can help to identify any biases or assumptions in an AI system that
may be causing the system to make poor predictions. This can help to improve the
system’s performance by allowing the system to make more accurate and reliable
predictions.
White box artificial intelligence (AI) methods are methods that provide interpretable
and transparent explanations of the behavior of an AI system. These methods are
also known as White Box explainable AI (XAI) methods.

2.3.1 Choice of XAI Framework

There are multiple interpretable frameworks to use for the XAI classification inter-
pretation which include LIME, GRAD-CAM, LORE, and SHAP [26]. Choosing the
right model for the work at hand was another crucial step. From this, SHAP was
the most suitable framework which is further discussed.
SHAP(Shapley Additive Explanations) is a method for explaining the output of a
machine learning model by decomposing the model’s prediction into the contribu-
tions of each feature in the input data. It uses Shapley values, which are based
on cooperative game theory, to assign a fair ”payoff” to each feature based on its
contribution to the model’s output [25].
One key difference between Shapley Additive Explanations and other frameworks
is their way to approach model interpretation. SHAP is a global interpretation
method, which means that it can be used to explain the model’s output for any
specific input data point, as well as for the model as a whole. Whereas, other
frameworks such as LIME are local interpretation method, which means that it is
designed to explain the model’s behavior for a specific input data point, but may
not provide a global understanding of the model’s behavior. Moreover, while com-
puting individual features to the model’s output prediction, SHAP uses Shapley
values, which are based on cooperative game theory and provide a fair ”payoff” to
each feature based on its contribution to the model’s output. LIME uses a weighted
linear model to approximate the behavior of the original model in the vicinity of the
specific input data point being explained. SHAP does not make any assumptions
about the algorithm used in black-box models while LIME works on the assumption
that all machine-learning models will behave linearly over a few local data points.
Since SHAP is based on the Shapley values considering every case of a contribution
of each feature it has a solid mechanism which LIME lacks [25]. LORE works with
synthetic data generated through genetic algorithm while GRAD-CAM is used on
visual data [16], [27]. Hence, out of all frameworks SHAP was chosen to be the best
fit for a global interpretation of the entire classification of the models and its feature
contributions.

10

Chapter 3

Methodology

3.1 Dataset Description

3.1.1 Data Collection and Extraction

Using Contiago Dump [8], a total of 21095 files have been collected, of which 12095
are marked as malicious while the rest 9000 are clean. With the use of the PDFid
module, the features of each PDF have been extracted.

The PDFid module is used on both bulks of clean and malicious PDF files to extract
the features of each PDF. The PDF files contain a specific feature list which mostly
defines how a PDF is structured and how many objects are present in correspon-
dence to each feature.

The PDFid module is used on both bulks of clean and malicious PDF files to ex-
tract the features of each PDF. The PDF files contain a specific feature list which
mostly defines how a PDF is structured and how many objects are present in corre-
spondence to each feature. The information on the various functions keywords that
describe the actions the item takes are indicated by the ”/” tag [5].
The program PDFiD will search a PDF file for a specified set of strings and count
the total and disguised occurrences of each word:

obj
endobj
stream
endstream
Xref
trailer
startxref
/Page
/Encrypt
/ObjStm
/JS
/JavaScript
/AA
/OpenAction

11

/JBIG2Decode
/RichMedia
/Launch
/XFA
/Acroform
/EmbeddedFile
/Colors > 224

Formulate The Dataset

The log file contains the unique identifier of each PDF which is a redundant element
of the log file for the dataset. The log file has been converted to a CSV format with
a custom converting module in Figure 3.1.

Figure 3.1: Pseudocode Part 1

This module in Figure 3.1 has taken the log file of each malicious and clean file and
converted two individual datasets, one with 12095 rows and the other with 9000
rows respectively. The unique identifier feature has been removed and a new target
feature has been introduced to the dataset, using another module in Figure 3.2.

12

Figure 3.2: Pseudocode Part 2

After the modifications of dropping the redundant feature and adding the target
feature, the clean and malicious files have been combined into a single dataset. This
has been achieved by constructing another module that concatenated and shuffled
the datasets in Figure 3.3.

Figure 3.3: Pseudocode Part 3

A total of 9000 clean PDF files and 12095 malicious PDF files with 21 characteristics
make up the dataset. The majority of the dataset’s files are malicious, hence an
oversampled, balanced dataset has been created in order to make up for this. To
create this dataset, another module was utilized as shown in Figure 3.4.

Figure 3.4: Pseudocode Part 4

The final dataset has been taken into consideration as the dataset with which the
authors continued to classify the features stated in the dataset after forming the
following modules on the log files.

13

3.1.2 Dataset Pre-processing

The dataset taken had a positively skewed distribution for each feature with no
null values.Each feature was an integer type. However, there were a few redundant
features that had little to no contribution to making a PDF file malicious. Hence
there was a need to fix the dataset distribution as well as remove a few redundant
features.

Dataset Distribution Fix

Skewness is a measure of the asymmetry of a distribution. A distribution is skewed
to the right if it has a long tail on the right side, and is skewed to the left if it has
a long tail on the left side. A distribution is symmetrical if it is not skewed [2].
Kurtosis is a measure of the ”peakedness” of a distribution. A distribution with a
high kurtosis has a more peaked shape, while a distribution with a low kurtosis has
a more flat shape. In other words, high kurtosis data sets are more likely to have
huge outliers. The normal distribution has a kurtosis of 3 [2]. Since the dataset was
created using original malicious and clean PDF files, there was an issue with the
dataset being skewed. The data’s skewness and kurtosis were checked to ensure that
they were distributed normally. Therefore, a kurtosis value less than or equal to 3
and a threshold value for skewness ranging from -0.5 to +0.5 has been considered.
Any feature with a greater kurtosis value (Leptokurtic) and an out-of-range skewness
value was corrected using the Box-Cox transformation, which uses mathematics to
give non-normal dependent variables a normal shape.
In order to achieve a normal distribution for the data in the dataset, the data for
each feature had been normalized, and any irregularities had been addressed after
maintaining skewness and kurtosis threshold values. One such feature KDE plot has
been shown in Figure 3.5 and Figure 3.6 for before and after any transformations.

Figure 3.5: KDE plots before transformation

14

Figure 3.6: KDE plots after transformation

As it is visible that the distribution is highly positively skewed with a skewness
value of 41. The kurtosis value was also high at 2713.87. In order to have an
accurate analysis model, feature transformation was required to ensure the data of
all features were normally distributed. Logarithmic, Reciprocal, and Square root
transformations were not able to arrange the data into a normal distribution very
accurately. However, Box-Cox Transformation gives a different way of normalizing
data, by checking the standard deviation and whether it is the smallest or not.
Furthermore, the variation of Box-Cox used was the boxcox1p. Because the dataset
has zero values as well, the boxcox1p function gave better normal distributions
compared to the original variation. The new skewness value is 0.9338, which is
better than the initial value. The new kurtosis value is 1.253 which is a good value
considering the threshold to be k=3.

Feature Exclusion

The data is composed of features that describe how each PDF is produced and
what components are operating inside them. Each component is seen as a layer of
the PDF, and while they are kept apart from one another, they are linked to one
another to work in sync. This feature list is frequently used by malicious writers to
create their harmful scripts, which are programmed to launch whenever a PDF is
downloaded or accessed in an attempt to spread viruses. The association between
the traits to validate a PDF as malicious, however, is extremely broad; in actuality,
not all features are necessary to carry out a specific assault. Therefore, the most
prevalent traits are separated to see if they are the only factors contributing to a
PDF’s maliciousness.

Correlation Check: A correlation check using the .corr() function was also made
and a heatmap was generated as shown in Figure 3.7 which gave insight into how

15

each feature had been affecting the classification.

Figure 3.7: Correlation Heatmap

According to the heatmap generated in Figure 3.7, the features /Colors > 224,
/Launch, /RichMedia, /EmbeddedFile, /AA have a correlation of 0.0 with the label
”isMalicious.” In addition, the feature JBIG2Decode has a correlation of -0.1. These
features appear to have the least contribution to the analysis, so it was removed.

Chi-square Test Validation: To validate the modifications made to the dataset
and the exclusion of certain features, a Chi-square test for Independence was con-
ducted. The Chi-square test for Independence is a statistical method used to assess
whether there is a significant relationship between two variables [7]. It is based on
the Chi-square statistic, which quantifies the discrepancy between the expected and
observed frequencies in a sample. The purpose of the Chi-square test for Indepen-
dence is to examine the null hypothesis that there is no association between the two
variables and to determine whether the observed association is statistically signifi-
cant. If the p-value obtained from the test is lower than the predetermined level of
significance, the null hypothesis can be rejected and it can be concluded that there
is a significant association between the two variables.
The goal of this test was to determine whether any differences between actual and
predicted data were due to chance or a correlation between the variables. The
dataset, which had 21 features, was examined to determine its potential impact on
the determination of whether a file was malicious or clean. The p-values obtained
from the Chi-square test approximated the degree of independence, while the Chi-
square scores reflected the degree of dependence.

16

Any features with p-values greater than the threshold of 0.001 were discarded, as
they supported the null hypothesis for the Chi-square test. Chi-square scores were
then generated for the remaining features based on the removal of features according
to their p-values. The results of the Chi-square scores, as shown in the generated
chart in Figure 3.8, were consistent with the removal of features based on correlation
and heatmap generation. This suggests that the modified dataset, after the removal
of redundant features, will contain relevant data that can be used in predictive
models.

Figure 3.8: Chi-square Test

3.2 Proposed Model/Workplan

The processed dataset has a balanced combination of clean and malicious files. This
could have been considered a generic binary classification. However, the malicious
files are formulated in such a way that no antivirus or firewall can detect its execu-
tions and eventually able to bypass the operating system of a user. Considering that
case, the models heavily depend on primary features and restricted identification of
both variants. In order to address that problem, the implementation of models such
as Stochastic Gradient Descent (SGD), XGBoost Classifier, Single Layer Perceptron,
and Artificial Neural Network has been selected for classifying the dataset.

17

3.2.1 Work Plan

The aim is to use different models to figure out whether a file is malicious or not.
For this we have divided our work into the following stages which have been shown
in Figure 3.9:

1. The first step is to acquire malicious and clean files. For this, Contagio Mal-
ware Dump has been used. Via the use of the Pdfid model, further extraction
of the features of the PDF files has been done.

2. The dataset then has to be processed and converted from log to CSV form
using a converting module.

3. The unwanted header information feature of unique ids for the PDF files is
removed.

4. The individual clean and malicious datasets are then combined to form one
dataset combining both to be used for training and testing.

5. To get a balanced dataset, oversampling has been done on the data as required

6. Dataset was pre-processed through EDA

7. We use the train/test split and use several different machine learning algo-
rithms individually on the split.

8. Currently used are Stochastic Gradient Descent, XGBoost Classifier, Linear
Model Perceptron, and an Artificial Neural Network model.

9. Keep false positive occurrences and the size of the dataset into consideration
while generating and analyzing results.

10. The results of each algorithm are gathered, charted, and compared to results
of the other algorithms

11. SHAP framework for XAI is used for checking each feature’s contribution to
the models.

12. The best-fit algorithm will be identified and applied.

13. Classification of PDF files will be accurately completed using this.

14. The end product will be able to detect PDFmalware using this algorithm/algorithms
and be able to allow or prevent a PDF file from opening if proven by the model.

18

Figure 3.9: Work Plan

19

3.3 Model Implementation Review

3.3.1 Perceptron Model

A single-layer perceptron is a type of artificial neural network that consists of a sin-
gle layer of interconnected ”neurons.” It is a simplified version of a multi-layer. The
neurons in a single-layer perceptron are connected to the inputs through weighted
connections, and each neuron produces an output based on a linear combination of
the inputs and their weights. The output of the neuron is then passed through an
activation function, which determines the final output of the neuron explained in
Equation (5.1).

activation = weights ∗ inputs+ bias (3.1)

In the context of linear binary classification, a single-layer perceptron can be used
to classify data points into two classes based on a linear decision boundary. It does
this by learning a set of weights that define the direction and slope of the decision
boundary.
One advantage of using a single-layer perceptron for linear binary classification is
that it is a simple and efficient algorithm. It requires minimal training data and has
a low computational cost, making it well-suited for problems with limited resources.
Additionally, single-layer perceptrons are easy to implement and understand, mak-
ing them a popular choice for students and practitioners learning about neural net-
works. For the following dataset, the perceptron model has been implemented with
some hyperparameter tuning. The penalty value has been set to ’l1’, and the alpha
has been considered along the fit-intercept term. Regularization (i.e. penalty) uses
high-valued regression coefficients as a means of punishment to prevent overfitting.
Simply put, it compresses the model and decreases its parameters. Predictions will
probably perform better with this simplified, more economical approach. L1 regu-
larization introduces an additional L1 penalty equal to the amount of the coefficients
in absolute terms. In other words, it restricts the coefficients’ size. Some coefficients
can be deleted and reduced to zero. The regularization term’s alpha parameter, also
known as the penalty term, prevents overfitting by limiting the size of the weights.
A more complex decision boundary may come from lowering the alpha, which might
be used to address excessive bias (an indication of underfitting). The fit-intercept
is defaulted to true with which the model will learn the intercept can be thought of
as a learned bias unit. Since the data is already scaled, the fit-intercept is assumed
False.
A confusion matrix was obtained to check for the results of the model in Table 3.1
and Figure 3.10 :

20

Table 3.1: Perceptron Accuracy Scores

Perceptron
precision recall f1-score support

benign 0.99 0.98 0.99 4838
malware 0.98 0.99 0.99 4838
accuracy 0.99 9676
macro avg 0.99 0.99 0.99 9676

weighted avg 0.99 0.99 0.99 9676

Figure 3.10: Perceptron Confusion Matrix

A ROC graph was generated as seen in Figure 3.11 to visualize how well the model
was learning and it gave the following results. The table 3.2 shows the True Positives
and False Negative scores:

Table 3.2: Perceptron Classification

Perceptron
True Negative 4741
False Positive 97
False Negative 29
True Positive 4809

21

Figure 3.11: Perceptron ROC

From Figure 3.10 and Figure 3.11 with Table 3.1 and Table 3.2, it is seen that the
Perceptron model has a precision of 0.99 and a recall of 0.98, resulting in an F1
score of 0.99. Its False Negative value is very low, indicating that it is a reliable
model. The area under the curve (AUC) of the model’s ROC curve is 0.987, which
is a high value that further demonstrates the accuracy of the Perceptron model.

22

3.3.2 Artificial Neural Network

Artificial neural networks (ANNs) are computational models that mimic the struc-
ture and function of the brain. They are used for tasks such as pattern recogni-
tion, regression, and classification, and are trained using backpropagation to adjust
weights based on the error between predicted and desired output. ANNs classify
new data points by applying learned weights to input features and comparing the
predicted output to the desired output to evaluate performance. The number of
neurons and layers, activation function, and weight values all affect the performance
of an ANN.

The ANN model was created with the Tensorflow library and Keras framework.
It used HeNormal initializers for its hidden layers and Glorot Normal initializers for
its output layer. The model consisted of four hidden layers with 5, 10, 5, and 10 units
respectively, all using the ReLU activation function. A Dropout layer has been used
in between the hidden layers to control the overfitting of the data. The output layer
had a single unit and used the sigmoid activation function. The model was com-
piled with a binary cross entropy loss function, Adam optimizer, and an ’accuracy’
metric. It was designed to prevent overfitting and improve the model’s performance.

HeNormal is a kernel initializer that is often used for layers with ReLU activation
functions. It initializes the weights of the layer’s kernels using a normal distribu-
tion with a mean of 0 and a standard deviation of

√
2/n, where n is the number

of input units in the layer. Glorot normal (short for Glorot and Bengio normal)
is a kernel initializer that is often used for layers with sigmoid or tanh activation
functions. It initializes the weights of the layer’s kernels using a normal distribution
with a mean of 0 and a standard deviation of

√
(2/(nin + nout)), where nin is the

number of input units in the layer and nout is the number of output units in the layer.

Both Henormal and Glorot normal are designed to initialize the weights of the
layer’s kernels in a way that helps the model converge faster and perform better.
They are often used as a replacement for the default initializer, which is usually a
uniform distribution. The HeNormal initializers were used inside the hidden layers
while the output layer used the Glorot Normal initializer.

The idea behind dropout is to randomly ”drop out” or deactivate a portion of the
units in a neural network during training. This is done by setting the activations
of the dropped-out units to zero, which effectively removes them from the network.
The dropout rate is the fraction of units that are dropped out. The main purpose
of dropout is to prevent overfitting, which occurs when a model is too complex and
has too many parameters relative to the amount of training data. By randomly
dropping out units during training, dropout forces the model to learn multiple in-
dependent representations of the data, which can help improve generalization.

Finally, the model is compiled with a binary crossentropy loss function and the
Adam optimizer, with the metric set to ‘accuracy’ to evaluate the model.

A total of 25 epochs had been run. After an epoch is completed, the model’s weights
and biases are updated based on the error calculated on the training data. Then,

23

the second epoch will begin, and the model’s weights and biases will be updated
based on the error calculated on the next set of samples, which in our case is 100.
Training the model for 25 epochs means that the model will see the training data 25
times and its weights and biases will be updated accordingly helping it to learn and
provide good classification. After training the model, predictions had been made
based on accuracy and loss shown by the curves in Figure 3.12 and 3.13.

Figure 3.12: Model Accuracy of ANN

Figure 3.13: Model Loss of ANN

From the model accuracy curve in Figure 3.12 it is seen that the training curve
starts from roughly 50-60% while testing accuracy starts from 60-70% which is an
indication that the model is training and testing quite consistently. The testing
accuracy graph shows us that testing accuracy is higher than training accuracy for
all epochs. It can be explained due to the presence of a dropout function which was
used in the layers of the ANN model. The dropout function works on training the
model during forward propagation. However, in testing no nodes are intentionally
dropped, thus resulting in higher test accuracy. This model loss curve in Figure 3.13
shows that the testing and training curves were able to drastically reduce their loss
as the number of epochs increased and went to a slow change after the 10th epoch.

24

Moreover, the test curve is lower than the training curve in the model loss figure
which indicates that the model has learned and optimized appropriately.
The ANN confusion matrix shows the following in Table 3.3 and Figure 3.14:

Table 3.3: ANN Accuracy Scores

ANN
precision recall f1-score support

benign 0.99 0.99 0.99 4838
malware 0.99 0.99 0.99 4838
accuracy 0.99 9676
macro avg 0.99 0.99 0.99 9676

weighted avg 0.99 0.99 0.99 9676

Figure 3.14: ANN Confusion Matrix

25

The ROC curve gave the following results in Figure 3.15 and Table 3.4 shows the
True Positives and False Negatives:

Table 3.4: ANN Classification

ANN
True Negative 4803
False Positive 35
False Negative 50
True Positive 4788

Figure 3.15: ANN ROC

From Figure 3.14 and Figure 3.15 with Table 3.3 and Table 3.4, it is seen that the
F1 score is very high at 0.99. This is because the precision and recall values for this
model are 0.99. This score is further proved accurate by the presence of both very
few False Negatives and False Positives which is significantly less than 100. The
ROC curve has an ideal shape, with maximum sensitivity and the AUC=0.991 is
obtained which is almost completely ideal.

26

3.3.3 XGBoost Classifier

XGBoost is a popular open-source machine-learning library that provides efficient
implementations of gradient-boosting algorithms. One of the algorithms imple-
mented in XGBoost is binary logistic regression, which is a linear model used for
binary classification tasks.

In the context of binary classification, the XGBoost binary logistic regression model
can be used to learn a decision boundary that separates the positive and negative
examples in the training data. It does this by fitting a linear model to the input
features and using a gradient descent algorithm to optimize the model weights. The
model produces a predicted probability for each class, which can be thresholded to
obtain a binary prediction.

One advantage of using the XGBoost binary logistic function for binary classifi-
cation is that it is fast and efficient, as it uses a linear model as the base learner.
It also has good scalability, as it can handle large datasets and is capable of paral-
lelization. Additionally, the XGBoost library provides a range of hyperparameters
that can be fine-tuned to improve the performance of the binary model. The Logis-
tic transformation in the binary setting is simply referring to the sigmoid function
over the output probability of the model. The correct parameter tuning has a great
influence on the model’s accuracy during prediction. Moreover, implementing the
parameters reduced the errors while increasing performance as well.

The model was iterated with the variations of values and concluded on a certain
learning rate where it learns the best and the mean square error is appropriate. A
booster known as gblinear was used. It is a linear booster that is trained using gra-
dient descent to minimize a loss function. The gblinear booster is similar to linear
regression, but it is trained using the gradient boosting framework, which involves
building an ensemble of weak learners and adding them together to form a strong
learner. The gblinear booster was used with the loss function logistic which is used
for binary classification tasks. The logistic loss function is defined as in Equation
(5.2):

loss = log(1 + exp(−y ∗ f)) (3.2)

where y is the true label (either 0 or 1) and f is the predicted probability of the
positive class. The maximum depth was set which provided the optimal XGBoost
model for classification.

27

The confusion matrix gave the following results in Figure 3.16 and Table 3.5:

Table 3.5: XGBoost Accuracy Scores

XGBoost
precision recall f1-score support

benign 0.91 0.89 0.90 4838
malware 0.89 0.91 0.90 4838
accuracy 0.90 9676
macro avg 0.90 0.90 0.90 9676

weighted avg 0.90 0.90 0.90 9676

Figure 3.16: XGBoost Confusion Matrix

28

The ROC curve gave the following results in Figure 3.17 and Table 3.6:

Table 3.6: XGB Classification

ANN
True Negative 4291
False Positive 547
False Negative 419
True Positive 4419

Figure 3.17: XGBoost ROC

From Figure 3.16 and Figure 3.17 with Table 3.5 and Table 3.6, it is seen that the
F1 score of XGBoost was 0.90. The false negative and false positive values were
comparatively quite large. The AUC calculated via the ROC is 0.900. This model
also has a good classification score. From the ROC curve it can be seen that after
a point, the curve is increasing slightly and shows that the sensitivity of the model
is high as it has greater true positive rate in proportion to false positive rate.

29

3.3.4 Stochastic Gradient Descent(SGD)

The Stochastic Gradient Descent (SGD) classifier is an iterative algorithm that can
be used for learning linear support vector machines (SVMs). It is a variant of the
gradient descent algorithm that updates the model weights using only a single train-
ing example at a time, rather than using the entire training dataset. In the context
of linear SVMs, the SGD classifier is used to find the hyperplane that maximally
separates the positive and negative examples in the training data. It does this by
minimizing the hinge loss function, which measures the misclassification of training
examples. The SGD classifier updates the model weights in the direction of the
negative gradient of the loss function with respect to the weights.

One advantage of the SGD classifier is that it can be used to learn, which means that
it can update the model weights incrementally as new data becomes available. This
makes it well-suited for handling large datasets that do not fit in memory. Another
advantage is that it is relatively efficient, as it only requires a single pass over the
training data to update the model weights.

The model of SGD Clathe ssifier had its parameters tuned to overcome the overfit-
ting and underfitting of the models. The penalty specifies the type of regularization
to use. In this case, the value is ’l1’, which indicates that L1 regularization (also
known as Lasso regularization) will be used. The alpha is the regularization strength.
A higher value means more regularization, which can help prevent overfitting. The
learning rate was set to ’optimal’ which will use an adaptive learning rate that is
calculated based on the data. The class weight was set to ‘balanced’ means that
the model will adjust the class weights so that the classes are balanced. This can
be helpful if the classes are imbalanced in the training data.

30

The confusion matrix obtained gave the results in Figure 3.18 and Table 3.7:

Table 3.7: SGD Accuracy Scores

SGD
precision recall f1-score support

benign 0.99 0.97 0.98 4838
malware 0.97 0.99 0.98 4838
accuracy 0.98 9676
macro avg 0.98 0.98 0.98 9676

weighted avg 0.98 0.98 0.98 9676

Figure 3.18: SGD Confusion Matrix

31

The ROC curve was generated which showed in Figure 3.19 and Table 3.8:

Table 3.8: SGD Classification

SGD
True Negative 4680
False Positive 158
False Negative 42
True Positive 4796

Figure 3.19: SGD ROC

From Figure 3.18 and Figure 3.19 with Table 3.7 and Table 3.8, it is seen that the
recall score for benign in SGD and precision for malware is 0.97, and the recall
score for malware in SGD and precision for benign is 0.99. SGD gives a decent F1
score of 0.98. The False Negative score is decent, but False Positive is significantly
more. The ROC shows that the AUC is 0.979. So the accuracy of this model is also
satisfactory.

32

Chapter 4

Results and Discussion

The data were randomly divided into train and test parts once the dataset had been
processed to fit the models. Every model was trained using the train section, and
tests were run to see if the models could tell a malicious file from a clean one. The
accuracy of these results, as well as any false negatives and positives, were then
evaluated by comparison. A thorough analysis of each model was done considering
many aspects of its learning and prediction which has been discussed below:

4.1 Model Evaluation

For SGD, XGBoost, and Perceptron models, k-fold cross-validation was done. It is
a technique for evaluating the performance of a machine-learning model. It involves
randomly dividing the dataset into k folds (where k is a user-specified number),
training the model on k-1 folds, and evaluating it on the remaining fold. This pro-
cess is then repeated k times, with a different fold being used as the test set each
time. The performance measure is then averaged across all k iterations to give an
overall estimate of the model’s performance. This allows the model to be trained
and evaluated on different subsets of the data, which can provide a more robust
estimate of the model’s performance. Therefore, the technique can tackle the over-
fitting issues of the model. In the models, the value of k was set to be 10 which
indicates it is a 10-fold cross-validation. With this, the model’s adaptations to the
dataset were evaluated. For the deep neural network model, k-fold validation was
not needed as it already uses epochs to learn and evaluate its loss function and over-
fitting is tackled with the use of dropout functions. The evaluation was based on
the “root mean square(RMSE)” metric. The RMSE is calculated as the square root
of the mean squared error (MSE), which is defined as the average of the squared
differences between the predicted values and the actual values. The MSE is calcu-
lated as: MSE = (1/n) ∗ (ypred − y)2 where n is the number of examples in the
dataset, ypred is the predicted value for each example, and y is the actual value for
each example. The RMSE is a measure of the magnitude of the error, with a lower
RMSE indicating a better fit.

Each model was compared based on test and train accuracies, computational timings,k-
fold evaluations, and RMSE scores. The Table 4.1 below shows the values for each
model:

33

Table 4.1: Model Computational Report

XGBoost SGD Perceptron ANN
Training Time(ms) 442.32 26.43 74.84 21353.38
Testing Time(ms) 3.99 0.92 0.75 0.73

Training Accuracy(%) 90.34 98.06 98.94 99.43
Testing Accuracy (%) 90.02 97.93 98.7 99.68

RMSE 0.316 0.144 0.114 0.069
Kfold[10](%) 90.3 98.1 99.2

Compiling all results and accuracies, the above Table 4.1 is obtained. It can be
seen that among all tested models, the least accurate in terms of both training and
testing accuracy is the XGBoost Classifier even though it has decent accuracy at
90 percent. This assumption is further strengthened by the lowest K-Fold Cross-
Validation and highest Root Mean Square Error among all the tested models. In
regards to training time, it also falls behind SGD and Perceptron making it the least
valuable model among those tested. SGD and Perceptron give similar results in all
categories, with Perceptron giving slightly better accuracies in all sectors than SGD.
So while it does take slightly more training time, the testing time is better than SGD
and has better accuracies thus leading us to the conclusion it is preferred over SGD
under most circumstances. However, the model yielding the best accuracies is the
Artificial Neural Network model, as it has both the highest training and testing
accuracies, as well as a very low RMSE value, indicating that it has the best-fit
model among all of the models and predicts the response more accurately. However,
a major drawback is the long duration of the training time, making it difficult to use
in scenarios where training speed is most important. Thus the best two models are
Perception and Artificial Neural Network, with each of them being more suitable for
different scenarios; Perceptron when training time is of most concern, and Artificial
Neural Network when the defining factor is solely accuracy.

4.2 Model Classification Analysis

The model classification report is a summary of the performance of the classification
models. It is based on the confusion matrix, which is a table that describes the
number of true and false positive and negative predictions made by the model. This
classification report also includes a receiver operating characteristic (ROC) curve,
which is a graphical representation of the model’s performance. The ROC curve
plots the true positive rate (TPR) against the false positive rate (FPR) at different
classification thresholds. The area under the ROC curve (AUC) is a measure of
the model’s overall performance, with a higher AUC indicating a better-performing
model. The classification report also includes other performance metrics, such as
precision, recall, and the F1 score. These metrics can be used to evaluate the model’s
performance and identify areas for improvement. The reports for all models have
been described below:
True Positive: A true positive is an outcome where the model correctly predicts
the positive class.

34

True Negative: A true negative is an outcome where the model correctly predicts
the negative class.
False Positive: A true negative is an outcome where the model incorrectly predicts
the positive class.
False Negative: A false negative is an outcome where the model incorrectly pre-
dicts the negative class.
Precision: Precision is a measurement of how many positive predictions were pre-
dicted correctly.
Recall: Recall is a measurement of how many positive class samples present in the
dataset were correctly identified, by the model.
F1 Score: F1 score is a machine learning accuracy metric that computes how many
times a model made a correct prediction across the whole dataset. It combines the
precision and recall scores of a model and gives a score out of 1.
AUC: The area under the ROC curve (AUC) is a measure of the model’s overall
performance, with a higher AUC indicating a better-performing model.

The most important aspect was the False Negative, as it defines when a malware-
containing PDF is incorrectly claimed as malware free. A high value of that (greater
than 100) will be considered bad. False Positive is the second important aspect but
slightly less important as it is not directly harmful to a user. These metrics can be
used to evaluate the model’s performance and identify areas for improvement. The
reports for all models have been described in Table 4.2 and Table 4.3 below:

Table 4.2: Complete Classification Report

Models Class Benign Malware Accuracy Macro Avg Weighted Avg AUC

Perceptron Precision 0.99 0.98 - 0.99 0.99 0.98
Recall 0.98 0.99 - 0.99 0.99
F1 Score 0.99 0.99 0.99 0.99 0.99
Support 4838 4838 9676 9676 9676

XGBoost Precision 0.91 0.89 0.90 0.90 0.900
Recall 0.89 0.91 - 0.90 0.90
F1 Score 0.90 0.90 0.90 0.90 0.90
Support 4838 4838 9676 9676 9676

SGD Precision 0.99 0.97 - 0.98 0.98 0.979
Recall 0.97 0.99 - 0.98 0.98
F1 Score 0.98 0.98 0.98 0.98 0.98
Support 4838 4838 9676 9676 9676

ANN Precision 0.99 0.99 - 0.99 0.99 0.991
Recall 0.99 0.99 - 0.99 0.99
F1 Score 0.99 0.99 0.99 0.99 0.99
Support 4838 4838 9676 9676 9676

35

Table 4.3: Contingency Classification Report

Models Class Values

Perceptron True Negative 4741
False Positive 97
False Negative 29
True Positive 4809

XGBoost True Negative 4291
False Positive 547
False Negative 419
True Positive 4419

SGD True Negative 4680
False Positive 158
False Negative 42
True Positive 4796

ANN True Negative 4803
False Positive 35
False Negative 50
True Positive 4788

Comparing all the models, we can see ANN and Perceptron have better F1 scores and
a less False Negatives and False Positives compared to the other models. XGBoost
gives us values of False Negatives and False Positives both higher than the threshold
which was considered(100). SGD lies comfortably in the middle of the pack. A NN’s
False Negative and False Positive scores are better than those of the Perceptron
model as they are both significantly less than the threshold while the False Positive
of the Perceptron model was close to 100. Comparing all models, ANN had the best
F1 score, the least numbers of False Positive and False Negatives with the most value
for AUC. Therefore the conclusion can be reached that ANN is the most accurate
model followed by Perceptron and SGD respectively, and the least accurate out of
the models it implemented is XGBoost.

36

4.3 SHAP Analysis

SHAP framework provides a way to decompose the output of a machine learning
model into the contributions of each feature in the input data, which can be useful
for understanding the model’s behavior and identifying any potential biases or as-
sumptions that the model may be making. There are many explainers of the SHAP
framework of which the Linear Explainer and the Deep Explainer have been used
to explain the machine learning models and deep neural models respectively.

There are two types of importance measures in SHAP: global importance and local
importance.

Global importance measures the overall contribution of each feature to the model’s
output. It is computed by summing the Shapley values of all the feature’s interac-
tions. Global importance can be plotted using SHAP summary plots, which provide
a global view of the model’s behavior.

Local importance measures the contribution of a single feature to the model’s output
for a specific input or dataset. It is computed by summing the Shapley values of the
feature’s interactions with all the other features. Local importance can be plotted
using SHAP dependence plots, which show the relationship between a single feature
and the model’s output.

After fitting the explainers and achieving the Shapley values, force plots, impor-
tance plots and waterfall plots of each model had been taken into consideration.

Force plot: A force plot in SHAP is a visual explanation of the output of a machine-
learning model for a specific input or prediction. It shows the contribution of each
feature to the model’s output, as well as the overall effect of all the features. The
force plot is composed of a horizontal bar chart and a vertical axis. The horizontal
bar chart shows the contribution of each feature to the model’s output. The length
of each bar represents the magnitude of the contribution, and the direction of the
bar indicates whether the feature is increasing or decreasing the model’s output.
Positive values indicate that the feature is increasing the output, while negative
values indicate that the feature is decreasing the output.

Cluster plot: A SHAP cluster plot provides a visual summary of the patterns
and relationships in a dataset based on the Shapley values of the features. It can be
used to identify groups of similar data points or to explore the structure of the data.
The SHAP cluster plot with bar representation shows the data points as horizontal
bars, and the clusters are indicated by different colors or shapes. The plot may also
include lines or other visual elements to indicate the boundaries between the clusters
or the relationships between the data points.

Waterfall plot: A waterfall plot in SHAP is a visual representation that shows
the contribution of each feature to the model’s output for a specific input or predic-
tion. It is similar to a forced plot in SHAP, but instead of a single bar chart, it shows
a series of stacked bars, one for each feature. The waterfall plot is composed of a

37

vertical axis that represents the model’s output and a series of horizontal stacked
bars, one for each feature. The length of each bar represents the magnitude of the
feature’s contribution to the model’s output.

Feature Importance Plot: In SHAP, a feature importance plot is a visual repre-
sentation that shows the overall importance of the features in a model. This shows
the mean absolute Shapley values of the features as a bar chart. The plot will show
the features on the y-axis and the Shapley values on the x-axis, with the length of
the bars representing the magnitude of the feature’s importance. The bars will be
sorted in decreasing order of importance.

Decision plot: A decision plot in SHAP is a visual representation which here
is explaining the global importance that shows the decision boundary of a classifica-
tion model and how it is influenced by the input features. It is a type of scatter plot
that shows the predicted class probabilities on the y-axis and the input features on
the x-axis. The decision plot is created by sampling a set of input points across the
feature space and computing the class probabilities for each point using the classi-
fication model. The points are then plotted on the scatter plot according to their
class probabilities and feature values. The decision plot includes a horizontal line at
the point where the class probabilities are equal (i.e., 0.5). This line represents the
decision boundary of the model, and points above the line are predicted to belong
to one class, while points below the line are predicted to belong to the other class.
The decision plot also shows the Shapley values of the features as contour lines or
regions of color. The Shapley values indicate the relative importance of the features
in determining the model’s output, with higher values indicating more important
features.

Depending on the outputs of each model’s predictions, the suitable SHAP plots
with the suitable Explainers used have been plotted for each model indicating its
global and local importance for the features.

38

4.3.1 Perceptron

Local Importance Analysis

Figure 4.1: Force Plot Perceptron

Figure 4.2: Waterfall Plot Perceptron

The force and waterfall plots in Figure 4.1 and Figure 4.2 both define the feature
contributions on a single PDF data which was malicious. Here as we see from
the force plot that the Perceptron model was able to detect it as malicious with
/OpenAction, /JS, /startref, and /JavaScript having the most contribution for this
particular PDF file which is indicated by the red arrows going on the right direction
showing it has higher values. However, /Xref, /XFA, and /trailer has a negative
impact on making a file malicious which is indicated by the blue arrows going in the
left direction. The waterfall plot is also showing a similar result with similar values
but better visuals.

39

Global Importance Analysis

Figure 4.3: Feature Clustering Plot Perceptron

Figure 4.4: Feature Importance Plot Perceptron

Here, the entire testing data was taken into consideration for an overall analysis of
the contribution of each feature in the Cluster Plot of Figure 4.3 and Importance Plot
of Figure 4.4. From this, we can see that /JavaScript, /Xref, /Js, and /OpenAction
are the features with the highest contribution and the cluster plot also shows which
features combined have the highest probability of making a file malicious. This also
shows that /JavaScript, /JS along with /OpenAction and a combined prediction of
obj, endobj, and /XFA would probably result in a file being malicious according to
Perceptron.
The local analysis of one instance and the global analysis does suggest similar feature
contributions which suggests the interpretations are consistent.

40

4.3.2 SGD

Local Importance Analysis

Figure 4.5: Force Plot SGD

Figure 4.6: Waterfall Plot SGD

The force and waterfall plots in Figure 4.5 and 4.6 for the same pdf file used in
the Perceptron model’s local importance analysis were also used to interpret that
of the SGD model. This shows that the SGD model shows /JS is the highest
contributor with /OpenAction and /Javascript following along./XFA and Acroform
were thought to be the two features having a negative contribution in making it
malicious. The waterfall plot also suggests the same.

41

Global Importance Analysis

Figure 4.7: Feature Clustering Plot SGD

Figure 4.8: Feature Importance Plot SGD

Considering all the test files the model did a mediocre job in analyzing which features
gave the most contribution as it only recognized and prioritized /Js and /XFA
ignoring all other features as shown in the Cluster and Importance plots in Figure
4.7 and Figure 4.8. This is because these two features had the most occurrences
which got prioritized over the other features. This suggests that even though the
SGD model can learn one instance at a time if a chunk of data is provided, it will
do a very poor classification of the files.

42

4.3.3 XGBoost Clasifier

Local Importance Analysis

Figure 4.9: Force Plot XGBoost

The XGBoost classifier takes /OpenAction, /Js, /Javascript, and /Page to have the
highest contribution. One notable difference from the other models is that XGBoost
did not notice any feature having a negative impact on the file as malicious in the
Force Plot of Figure 4.9.

Global Importance Analysis

Figure 4.10: Feature Clustering Plot XGBoost

Figure 4.11: Feature Importance Plot XGBoost

43

The Cluster Plot in Figure 4.10 of the XGBoost model shows that this model takes
combinations of features to be responsible for contribution. While each feature alone
in the Importance Plot of Figure 4.11 has a little contribution, taking summations of
a few features provides the overall contribution. This is understandable as XGBoost
is a tree classifier and it takes combinations of features to come to a classification
result. Hence the importance plot and cluster plot shows the same interpretation.
The local and global plots are also consistent in their analysis so it would be a good
model for the classification of multiple files.

4.3.4 ANN

Global and Local Analysis

Figure 4.12: ANN Decision Plot

As ANN is a deep neural network, its output of predictions is probabilities in a
two-dimensional array. This is different from machine learning models and hence
is a more complicated black-box model. Therefore, Deep Explainer is used for
SHAP value interpretation. The global and local analysis of such a model can be
found through the Decision Plot of Figure 4.12 where the overall contribution of the
features are shown through the x-axis in a decreasing order while each line represents
each pdf test file which is classified in either 1 or 0. From this, we can see that /JS,
/Javascript, /OpenAction, and startxref have the highest contribution.

44

4.4 The Analogy of SHAP Analysis of Models

Taking all plots into consideration of every model, it is clear that although the
classification report and evaluation of the SGD model was better than the XGBoost
model, its interpretation of the features and the working mechanism is done poorly
and is less robust. If different data are provided. SGD will not perform as well as the
other models despite its f1, precision, and accuracy. XGBoost will work better than
SGD but perceptron and ANN have the most reliable results in interpreting the data
and learning. The total contribution according to the force plots is 1.00,0.3,22.77
for the SGD, XGBoost, and Perceptron respectively. From there it suggests that
perceptron is the best model while XGB is the worst in terms of interpretation for
that specific pdf. However, the force plots cannot decide the best model as ANN has
a different form of explanation and is model specific for one data. Hence, a closer
look at the global analysis suggests that each model has the same set of features
shown as the most contributed which also matches with the research on how PDF
malware is injected in a general sense. Hence it reflects that all models are capable
of classification of malware if the data consists of a javascript attack. However, it
is seen that SGD will not perform as well for other sorts of attacks while XGBoost,
Perceptron, and ANN will still be able to detect it. On a closer look, XGBoost
is a tree classifier and learns through the combination of a few features together
suggesting that if there is a different combination of features it will not work as well
and has less accuracy over the Perceptron and ANN model. This comes to the point
that the best working models are Perceptron and ANN in terms of interpretation of
feature contributions where ANN works slightly better than Perceptron.

45

Chapter 5

Conclusion and Future Work

This research aimed to detect PDF malware using machine learning algorithms
and deep neural networks, with the aid of XAI’s SHAP framework. The dataset
was analyzed using machine learning algorithms (Stochastic Gradient Descent and
XGBoost) and the neural networks (ANN and Perceptron) model. The models were
evaluated from various perspectives to determine which model would perform the
best. It was found that the ANNmodel had the best overall accuracies and F1 scores.
The least accurate model was the XGBoost, with the lowest F1 scores. However,
when examining how each model was prioritizing different features using Explainable
AI, it was discovered that the XGBoost model was more versatile in identifying
malware with a range of different features, while the SGD model focused more on
identifying JavaScript-based obfuscation attacks. Therefore, it was concluded that
the SGD model was the least versatile. This explains that SGD is more scoped
than the other models. Therefore, it would not be accurate to determine that
the XGBoost model is the worst based on its lowest accuracy alone. In terms of
interpreting Shapley values, the Perceptron and ANN models provided the most
reliability, trust, and usability. Therefore, based on all forms of evaluation, the
ANN model was determined to be the optimal choice, with the best accuracies,
the least true positives and false negatives, and the highest level of trust in its
ability to detect various types of malware attacks. Additionally, it should be noted
that the results of this study are specific to the training of the data and that the
machine learning models had to be adjusted and tuned for the specific dataset.
The fact that the ANN model can automatically adjust its biases through forward
and backward propagation makes it the most robust model that does not require
specific hyperparameter tuning. One factor that could make the Perceptron model
more appealing than the ANN model is its shorter training time, even though it has
slightly lower accuracy.
Overall, it is recommended to consider both computational time and explainability
when choosing the best model, especially in sensitive areas such as cybersecurity.
This paper concludes that neural networks have good potential for classifying PDF
malware and inspiring further research into more complex neural networks, such as
convolutional neural networks (CNNs) and recurrent neural networks (RNNs). It
is hoped that, in the future, when the tensor library is compatible with the SHAP
library of Deep Explainers, it will be possible to test the interpretability of RNNs
and CNNs using SHAP explainers.

46

References

[1] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware de-
tection,” in Twenty-Third Annual Computer Security Applications Conference
(ACSAC 2007), IEEE, 2007, pp. 421–430.

[2] L. Wang and J. Ma, “A kurtosis and skewness based criterion for model selec-
tion on gaussian mixture,” in 2009 2nd International Conference on Biomed-
ical Engineering and Informatics, IEEE, 2009, pp. 1–5.

[3] P. Laskov and N. Šrndić, “Static detection of malicious javascript-bearing pdf
documents,” in Proceedings of the 27th annual computer security applications
conference, 2011, pp. 373–382.

[4] C. Ulucenk, V. Varadharajan, V. Balakrishnan, and U. Tupakula, “Techniques
for analysing pdf malware,” in 2011 18th Asia-Pacific Software Engineering
Conference, IEEE, 2011, pp. 41–48.

[5] D. Maiorca, G. Giacinto, and I. Corona, “A pattern recognition system for
malicious pdf files detection,” in International workshop on machine learning
and data mining in pattern recognition, Springer, 2012, pp. 510–524.

[6] F. Schmitt, J. Gassen, and E. Gerhards-Padilla, “Pdf scrutinizer: Detecting
javascript-based attacks in pdf documents,” in 2012 tenth annual international
conference on privacy, security and trust, IEEE, 2012, pp. 104–111.

[7] Y. Tang and S. N. Srihari, “Efficient and accurate learning of bayesian net-
works using chi-squared independence tests,” in Proceedings of the 21st Inter-
national Conference on Pattern Recognition (ICPR2012), IEEE, 2012, pp. 2723–
2726.

[8] Contagio: 16,800 clean and 11,960 malicious files for signature testing and re-
search, https://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-
malicious-files.html?fbclid=IwAR0itQst8iovFZG-5ZPsryKe-QWIVc36Rcpum,
2013.

[9] V. Hamon, “Malicious uri resolving in pdf documents,” Journal of Computer
Virology and Hacking Techniques, vol. 9, no. 2, pp. 65–76, 2013.

[10] H. Pareek, P. Eswari, and N. S. C. Babu, “Malicious pdf document detection
based on feature extraction and entropy,” International Journal of Security,
Privacy and Trust Management, vol. 2, no. 5, pp. 31–35, 2013.

[11] N. Bhojani, “Malware analysis,” Malware Analysis, pp. 1–5, 2014.

[12] G. Brinda and G. George, “Detection and analysis of shellcode in malicious
documents,” 2016.

47

https://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html?fbclid=IwAR0itQst8iovFZG-5ZPsryKe-QWIVc36Rcpum
https://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html?fbclid=IwAR0itQst8iovFZG-5ZPsryKe-QWIVc36Rcpum

[13] B. Cuan, A. Damien, C. Delaplace, and M. Valois, “Malware detection in pdf
files using machine learning,” in SECRYPT 2018-15th International Confer-
ence on Security and Cryptography, 2018, 8p.

[14] M. Elingiusti, L. Aniello, L. Querzoni, and R. Baldoni, “Malware detection:
A survey and taxonomy of current techniques,” Cyber threat intelligence,
pp. 169–191, 2018.

[15] A. Corum, D. Jenkins, and J. Zheng, “Robust pdf malware detection with im-
age visualization and processing techniques,” in 2019 2nd International Con-
ference on Data Intelligence and Security (ICDIS), IEEE, 2019, pp. 108–114.

[16] R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri, and F.
Turini, “Factual and counterfactual explanations for black box decision mak-
ing,” IEEE Intelligent Systems, vol. 34, no. 6, pp. 14–23, 2019.

[17] Y.-S. Jeong, J. Woo, and A. R. Kang, “Malware detection on byte streams of
pdf files using convolutional neural networks,” Security and Communication
Networks, vol. 2019, 2019.

[18] J. Müller, F. Ising, V. Mladenov, C. Mainka, S. Schinzel, and J. Schwenk,
“Practical decryption exfiltration: Breaking pdf encryption,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 15–29.

[19] Why pdf is considered the world’s most important file format, https://www.
bbntimes . com / companies / why - pdf - is - considered - the - world - s - most -
important-file-format, 2019.

[20] J. Lindenhofer, R. Offenthaler, and M. Pirker, “A curious exploration of ma-
licious pdf documents.,” in ICISSP, 2020, pp. 577–584.

[21] P. Singh, S. Tapaswi, and S. Gupta, “Malware detection in pdf and office
documents: A survey,” Information Security Journal: A Global Perspective,
vol. 29, no. 3, pp. 134–153, 2020.

[22] N. Fleury, T. Dubrunquez, and I. Alouani, “Malware: An overview on threats,
detection and evasion attacks,” arXiv preprint arXiv:2107.12873, 2021.

[23] S. R. Gopaldinne, H. Kaur, P. Kaur, G. Kaur, et al., “Overview of pdf malware
classifiers,” in 2021 2nd International Conference on Intelligent Engineering
and Management (ICIEM), IEEE, 2021, pp. 337–341.

[24] Malware detection - a simple guide in 3 easy points, https://www.jigsawacademy.
com/blogs/cyber-security/malware-detection/, 2021.

[25] A. Bhattacharya, Applied Machine Learning Explainability Techniques: Make
ML models explainable and trustworthy for practical applications using LIME,
SHAP, and more. Packt Publishing, 2022, isbn: 9781803234168. [Online].
Available: https://books.google.com.bd/books?id=Kal3EAAAQBAJ.

[26] N. Capuano, G. Fenza, V. Loia, and C. Stanzione, “Explainable artificial in-
telligence in cybersecurity: A survey,” IEEE Access, vol. 10, pp. 93 575–93 600,
2022.

48

https://www.bbntimes.com/companies/why-pdf-is-considered-the-world-s-most-important-file-format
https://www.bbntimes.com/companies/why-pdf-is-considered-the-world-s-most-important-file-format
https://www.bbntimes.com/companies/why-pdf-is-considered-the-world-s-most-important-file-format
https://www.jigsawacademy.com/blogs/cyber-security/malware-detection/
https://www.jigsawacademy.com/blogs/cyber-security/malware-detection/
https://books.google.com.bd/books?id=Kal3EAAAQBAJ

[27] K. Duvvuri, S. Chethana, S. S. Charan, V. Srihitha, T. Ramesh, and K.
Srikanth, “Grad-cam for visualizing diabetic retinopathy,” in 2022 3rd Inter-
national Conference for Emerging Technology (INCET), IEEE, 2022, pp. 1–
4.

49

	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Static Analysis:
	Dynamic Analysis:

	Objective and Contributions

	Literature Review and Related Work
	Literature Review
	Malware Injection Techniques in PDF Files
	PDF Structure and its Vulnerable Features

	Algorithms/Models/Existing Techniques
	Explainable AI and Its Significance
	Choice of XAI Framework

	Methodology
	Dataset Description
	Data Collection and Extraction
	Dataset Pre-processing

	Proposed Model/Workplan
	Work Plan

	Model Implementation Review
	Perceptron Model
	Artificial Neural Network
	XGBoost Classifier
	Stochastic Gradient Descent(SGD)

	Results and Discussion
	Model Evaluation
	Model Classification Analysis
	SHAP Analysis
	Perceptron
	SGD
	XGBoost Clasifier
	ANN

	The Analogy of SHAP Analysis of Models

	Conclusion and Future Work
	Reference

