
Malicious Data Classification in Packet Data Network

through Hybrid Meta Deep Learning

by

Sakib Uddin Tapu
18301271

Samira Afrin Alam Shopnil
18301076

Rabeya Bosri Tamanna
18301188

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
School of Data and Sciences

Brac University
January 2023

© 2023. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Sakib Uddin Tapu
18301271

Samira Afrin Alam Shopnil
18301076

Rabeya Bosri Tamanna
18301188

i

Approval

The thesis titled “Malicious Data Classification in Packet Data Network Through
Hybrid Meta Deep Learning” submitted by

1. Sakib Uddin Tapu (18301271)

2. Samira Afrin Alam Shopnil (18301076)

3. Rabeya Bosri Tamanna (18301188)

Of Fall, 2022 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science and Engineering on January 26,
2023.

Examining Committee:

Supervisor:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Abstract

Advancements in wireless network technology have provided a powerful tool to boost
productivity and serve a strong communication which overcomes the limitations
of wired networks. However, because of using wireless networks, security is an
increasing concern among the community. At the time of our study, we are in the
era of 5G networks. Although we are in the 5th generation of telecommunication
we are still struggling with security. The upcoming generation, 6G, aims to solve
the security concerns by providing a secure and trust networking system. In our
study, we aim to integrate AI and more advanced infrastructure which will provide
a tremendous solution in this regard. In order to deal with this issue we primarily
aim to come up with a solution that provides a reliable intrusion detection system
in spite of being trained with a small amount of data. In our study, we aim to
integrate AI and more advanced infrastructure which will provide a tremendous
solution in this regard. Thus, we employed a trusted networking system based on
AI. Here, at first we primarily focused on Reinforcement Learning (RL) to classify
the network data coming from the untrusted packet data networks (PDN), whether
it is malicious or not. Another existing problem is people currently rely on machine
learning techniques to create a trustworthy networking system. However, it hinders
the development of getting a reliable network as the number of real publicly available
malicious data is not sufficient to train a model properly and in real life people are
not very keen to share these data as they are sensitive. Therefore, we propose a novel
idea of hybrid meta learning in the detection of malicious packet data. We use a
combination of Siamese and Prototypical network where Siamese network is used for
binary classification and Prototypical network is used for multi class classification.
As both approaches are based on meta learning techniques, it requires a very small
amount of data. By utilizing this characteristic of meta learning, we were able to
train our model with just 3000 data samples and achieve more than 90% accuracy
for both meta learning tactics. Lastly we provide a comprehensive study on the
given RL methods and hybrid meta learning and share our future thoughts. The
purpose of our study is to provide a secure and trustworthy network domain which
enhances the communication between end users.

Keywords: Reinforcement learning, A2C, PPO, meta-learning, few-shot-learning,
siamese-network, prototypical-network,intrusion-detection, malicious-data-classification,
CSE-CIC-IDS2017, CSE-CIC-IDS2018

iii

Acknowledgement

Firstly, all praise to the Great Allah for whom our thesis have been completed
without any major interruption.
Secondly, to our supervisor Md. Golam Robiul Alam sir for his kind support and
advice in our work. He helped us whenever we needed help.
And finally to our parents without their throughout support it may not be possible.
With their kind support and prayer we are now on the verge of our graduation.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables viii

Nomenclature ix

1 Introduction 1
1.1 Research Motivation . 1
1.2 Problem Statement . 2
1.3 Contributions . 2

2 Literature Review 4
2.1 Related Work . 4
2.2 Background Study . 8

2.2.1 Reinforcement Learning . 8
2.2.2 Convolutional Neural Network 10
2.2.3 Meta Learning . 10

3 Dataset 14
3.1 Data Collection . 14

3.1.1 CSE-CIC-IDS 2018 . 14
3.1.2 CSE-CIC-IDS 2017 . 14

3.2 Data Preprocessing . 14
3.2.1 Data Processing for Reinforcement Learning 16
3.2.2 Data Processing for Hybrid Meta Learning 17

4 Methodology 19
4.1 Reinforcement Learning Approach . 19
4.2 Hybrid Meta Deep Learning Approach 23

v

5 Results and Discussion 30
5.1 Evaluation Metrics . 30
5.2 Performance Evaluation of Reinforcement

Learning based Approach . 31
5.3 Performance Evaluation of Hybrid Meta

Deep Learning based Approach . 34
5.4 Comparative Study . 44

6 48
6.1 Conclusion . 48
6.2 Limitations . 49
6.3 Future Work . 49

Bibliography 52

vi

List of Figures

2.1 Reinforcement Learning in Network Data Classification Context . . . 9
2.2 Illustrative Representation of Support and Query Set 11

3.1 Correlation of features with the class labels 17
3.2 Conversion of 1D data from CSE-CIC-IDS2018 to 2D image data . . 18

4.1 Top Level Overview of RL Framework. 20
4.2 Average reward for per episode . 22
4.3 High Level Diagram of our Hybrid Meta Learning Approach. 23
4.4 Top Level Overview of the Proposed Framework. 24
4.5 Block Diagram of the Siamese Network Architecture of our Proposed

Approach . 25
4.6 Block Diagram of the Prototypical Network Architecture of our Pro-

posed Approach . 28

5.1 Confusion matrix of A2C (left) and PPO (right) 32
5.2 Overall Accuracy Comparison of A2C and PPO 33
5.3 Siamese Network Evaluation. 36
5.4 Prototypical Network Evaluation. 37
5.5 ROC curves of Siamese Network for CSE-CIC-IDS2017 and CSE-

CIC-IDS2018 . 41
5.6 ROC curves of Prototypical Network for CSE-CIC-IDS2017 and CSE-

CIC-IDS2018 . 42
5.7 ROC curves of CNN Based Approach [13] with 15 Labels 45

vii

List of Tables

3.1 Labels and Per Label Samples in IDS2017 and IDS2018 15
3.2 Data Count Per Label After Oversampling IDS2018 16
3.3 Label Encoding of Each Class . 17

5.1 A2C evaluation on test environment 32
5.2 PPO evaluation on test environment 33
5.3 Binary Classification Results . 34
5.4 Evaluation of Siamese Network With Different Kernel and Filter Sizes 38
5.5 Multi-class Classification Results . 39
5.6 Evaluation of Prototypical Network With Different Kernel and Filter

Sizes . 40
5.7 AUC Scores of Siamese Network of Different Datasets 41
5.8 OvR AUC Scores of Prototypical Network of Different Datasets . . . 43
5.9 Multi-class Classification Comparison with Related Work 44
5.10 OvR AUC Scores of CNN Based Approach [13] with 15 Labels 46

viii

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

A2C Advantage Actor Critic Algorithm

CNN Convolutional Neural Network

FL Federated Learning

ML Machine Learning

PDN Packet Data Network

PPO Proximal Policy Optimization Algorithm

RL Reinforcement Learning

ix

Chapter 1

Introduction

1.1 Research Motivation

Communication has always been a fundamental part of life for human interaction.
People were always looking for an efficient and effective communication medium.
Following that legacy, we entered into wireless communication from wired. Now-
a-days the emphasis on wireless technology is progressing at a rapid pace. While
enjoying the benefits of wireless communication, we also face malicious attacks which
are really alarming. As the cyber attacks are evolving, attackers are exploiting our
system with a lot of vulnerabilities which may hamper our system on a large scale.
Here our motivation for this work is to contribute to the development of the up-
coming network infrastructure. Combination of meta learning approaches could be
a tremendous solution in this regard. Moreover, at this moment, the majority of
conventional machine learning solutions for intrusion detection are heavily reliant
on a larger number of samples and most of them are unable to identify any unknown
threat in the new challenging network environment. Thus the attackers can easily
bypass the security of the system with an advanced behavior to accomplish their
objective. Therefore, researchers are currently working to develop a method that
can recognize existing assaults from their patterns and foretell other attacks that
they have never encountered. Additionally, because network data is extremely con-
fidential and not accessible to the general public, there is currently a requirement
for a methodical strategy for anomaly detection with a limited amount of attack
samples [16]. Furthermore, with the substantial development of the network, the
number of attacks are increasing and their patterns are also changing. In this case,
anomaly detection becomes harder when a model faces any abnormal or undefined
behavior for the very first time. Developments to date have highlighted two dom-
inant challenges. The first could be a robust model that can be trained with a
minimum number of instances and still can predict any threat and the other one
could be, the model should be able to protect the system from the emergence of
any abnormal unknown behavior. We believe that our study will give a new edge
in terms of establishing a communication system using Hybrid Meta Deep Learning
technology that will substantiate a trusted network where users will connect in a
more secure and convenient way.

1

1.2 Problem Statement

At the time of our research study, we are still struggling with network security.
Therefore, scientists are working to develop a remedy that can somewhat miti-
gate this issue. But the procedure was everything but simple. Malicious network
data is scarce. As a result, datasets that are made publicly available are highly
unbalanced.Moreover, most of the existing research is based on machine learning
techniques which require a lot of data. Thus it is a very difficult task to build an
effective model with the publicly available unbalanced dataset. Furthermore, having
to train on large amounts of data also requires a lot more data processing which in
turn increases the time to train the model. Moreover, all the existing works are only
able to identify 8 distinct classes at most. People also show unwillingness in sharing
their data because it is very sensitive and confidential. Therefore, it is difficult for
researchers to obtain new real traffic data and develop better models. Number of
malicious data in the publicly available dataset is insufficient and the majority of
machine learning models need to be trained with a lot of data. Thus, people are
trying to build models that can be trained with very small amounts of data and
yet work efficiently. There is also a lack of meta learning approaches being used
for network security, specially hybrid models that provide advantages of different
techniques.

1.3 Contributions

The focus of our study is to propose a trusted platform between users that allows
them to communicate with the highest level of information security in a more ap-
propriate fashion than current state-of-the-art networks. In this work, we aim to
address an existing problem which is introducing models that not only identifies
the malicious attack in the packet data flow but also classifies them into multiple
classes with minimal amount of data as the number of publicly available dataset for
malicious data is very limited. Moreover, the state-of-the-art methods can distin-
guish the highest 8 different classes with a large number of samples. Thus we took
the initiative to solve the challenges to detect more malicious attacks with smaller
datasets.
The contributions of the paper are summarized as follows:

• We proposed a Hybrid Meta Deep Learning based approach for malicious data
classification which is able to classify 15 distinct labels with greater than 90%
accuracy and F-1 score while being trained with only 3000 data samples

• We built a reinforcement learning based approach with A2C and PPO. These
are two different frameworks with the same ideology. With these two ap-
proaches, we could achieve approximately 70% accuracy

• In the hybrid meta deep learning technique, the Prototypical network and the
Siamese network are combined in order to construct a hybrid meta learning-
based model that will ensure secure user communication. Meta learning ap-
proaches’ characteristics enable improved accuracy with smaller data samples

• At the time of our research, we were unable to locate any papers using hybrid
meta learning in the field of network security. In order to address the scarcity

2

of malicious network traffic in a network environment, we took the initiative
to introduce a hybrid meta learning method for intrusion detection

• We present several analyses to demonstrate the efficacy of our method for iden-
tifying 15 different classes using CSE-CIC-IDS17 and CSE-CIC-IDS18 datasets

• We provide a comparative analysis between our previous RL approach and
hybrid meta learning approach and present a convenient interpretation of our
research with some of the current state-of-the-art intrusion detection models
to show the effectiveness of Hybrid Meta Deep Learning

3

Chapter 2

Literature Review

2.1 Related Work

Due to the trivial amount of literature related to reinforcement learning and meta
learning in the cyber security domain, it is beyond the scope of this paper to provide
an extensive background of affiliated work. However, there will be overwhelming ev-
idence that a trusted platform is needed for PDN/network data. Furthermore, there
will be ample proof that a trusted platform can be achieved by hybrid meta learn-
ing methods with a limited amount of samples to send packet data.The following
literature review will briefly describe the fact.
In [9], Niknam et al. demonstrate the importance of FL in wireless networks. As
ML are data-driven applications, all data cannot be shared due to privacy concerns.
Thus due to data insufficiency, ML models cannot provide better results. In this
regard, this article demonstrates an approach in wireless networks using FL, which
will overcome the limitations of the ML mechanism. In FL, the models are trained
in the local devices where data is generated. In this approach, the models are
constantly trained by the new data, and users do not need to compromise their
privacy in any way.
In this study [12], the researcher analyzed the concept of Customer Edge Switching
(CES) in the context of 6G and compared it with the ITU-T framework. CES is a
trusted SDN-based framework with a clear policy and effective tools for building a
system effective policy, which is ambiguous in the ITU-T framework. They empha-
size the importance of having a trustworthy network that can manage all types of
traffic and security by shifting security-related processing to the cloud, where secu-
rity will be assured by security intelligence, and security updates will be deployed
quickly.
The study in [11] describes a network architecture that leverages Blockchain inno-
vations to enhance the reliability of routing data. They use RL in the architecture
mentioned above to assist the routing node in choosing the next appropriate rout-
ing node. Their trusted routing data management system is based on the PoA
Blockchain, enabling collaboration on routing transactions across all routing nodes
and server nodes.This design permits the learning model to select the optimal rout-
ing connection for normal nodes, which prevents single point attacks and maintains
transaction traceability and routing information sources.Then, they examine the
suggested trusted routing scheme’s security. Their architecture provides 78% delay
reduction when compared to the BP (Backpressure) algorithm, 52% when compared

4

to the QL-BP, and 67% when compared to the TB-BP (Trust-based backpressure)
algorithm. Their RLBC algorithm works excellent when there are 25% malicious
nodes in the routing environment.
In [15] Y. Liu et al. proposed an advanced system that uses a variety of emerging
technologies or approaches to provide communication-efficient, safe, and privacy-
enhanced FL. They discussed communication-efficient FL from the system-level and
algorithm-level aspects, paving the way for wider-scale FL deployment to be used
in 6G communications. Unfortunately, their FL mechanism would not do anything
to resist or mitigate these malicious threats from a system standpoint. They also
stated that to achieve human-centric communication services in 6G, creating an
interpretable FL model is required. Furthermore, they discussed the importance of
establishing a quality-based approach to incentivize more people to participate in
FL and receive more significant rewards for providing high-quality data.
In [14], the author designed a unique incentive system to encourage additional data
owners to participate in the FL process while maintaining privacy. The FL plat-
form’s incentive and privacy challenges are examined in this paper. To implement
their approach, they used Mechanism design (MD), Differential privacy (DP), and
Vickrey-Clarke-Groves (VCG) mechanisms. Compared to others, their DP-based
VCG technique can ensure a higher profit. It also achieves suitable performance
stability in the FL system platform, exceeding the current HIFL, SIFL, and FLPA
systems. Unfortunately, their proposed technique in mobile crowdsensing does not
allow for collaborative ML among various model owners.
In [18],W. Zhijun et al. primarily concentrate on low-rate DoS attacks, their mech-
anism, and make an effort to determine the LDoS attack generation concept. Addi-
tionally, they categorize LDoS attacks and current defense strategies based on the
time and frequency bands in which detection and defense are carried out, and they
emphasize the filter approach to defense against LDoS attack. By doing rigorous
analysis, they figured out that feature detection approaches are more suited to iden-
tifying LDoS assaults due to the high positive rate. It is also simpler to put into
practice and practical. Most importantly they make an effort to take the lead in
motivating the researchers to investigate efficient techniques to identify and mitigate
LDoS assaults.
In order to categorize the obstacles with the existing security models and to gen-
erate new directions for security framework developments using effective ML or DL
methods, P. L. S. Jayalaxmi et al. provided useful information in [24] for indus-
try and academia. These methods minimize the need for human intervention and
quickly automate detection. Additionally, they discussed the significance of several
Artificial Intelligence (AI)-based methodologies, tools, and methods utilized in In-
ternet of Things (IoT) detection and/or prevention systems. Furthermore, they built
a strong foundation for a prediction model and offered a blueprint for a mapping
technique for analyzing the level of risk. Additionally, they suggested an integrated
multilevel hybrid architecture that recognizes all varieties of security threats for fu-
ture development by combining signature and anomaly detection with risk factor
mapping.
In [16] K.Shaukat et al. discussed about a concise overview of machine learning
techniques and how they have been or may be used to identify and categorize cy-
berattacks such intrusion detection, vulnerability scanning, and spam filtering on
mobile and smartphone devices as well as computer networks. They also discussed

5

ML’s shortcomings in the cyber security domain. Some of the difficulties include
the following: ML techniques require a significant quantity of high-performance re-
sources and data while training the models, one ML model cannot effectively identify
different security assaults, and early attack prevention is another significant chal-
lenge.
In [27] this study, S. Neupane et al. examined the current state of explainable AI
(XAI) for IDS, its limitations, and how these challenges relate to the creation of an
X-IDS. In particular, the black box and white box approaches were thoroughly cov-
ered by them. The black box approach necessitates post-hoc explanation techniques
to make the assumptions more comprehensible, whereas the white box approach
makes the model in use naturally comprehensible. In terms of their effectiveness
and capacity to generate explanations, they also discussed the tradeoffs between
these techniques. In addition, they recommended using a three-layered generic ar-
chitecture as a reference when creating an X-IDS.
In [25] this survey, S Y.Khamaiseh et al. conducted a thorough analysis of the ad-
versarial attack techniques and how they function. They also presented a rigorous
analysis of the attack technologies. They also include a detailed description of the
most modern defense techniques and their reliability against hostile attacks. Last
but not least, they emphasized future research directions as well as the ongoing chal-
lenges and unresolved concerns in this area. In order to determine the acceptability
of the current state of the art technique as well as the incoming mechanism, multiple
approaches should be implemented in the research on adversarial attacks and carry
out various evaluation strategies.
In [21] M Wazid et al. concerned on the 5G network system and other allied fields
to offer a thorough analysis for the domain’s future developments. In the context of
the 5G network environment, they addressed various system types, security require-
ments, potential attacks, and security protocols. Some of the difficulties they cited
include the need for protocols to simultaneously defend against multiple attacks, the
need for low computation power, low communication costs, and small storage sizes
without compromising system security, the need for protocols to operate in complex
environments while maintaining high scalability, the need for protocols to support
a variety of devices and the mechanisms connected to them, and others. The pri-
mary objective of this research is to compile comparisons of the security protocols
currently in practice and the ways to tackle the 5G-enabled IoT under one roof for
the benefit of upcoming researchers.
By using MultiBoosting multi classifiers, in [3], R. Bie et al. emphasized the signifi-
cance of a meta learning-based approach for network intrusion detection that greatly
improves upon the detection performance of conventional machine learning intrusion
detection methods. Additionally, this research presented a method known as Sym-
metrical Uncertainty (SU) that aids in reducing the features in network connections,
hence enhancing detection precision.
In [13] J. Kim et al. introduced a deep learning based intrusion detection model
especially for the identification of denial of service or DoS attacks. In their paper,
they used CNN for binary and multiclass classification and gave a comparison be-
tween CNN and RNN and provided a comparative analysis of the hyper-parameters
that can produce excellent outcomes. They evaluated their model compiling all the
DoS attacks from CSE-CIC-IDS 2018 and KDD CUP 1999. Although they achieved
a decent accuracy with their proposed model, it should be emphasized that the

6

datasets they used also contain a variety of malicious attacks and those were not
taken into account. Moreover, they used 10407862 samples to reach their accuracy.
In [23] H. Hindy et al. introduced a Siamese Network model that is employed as the
One-Shot learning architecture to classify cyber attacks. Moreover, the network’s
performance in identifying a new cyber-attack class without retraining is evaluated
where there are relatively few newly labeled attack classes. However, they only
considered 5 types of attacks present in the dataset.
In order to mitigate imbalance for risk prediction, in [10] D. Sun et al. presented a
Siamese Network Classification Framework (SNCF) that can transform the Siamese
network to a classification based on resemblance. Additionally, SNCF exhibits high
performance on feature dimensionality minimization. Moreover it is independent of
feature engineering, and is insensitive to data distortion. They demonstrated that
their proposed configuration is more scalable, more effective than others, and less
linearly dispersive in an unbalanced dataset.
In [8] J. Kim et al. illustrated deep-learning approaches and constructed a convo-
lutional neural network (CNN) model for intrusion detection. Furthermore, they
showed a comparative study with RNN and the experimental result reflected that
CNN outperforms RNN. However, instead of incorporating the complete dataset,
they used each subset of the CSE-CIC-IDS 2018 dataset that was based on a par-
ticular day and presented results for each subset where each of them contained up
to three different types of malicious attacks along with benign or non-malicious
behavior.
With the use of a few-shot learning approach, in [19] D. Park et al. developed a
Siamese Convolutional Neural Network (Siamese-CNN), which demonstrates great
outcomes with only a minimal amount of training data. Additionally, utilizing the
Leipzig Intrusion Detection Data Set (LID-DS), a host-based intrusion detection
model including pre-processing, vector-to-image processing, training, and testing
stages is designed to analyze and enhance the effectiveness of the system. They
compare Vanilla Convolutional Neural Network (Vanilla-CNN) to Siamese-CNN as
well, demonstrating the superior performance of their suggested approach.
A few-shot learning-based Siamese capsule network was created by Z. Wang et al. in
[20] to address the lack of training data for anomalous network traffic and improve
the detection of suspicious threats. In addition, the Siamese network is effectively
incorporated with an unsupervised sub type sampling technique to enhance the
detection of network intrusion attempts in the case of unbalanced training data.
Their experimental findings demonstrate that they have successfully detected both
known attacks and unknown attacks with a significant accurate classification rate
utilizing a relatively small number of samples. They intend to add parallelization
mechanisms in the future to boost the method’s detection effectiveness and make it
more applicable to real-world intrusion detection applications.
By incorporating a prototype module into a Siamese network, the author in [17]
J. Wang et al. discussed a few shot learning architecture that uses the Euclidean
distance to learn high quality prototype representations of each class. By performing
image classification they claimed that the suggested architecture can assist the model
in generalizing to new classes not included in the training set, despite only several
samples of each class.
A Siamese-prototype network with prototype self-calibration and inter-calibration
for few-shot remote sensing image classification was discussed in [22] by G. Cheng et

7

al. To get suitable prototypes, they first calibrate the ones produced from support
features using the supervision knowledge from support labels. Then, they take into
account how confidence scores interact between the support and query samples to
further calibrate the prototype. However, their model struggles when dealing with
enormously challenging samples.
To increase the semantic discriminability between prototypes, in [26] S. Mo et al.
suggested a concise contrastive learning approach that employs metric loss in the
Siamese style.They carried out comprehensive evaluations on numerous benchmarks,
and the results depict the effectiveness of visual presentation for image classification.

2.2 Background Study

This section offers useful supporting information for comprehending how our sug-
gested architecture operates. This will provide a preliminary idea to the readers to
understand our work in a convenient way.

2.2.1 Reinforcement Learning

Reinforcement Learning is a machine learning approach which teaches an agent how
to operate in a certain environment by observing how actions affect the environment.
Good actions result in positive feedback for the agent, whereas each bad action re-
sults in negative feedback or a penalty. The objective is to learn the best behavior
in an environment that maximizes the reward. Similar to how children explore their
surroundings and discover the behaviors that enable them to accomplish a task, the
optimal behavior is learnt via interactions with the environment and observations
of how it responds. Exploration and exploitation are properly balanced in reinforce-
ment learning algorithms. The exploration phase is one of the primary advantages
of RL-based techniques. Essentially, this prevents optimizers from getting stuck in
a local optimum, allowing it to find a global optimum more quickly. This process
is akin to a trial-and-error search. Both immediate and future rewards are taken
into account when determining the quality of actions. Because it can discover the
actions that result in success in an unobserved environment without supervision,
reinforcement learning is a particularly effective algorithm. Most importantly, Rein-
forcement learning algorithms are preferable mechanisms for finding solutions that
are free of bias or discrimination when the data is labeled. Figure 2.1 shows the
high level diagram of the reinforcement learning approach that we attempted.

Environment

Environment is the agent’s world in which it lives and interacts in reinforcement
learning. The agent can interact with the environment by taking some actions, but
those actions cannot change the environment’s laws or dynamics. This indicates that
if humans are the agents in the earth’s environments, we are bound by the planet’s
physics rules. Our activities can affect the environment, but we can’t change the
physics of our world. Here, a decision-making program is known as an agent. In the
real world, we can describe an agent as a learner. When an agent does an action in
the environment, the environment returns a new state, which helps the agent take

8

Figure 2.1: Reinforcement Learning in Network Data Classification Context

the next action. The environment also provides the agent a reward, which the agent
may use to gauge the effectiveness of their action and receive feedback on whether
or not their behavior was successful.

SMOTE - Synthetic Minority Over-sampling Technique

SMOTE, as the name suggests, is a minority class oversampling technique used to
increase the number of samples of a class [2]. It is very helpful in scenarios where
the dataset is imbalanced. It helps us reduce the bias a model might have due to
imbalanced data. The algorithm uses existing data of a class to plot a line and then
uses K - Nearest Neighbor algorithm for each example to find one or more synthetic
data.

Advantage Actor Critic Algorithm

A2C is a reinforcement learning algorithm [4] that uses a combination of both value
based and policy based methods. Because of policy-based mechanisms, A2C is
better for continuous and stochastic situations, has faster convergence, and is more
sample efficient and steady due to the value-based approach. It uses two deep neural
networks, where one is called the actor network and the other is the critic network.
The actor network uses the policy based method while the critic network uses value
based method. The actor network is responsible for how the agent acts in the
environment while the critic network outputs the quality value of actions taken by
the agent to show how good the action was. One of the prominent features of A2C
is that it uses the Advantage function to stabilize the model and lower the high
variance of policy networks. It depicts how good the action is, as well as how much
better it could be. So it basically drives the model to a stable mean value reward
which eventually helps to get a better accuracy.

Proximal Policy Optimization Algorithm

PPO [5] is another reinforcement learning algorithm that uses policy based meth-
ods. It’s an on-policy gradient approach in action. Policy gradient methods are
reinforcement learning approaches that use gradient descent to optimize parame-
terized policies in terms of expected return or long-term cumulative reward. Trust

9

Region Policy Optimization (TRPO) has been improved by PPO. TRPO’s most ma-
jor flaw is that it is computationally expensive, whereas, PPO is a simplified version
of TRPO that uses a clipped surrogate objective to achieve comparable results. In
other words, PPO entails collecting data through contact with the environment and
employing stochastic gradient descent to optimize a surrogate objective function.
Additionally, PPO makes balance between important aspects like ease of applica-
tion, ease of calibration, sample complexity and so on. Furthermore, PPO addresses
the issue of sampling efficiency or more specifically how to reach a certain level of
accuracy with fewer simulations and less computational time. It looks for actions in
the current state. This means that the agent learns from its interactions with the
environment when in a certain state. The decision-making policy is updated using a
minibatch of agent experiences. At each step, PPO tries to compute an update that
minimizes the cost function while keeping the deviation from the preceding policy
to a minimum.

2.2.2 Convolutional Neural Network

A deep learning network architecture that learns instantly from input is a convo-
lutional neural network (CNN or ConvNet). CNN’s design was influenced by how
the human brain functions. Using multiple building blocks, such as convolution lay-
ers, pooling layers, and fully connected layers, CNN is designed to continually and
smoothly learn spatial hierarchies of feature through backpropagation [7]. An iden-
tical design consists of a stack of several convolution layers, a pooling layer, followed
by one or more fully connected layers. CNNs are very advantageous for recognizing
objects, classes, and categories by exploring patterns. Since a feature could appear
anywhere in the image, CNN is frequently used by researchers for image processing.

Activation Function

The activation function computes the weighted sum and then adds bias to it to
decide whether or not to trigger a neuron. The activation function’s objective is to
add non-linearity to a neuron’s outcome. The activation function has a value of 0 or
1. If the value is 1, the function will be activated; if it is 0, the opposite will occur.
We are using the Softmax function as the activation function for the output layer.
Softmax function assigns decimal probability to each class in a multi-class problem.
Not only does it map the output from 0 to 1 range, but it also maps every outcome
so that the aggregate of all of them equals 1.

Softmax(xj) =
exj∑n
i=1 e

xi

2.2.3 Meta Learning

Meta learning is one of the rising and exhilarating research domains in the AI field.
Meta Learning basically breaks the traditional way of training a model with huge
data samples. It introduces the idea of training a model on various related tasks
with fewer data samples and it can use this learning for related new future tasks.
This allows us to deploy machine learning techniques in domains with a very limited
amount of data. Few shot learning is one such technique of meta learning.

10

Support Set

The term ”support set” is used in the context of meta learning. If we take a dataset
called D and randomly select some data samples from each of the classes within
it without replacing them to create a different dataset, then that dataset will be
regarded as a support set. An N-way K-shot support set will contain N different
classes of data and each of the N classes will have K number of data points. For
example, a 5-way 2-shot support set will have 5 classes of data and each class will
have 2 data points for a total of 5 x 2 = 10 data points. Data from this set provides
the network with support information that it will need to predict unknown data.

Query Set

The theory of a query set is another meta learning phenomenon. Similar to how
the support set was chosen, we will pick data points from dataset D at random, but
using different data samples. While the support set is used to support the network,
data in the query set is used to query the network. While training, the network
uses the support information and tries to predict on the data from the query set
and then finds the loss to update the network. While testing, data from the testing
dataset go into the query set while training data is used for support.

Figure 2.2: Illustrative Representation of Support and Query Set

Few Shot Learning

Few-shot learning is a learning method where the training dataset contains limited
data. It is also known as n-way k-shot learning where k denotes the number of
data points of n classes. To address the identification of unknown classes, few-shot
learning models have been developed to accomplish work with a constrained amount
of training samples.

11

Siamese Network

Siamese Network is a successor of the meta learning approach. It employs fewer data
samples to address issues where there isn’t enough information to train a model. It
is one of the most highly sophisticated few-shot learning techniques and consists of
two symmetrical neural networks with identical architectures and weights in each
network. The prime objective of the Siamese network is to determine whether the
two inputs that passed through the two networks are similar or not.
Example: Suppose X1 and X2 are two symmetric networks and A1 and A2 are two
image inputs. We passed them through X1 and X2 respectively. The networks will
use CNN to extract the features from the images and give embeddings for the inputs.
After collecting the embeddings, it will be sent to an Energy Function that actually
uses any distance function to measure the similarity between inputs. If the distance
is lower than the threshold value, the inputs belong to the same class and otherwise
not.

Prototypical Network

Another successor of the meta learning technique is prototypical network. A nor-
mal network tries to learn the metric space in order to perform classification. The
foundation of prototypical network is the notion that each class should have a pro-
totypical representation, and that each query point should be classified based on
how closely it resembles the class prototype. The architecture of our prototypical
network is shown in figure 4.6.
Example: Suppose we have three classes X, Y and Z. Every class has n sam-
ples which represented as X = {X1, X2, X3, ..., Xn}, Y = {Y1, Y2, Y3, ..., Yn}, Z =
{Z1, Z2, Z3, ..., Zn}. When all the data samples are sent into the network, the net-
work will use CNN to extract the features and get the mean of embedding for each
class.

Xprototype =
1

n

n∑
i=1

Xi

In this way we will get the average embeddings for every class that are representa-
tive of prototype classes like Xprototype, Yprototype and Zprototype . Now in the testing
phase, for every point P, we will calculate the embedding Pembedding and then, we
compute the distance between class prototype and Pembedding. Then, we apply soft-
max to this distance and get the probabilities. And from the highest probability,
we get the class of query point P.

Energy Function

In networks such as the Siamese and Prototypical network, energy functions are used
to find the similarity between 2 or more inputs. This allows us to determine the
classification of the data we are trying to classify and also to find the loss incurred
by the network. While implementing our approach, we have used Euclidean distance
function as our energy function. It takes the embeddings of two inputs and finds
the distance between them. The general formula of euclidean distance function is

12

as follows
E(X1,X2) = ||f(X1)− f(X2)||

where X1 and X2 are two feature vectors.

Learning Rate

The learning rate is a hyperparameter that determines to regulate the model every
time in such a way that the model weights are modified in response to the predicted
error. To put it another way, learning rate refers to how quickly a neural network
updates the data it has acquired. When constructing a neural network, the learning
rate can be the most crucial hyperparameter. It can be difficult to choose the
learning rate as because of a too small value, the training process can get stuck
and on the other side, a too large value could lead to an unstable training process.
A productive learning rate is high enough to train in a reasonable amount of time
while yet being low enough for the network to converge on something valuable.

13

Chapter 3

Dataset

One of the core component of research based study is dataset. As we worked on cyber
security domain, there is very limited amount of publicly available resources are
present. Among them we have used are CSE-CIC-IDS2017 and CSE-CIC-IDS2018.
At the time of our work, these are the latest set of publicly available datasets. The
main aim of our model is to correctly predict whether network data is malicious or
benign. The different labels in the datasets are shown in table 3.1.

3.1 Data Collection

3.1.1 CSE-CIC-IDS 2018

This dataset contains 78 features and 15 different labels. The dataset is divided
into 10 files, where each file contains benign and a type of data e.g. DDoS, DoS,
Bruteforce, etc. The 78 features of the dataset were extracted using CICFlowMeter.
The dataset is heavily unbalanced as evident from the disproportionate distribution
of data between malicious and benign data points. There are 13390249 benign
network flow data points whereas all malicious network flow combined have 2746934
data points.

3.1.2 CSE-CIC-IDS 2017

This dataset contains 9 different files that records data from 9 different days. It
contains 78 features just like the CSE-CIC-IDS2018 dataset. However, all the data
labels are not the same in both datasets. In the CSE-CIC-IDS2018 dataset, they
categorize the DDoS attacks where we found the generalized DDoS attacks in CSE-
CIC-IDS2017 dataset. Here we also got portscan, heartbleed which were not present
in the CSE-CIC-IDS2018. The unequal distribution of data between malicious and
benign data points demonstrates the dataset’s severe unbalance. There are 1741839
benign network flow data points whereas all malicious network flow combined have
556556 data points.

3.2 Data Preprocessing

Data preprocessing is a very crucial step. The model might not provide the desired
outcomes because of not having clean and appropriate data. Usually a dataset

14

Table 3.1: Labels and Per Label Samples in IDS2017 and IDS2018

Label CSE-CIC-IDS17 CSE-CIC-IDS18

Benign 1741839 13390249

DDoS 128025 N/A

DDoS attack-HOIC N/A 686012

DDoS attacks-LOIC-HTTP N/A 576191

DoS attacks-Hulk 230124 461912

Bot 1956 286191

FTP-BruteForce 7935 193354

SSH-Bruteforce 5897 187589

Infilteration 36 160639

DoS attacks-SlowHTTPTest 5499 139890

DoS attacks-GoldenEye 10293 41508

DoS attacks-Slowloris 5796 10990

DDoS attack-LOIC-UDP N/A 1730

Brute Force -Web 1507 611

Brute Force -XSS 652 230

SQL Injection 21 87

PortScan 158804 N/A

Heartbleed 11 N/A

15

contains a lot of information that might be irrelevant for the model. In that case,
those irrelevant data might lessen the efficiency of that model and increase the time
complexity as well. Different models demand different data preprocessing. As we
mentioned above, we worked on two different mechanism and they required much
different preprocessing from each other. Both procedures are outlined below.

3.2.1 Data Processing for Reinforcement Learning

CSE-CIC-IDS2018 dataset is heavily unbalanced. Figure 3.1 depicts the degree of
disproportion of the data in the merged dataset. The number of malicious network
traffic activity is not very frequent and that is being depicted in the dataset. As a
result, Benign is much more prominent than the other labels. The lowest number of
data points for a class label is 87, which is for SQL Injection attacks. As a result, we
decided to oversample the data. Before oversampling, we remove the null and infinity
values from the dataset. Then, we extracted 150000 samples from the individual
classes wherever possible and oversampled the data for the minority classes where
the number of data is less than 150000 using SMOTE. After oversampling and
balancing the dataset, the data count per label is shown in table 3.2.

Table 3.2: Data Count Per Label After Oversampling IDS2018

Label Count

Benign 150000

DDoS attack-HOIC 150000

DDoS attacks-LOIC-HTTP 150000

DoS attacks-Hulk 150000

Bot 150000

FTP-BruteForce 150000

SSH-Bruteforce 150000

Infilteration 150000

DoS attacks-SlowHTTPTest 150000

DoS attacks-GoldenEye 150000

DoS attacks-Slowloris 150000

DDoS attack-LOIC-UDP 150000

Brute Force -Web 150000

Brute Force -XSS 150000

SQL Injection 150000

Following the oversampling of the dataset, we discovered that various features, such
as Fwd Byts/b Avg, Fwd Pkts/b Avg, and others, have only one value, which is 0.
As a result, we chose to drop them because they have no bearing on the performance
of the model. Following that, we look for a correlation between each feature and the
label. We then eliminated features with less than 10% correlation with the label. We
trained models with and without those features, and discovered that the difference

16

Table 3.3: Label Encoding of Each Class

Label Encoded Label
Benign 0
Bot 1

Brute Force -Web 2
Brute Force -XSS 3
DDos attack-HOIC 4

DDos attack-LOIC-UDP 5
DDos attacks-LOIC-HTTP 6
Dos attacks-GoldenEye 7

Dos attacks-Hulk 8
Dos attacks-SlowHTTPTest 9

Dos attacks-Slowloris 10
FTP-Bruteforce 11
Infilteration 12
SQL Injection 13
SSH-Bruteforce 14

was quite negligible. As a result, we decided to remove these features in order to
achieve faster performance. The histogram of correlation between each feature and
the labels are shown in Figure 3.1.

Figure 3.1: Correlation of features with the class labels

As each class label was categorical, we decided to encode the labels. The label
encoding is shown in table 3.3.
We then proceeded to split the data into train, validation and test set. 70% of the
data was turned into a train set, 15% into a validation set and the last 15% into a
test set.

3.2.2 Data Processing for Hybrid Meta Learning

CNNs are renowned for their effectiveness in feature extraction from image type
data. We prioritize CNN for our feature extraction task because it is excellent
at extracting features, and we consider the outcomes as our features for further

17

analysis. As a result, unlike our previous RL approach, we do not manually remove
any features. So, first we remove all the null and infinity values, then scale the data
between 0 and 1 and lastly, we proceed to convert each data point into image data.
The 78 features of the dataset were converted to a shape of 13 x 6. As we will be
using grayscale images, the final shape of each data point becomes 13 x 6 x 1. Figure
3.2 shows the creation of image data.

Figure 3.2: Conversion of 1D data from CSE-CIC-IDS2018 to 2D image data

18

Chapter 4

Methodology

In this study, we worked on both reinforcement learning and hybrid meta deep learn-
ing. Following section provides a comprehensive study on both of the methodologies.

4.1 Reinforcement Learning Approach

In reinforcement learning, different environments have different lengths of episodes,
where when an agent takes an action, the environment changes accordingly. Usually,
the actions taken in one episode affects the states in that episode, but does not affect
the next episode. However, the task we are trying to perform is classification, and
therefore, the action that the agent performs does not change the state. But, the
agent will infer that the action it is taking is causing the change. As a result, each
episode in our environment only provides one data sample to the agent. Figure 4.1
demostrates the overall workflow of our RL approach.
The dataset contains 15 different classes, which the agent has to predict given a
data point, si. We initialize a data counter to keep track of which data is being
passed to the agent at any time step. The reset function is called to go back to the
initial condition of the environment. It is important to call this function at the end
of every episode. As each episode is equal to one data sample from the dataset, we
use this function to iterate through the dataset. This function always increments
the data counter and returns the next data sample as a state and if the data counter
variable is greater than the number of samples in the dataset, the dataset is shuffled
first. It is also saving the correct action, ct, that needs to be taken for the state, st,
being returned.
The environment of our agent can be separated into 3 major components. The state
space of the environment which shows all the different states the environment can be
in, the action space which is all the actions the agent can take in the environment,
and the reward function which is used by the environment to calculate the reward
for the action performed by the agent on a specific state. They are defined as:

• State space: The state space of our environment are all the network data
features of the dataset except the label. The state space is

S(t) = {s0, s1, s2, ..., sn}

where each si is a vector of shape (1, 70) values corresponding to the 70 features
of the dataset.

19

Figure 4.1: Top Level Overview of RL Framework.

20

• Action space: The action space of our environment are the different labels of
the data. There are 15 distinct labels and therefore the action space is

A = {a0, a1, ..., a14}

where each ai ∈ [0, 14] ⊂ Z

• Reward Function: The task we are performing is classification. Therefore,
the agent should be rewarded for correctly labeling data. Thus, the reward
function is defined as:

r(ct, at) =

{
1 at = ct

0 at ̸= ct

Where ct is the correct action (or label) for current state and at is the action
predicted by the agent. The objective of the agent can be expressed as:

maximize R =
n∑

t=0

r(ct, at)

Agent takes the current state from the reset function. Then, the agent predicts the
action, at, and uses the step function to calculate the reward for that action. To
illustrate, the step function takes action as an input and calculates the reward by
using the reward function. The step function then returns the current state, reward,
and done at the end. Unlike other step functions, it does not return the next state as
the episode ends after each step function call and reset function will provide the next
state. The agents that we use in our approach are A2C and PPO. The algorithms
1 and 2 demonstrate their working process.

Algorithm 1 Advantage Actor Critic Algorithm

Input: Set parameters σ and s to their default values

loop
Sample a ∼ rσ
Take action a, receive a reward, rt and proceed to state s′

TD error Calculation:
∆ti = r(st, at) + aQ(st+1)−Q(st)

Actor parameters should be updated as follows:

σ ← σ+β(1
M

∑M
j=1

[∑T
t=0 a

t∆σ log rσ(aj,t|sj,t)(r(st, at) + aQ(st+1 −Q(st)))
]
)

Update Q(st) using target r(st, at) + aQ(st+1)
end loop

The process will continue until the expected state s is achieved

After training the agents for 2 epochs, the average reward per episode is shown in
figure 4.2.
It is clear from the graph that both agents move to the mean reward range of
0.6 to 0.8 pretty rapidly. However, both agents are quite consistent in this region
afterwards.

21

Algorithm 2 Proximal Policy Optimization Algorithm

Input: initialize policy parameters Φ0, clipping threshold δ

for i = 0, 1, 2, ... do
By running the policy σi = σ(ϕi), collect a set of trajectories Tk

Using any advantage estimation algorithm, calculate the advantage Âσi
t

Updated calculation policy
Φi+1 = arg maxΦL

CLIP
Φk

(Φ)

Performing I stages of mini batch SGD (using Adam)

LCLIP
Φk

(Φ) = Eτ∼σi

[∑T
t=0[min(pt)(Φ)Â

σi
t , clip(pt(Φ), 1− δ, 1 + δ)Âσi

t)]

]
end for

Figure 4.2: Average reward for per episode

22

4.2 Hybrid Meta Deep Learning Approach

The block diagram of our proposed model is illustrated in figure 4.3. It is a hybrid
combination of two few shot learning techniques, Siamese Network and Prototypical
Network. The following sections describe the architecture of each individual network.

Figure 4.3: High Level Diagram of our Hybrid Meta Learning Approach.

The Siamese network is being used for binary classification to classify the data
into benign and malicious. The feature extractor of the Siamese network contains
two convolutional and max pool layers each with 64 filters. The kernel size of the
convolutional layers that give us the best outcome is 4 x 4 with a max pooling size
of 2 x 2. The architecture of our Siamese network is displayed in figure 4.5 for
better understanding. We are using euclidean distance as the energy function which
is defined as:

D(X1,X2) = ||f(X1)− f(X2)||

where X1 and X2 are data points and f(X1) and f(X2) are the embeddings of the
data points.
For the loss function we are using contrastive loss which is defined as:

Contrastive Loss = Ytrue ×D2 + (1− Ytrue)×max(1−D, 0)2

The algorithm for the training and testing of the Siamese network is shown in
algorithm 3.
The Prototypical network is being used for multiclass classification to determine
which attack type the data falls into. Its feature extractor also contains 2 con-
volutional and max pool layers with 64 filters in each layer. Kernel size for the
convolutional layers that give us the best outcome is 4 x 4 with a max pooling size
of 2 x 2. Prototypical network architecture is illustrated in figure 4.6 for a visual
representation. Euclidean distance is again being used as the energy function and
negative log probability from the softmax layer is being used for the loss calculation.

23

Figure 4.4: Top Level Overview of the Proposed Framework.

24

Figure 4.5: Block Diagram of the Siamese Network Architecture of our Proposed
Approach

25

Algorithm 3 Malicious Data Identification using Siamese Network

Input: Network Flow Images
Output: Malicious Data Identification, Malicious Data
DTrain ← {ImAi, ImBj} where i and j are random indexes for the training set
DTest ← {ImAi, ImBj} where ImAi is a random benign sample from training set
and j is a random index for testing set
epoch ← 0
threshold ← 0.5

while epoch ≤ max epoch do
for data in DTrain do

Embeddings← f1(data[0], data[1])
Distance← D(Embeddings)
Loss ← Contrastive Loss(Distance, YTrue)
Update Network parameters using Loss

end for
end while
for data in DTest do

Distance ← Predict(data)
if Distance ≤ threshold then

Classify data as Benign
else

Classify data as Malicious
end if
if Ytrue is Malicious then

DMalicious ← DMalicious.append(data[1])
end if

end for

26

The softmax probability is calculated using:

P (Ytrue = Ypred |X) =
e−D(f(X),Xprototype)∑n
1 e

−D(f(X),Xprototype)

where X is the query, f(X) is the embedding of the query and D is the euclidean
distance function. Then using P , the loss is calculated as follows:

Loss = − log[P (Ytrue = Ypred |X)]

The algorithm for the training and testing of the Prototypical network is shown in
algorithm 4.

Algorithm 4 Malicious Data Classification using Prototypical Network

Input: Network Flow Images, DMalicious

Output: Malicious Data Classification
Training Data← Network Flow images without Benign
epoch ← 0
epoch size ← max size

while epoch ≤ max epoch do
for iter = 0; iter < epoch size; iter++ do

SupportTrain,QueryTrain ← Get Support Query(training data, n way, k shot)
Prototype, Embeddings ← f2(SupportTrain,QueryTrain)
Distances ← D(Prototype, Embeddings)
P(Y = Ypred|X) = Softmax(Distances)
Loss = − log(P)
Update Network parameters using Loss

end for
end while
max iter = DMalicious.length
for iter = 0; iter < max iter; iter++ do

SupportTest,QueryTest ← Get Test Support Query(DMalicious, training data,
n way, k shot)

Prototype, Embeddings ← f2(SupportTest,QueryTest)
Distances ← D(Prototype, Embeddings)
P(Y = Ypred|X) = Softmax(Distances)
Prediction = max(P)

end for

The training and testing method of the above architecture is described in the fol-
lowing sections. Figure 4.4 depicts the top level overview.
Data is first passed to the Siamese network. The training image dataset is converted
into the augmented dataset DTrain where each data point contains two images. If
both images are benign or malicious, then the data point is labeled as 1 and if the
images are different from each other it is labeled as 0. This dataset is then used
to train the Siamese network so that it can optimize its parameters for a similarity
function. Next, the augmented test dataset DTest is created where each data point
contains one random benign image from the training set and another random image
from the testing set. This creates a dataset where each data contains a benign image

27

Figure 4.6: Block Diagram of the Prototypical Network Architecture of our Proposed
Approach

28

from the train set and another image the model has not seen before. Labeling of
data is done the same way as before. The model is then evaluated on DTest.
The data points that are classified into malicious data are then used to train and
evaluate the Prototypical network. The training malicious data images are first
converted into 14-way k-shot support and query sets. Both these sets are then
passed to the model for training to optimize the feature extractor. Afterwards, we
create another 14-way k-shot support set using images from the training data and
a 14-way 1-shot query set using images from the testing data. They are then used
to evaluate the performance of the trained Prototypical network.

29

Chapter 5

Results and Discussion

5.1 Evaluation Metrics

Performance of our proposed framework is being evaluated by using some of the
well known indicators such as accuracy, precision, recall, f1 score, specificity and
ROC curve. The following indicators are calculated using the true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) values. An outcome
where the model properly predicts the positive class is referred to as a true positive
and true negative results are those for which the model correctly takes the negative
class into account. A false positive is a result when the model forecasts the positive
class inaccurately. A false negative is a result where the model forecasts the negative
class inaccurately.
Accuracy depicts the measurement of a classification system’s overall efficiency. The
calculation is as follows:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)

Among all positives, how many are correctly classified as positive is referred to as
precision. The calculation is as follows:

Precision =
TP

(TP + FP)

The ratio of accurately classified positives to actual positives is known as recall or
sensitivity.The calculation is as follows:

Recall =
TP

(FN + TP)

The harmonic mean of accuracy and recall is used to create the f1 score, which
serves as an indicator of how successfully the model classifies data. Compared to
the standard accuracy metric, the F1 score is seen to offer a better representation
of the classifier’s performance. Its value goes from 0 to 1, with 0 representing the
lowest possible score and 1 representing the highest possible score. The calculation
is as follows:

F1 score =
2× (Precision×Recall)

(Precision+Recall)

30

The ratio of correctly identified negative data to actual negative data is referred to
as specificity. The calculation is as follows:

Specificity =
TN

(FP + TN)

True Positive Rate or TPR provides the proportion of accurate forecasts in pre-
dictions of the positive class. Recall is another name for it.The calculation is as
follows:

TPR =
TP

(TP + FN)

The false positive rate (FPR) is an indicator of a test’s accuracy. it provides the
percentage of wrong predictions in the positive class or, in another way, it is the
probability that a false alarm would be triggered. The calculation is as follows:

FPR =
FP

(FP + TN)

ROC curves are a crucial parameter for evaluating the effectiveness of classifiers
[1]. They are constructed by plotting the independent true positive rate (TPR) and
false positive rate (FPR) rates. The whole test sample’s TPR and FPR values are
obtained at various threshold settings H in the [0-1] interval in order to plot the
ROC curve. A better performance is shown by classifiers that provide curves that
are closer to the top-left corner.

The area under the ROC curve, also known as the AUC score, is a scalar value
that can be used to assess how well the decision model performs overall in terms
of classification. A classifier’s performance is better as the value gets closer to 1.0,
whereas one with a value closer to 0.5 is on par with guessing labels at random.

5.2 Performance Evaluation of Reinforcement

Learning based Approach

To implement reinforcement learning, we used A2C and PPO. In this section, using
these algorithms, we will provide the results and evaluation.

The problem our agent is trying to solve is a multiclass classification problem. There-
fore the evaluation metrics have to be calculated on a per class basis. We have first
created a confusion matrix using the agent’s prediction on the test environment.
The confusion matrix for A2C and PPO is shown in figure 5.1. It shows the true
labels against the predicted labels. Using the confusion matrix, we have calculated
the TP, TN, FP and FN, which were then used to calculate the evaluation metrics.
The evaluation of A2C and PPO are shown in table 5.1 and table 5.2 respectively.

From tables 5.1 and 5.2 it can be observed that both A2C and PPO have a good
performance on correctly classifying Bot, DDOS attack-HOIC, DDOS attack-LOIC-
UDP, and DOS attacks-Slowloris. Moreover, PPO seems to slightly outperform A2C

31

Figure 5.1: Confusion matrix of A2C (left) and PPO (right)

Table 5.1: A2C evaluation on test environment

Label Accuracy Precision Recall F1 Score

Benign 0.9252 0.4521326684 0.5761777778 0.5066734411

Bot 0.9986222222 0.9860590285 0.9933777778 0.989704873

Brute Force -Web 0.9473274074 0.8700830591 0.2467555556 0.3844742218

Brute Force -XSS 0.9521303704 0.5890360972 0.9326666667 0.7220520937

DDOS attack-HOIC 0.9986222222 0.9909540573 0.9883555556 0.9896531007

DDOS attack-LOIC-UDP 0.9975792593 0.984319857 0.9792888889 0.981797928

DDoS attacks-LOIC-HTTP 0.9549362963 0.5968388896 0.9985777778 0.7471277745

DoS attacks-GoldenEye 0.9655288889 0.8748447634 0.5635555556 0.6855165703

DoS attacks-Hulk 0.9725837037 0.7222576424 0.9566222222 0.8230817766

DoS attacks-SlowHTTPTest 0.9332414815 0.4972493345 0.1245333333 0.1991825129

DoS attacks-Slowloris 0.9873659259 0.9774821952 0.8296 0.8974901433

FTP-BruteForce 0.9007525926 0.3908520607 0.8750222222 0.540344714

Infilteration 0.9408177778 0.601169497 0.3335555556 0.4290532815

SQL Injection 0.9426992593 0.5921843103 0.4512444444 0.5121957372

SSH-Bruteforce 0.9684948148 0.9688660608 0.5449333333 0.6975394681

32

Table 5.2: PPO evaluation on test environment

Label Accuracy Precision Recall F1 Score

Benign 0.936237037 0.5274141211 0.4189777778 0.4669837024

Bot 0.9975466667 0.9758475321 0.9876444444 0.9817105496

Brute Force -Web 0.9521125926 0.8290074751 0.3548888889 0.4970123242

Brute Force -XSS 0.9648118519 0.6745186937 0.9124888889 0.7756620953

DDOS attack-HOIC 0.9987051852 0.9849650503 0.9957777778 0.9903419011

DDOS attack-LOIC-UDP 0.9992385185 0.9889646076 0.9997333333 0.9943198143

DDoS attacks-LOIC-HTTP 0.96032 0.6277061133 0.9948444444 0.769738652

DoS attacks-GoldenEye 0.9670903704 0.8663579651 0.5987111111 0.7080869405

DoS attacks-Hulk 0.9753659259 0.7587552897 0.9244 0.8334268312

DoS attacks-SlowHTTPTest 0.9328681481 0.4842779892 0.1074666667 0.1758993198

DoS attacks-Slowloris 0.9929303704 0.9538767037 0.9393777778 0.9465717229

FTP-BruteForce 0.8980296296 0.3858344672 0.8948444444 0.5391856246

Infilteration 0.9421925926 0.5905073253 0.4335111111 0.4999743708

SQL Injection 0.9539348148 0.6528602207 0.6599111111 0.6563667308

SSH-Bruteforce 0.9632237037 0.8583404376 0.5369777778 0.6606517935

Figure 5.2: Overall Accuracy Comparison of A2C and PPO

33

in these classes and that is also reflected in the overall accuracy of the agents in fig-
ure 5.2.

However, this performance is achieved by training the model with 1575000. Here,
every class has 150000 data samples. In the original dataset, the data samples
for every label was unbalanced. So we oversampled the data to avoid any kind
of biasness. But, even with such a huge number of training samples, we could
only achieve an overall accuracy of around 70% for both the algorithms.Moreover,
oversapmpled data is not always a very accurate depiction of real world data.
F-1 score is a better metric to consider when dealing with imbalanced datasets.
Here, even though the agents have a high F-1 score for few labels such as Bot, DDOS
HOIC, DDOS LOIC-UDP, for most labels the scores are quite low. This shows that
the agents are not able to get high true positive values which also explains the low
overall accuracy.

5.3 Performance Evaluation of Hybrid Meta

Deep Learning based Approach

In this section, we mainly focus on the outcomes from our the proposed meta learning
model. Here the main purpose of our model is to at first detect if the network packets
are malicious or not and classify it if it is deemed malicious. To achieve this, we used
the CSE-CIC-IDS 2018 dataset and we also used CSE-CIC-IDS 2017 to illustrate
the fact that the outcomes of our model are not dataset specific. Moreover, we also
compare our methods to some of the existing works in this domain.
In our proposed architecture, we randomly selected 3000 samples from our training
dataset while keeping the number of samples per class balanced. Then we train our
models for multiple epochs in this small sampled dataset and test it on the entire
test dataset.
For binary classification using Siamese network, we found that the overall accuracy
of our model is 94.36%. The f1 score, precision and recall of our model are 93.93%,
94.67% and 94.36% respectively. Given that CSE-CIC-IDS 2018 is a very unbalanced
dataset, the high f1 score depicts that the unbalanced nature of the dataset is not
affecting our model’s performance. While using CSE-CIC-IDS 2017, we got an
overall accuracy of around 94.13%. The f1 score, precision and recall of our model
with the 2017 dataset are 96.11%, 94.19% and 94.13% respectively. This shows that
the performance of our is consistent irrespective of the dataset. The detailed view
of all of these outcomes are displayed in table 5.3.

Table 5.3: Binary Classification Results

Dataset Precision Recall F1 Score Accuracy

CSE-CIC-IDS2017 94.19 94.13 96.11 94.13

CSE-CIC-IDS2018 94.67 94.36 93.93 94.36

Moreover, figure 5.3a illustrates the accuracy and f1 score variation of the outcomes
for the different number of samples used for the training of the Siamese network.
It always follows an upwards trend and the f1 scores are very close to the accuracy

34

values. It reaches its peak point when the model is trained at around 4000 data
samples. However, to be consistent with the hybrid model, we used 3000 data sam-
ples to train our Siamese network just as the prototypical network. Using a Siamese
network trained over 3000 data samples, we got approximately 94.36% accuracy
and 93.93% f1 score. Additionally, a graph is added in figure 5.3b to demostrate the
validation loss of the Siamese network over 100 epochs. As seen from the graph, the
loss seems to stabilize at around 80 to 90 epochs with minor changes even though
there is one anomaly.

Following the Siamese network’s results, we incorporated the malicious data into our
prototypical network for multiclass categorization. In this experiment, we observed
that the accuracy of our model is approximately 90.64% for 14 different labeled ma-
licious network data using CSE-CIC-IDS2018. Moreover, for the IDS2018 dataset,
the f1 score, precision and recall score of our model are 91%, 91.66% and 90.64%
respectively. Among the 14 labels, DDoS LOIC HTTP has the highest f1 score,
precision and recall. We got around 99.97% f1 score, 100% recall and 99.90% preci-
sion for DDoS LOIC HTTP. On the other hand, for SQL Injection, we got 2.49% f1
score, 53.85% recall and 1.27% precision. The huge gap of evaluation metric between
DDoS LOIC HTTP and SQL Injection exists because the number of SQL Injection
samples in the IDS2018 dataset is extremely low compared to others. Therefore,
the network had fewer samples to create the prototype for SQL Injection attacks.
However, our model works quite well for the labeled data where the number of sam-
ples is around 200. For example, using 214 DDoS LOIC UDP data samples, we got
around 94.49% precision, 98.85% recall and 96.62% f1 score.
For clear visual representation we added a bar chart shown in figure 5.4a that
shows the accuracy and f1 score variation of the prototypical model using CSE-CIC-
IDS2018 dataset. It demonstrates the variation of the outcomes for using different
number of samples during training. It is seen that both the accuracy and f1 score
are following an upwards trend. However, the model gets the highest result when
it is trained over 3000 data samples. Using 3000 data samples, the model accuracy
and f1 score are approximately 90% and 91% respectively. Along with that, another
graph is shown in figure 5.4b to illustrate the validation loss of the prototypical
network over 5000 iterations. As seen from the graph, the loss seems to stabilize at
around 3000 iterations. It’s a downward trend graph and the loss is minimum when
the model is trained over 3000 iterations.
Furthermore, for the robustness of our proposed architecture, we train our model
using CSE-CIC-IDS2017. Using the IDS2017 dataset, we receive approximately
95.68% accuracy for 14 different labels. The average f1 score, precision and recall of
our model are 96.1%, 96.5% and 95.68% respectively. Among all the labels, we got
the highest f1 score, precision and recall from Heartbleed. However, there were only
11 samples in the total dataset and only 4 samples in the testing dataset. So, we
do not believe it correctly portrays the performance of the model and are therefore
considering PortScan as the best performing label. For PortScan we got around
99.90% precision, 99.08% recall and 99.49% f1 score. On the contrary, because of
the very small amount of data, we got approximately 1.27% precision, 100% recall
and 2.51% f1 score for SQL Injection data. Table 5.5 shows the metrics for the
individual labels of both CSE-CIC-IDS2018 and CSE-CIC-IDS2017.
We know, hyper parameters are important to choose as appropriate parameters help

35

(a) Accuracy and F1 vs No. of Samples of Siamese Network

(b) Loss of Siamese network

Figure 5.3: Siamese Network Evaluation.

36

(a) Accuracy and F1 vs No. of Samples of Prototypical Network

(b) Loss of Prototypical network

Figure 5.4: Prototypical Network Evaluation.

37

Table 5.4: Evaluation of Siamese Network With Different Kernel and Filter Sizes

Dataset Kernel Filter Size Accuracy F1 Score

CSE-CIC-IDS2017

2 x 2

32 90.588 93.986

64 91.488 94.331

128 90.425 93.415

3 x 3

32 91.719 94.473

64 93.222 95.506

128 93.952 95.925

4 x 4

32 90.374 93.401

64 94.131 96.113

128 93.665 95.724

CSE-CIC-IDS2018

2 x 2

32 94.241 93.027

64 94.306 93.912

128 94.336 93.899

3 x 3

32 94.103 93.209

64 93.431 92.995

128 93.560 93.149

4 x 4

32 93.774 93.248

64 94.357 93.929

128 93.651 93.104

38

Table 5.5: Multi-class Classification Results

Dataset Label Precision Recall F1 Score

IDS2017

Bot 0.9191 0.9660 0.9420

DDoS 0.9121 0.9409 0.9263

DoS GoldenEye 0.9326 0.9404 0.9365

DoS Hulk 0.9675 0.9399 0.9535

DoS Slowhttptest 0.9679 0.9515 0.9597

DoS Slowloris 0.8404 0.8239 0.8321

FTP Bruteforce 0.8975 0.9933 0.9430

Heartbleed 1.0000 1.0000 1.0000

Infiltration 0.0216 0.8333 0.0422

PortScan 0.9990 0.9908 0.9949

SSH Bruteforce 0.9090 0.8360 0.8709

Bruteforce Web 0.4805 0.3274 0.3895

SQL Injection 0.0127 1.0000 0.0251

Bruteforce XSS 0.2338 0.5510 0.3283

IDS2018

Bot 0.9913 0.9896 0.9905

Brute Web 0.1190 0.6593 0.2017

Brute XSS 0.0414 0.9706 0.0794

DDoS HOIC 0.9990 1.0000 0.9995

DDoS LOIC UDP 0.9449 0.9885 0.9662

DDoS LOIC HTTP 0.9993 1.0000 0.9997

DoS GoldenEye 0.9810 0.9640 0.9725

DoS Hulk 0.9889 0.9971 0.9930

DoS SlowHTTPTest 0.6024 0.8271 0.6971

DoS Slowloris 0.8415 0.9982 0.9132

Brute FTP 0.7523 0.4914 0.5945

Infiltration 0.9882 0.8892 0.9361

SQL Injection 0.0127 0.5385 0.0249

Brute SSH 0.9946 1.0000 0.9973

39

the model better fit the data. The table 5.4 represents the accuracy and F-1 score
for the different combinations of kernel size and filter size of the Siamese network.
From the table 5.4, it is clearly visible that our Siamese network achieved the best
outcomes when the kernel size is 4 x 4 and the filter size is 64 for both datasets.
The accuracy and F-1 score for the various kernel size and filter size combinations
of the prototypical network are shown in the table 5.6. The table 5.6 makes it quite
evident that for both datasets, our prototypical network performed best when the
kernel size was 4 x 4 and the filter size was 64.

Table 5.6: Evaluation of Prototypical Network With Different Kernel and Filter
Sizes

Dataset Kernel Filter Size Accuracy F1 Score

CSE-CIC-IDS2017

2 x 2

32 86.795 88.561

64 91.605 92.337

128 92.664 93.383

3 x 3

32 95.019 95.415

64 95.486 95.996

128 95.169 95.801

4 x 4

32 94.974 95.521

64 95.683 96.105

128 95.509 95.833

CSE-CIC-IDS2018

2 x 2

32 87.631 88.116

64 88.405 88.855

128 88.455 88.975

3 x 3

32 89.640 89.975

64 90.257 90.464

128 90.162 90.453

4 x 4

32 90.033 90.303

64 90.640 91.001

128 90.495 90.751

By analysing the above mentioned information, we choose the combination of 4 x
4 kernel size and 64 filter size for our architecture as we get the individual best
outcomes with this combination.
As we mentioned above, the ROC curve is referred to as an important metric to
determine the performance of the classifiers. Thus we are using the ROC curve to
see the performance of our proposed architecture. Figure 5.5 shows how our Siamese
network performs during malicious data identification. From the figure, it is seen
that the performance of the Siamese network doesn’t vary significantly between the
datasets. Additionally, the AUC score referenced in table 5.7 is very close to 1.0
signifying that the model is performing well. However, it works better for the CSE-
CIC-IDS2017 dataset as the curve is more to the top left corner of the graph. This

40

is also shown in the AUC score.

Figure 5.5: ROC curves of Siamese Network for CSE-CIC-IDS2017 and CSE-CIC-
IDS2018

Table 5.7: AUC Scores of Siamese Network of Different Datasets

Dataset AUC

CSE-CIC-IDS2017 98.119

CSE-CIC-IDS2018 95.575

ROC curves are mostly used to evaluate the effectiveness of binary classifiers. How-
ever, it takes into account two distinct approaches when it comes to multiclass
classification. One vs Rest and One vs One are the two different techniques. We are
considering One vs Rest to measure the performance of our Prototypical network.
Here, at a time, one label is considered as positive and the rest are considered as
negative. Using this, TPR and FPR are calculated and the ROC curve is plotted.
To measure the overall performance of the Prototypical network, we also provide
the micro and macro average of all the ROC curves.
ROC curves for CSE-CIC-IDS17 and CSE-CIC-IDS18 are displayed in figure 5.6a
and figure 5.6b respectively. In figure 5.6a, it is observed that the performance of the
label Infiltration is worse compared to the rest of them as evident from the figure.
It is also visible in the AUC score in table 5.8.
In figure 5.6b, it is seen that the performance of SlowHTTPTest and Bruteforce
FTP are worse compared to others as both the curves of these two labels get less
closer to the top of the graph. Moreover, it is also observable in the AUC score in
table 5.8 which is calculated from the ROC curve.

41

(a) One vs. Rest ROC Curves of Prototypical Network using CSE-
CIC-IDS2017

(b) One vs. Rest ROC Curves of Prototypical Network using CSE-
CIC-IDS2018

Figure 5.6: ROC curves of Prototypical Network for CSE-CIC-IDS2017 and CSE-
CIC-IDS2018

42

Table 5.8: OvR AUC Scores of Prototypical Network of Different Datasets

Dataset Label OvR AUC

CSE-CIC-IDS2017

Bot 0.999

DDoS 0.993

DoS GoldenEye 0.997

DoS Hulk 0.994

DoS SlowHTTPTest 0.999

DoS Slowloris 0.993

Bruteforce FTP 1.000

Heartbleed 1.000

Infiltration 0.963

PortScan 0.999

Bruteforce SSH 0.998

Bruteforce Web 0.994

SQL Injection 0.998

Bruteforce XSS 0.995

Macro Average 0.995

Micro Average 0.998

CSE-CIC-IDS2018

Bot 1.000

Bruteforce Web 0.997

Bruteforce XSS 0.998

DDoS HOIC 1.000

DDoS-LOIC-UDP 1.000

DDoS-LOIC-HTTP 1.000

DoS GoldenEye 1.000

DoS Hulk 0.999

DoS SlowHTTPTest 0.965

DoS Slowloris 0.996

Bruteforce FTP 0.967

Infiltration 0.997

SQL Injection 0.998

SSH-Bruteforce 1.000

Macro Average 0.994

Micro Average 0.998

43

5.4 Comparative Study

Following details will demonstrate an overview between our work and some of the
existing work in this domain. Table 5.9 also shows this comparison.

Table 5.9: Multi-class Classification Comparison with Related Work

Related Work Dataset Data Used No. of Classes Accuracy

Our Hybrid Meta Approach
IDS2017 3000 14 95.68

IDS2018 3000 14 90.64

Our RL Approaches IDS2018 1575000 15 70

CNN Based[13] IDS2018 10407862 6 91.5

Siamese One Shot[23] IDS2017 274729 5 80.81 - 82.5

Siamese Capsule[20] IDS2017 3025 8 95.25

In our previous work, we implemented RL with two alternative strategies. Both of
the models were trained with a huge amount of data to achieve approximately 70%
accuracy which is not good enough as the existing models were performing better
than that. Moreover, we used SMOTE to oversample the data to restrict our model
from being biased towards labels with higher data samples. As a result, the dataset
grows significantly. It consumed a lot of storage space and increased the process-
ing time. Even compromising with the storage and time, we couldn’t get better
outcomes. Moreover, oversampled data do not always reflect real world data. The
primary goal of a reinforcement learning agent is to maximize the reward, and the
method uses the agent’s reward calculation to turn it into a dynamic programming
approach. Agents determine the total current reward by using information from the
present state along with a prediction of future expected reward based on the current
trajectory.The equation is as follows:

G(t) = r(t+ 1) + γr(t+ 2) + γ2r(t+ 3) + . . .

This makes RL a dynamic programming approach where the algorithm is taking
future steps into consideration before making any action. However, in classification
setting, one state is completely independent of the other regardless of the action
being taken as the next network traffic can be of any class. As a result we need
to keep γ close to zero, making the approach a greedy algorithm. This is another
reason why our RL approach could not perform well. These constraints drove us
to conduct additional research in order to develop a novel concept that could be
effectively trained on modest amounts of data. Due to the fact that meta learning
techniques may be utilized to train models efficiently with limited data, we therefore
incorporated a hybrid meta deep learning strategy. Here, we trained our models
using 3000 data samples, applying the settings mentioned in tables 5.4 and 5.6.
In contrast to our earlier study, where we needed 1575000, this amount of data
training data samples is incredibly minimal. We were able to classify 15 different
labels in the CSE-CIC-IDS2018 with about 94% and 90% accuracy using Siamese
and prototypical networks, respectively, despite using 3000 data samples.
In [13], an experiment on binary and multiclass classification for DoS attacks was also
conducted by the authors. But for this task, they employed a CNN. They trained

44

and tested their model using about 10407862 samples of data from the CSE-CIC-
IDS2018, and their binary classification accuracy was 91.5%. For 6 distinct labeled
DoS attacks, they also achieved 91.5% for multiclass classification. For comparison
purposes, We used their method for 15 unique labels, including Benign from the
CSE-CIC-IDS 2018 dataset. For multiclass identification, their approach achieved
an accuracy of about 91.69% and 90.70% f1 score, 92.34% precision and 91.69%
recall.

Figure 5.7: ROC curves of CNN Based Approach [13] with 15 Labels

On the other hand, with only 3000 data, we were able to reach an accuracy of
90.29%. Additionally, the f1 score, precision, and recall closely match their results.
They used 10407862 samples to arrive at a conclusion where our model achieved
it with 3000 samples. Our approach even outperformed them in some cases. For
example, classifying infiltration using our hybrid meta learning approach, we got
98.82% precision, 88.92% recall and 93.61% f1 score whereas using CNN we got
97.72% precision, 40.30% recall and 57.07% f1 score.
We also used ROC curve and AUC score to compare the outcomes of this study [13]
with our work. As we mentioned above the ROC curve provided the best evaluation
picture for classification problems. Figure 5.7 shows their OvR ROC curves for 15
different labels. It is clear from the figure that Infiltration performance is worse
compared to others. From table 5.10 it is clearly visible that the AUC score of
infiltration is around 85% using CSE-CIC-IDS2018. However, from the table 5.8, it
is evident that our proposed framework works better as in our model, AUC score
for infiltration has the lowest value of only 96.3%. Moreover, the other labels that
perform worse are still above 95% score. From this analysis, we can say that our
work performs better in terms of AUC score which is also evident from the micro

45

Table 5.10: OvR AUC Scores of CNN Based Approach [13] with 15 Labels

Label OvR AUC

Benign 0.979

Bot 0.999

Bruteforce Web 0.995

Bruteforce XSS 0.999

DDoS HOIC 1.0

DDoS-LOIC-UDP 1.0

DDoS-LOIC-HTTP 1.0

DoS GoldenEye 0.999

DoS Hulk 0.999

DoS SlowHTTPTest 0.984

DoS Slowloris 0.999

Bruteforce FTP 0.986

Infiltration 0.855

SQL Injection 0.999

SSH-Bruteforce 0.999

Macro Average 0.987

Micro Average 0.996

46

and macro average scores.
In [23] authors recommended a Siamese Network using one shot learning mecha-
nism to classify cyber attacks. In total they used 274729 samples for their experi-
ment. Among them 248607 samples are normal data and the rest are divided into
DoS(Hulk), DoS(Slowloris), FTP Brute Force, SSH Brute Force. For 5 different cy-
ber attacks, they achieved 80.81% to 82.5% accuracy using the CSE-CIC-IDS 2017
dataset. On the other hand, we took all the attacks into our consideration and uti-
lizing the same dataset, our suggested hybrid meta learning model had an accuracy
of about 94.22% for 14 distinct network labels in multiclass classification with 3000
data samples.
Authors proposed a Siamese Network based model in [20] to enhance the network
intrusion detection using unbalanced training data. They presented their experiment
with CSE-CIC-IDS 2017. They achieved an accuracy of about 95.25% for the 8
different multiclass classifications. However, our suggested system achieved accuracy
that is very close to their results while taking into account all forms of malicious
data.

47

Chapter 6

6.1 Conclusion

In this paper, we introduced an RL method and a hybrid meta learning approach
to detect malicious packet data and identify them using multiclass classification.
Reviewing papers gave us the insight that there is a prominent requirement of re-
search in secure communication because of not having enough data due to their
sensitive nature. Moreover, malicious data is also very uncommon causing publicly
available datasets to be highly unbalanced. To address these challenges, our primary
step was introducing a model using RL technique. Here we used two different ap-
proaches called A2C and PPO. Using RL techniques we had to use a lot of data and
for some classes with lower data samples we had to follow oversampling techniques.
This approach also took a lot of resources and achieved an accuracy of around 70%
for both the algorithms. Unfortunately, these outcomes couldn’t outperform some
of the state-of-the-art techniques. Thus we propose a new technique called hybrid
meta deep learning. The advancement of meta learning technologies can be an ex-
cellent solution in providing a trustworthy mechanism for this. Therefore, our work
attempted to address the existing security issues. This approach not only ensures a
secure transmission by detecting malicious packet data but also classifies them into
multiple classes. Users could use this information to have more fine-grained control
over which preventative measures to take for specific attack types. Our proposed
architecture doesn’t need a lot of data to be trained. Hybrid meta learning tech-
niques can train the model efficiently with a very small amount of data compared
to the other existing approaches. Thus it resolves the issue of data insufficiency.
Furthermore, at the time of our research, we could not find any work addressing
more than 8 classes where our model was able to classify 15 distinct classes with
greater than 90% accuracy. But even though the model can be trained with small
amounts of data, for the data variation and to improve the model we still need data.
Additionally, it is impractical to provide security against all kinds of attacks. So
to address this problem, we consider introducing a federated learning mechanism as
our future task which will ensure continuation of data and improve the performance
of our model to detect more malicious attacks. Furthermore, incorporating atten-
tion mechanisms with the proposed framework might give a direction to the future
researchers in this domain. Most importantly, we anticipated that the findings of
our strategy might be an essential component of a platform for end-to-end trust
networking.In conclusion, we sincerely believe that our efforts will be beneficial to
solve the security crisis for the upcoming days.

48

6.2 Limitations

Like any other research study, ours has some restrictions. As we mentioned be-
fore, malicious network data is scarce. As a result, datasets that are made publicly
available are highly unbalanced.Thus, we had limitations in training models with
diverse data samples. Additionally, people show unwillingness in sharing their pri-
vate data because of confidentiality issues. As a result, we were unable to assess
the performance of our model by training it on more recent real-world traffic data.
Furthermore, due to time restrictions, we could not evaluate the performance of our
model using raw network packets.The fact that meta learning is a relatively new
field of study is another problem we had to face. As a consequence of this, learning
about this topic required a lot of effort on our part.

6.3 Future Work

For the time constraints of our research, we weren’t able to incorporate more tech-
niques to see how much they deal with our recent work. So we consider them as
our future thoughts. The following section might help the researcher to get a fu-
ture direction in this domain. Federated Learning can be added to maintain the
continuation of data. It might bring the variation of data and improve the perfor-
mance of the model. Additionally, attention mechanisms can also be incorporated.
It will allow the model to focus on more important features further boosting per-
formance. Moreover, an end to end trust networking platform can be formed. The
outcomes from the hybrid meta learning approach can be used to construct a trusted
platform.

49

Bibliography

[1] C. E. Metz, “Basic principles of roc analysis,” Seminars in Nuclear Medicine,
vol. 8, no. 4, pp. 283–298, 1978, issn: 0001-2998. doi: https://doi.org/10.
1016/S0001-2998(78)80014-2. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0001299878800142.

[2] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” Journal of Artificial Intelligence
Research, vol. 16, pp. 321–357, Jun. 2002. doi: 10.1613/jair .953. [Online].
Available: https://doi.org/10.1613%5C%2Fjair.953.

[3] R. Bie, X. Jin, C. Chen, C. Xu, and R. Huang, “Meta learning intrusion
detection in real time network,” vol. 4668, Sep. 2007, pp. 809–816, isbn: 978-
3-540-74689-8. doi: 10.1007/978-3-540-74690-4 82.

[4] V. Mnih, A. P. Badia, M. Mirza, et al., “Asynchronous methods for deep rein-
forcement learning,” in Proceedings of The 33rd International Conference on
Machine Learning, M. F. Balcan and K. Q. Weinberger, Eds., ser. Proceedings
of Machine Learning Research, vol. 48, New York, New York, USA: PMLR,
Jun. 2016, pp. 1928–1937. [Online]. Available: https://proceedings.mlr.press/
v48/mniha16.html.

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017. doi: 10 .48550/ARXIV.1707.06347.
[Online]. Available: https://arxiv.org/abs/1707.06347.

[6] S. Ravichandiran, Hands-On Meta Learning with Python. Birmingham, Eng-
land: Packt Publishing, Dec. 2018.

[7] R. Yamashita, M. Nishio, R. Do, and K. Togashi, “Convolutional neural net-
works: An overview and application in radiology,” Insights into Imaging, vol. 9,
Jun. 2018. doi: 10.1007/s13244-018-0639-9.

[8] J. Kim, Y. Shin, and E. Choi, “An intrusion detection model based on a
convolutional neural network,” Journal of Multimedia Information System,
vol. 6, pp. 165–172, Dec. 2019. doi: 10.33851/JMIS.2019.6.4.165.

[9] S. Niknam, H. S. Dhillon, and J. H. Reed, Federated learning for wireless com-
munications: Motivation, opportunities and challenges, 2019. doi: 10.48550/
ARXIV.1908.06847. [Online]. Available: https://arxiv.org/abs/1908.06847.

[10] D. Sun, Z. Wu, Y. Wang, Q. Lv, and B. Hu, “Risk prediction for imbalanced
data in cyber security : A siamese network-based deep learning classifica-
tion framework,” in 2019 International Joint Conference on Neural Networks
(IJCNN), 2019, pp. 1–8. doi: 10.1109/IJCNN.2019.8852030.

50

https://doi.org/https://doi.org/10.1016/S0001-2998(78)80014-2
https://doi.org/https://doi.org/10.1016/S0001-2998(78)80014-2
https://www.sciencedirect.com/science/article/pii/S0001299878800142
https://www.sciencedirect.com/science/article/pii/S0001299878800142
https://doi.org/10.1613/jair.953
https://doi.org/10.1613%5C%2Fjair.953
https://doi.org/10.1007/978-3-540-74690-4_82
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
https://doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.33851/JMIS.2019.6.4.165
https://doi.org/10.48550/ARXIV.1908.06847
https://doi.org/10.48550/ARXIV.1908.06847
https://arxiv.org/abs/1908.06847
https://doi.org/10.1109/IJCNN.2019.8852030

[11] J. Yang, S. He, Y. Xu, L. Chen, and J. Ren, “A trusted routing scheme using
blockchain and reinforcement learning for wireless sensor networks,” Sensors,
vol. 19, no. 4, 2019, issn: 1424-8220. doi: 10.3390/s19040970. [Online]. Avail-
able: https://www.mdpi.com/1424-8220/19/4/970.

[12] R. Kantola, “Trust networking for beyond 5g and 6g,” Mar. 2020. doi: 10.
13140/RG.2.2.31564.16000.

[13] J. Kim, J. Kim, H. Kim, M. Shim, and E. Choi, “Cnn-based network intrusion
detection against denial-of-service attacks,” Electronics, vol. 9, p. 916, Jun.
2020. doi: 10.3390/electronics9060916.

[14] S. Kim, “Incentive design and differential privacy based federated learning:
A mechanism design perspective,” IEEE Access, vol. 8, pp. 187 317–187 325,
2020. doi: 10.1109/ACCESS.2020.3030888.

[15] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato, “Federated
learning for 6g communications: Challenges, methods, and future directions,”
China Communications, vol. 17, no. 9, pp. 105–118, 2020. doi: 10.23919/JCC.
2020.09.009.

[16] K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, and M. Xu, “A survey
on machine learning techniques for cyber security in the last decade,” IEEE
Access, vol. 8, pp. 222 310–222 354, 2020. doi: 10.1109/ACCESS.2020.3041951.

[17] J. Wang and Y. Zhai, “Prototypical siamese networks for few-shot learn-
ing,” in 2020 IEEE 10th International Conference on Electronics Information
and Emergency Communication (ICEIEC), 2020, pp. 178–181. doi: 10.1109/
ICEIEC49280.2020.9152261.

[18] W. Zhijun, L. Wenjing, L. Liang, and Y. Meng, “Low-rate dos attacks, de-
tection, defense, and challenges: A survey,” IEEE Access, vol. 8, pp. 43 920–
43 943, 2020. doi: 10.1109/ACCESS.2020.2976609.

[19] D. Park, S. Kim, H. Kwon, D. Shin, and D. Shin, “Host-based intrusion de-
tection model using siamese network,” IEEE Access, vol. 9, pp. 76 614–76 623,
2021. doi: 10.1109/ACCESS.2021.3082160.

[20] Z.-M. Wang, J.-Y. Tian, J. Qin, H. Fang, and L.-M. Chen, “A few-shot
learning-based siamese capsule network for intrusion detection with imbal-
anced training data,” Computational Intelligence and Neuroscience, vol. 2021,
pp. 1–17, Sep. 2021. doi: 10.1155/2021/7126913.

[21] M. Wazid, A. K. Das, S. Shetty, P. Gope, and J. J. P. C. Rodrigues, “Security
in 5g-enabled internet of things communication: Issues, challenges, and future
research roadmap,” IEEE Access, vol. 9, pp. 4466–4489, 2021. doi: 10.1109/
ACCESS.2020.3047895.

[22] G. Cheng, L. Cai, C. Lang, et al., “Spnet: Siamese-prototype network for
few-shot remote sensing image scene classification,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 60, pp. 1–11, 2022. doi: 10.1109/TGRS.
2021.3099033.

[23] H. Hindy, C. Tachtatzis, R. Atkinson, et al., “Leveraging siamese networks
for one-shot intrusion detection model,” Journal of Intelligent Information
Systems, pp. 1–30, Nov. 2022. doi: 10.1007/s10844-022-00747-z.

51

https://doi.org/10.3390/s19040970
https://www.mdpi.com/1424-8220/19/4/970
https://doi.org/10.13140/RG.2.2.31564.16000
https://doi.org/10.13140/RG.2.2.31564.16000
https://doi.org/10.3390/electronics9060916
https://doi.org/10.1109/ACCESS.2020.3030888
https://doi.org/10.23919/JCC.2020.09.009
https://doi.org/10.23919/JCC.2020.09.009
https://doi.org/10.1109/ACCESS.2020.3041951
https://doi.org/10.1109/ICEIEC49280.2020.9152261
https://doi.org/10.1109/ICEIEC49280.2020.9152261
https://doi.org/10.1109/ACCESS.2020.2976609
https://doi.org/10.1109/ACCESS.2021.3082160
https://doi.org/10.1155/2021/7126913
https://doi.org/10.1109/ACCESS.2020.3047895
https://doi.org/10.1109/ACCESS.2020.3047895
https://doi.org/10.1109/TGRS.2021.3099033
https://doi.org/10.1109/TGRS.2021.3099033
https://doi.org/10.1007/s10844-022-00747-z

[24] P. L. S. Jayalaxmi, R. Saha, G. Kumar, M. Conti, and T.-H. Kim, “Machine
and deep learning solutions for intrusion detection and prevention in iots:
A survey,” IEEE Access, vol. 10, pp. 121 173–121 192, 2022. doi: 10.1109/
ACCESS.2022.3220622.

[25] S. Y. Khamaiseh, D. Bagagem, A. Al-Alaj, M. Mancino, and H. W. Alomari,
“Adversarial deep learning: A survey on adversarial attacks and defense mech-
anisms on image classification,” IEEE Access, vol. 10, pp. 102 266–102 291,
2022. doi: 10.1109/ACCESS.2022.3208131.

[26] S. Mo, Z. Sun, and C. Li, “Siamese prototypical contrastive learning,” CoRR,
vol. abs/2208.08819, 2022. [Online]. Available: https ://doi .org/10 .48550/
arXiv.2208.08819.

[27] S. Neupane, J. Ables, W. Anderson, et al., “Explainable intrusion detection
systems (x-ids): A survey of current methods, challenges, and opportunities,”
IEEE Access, vol. 10, pp. 112 392–112 415, 2022. doi: 10.1109/ACCESS.2022.
3216617.

52

https://doi.org/10.1109/ACCESS.2022.3220622
https://doi.org/10.1109/ACCESS.2022.3220622
https://doi.org/10.1109/ACCESS.2022.3208131
https://doi.org/10.48550/arXiv.2208.08819
https://doi.org/10.48550/arXiv.2208.08819
https://doi.org/10.1109/ACCESS.2022.3216617
https://doi.org/10.1109/ACCESS.2022.3216617

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Research Motivation
	Problem Statement
	Contributions

	Literature Review
	Related Work
	Background Study
	Reinforcement Learning
	Convolutional Neural Network
	Meta Learning

	Dataset
	Data Collection
	CSE-CIC-IDS 2018
	CSE-CIC-IDS 2017

	Data Preprocessing
	Data Processing for Reinforcement Learning
	Data Processing for Hybrid Meta Learning

	Methodology
	Reinforcement Learning Approach
	Hybrid Meta Deep Learning Approach

	Results and Discussion
	Evaluation Metrics
	Performance Evaluation of Reinforcement Learning based Approach
	Performance Evaluation of Hybrid Meta Deep Learning based Approach
	Comparative Study

	
	Conclusion
	Limitations
	Future Work

	Bibliography

