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Abstract

This research aims to provide an approach for analyzing the security of the e-health
care system through the use of federated learning and the pre-processing of distinct
deep learning models. The infrastructure for e-healthcare services is being gradually
deployed by the health sector. This method increased the safety of patients and
doctors through a protected platform. As a result, it is going to replace the current
health service. Even if this technology is becoming more and more widespread, a
number of data security threats need to be tackled. In this research, a CNN and
MLP architecture with a classification-focused approach using a number of pre-
trained feature extractors such as ResNet-50, VGG16, and Inception- v3 have been
implemented. Additionally, various machine learning classification algorithms (such
as Random Forest, and Logistic Regression) have been used to classify the images in
order to compare how well they perform to a neural network approach. Federated
learning has also been incorporated to increase healthcare data security as it does
not transmit actual data but models. The objective is to develop a hybrid federated
learning model to analyze the security of e-health data. The core premise is to
utilize a methodology like federated learning, which enables a technique for creating
machine learning models while safeguarding user privacy and can maintain e-health
data security without transferring real-world data.

Keywords: Federated Learning; Machine Learning; e-Health Care; CNN; MLP;
Random Forest; Logistic Regression;
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Chapter 1

Introduction

1.1 Overview

In the last few decades, the use of technology in health and healthcare has advanced
exponentially. The medical community has utilized technology in a variety of ways,
including imaging techniques for diagnosis, electronic health records, robotics in sur-
gical procedures, telehealth to reduce geographical and temporal barriers between
patients, and wearables for monitoring individual health [40]. For example, n the
field of genomics, where data regarding genetic makeup, biomarkers, and bioinfor-
matics are used to create more effective therapeutic solutions, the use of open data
sources is equally crucial.As the healthcare industry continues to immerse itself in
technology and its many subfields, such as artificial intelligence (AI) and machine
learning (ML), the importance of how It utilizes and secures this data grows[42]. The
replacement of handwritten data with electronic health records in order to preserve
the constant flow of patient-related data, including personal information, diagnosis,
treatment, and follow-ups, is one area where data security becomes a major prob-
lem. The majority of these repositories are hosted on open-source, easily accessible,
and downloadable platforms. With this ease of access to patients’ information, it
becomes even more crucial to protect their data to prevent improper handling of
private and sensitive data.

Federated learning is a strategy for distributed machine learning in which multi-
ple participants, such as devices or enterprises, collaborate to train a model while
retaining local access to their data. Federated learning is a paradigm for learning
that aims to address the problem of data governance and privacy by training algo-
rithms collaboratively without exchanging the data itself. It enables model training
on huge and varied datasets and enables privacy-preserving machine learning[41].
It was originally developed for various domains, such as mobile and edge device
use cases, but has recently gained popularity for the healthcare sector. FL enables
collaboratively gaining insights in the form of a consensus model without moving
patient data outside the firewalls of the institutions where they reside. Recent re-
search has demonstrated that models trained by FL can achieve performance levels
comparable to those of models trained on centrally hosted data sets and superior to
those trained on single-institution data sets[9].

In 2017, Google completely detached the capability to perform machine learning
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(ML) from the requirement to store data in the cloud by introducing federated
learning (FL), a methodology that simply allows devices to collaboratively train
machine learning (ML) models while maintaining the raw training data on every
browser[4]. Federated learning allows users to simultaneously train models across
all of their data without storing their data in many locations. This indicates that
compared to training it on a single computer, it can be trained more swiftly with
less computing or storage resources required from each location. The fundamen-
tal aspect of “data privacy” is the cornerstone of the upcoming development of AI
technology. When data security is of extreme significance and there is no room for
ambiguity, federated learning can be used to preserve data transfer that safeguards
our personal information by developing intelligent systems in secret.

1.2 Research Problem

The healthcare industry is becoming increasingly reliant on technology. The security
of data in e-health is a top priority as the data of patients and doctors contain sensi-
tive information. With the COVID-19 pandemic, more people are using e-healthcare
services, making them more vulnerable to online attacks. In 2015, researchers found
that over 68,000 medical systems were exposed online, many of which were running
outdated and insecure operating systems such as Windows XP[34]. These systems
were easy to hack using simple techniques, and researchers found that attackers
were able to leave malware payloads behind on specialized servers posing as medical
devices. The need for strong and secure login techniques is essential in the modern
healthcare industry.

Researchers have found that it was simple to find and hack medical equipment
connected to the internet using obsolete and vulnerable systems using the search
engine Shodan and basic tactics. To solve the problem, two security experts cre-
ated honeypots, specialized servers disguised as medical equipment with secure login
procedures. The honeypots showed that attackers were able to access the machines
over 55,000 times and leave malware payloads behind. The healthcare sector has
long been a target of hackers. The size and frequency of healthcare data breaches
have grown over the last five years, impacting almost 80 million people. Breach of
healthcare data routinely exposes highly sensitive in- formation. Patient’s social se-
curity numbers, names, and addresses are all vital information. Other vital elements
include medical identification, insurance informa- tion, and medical histories[1].

According to the Office of Civil Rights of the US Department of Health and Human
Services, the top 10 healthcare data breaches (ranked by the number of individuals
affected) are as follows: The first is Newkirk, which had 3.47 million affected things
as of August 2016, followed by Banner Health, which had 3.62 million damaged
items at the same time. Medical Informatics Engineering had 3,9 million Affected
products as of June 2017, followed by Advocate Health Care with 4,03 million (Au-
gust 2013). With 4.5 million affected items, Community Health Systems and the
University of California, Los Angeles Health are ranked sixth and fifth, respectively.
Prior to September 2011, 4,9 million people were covered by TRICARE. Premera
Blue Cross, Excellus BlueCross BlueShield, and There are 78.8 million goods af-
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fected by Anthem Blue Cross, respectively[7].

Medical data sets are hard to come by, though. FL solves this problem by promoting
cooperative learning without centralized data storage. The goal of federated efforts
(FL) is straightforward: by permitting ML from non-co-located data, it will be pos-
sible to address issues with privacy and data governance. Each data controller in
an FL context establishes its own governance procedures and privacy guidelines, as
well as managing data access and having the authority to revoke it. In electronic
health records (EHR) and medical imaging, FL can be used to represent and locate
patients who are clinically similar. Large-scale alliances like the Trustworthy Feder-
ated Data Analytics project are setting the bar for future norms of innovative, safe,
and safe collaboration in healthcare applications.

1.3 Research Objective

This study aims to analyze the security of the e-healthcare system using hybrid fed-
erated learning models and the pre-processing of diverse deep learning models. The
objective is to explore the security-enhancing system in e-health. In this research,
CNN and MLP models have been implemented. To train these models, a variety
of feature extraction strategies, including resNet50, VGG16, and Inception-v3 have
been used. Therefore, Machine learning classifiers are employed to improve accu-
racy and identify the optimal model. Eventually, federated learning techniques are
utilized to ensure the security of healthcare information.

The system will also use hybrid federated learning models , allowing many parties
to work together and develop a common model while maintaining local control over
their own data. The system is protected from data breaches and illegal access. The
research will also assess the effectiveness of the system and offer recommendations
for improvement. The study will ultimately provide a safe system that can efficiently
gather and categorize sensory input from medical devices while also guaranteeing
the confidentiality and privacy of the collected data.

1.4 Thesis structure

The first chapter provides an overview of the e-health care system using hybrid fed-
erated learning model and its applications in the healthcare industry, particularly for
data security. It has covered the security and privacy concerns, as well as its growing
popularity in the healthcare sector. In addition, this chapter briefly discusses the
challenges the healthcare industry faces as a result of technological advancement
and introduces the federated learning approach as a solution.

The second section of chapter 2 consists of related works and a comprehensive anal-
ysis of the context. This section describes a study that uses CNN and MLP models
to classify input images into six categories after extracting image features using pre-
trained deep learning models such as VGG, ResNet, and Inception. It also specifies
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that the healthcare dataset is classified using machine learning techniques and that
the security of patient health information is enhanced using FedAVG, FedMAX,
FedSVRG, and FedPROX.

Chapter 3 includes the methodology, data preprocessing steps, and proposed model.
Using this research methodology, data is collected, pre-processed, pre-trained mod-
els are selected for feature extraction, the dataset is divided into train and test
groups, a classification-focused CNN and MLP architecture is implemented, and
the CNN classifier is trained for image classification. Federated Learning is also
used to evaluate the model’s accuracy and prevent data transfer to increase the se-
curity of healthcare data.

In the fourth chapter, the implementation, and results of the proposed model are
discussed. This chapter focuses on analyzing the performance of various pre-trained
models by training a CNN classifier on a dataset obtained from Kaggle and pre-
processing the images. The results are presented in tables and figures that illustrate
the validation accuracy of the models for varying numbers of training epochs. A
Federated learning algorithm also improves the security of patient health informa-
tion by minimizing data transfer and model communication.

The fifth chapter concludes with a summary and outlook for the future. The study
suggested to improve patients’ data accessibility and using federated learning on a
hybrid database to improve healthcare data security. Improving model performance
relative to centralized models and addressing device heterogeneity in federated learn-
ing is, therefore, some of the limitations and future research areas.
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Chapter 2

Literature Review

2.1 Related Works

E-Health is a popular term for healthcare centered on electronic technologies and
interaction. E-Health comes up with comprehensive information about widespread
diseases and ailments, including how to treat them globally utilizing electronic com-
munication. e-health refers to the delivery of medical services via contemporary
electronic information and communication technologies when patients and medical
professionals are not in close proximity to one another and their communication is
mediated by technology. These services include, among others, telepathology, vital
sign monitoring, electronic prescription, teleconsultation, and physical and psycho-
logical diagnosis and treatment.

Studies have shown that distributed learning models (FL) are at least as accurate
as centralized learning models. Data analysis from the Internet of Health Things
devices with little resources can be done using FL. The mental condition of patients
can also be predicted using physiological and mobility data gathered by medical
IoT devices. The application of well-known distributed designs to the FL problem
is a major goal of this work. Some theories rely on using regional datasets to as-
sess the precision of regional and global models. Others look into the effectiveness
of homomorphic encryption to safeguard learning models on FL used in healthcare
applications. Studies that aim to demonstrate the secrecy of data and ML models
rely on integrating homomorphic encryption with additional methods. The review
of the literature indicates that in order to protect federated learning architectures
against potential assaults, FL needs to be extensively developed. In the literature,
there was more attention than usual on outcome prediction in particular[12].

A model that has gained favor recently is federated learning. It enables maintaining
the data in local institutions while training a common global model with a central
server. The authors describe the federated learning setup, discuss common issues
and solutions, and consider potential uses in the medical field. Multitask learning
(MTL) is a logical method for handling data from several distributions. In compar-
ison to AFL, q-Fair Federated Learning gives underperforming devices more weight.
The generalizability of results is constrained by systemic and random biases that
are present across hospitals and generally. Since healthcare data is extremely sensi-
tive and its use is strictly controlled, data exchange in this industry is uncommon.
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Without actually sharing the data, federated learning makes an effort to address
the problems with data governance and privacy. A workable instrument for data-
driven medicine is the federated modeled approach (FL), which has the potential
to provide precision medicine on a wide scale. If FL is successfully implemented,
judgments could be made that respect privacy concerns and take into account rare
conditions. Despite the fact that ML and DL are rapidly being utilized as the norm
for knowledge discovery across a variety of industries, the successful implementation
of data-driven applications calls for a significant and diverse dataset[2].

The Mobile Healthcare Monitoring Network (MHMN), which allows users to track
their health and receive pre-diagnoses online, is also discussed. MHMN can moni-
tor a patient’s health in real-time without disrupting their daily activities. On the
other hand, health professionals are worried about the security of private informa-
tion. Sensors capture personal data from patients every second and send it to the
cloud server as MHMN multi-dimensional vectors. When real-time data is incorrect,
the cloud server saves personal information and sends monitoring data to the hospi-
tal. Researchers showed how to swiftly obtain MHMN’s desired characteristics while
ensuring data privacy. They compared their results to recent advancements in pre-
diagnosis online privacy-preserving technology and PHR search outsourcing. Recent
studies have not shown how effectively textual multi-keyword ranked searches and
digital vector range queries can coexist. CS may offer HU textual multi-keyword
ranked search services as well as range searches that protect privacy. In order to di-
agnose illnesses without jeopardizing PU’s privacy, HU might train classifiers using
a sizable medical dataset that is maintained in CS[20].

A secure network for exchanging medical data can be developed with the help of
blockchain technology. An investigation revealed that there have been more med-
ical records leaked annually. Privacy standards require that data be handled, dis-
tributed, and stored in a safe and private way. It has long been challenging to share
medical data while yet adhering to security and privacy regulations. Many alterna-
tive strategies may be required for a practical approach to medical data exchange.
Blockchain provides advantages over previous computer paradigms as a new com-
puting paradigm. It is critical to select the appropriate blockchain type (permission
or permissionless)[13].

The Internet of Things (IoT) is a network of billions of physical items that connect
to the internet and perform tasks mostly independently of people. IoT networks
become an open source of personally identifiable information when routine tasks are
cleverly automated, making it possible for malicious attackers to steal, change, and
utilize this data for their own bad ends. Machine learning (ML) assisted techniques
have recently attracted a lot of attention in the area of IoT security. In much re-
cent research, it is assumed that enormous training data is widely accessible and
transferable to the main server since data is continuously produced by IoT devices
at the edge. This means that because it depends on the legacy set of all data that
is kept on a single server, classic ML is the least preferable option for domains with
privacy concerns over user data. We propose a method to address this issue by
proactively detecting infiltration in IoT networks using decentralized on-device data
in a federated learning (FL)-based anomaly detection strategy. Our method em-
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ploys federated training cycles on gated recurrent unit models and only distributes
the learned weights to the FL’s main server, allowing the data to remain on lo-
cal IoT devices. Additionally, to improve the accuracy of the overall ML model,
this part of the approach mixes updates from many sources. Our testing results
demonstrate that our approach provides the best accuracy rate for attack detection
and protects user data privacy better than traditional/centralized machine learning
(non-FL) versions[6].

Due to the growing concerns about sharing personal data and the growing process-
ing capability of wireless end-user equipment (UE), a new machine learning (ML)
paradigm known as federated learning (FL) has emerged. In particular, FL enables
the decoupling of data provision to UEs and ML model aggregation at a central
unit. By creating the model locally, FL is able to stop direct data leakage from the
UEs, thus preserving some level of security and privacy. Additionally, some recently
discovered attacks against the FL architecture can still obtain a person’s private in-
formation even if raw data are not disclosed via UEs. In this paper, the privacy and
security issues in FL are discussed, along with the challenges of securing privacy and
security when developing FL systems. In-depth simulation data is also represented
in order to illustrate the difficulties and solutions that have been raised[32].

It is found that PCML, which has been proposed in various studies, is a new
skyline- based collaborative model learning technique that protects user privacy.
Each healthcare center’s sensitive medical data is adequately protected since PCML
can be used to learn a global diagnosis model while maintaining the security of
its local diagnosis models. Online medical diagnostics is versatile and practical
since it elim- inates geographical restrictions and reduces the amount of time spent
waiting to see a doctor. Data mining methods have recently been created for the e-
healthcare system. There are still difficulties with the collaborative learning model
used by many healthcare facilities. Numerous privacy-preserving techniques, in-
cluding ho- momorphic encryption and anonymity algorithms, have been created to
achieve data security. The majority of them require significant computing resources
due to their huge, sophisticated mathematical operations. Many healthcare organi-
zations can utilize PCML to learn a more precise global diagnosis model using their
local diagnosis models[14].

A promising method for creating precise and reliable statistical models from the
vast amounts of medical data that are gathered by contemporary healthcare sys-
tems is data-driven machine learning (ML). Due to data silos and access restrictions
brought on by privacy concerns, existing medical data is not completely utilized by
machine learning (ML). But without adequate data, ML won’t be able to realize
its full potential and finally go from the realm of academic study to the realm of
clinical application. This essay examines the main causes of this problem, evaluates
how federated learning (FL) can offer a remedy for the future of digital health, and
emphasizes the difficulties and issues that need to be taken into account[23].

Numerous studies highlight the potential of deep learning in discovering complicated
patterns that can result in biomarkers for diagnosis and prognosis. It can be diffi-
cult and infrequently discovered in particular institutions to locate sufficiently vast
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and diverse datasets, which are needed for training. Privacy and ownership issues
arise in multi-institutional collaborations based on centralized patient data sharing.
By spreading the model-training to the data-owners and aggregating their outputs,
federated learning is a revolutionary paradigm for data-private multi-institutional
cooperation that makes use of all accessible data without sharing data between insti-
tutions. That assess generalizability using data from non-federated institutions. For
further examine how data distribution among cooperating institutions affects model
quality and learning patterns, indicating that greater access to data through multi-
institutional collaborations that are data private can improve model quality more
than the errors that the collaborative approach introduces. Finally, it compares
federated learning to various collaborative learning strategies to show its superior-
ity and talk about real-world implementation issues. The use of federated learning
in clinical settings is anticipated to result in models being trained on datasets of
unprecedented size, which will accelerate the development of precision/personalized
medicine[15].

Since data is born at the edge and continuously produced by IoT devices, huge data
containing personal Identifiable Information is available and transferable to main
server. This is where Machine Learning steps in. Since, it works on the legacy set
of entire data it is not preferred for domains with privacy concerns on user data. In
this paper the authors propose that Federated Learning based anomaly direction ap-
proach to proactively recognize tresspassers in IoT networks using decentralized on
device data. This is as federated training rounds on Gated recurrent Units models
and keeps the data intact on local IoT devices by sharing only the learned weights
with the central server of the FL. At the same time, approach’s ensembles part ag-
gregates the update from multiple sources to optimize the global Machine Learning
models accuracy[33].

Large-scale machine learning challenges require computationally effective and privacy-
aware solutions in the era of ”big data,” especially in the healthcare industry where
vast amounts of data are housed across several sites and are the property of various
parties. Previous studies have concentrated on centralized algorithms, which presup-
pose the existence of a central data repository (database) that can store and process
data from all users. A single point of failure risk introduced by such an architecture
can jeopardize the security and privacy of the data and make it impracticable when
data are not centralized. In addition, it does not scale well to very large datasets.
A decentralized computationally scalable methodology is desperately needed due to
the vast amounts of data that are dispersed between hospitals and individuals[8].

Deep learning has led to numerous successful smart healthcare applications that use
data to improve clinical institutions’ treatment. Data-driven deep learning mod-
els work well. More data taught makes the deep learning model more robust and
generalizable. To develop a viable deep learning model, The authors explain that
medical data must be centralized. Privacy, ownership, and tight regulation issues
arise. Federated learning handles the problems with a global deep learning model
and a central aggregator server. The local party secures and anonymizes patient
data. First, the author review federated learning in healthcare research. Second,
They assess new federated learning difficulties from a data-centric perspective, in-
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cluding data partitioning features, data distributions, data protection measures, and
benchmark datasets. Furthermore, authors discuss healthcare application issues and
future research[36].

In the article, the problems with and solutions for communication latency and cost
in federated learning are examined. In order to reduce the number of iterations be-
tween participants and the server while maintaining accuracy, the authors suggest
a Federated Stochastic Variance Reduced Gradient technique. When compared to
conventional stochastic gradient descent-based Federated Learning, the suggested
method can significantly lower the communication cost, according to simulation re-
sults on issues involving linear and logistic regression[30].

Brain images of numbers that were previously inconceivable are currently present
in databanks all across the world. These enormous amounts of data have the po-
tential to help us understand the genetic roots of brain illnesses when combined
with advances in data science. The entire potential of big data for the study of
brain illnesses is, however, constrained by privacy and regulatory issues that pre-
vent the direct sharing of various datasets that are kept at various institutions.
Here, it is suggested using a federated learning architecture for anonymously ac-
cessing and meta-analyzing any biomedical data. By examining brain structural
correlations across illnesses and clinical cohorts, which demonstrate the theory. The
framework is initially put to the test on fictitious data before being used in multi-
centric, multi-database studies including ADNI, PPMI, MIRIAD, and UK Biobank.
This demonstrates the framework’s potential for future use in distributed analysis
of multi-centric cohorts[11].
The authors use iterative model averaging to implement federated deep network
learning and evaluate five model architectures and four datasets[5]. These studies
show the technique is resistant to the imbalanced and non-IID data distributions
that define this scenario. They reduce communication rounds by 10-100x compared
to synchronized stochastic gradient descent, which is the main restriction.
Federated Learning (FL) over the Internet of Medical Things (IoMT) devices is now
an area of research that is getting a lot of attention. In this paper, the authors
propose FEDMSQE – Federated Learning with Minimum Square Quantization Er-
ror, which gets the smallest quantization error for each client in the FL setting[39].
This is done to answer the questions above. They demonstrate that the proposed
algorithm is more accurate and has less quantization error than other quantization
methods by running numerical tests in both single-node and FL scenarios.
Federated learning is a new machine learning technique that enables collaboration
among all participants while maintaining data privacy in order to train a global
optimal machine learning model[35]. Federated learning is viewed as a solution to
the data privacy issue while still allowing the combining of similar or related data
from various sites all over the world by allowing the sharing of machine learning
models rather than raw data. This article offers a thorough explanation of the idea
of federated learning and how it can be used with private healthcare datasets.
The research shows that every local hospital in a collaborative training system can
add concealed backdoor functionality to the global model. For clean inputs, the
backdoored joint global model behaves properly, but for predetermined triggers, it
produces an adversary-expected outcome. FL’s decentralized nature makes detect-
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ing backdoor assaults difficult. The authors offer a real-time FL backdoor detection
technique using a coalitional game and Shapley value[38]. Extensive trials on two
machine learning tasks show that our methods are accurate and robust to multi-
attackers.
This research proposes a novel master-key management technique to manage keys
and improve healthcare information security, and the multi-key server approach
balances key server load for fast access to electronic health records. The authors
build a novel large-scale e-healthcare group key management system architecture to
give secure and reliable assistance to healthcare firms and service providers[21]. The
researchers tested in a group of healthcare users joining and leaving dynamically and
validated by applying it to virtual servers, showing that rekeying overhead, risks,
and computing costs of the healthcare network system are minimized compared to
existing approaches.
In e-healthcare systems where sensitive patient data is outsourced to data centers,
the article offers a potential strategy for securely and confidentially querying clinical
paths. A variety of sub-protocols are used in the scheme to secure system privacy,
and a greedy algorithm and [27] Min-Heap technology are used to increase efficiency.
The experimental findings demonstrate how effective and useful the proposed ap-
proach is for clinical pathway inquiries.
This study examines how Jordanian e-health systems improve medical staff perfor-
mance, patient care, and physician-patient interactions. The authors analyze a single
integrated technology acceptance model. This study employed logical research. 212
medical staff from 19 Jordanian hospitals provided data. A partly square/structural
equation modeling method was used to examine data and test study hypotheses[28].
The researchers examine HIPAA’s medical record privacy and security provisions[3].
HIPAA regulates PHI and its security. A health data entity must observe privacy
regulations to protect patients’ confidential medical information. The HIPAA secu-
rity regulation requires physical, technical, and administrative precautions to pre-
serve PHI privacy. This article reviews HIPAA’s history, rules, ramifications, and
imaging professionals’ roles.
Researchers use a privacy-preserving method to classify multi-site fMRI. They of-
fer federated learning using a decentralized iterative optimization method and a
randomization mechanism to change shared local model weights[19]. This feder-
ated learning framework proposes two domain adaptation approaches to account
for site-specific fMRI distributions. They study federated model optimization and
compare it to other training methods. Their findings suggest that multi-site data
without data sharing can improve neuroimage processing and identify disease-related
biomarkers.
Authors suggest big data, federated learning systems, particularly biological ones,
are reviewed in this survey[43]. Specifically, they describe the broad answers to fed-
erated learning’s statistical, system, and privacy difficulties and discuss healthcare
implications.
The researchers explore query inconsistencies, knowledge base gaps, and user do-
main information sets that impede progress in this subject. From diagnostic heart
failure to 1-D cardiovascular beatings and automated detection employing multi-
dimensional clinical data, machine learning and artificial intelligence have rapidly
advanced medical applications. Thus, clever decision-support frameworks help doc-
tors make better treatment judgments. An interesting option is to harness expand-
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ing healthcare digitization that produces huge amounts of clinical data in e-HCR
and mixes it with advanced ML algorithms to improve clinical decision-making and
expand the drug evidence base. The authors examined innovative methods and
real-life medical technologies, focusing on e-HCR patient portrayals[24].
The machine learning technique for heart disease diagnosis proposed in this paper
is effective and precise. In the system, classification techniques include Support
Vector Machine (SVM), Logistic Regression[18], Artificial Neural Network (ANN),
K-Nearest Neighbor (K-NN), Naive Bays, and Decision Tree. Feature selection
algorithms including Relief, Minimal Redundancy Maximal Relevance (MRMR),
Least Absolute Shrinkage Selection Operator (LASSO), and Local Learning increase
classification accuracy and reduce execution time. The suggested feature selection
algorithm (FCMIM) with SVM classifier performed well on the Cleveland heart
disease dataset.
In order to safeguard patients’ privacy, the article [16] suggests a quick and secure
image encryption solution. It makes use of a block symmetric encryption algorithm
based on confusion and diffusion operations as well as a new random number gen-
eration approach based on two chaotic maps. The proposed encryption system has
been put to the test and has been found to be more efficient and secure than the
methods currently in use. It also protects the privacy of keyframes’ medical infor-
mation while using less energy, communication bandwidth, and specialist analysis
time during the WCE procedure.
The use of machine learning and deep learning techniques in healthcare applications
is discussed in this paper [22], along with the security and privacy issues that come
with it. As well as emphasizing the necessity to address privacy and security concerns
to allow a secure and reliable implementation of these models in clinical settings, it
draws attention to how these techniques have the potential to alter the delivery of
healthcare services. The report also identifies open research issues that need further
study and discusses potential solutions to deliver secure and privacy-preserving ML.
The most recent platforms, protocols, and network topologies that are being used
in IoT-based healthcare systems [29] are all covered in this paper’s overview of
the state-of-the-art technologies and techniques employed in these systems. It also
offers a thorough examination of the security and privacy issues that occur in these
systems and suggests a security architectural model based on blockchain address
them. The study also addresses IoT market prospects in healthcare and identifies
areas for further investigation.

2.2 Background study

For feature extraction, a number of pre-trained models are available, including VGG,
ResNet, Inception, and DenseNet. Although VGG16, ResNet50, and InceptionV3
have been studied in this research. While extracting features from input photos,
these well-liked pre-trained deep-learning models are used. The CNN and MLP
models were then put up to categorize the images into six categories: AbdomenCT,
HeadCT, BreastMRI, ChestCT, Hand, and CXR. To further classify a healthcare
dataset and apply FedAVG, FedMAX, FedSVRG, and FedPROX to enhance the
security of patient health information, several machine learning algorithms, includ-
ing stochastic gradient descent (SGD), random forest, logistic regression, and SVM,
have also been used.
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2.2.1 CNN

The convolution neural network (CNN) model was frequently used in the process of
medical diagnosis. Since CNN is a great feature extractor, using it to identify medi-
cal images can minimize costly and time-consuming feature extraction. Three layers
make up CNN: convolutional, pooling, and fully linked layers. The pooling layer is
the next significant layer in the CNN structure. Pooling layers come in two varieties:
max pooling and average pooling. This layer is primarily used to decrease the num-
ber of variables because fewer parameters make the learning process of the model
easier. The fully connected layer of CNN operates as its final layer and is mostly
utilized to categorize features based on the findings of the layers that came before
it. Generally, the Softmax function is applied in this layer as an activation function.
It employs a grid layout to examine the data in accordance with the categorization
of neural networks. Most computations are handled by CNN’s convolution layer,
which is its base layer.

Additionally, the most often used techniques for classifying photos are SVM and
ANN classifiers. These methods produce results with high levels of classification per-
formance as well as accuracy, responsiveness, and sensitivity. A back-propagation
technique with arbitrary weights W is used to train CNNs by minimizing the cost
function based on the multilayer perceptron.

For 2D image H and 2D Filter (Kernel) F

1. Convolution operation:

G = H ∗ F (2.1)

G[i, j] =
k∑

u=−k

k∑
u=−k

H[u, v]F [i− u, j − v] (2.2)

2. Correlation Operation:

G = H ⊘ F (2.3)

G[i, j] =
k∑

u=−k

k∑
u=−k

H[u, v]F [i+ u, j + v] (2.4)

According to the convolution formula 2.1, the input image H and filter F are con-
volved to produce the output image G. The formula adds the products of each
corresponding pair of pixels from the input picture H and the filter F for each pixel
I j) in the output image G. The area of the filter F and the equivalent area of the
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input picture H are combined in the sum 2.2. The positions of the matching pixels
being multiplied in the input image H are shown by the indices u and v.

Based on the correlation formula 2.3, the output picture G is created by comparing
the filter F with the input image H. The formula adds the products of each corre-
sponding pair of pixels from the input picture H and the filter F for each pixel (i,j)
in the output image G. The area of the filter F and the equivalent area of the input
picture H are combined in the sum . The positions of the matching pixels being
multiplied in the input image H are shown by the indices u and v. The indices u
and v in this formula 2.4, however, are inverted, shifting the filter F by (u, v) in the
opposite direction of the input picture H.

It is part of a category of ANNs that can recognize patterns and categorize images
in keeping with all those patterns. An input layer, numerous hidden layers that
may include convolutional layers and non-convolutional layers, and an output layer
form the fundamental components of CNN’s design. The images are analyzed and
patterns are predominantly found using the hidden layers. The shared weight theory
supports CNN’s procedures. Every layer’s neurons have a weight and a threshold
value, and they are linked to other neurons with the same weight. A neuron is
stimulated when its output exceeds the threshold, and its output is then transmitted
to the network’s next layer.

Figure 2.1: CNN Architecture

The most important layer of CNN, where the majority of the calculation takes place,
is the convolutional layer. During the transformation of the input using some filters
or kernels, this layer transmits the modified input to the subsequent layer. The
convolution operation is the term for this input transformation technique. In order
to recognize the patterns in the images 2.1 or data, we need to provide the amount
and size of the kernels that will be employed during convolution. These kernels filter
the input by iteratively traversing through the input data with the selected stride. A
feature map is generated following the completion of the filtering procedure. ReLU
functions are widely used as the activation function in this layer. The feature map
is reactivated by the ReLU activation function, which zeroes out all negative values.
The neuron’s input must be higher than the threshold value for it to activate. As
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a result of this, a neuron produces zero as its output when its input is less than
zero. The function demonstrates a linear relationship with the dependent variable
as illustrated in the following figure when the input exceeds the threshold value.

2.2.2 MLP

A feed-forward multilayer perceptron, the MLP consists of at least one input layer,
one or more hidden layers, and an output layer, each of which executes a unique set
of operations. Numerous neurons have an activation function for each hidden and
output layer. Complex non-linear correlations between input and output factors,
such as the activation function, hidden layers, and the number of neurons in each
layer, can be modeled using artificial neural architecture.

Forward Propagation in MLP

Z
(h)
1 = a

(in)
0 w

(h)
0,1 + a

(in)
1 w

(h)
1,1 + ...+ a(in)m w

(h)
m,1 (2.5)

a
(h)
1 = ϕ(Z

(h)
1 ) (2.6)

.
The equation 2.5 describes forward propagation in a multilayer perceptron (MLP).
The weighted sum of the inputs, denoted by h, and the corresponding weights,
denoted by w, are computed using this equation. The outcome of activating the z
value is the activation unit 2.6. As the activation function 2.7, the sigmoid (logistic)
function is frequently used. Using the inputs and weights as inputs, this equation
determines the likelihood of the output.

ϕ(Z) =
1

1 + e−z
(2.7)

Feature extraction and identification using MLP

The most effective internal representation of the input signal for the classification
task is created by MLP. From this perspective, the MLP executes some sort of fea-
ture extraction that is provided by the hidden units’ activity levels. The majority of
MLP feature extraction architectures have fewer units on the hidden layer than on
the input layer. As a result, the hidden layer achieves some kind of dimensionality
reduction by acting as a narrow-band channel. Again, assuming the MLP’s learn-
ing process is successful, one can anticipate that this reduction extracts the signal’s
most prominent features.[1]
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Figure 2.2: Schematic diagram of MLP

2.2.3 Feature Extraction

Inception-ResNet-v2

The ImageNet database, a collection of more than a million photos, was used to cre-
ate the convolutional neural network known as Inception-ResNet-v2. A keyboard,
mouse, pencil, and several more creatures are among the 1000 different object cat-
egories that the 164-layer deep network can classify images into. As a result, the
network has gathered thorough feature representations for a variety of photos. Im-
ages with a resolution of 299 by 299 are accepted by the network.

Pre-trained Deep Neural Networks in MATLAB include additional pre-trained net-
works. The Inception-ResNet-v2 network 2.3 can be used to classify and categorize
fresh pictures. Replace GoogLeNet with Inception-ResNet-v2 and then proceed as
directed in Classify Image Using GoogLeNet. When utilizing the Train Deep Learn-
ing Network to Classify New Images technique to retrain the network for a new
classification job, Inception-ResNet-v2 should be loaded in place of GoogLeNet.
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Figure 2.3: Structure of an Inception ResnetV2 layer

ResNet-50

Convolutional neural network ResNet-50 has 50 layers overall. Users can load a pre-
trained version of the network from the ImageNet database that has been trained
on more than a million images. The trained network can classify images into 1000
different object categories, which include a variety of animals, a mouse, a keyboard,
and a pencil. As a result, for many different photos, the network has gathered rich
feature representations. The network will accept photos with a resolution of 224
by 224. See Pre-trained Deep Neural Networks for other pre-trained networks in
MATLAB.

The ResNet-50 model 2.4 can be used to classify fresh photos. Replace GoogLeNet
with ResNet-50 and then proceed as directed in Classify Image Using GoogLeNet.
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Figure 2.4: ResNet-50 Model Architecture

VGG16

The VGG16 architecture of a convolution neural network (CNN) 2.5 was used to
win the ILSVR (Imagenet) competition. One of the greatest visual field model
architectures available today, according to several experts. The most notable feature
of VGG16 is that, rather than emphasizing the usage of a large number of hyper-
parameters, they focused on having convolution layers of 3x3 filter with a stride 1
and consistently employing the same padding and max pool layer of 2x2 filter with
a stride 2.
Convolution and max pool layers are placed in this manner throughout the system.
It has two fully connected layers (FC) in the end, and a softmax is used for output.
The 16 in VGG16 indicates that there are 16 weighted layers.

Figure 2.5: VGG16 Model Architecture

Inception-v3

Neural network using convolutions To help with object classification and picture
analysis, Inception v3 2.6 was created as a Googlenet plugin. This iteration of
the Google Inception Convolutional Neural Network is the third since it was first
introduced for the ImageNet Recognition challenge. Deeper networks can be sup-
ported by Inceptionv3 while keeping parameter number expansion to a minimum.
Compared to 60 million for AlexNet, it has “under 25 million parameters.”
Similar to how ImageNet may be thought of as a database of classed visual objects,
Inception aids in the classification of items in the field of computer vision. The
Inceptionv3 architecture has been used by many applications, and it is regularly
combined with ImageNet’s “pre-trained” data. It has applications in the life sci-
ences, such as leukemia research.
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Figure 2.6: InceptionV3 Model

2.2.4 Machine Learning classifiers

Random forest

Random Forest consists primarily of a large number of independent decision trees.
The random forest method 2.7 is a better version than an ordinary decision tree be-
cause there is a high chance of getting a high variance result. As an ordinary decision
tree algorithm is quite sensitive to training data it may not succeed in generalizing.
On the other hand, training data is less sensitive in the Random Forest Algorithm
because this algorithm provides uncorrelated results so the chance of getting a more
accurate response increases.

As this algorithm comprises a significant number of distinct decision trees, subsam-
ples of the initial training data are generated using the bootstrapping procedure,
and then new decision trees are generated using these subsamples. From each of
the decision trees, a random subset of the features is selected while completing the
training. Finally, for better accuracy, the average of all the results of these decision
trees will be computed and this is known as aggregation. Bootstrap ensures that the
same data is not used more than once which makes the model to be less sensitive
to the main origin data and this random selection feature reduces the correlation
between the decision trees which will cause less variance between the trees. Even
though the algorithm requires more processing time than standard decision trees,
the model still guarantees model diversification.
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Figure 2.7: Random forest classifier Tree

Logistic Regression

Logistic Regression is an algorithm for machine learning that is a predictive ana-
lytic model based on the concept of probability. This algorithm is used to solve
classification problems in order to distinguish between classes. In the logistic regres-
sion procedure, there are three class categories. These are binary, multi-class, and
ordinal classes. Here, binary classification is the simplest example, with the only
possible values being Yes and No or True and False. Logistic regression is used to
employ a categorical variable as a dependent variable. To classify whether a condi-
tion is infectious or not, for instance, the logistic regression approach is superior to
linear regression because it provides more accurate results for categorical variables.
Finding the likelihood that a variable will occur is the goal of the logistic regression
technique. There is no space for error because the range of the predicted values is
restricted to 0 to 1. Using the Sigmoid Function, which converts a real number to a
number between 0 and 1, it is possible to accomplish the objective. This function’s
formula is 2.8:

f(x) =
1

1 + e−(x)
(2.8)

This dependent value, f(x), will range between 0 and 1 and is between 0 and 1. As
well as the independent variable x is the input variable. This function transforms an
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independent variable into a probability expression between 0 and 1 with regard to
the dependent variable. The following diagram 2.8 illustrates the sigmoid function:

Figure 2.8: logistic regression plot
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Chapter 3

Methodolgy

3.1 Research Approach

This research methodology 3.1 involves collecting data, pre-processing it (including
negative image, data augmentation, rescaling and resizing, and encoding), selecting
pre-trained models for feature extraction (ResNet-50, VGG16, and Inception-v3),
splitting the dataset into train-test groups, constructing a classification-focused CNN
and MLP architecture, training the CNN classifier with the extracted features, and
classifying AbdomenCT, headCT, BreastMRI, ChestCT, Hand, and CXR using the
CNN classifier to analyze accuracy. Furthermore, federated learning is implemented
to interpret the model’s prediction and make healthcare data more secure by avoiding
data transfer and transmitting models. Finally, SVM, Logistic Regression, and
Random Forest classification are applied to analyze the performance of the CNN
model and compare it to other pre-trained models as feature extractors on our new
hybrid dataset.

Figure 3.1: Methodology Model
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3.2 Data Pre-processing

3.2.1 Dataset

A composite dataset of colored images that was compiled from several sources,
including Medical MNIST, was used in this study’s training of the models.[17] 10,000
of them are associated with the HeadCT, 10,000 are involved with the AbdomenCT,
8954 are related with the BreastMRI, 10,000 are linked with the ChestCT, 10,000
belong to the Hand, and the rest of the 10,000 images belong to CXR.

Figure 3.2: Representation of dataset1

A further dataset from “UCI” called MEDICAL DIAGNOSIS DATA [41] is used in
this study. This information includes the patient’s body temperature, any obvious
symptoms of nausea, back pain, pushing during urination, burning or itching in the
urethra, swelling at the urethra outlet, bladder inflammation, and nephritis with
renal pelvic origin. The patient’s temperature fluctuates a lot, between 35 and 42
degrees Celsius. The remaining information consists of only yes and no. 3.3

Figure 3.3: Representation of dataset2
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3.2.2 Dataset Collection

This image 3.4 is a representation of the Medical MNIST dataset.[17] These photos
are discovered after being categorized into 6 classes using CNN and MLP models.
Rgb data from the gathered data are displayed in the first image.

Figure 3.4: Dataset Collection

The second image 3.5 shows a situation that is fairly similar to the first. However,
as it lacks a RGB value, the image is displayed in black and white.

Figure 3.5: Dataset Collection

3.2.3 Rescale And Resize

The image pixel values have also been rescaled between 0 and 1 to standardize the
data prior to feature extraction. Generally, an image’s pixel values range from 0
to 255. Supervised learning is not suited to this wider range of pixels because it
causes destabilization in the neural network and makes it challenging for the model
to handle such enormous numbers. Therefore, the pixels must be rescaled before
being given into the model for the best outcome. In order to resize the pifxels, they
have been split by 255.
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The hybrid dataset utilized in this experiment was generated from a collection of
images of multiple lengths. The input images in this study work have been scaled
in line with the specified size of the input of the pre-trained techniques. Since these
have been employed for feature extraction. Prior to being input into the summa-
rizes for the VGG16 and ResNet50V2 models, all of the photos were downsized to
224x224 pixels; however, for the InceptionV3 and InceptionRes-NetV2 models, this
was adjusted to 150x150 pixels and 299x299 pixels, correspondingly.
The processing of high-definition images can be lengthy and complicated, which is
an additional factor why the images were reduced in size before being inputted.

3.2.4 Encoding

Data transformation into a structure that can be used by most technologies or by any
independent process is the primary objective of encoding. It is inadequate for data
security because encoding is done using a variety of publicly accessible techniques.
In this hybrid dataset, there are six distinct classifications of images, thus the image
labels have only performed one hot encoding. To do this, the feature extraction
procedure’ class mechanism was changed to ”categorical”, resulting in a 2D NumPy
array with one hot-encoded description.

3.2.5 Data Augmentation

The process of artificially generating additional data from training examples al-
ready present is defined as data augmentation. Resizing, inverting, zooming and
scaling, clipping, padding, and other approaches are among them. This optimizes
the model’s performance by making it more resilient while developing solutions like
overfitting and data limitation.

3.3 Federated Learning

The idea of federated learning has just been offered by internet giant Google.
Google’s main objective is to create machine learning models using datasets dis-
tributed across many devices while preventing data theft. So, The approach is based
on how it can establish data security for e-health records using federated learning
which is focused on the “FedAvg” Federated averaging technique.
The earliest basic Federated learning algorithm (equation 3.1 and 3.2) invented by
Google for Federated learning challenges is called FedAvg. Till now, a series of
FedAvg algorithms have been designed, notably “FedProx,” “FedMax,” “FedOpt,”
and some others, to handle several issues with Federated learning. FedAvg seeks to
maximize the objective of the global model, which is simply the weighted average
of the loss of the regional device combined cumulatively for each round.

f(w) =
k∑

k=1

ηk

η
Fk(w) (3.1)
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where,

F (k) =
1

ηk

∑
iεPk

fi(w) (3.2)

A strategy involving the collection of the data set, the training of the FedAvg,
FedMax, and FedSVRG models, and the evaluation of their accuracy is suggested.
In order to evaluate the model accurately, the dataset was split into training and
test sets. To remain devoted to the original study, it has been decided to adhere to
the predetermined training and administer the tests in accordance with the methods
outlined in the study. The obtained dataset was split around 8:2 for the train and
test set for the training, testing, and extraction in order to run the models on them
and obtain the required results.

3.4 Proposed Model

Federated learning is now a well-liked and secure algorithm. After CNN and MLP
models have been used to train datasets, FL is used to aggregate, analyze, and
improve data accuracy. Federated learning allows several IoT devices to learn a
model concurrently without exchanging data. In this study, a federated learning
algorithm was utilized to improve data security. On this dataset, the FedAVG,
FedMAX, and FedSVRG methods have been applied. This will compare models to
decide which algorithm provides the highest level of security. In this situation, the
cloud model, which serves as the central model, is utilized. Each user is provided
with a model from the cloud model. These models utilize user data to generate a
new user model. New user models have improved the precision of data analysis.
Eventually, updated user models broadcast back to the cloud to update the central
model. Since no data is transferred, federated learning is more effective and secure
than other algorithms.

Figure 3.6: Federated Learning (FL) model.
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The suggested model 3.6 is structured around the five essential steps listed below:

1. A randomly chosen sample of customers or devices is gathered.

2. Also every user gets broadcasting of the server’s developed model.

3. Stochastic Gradient Descent (SGD) is applied in parallel by the clients to
their own loss functions, and the resulting model is then sent to the server for
aggregation.

4. The server eventually averages those local models to update the machine learn-
ing model.

5. After that, the method 3.7 is repeated for n consecutive transmission cycles.

Figure 3.7: Working Mechanism of FL

3.4.1 Stochastic Gradient Descent

The stochastic gradient descent algorithm is employed to determine the minimum
of a function. It is an iterative approach in which the gradient of the function is ap-
proximated with a randomized data point at each step. The method then proceeds
in the direction of the gradient to identify the function’s minimum.

A process or system associated with a random probability is termed stochastic. Only
a few samples, rather than the complete data set, are randomly picked for each it-
eration of stochastic gradient descent. A dataset’s sample count used to calculate
the gradient for each iteration of the Gradient Descent algorithm is referred to as
a “batch.” The batch in traditional Gradient Descent optimization methods, like
Batch Gradient Descent, represents the complete dataset. Even while using the
complete dataset makes it easier to find minima in a less noisy and random fashion,
the issue arises when the dataset is too big.

Each iteration of Gradient Descent will require the utilization of all samples if users
employ a traditional Gradient Descent optimization technique and your dataset has
one million samples. Until the minimum quantity is obtained, this process must be
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repeated. As a result, doing so is extremely computationally expensive. A single
sample, or batch size of 1, is used for each SGD iteration. The sample is chosen and
rearranged at random to complete the loop.
Batch Gradient Descent follows the route 3.8 indicated below:

Figure 3.8: Stochastic Gradient Descent has gone down a certain route.

3.4.2 SGD Algorithm

An approach of algorithm 1 to clustering a set of data points into k groups is the k-
means algorithm. The process begins by randomly choosing k centroids, after which
it allocates each data point to the cluster that contains the closest centroid. The
system next calculates the average of the data points in each cluster and changes
the centroid position to this average. Repeating this cycle will stop the centroids
from shifting. The distance between data points and the cluster center must be kept
to a minimum.

Algorithm 1 Simplified Density-Based Clustering Algorithm (SDG)

A set of data points A set of fitted parameters Randomly select k centroids

for each data point do Calculate the distance to the nearest centroid Assign the
data point to the centroid with the smallest distance

for each centroid do Calculate the mean of the assigned data points Update the
centroid with the calculated mean

if centroids remain unchanged then Stop

else Go back to step 1

3.4.3 FedAVG

The algorithm 2 FedAVG, often referred to as Federated Averaging, creates the
aggregated model by taking the weighted average of all model updates.[37] A com-
munication efficient approach for distributed training with a sizable client base is
federated averaging (FedAvg). Device A, for instance, sends model A with the value
0.6 to the server. For example, device B transmits model B to the server with a
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value of 0.1. Device C transmits model C to the server with a value of 0.2. The
server calculates these three numbers as follows: (0.6 + 0.1 + 0.2)/3 = 0.3
The server provides A, B, and C. An aggregated model with the value of 0.3.

The Federated Averaging technique combines them together to provide a more pre-
cise model. This concept comes from Google’s “productionisable” feature. In the
subject of Federated Learning, this algorithm is crucial.

Algorithm 2 Federated Averaging

1: Initialize ω0

2: for each round t = 1, 2, . . . do
3: m← max(C.K, 1)
4: St ← (random set of m clients)
5: for each client k ∈ St in parallel do
6: ωk,t+1 ← ClientUpdate(k, ωt)
7: end for

8: ωt+1 ←
K∑
k=1

ηkηωk,t+1

9: end for=0

3.4.4 FedMAX

FedMAX is one of the conventional algorithm in federated learning.[26] This algo-
rithm 3 can handle dispersed non-identical data. It is particularly effective at com-
municating data since it uses weights in its operation. Learning models require a
variety of data produced by IoT devices in order to create smarter apps. A promising
privacy-preserving learning technique that separates model training from the need
for access to personal data is federated learning. FedMAX is a highly reliable and
effective distributed federated learning technology to address these problems.

Algorithm 3 FedMax Algorithm

1: Input: Local datasets D1, . . . , Dn

2: for i← 1, . . . , n do
3: Randomly sample Di to obtain D′

i

4: Calculate a local model Mi on D′
i

5: end for
6: Output: Global model M
7: Calculate a global model M on {D′

1, . . . , D
′
n}

3.4.5 FedSVRG

FedSVRG Based Federated Learning in MEC Networks Communication is an Ef-
ficient Scheme. This algorithm 4 reduces the cost of user-MEC server communi-
cation.[37] FedSVRG provides greater precision and converges more quickly, which
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translates to less communication expense. In FedSVRG, there are two iteration
loops. Convergence rates will be increased by using the average gradient rather
than updating it each time during the inner loop rounds for a predetermined num-
ber of iterations. As a result, the number of iterations between the participants and
the MEC server may be significantly reduced.

Algorithm 4 Federated Stochastic Variance Reduced Gradient (FedSVRG)

Require: K - number of global rounds
N - number of clients
M - number of local rounds
θ0 - initial global parameters
Di - local dataset of client i

for k = 1, . . . , K do
Calculate ∇favg(θk) by averaging gradients from each client
for i = 1, . . . , N do

Client i computes θik ← θk − 1
M

∑M
t=1∇fi(θik −

1
M

∑M
t=1∇fi(θik;xi,t, yi,t))

with local dataset Di = {(xi,t, yi,t)}Mt=1

end for
θk+1 ← θk − η∇favg(θk)

end for
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Chapter 4

Implementation and Result

4.1 Import data from Kaggle

Kaggle libraries were first installed. The Kaggle API is required to access the web-
site. The Kaggle user profile contains the Kaggle API. Then, utilizing that API,
any data may be imported; all that is required is the username and dataset name.
Data is often downloaded as a zip file. So, the Kaggle data that was downloaded
(fig: 4.1 ) required to be unzipped.[17]

Figure 4.1: Import data from Kaggle

4.2 Using the CNN classifier, analyze the perfor-

mance of the different pre-trained models

4.2.1 ResNet50

The training accuracy was determined to be 96.97% and the validation accuracy was
determined to be 96.47% during pre-processing in feature extraction throughout 5
epochs.
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Figure 4.2: ResNet50 Validation Accuracy Plot

The accuracy plot of ResNet50 is displayed in figure 4.2. The validation accuracy
increases marginally from the first to the tenth epoch, whereas the training accuracy
rose significantly. After that, the accuracy grows simultaneously from the tenth to
the thirty-first epoch. The training accuracy rises in the following section, from the
thirty-fifth to the forty-fifth, while the test accuracy starts to fall.

4.2.2 VGG16

During pre-processing in feature extraction over 5 epochs, the accuracy for training
was found to be 99.84%, and the accuracy for validation was found to be 99.81%.

Figure 4.3: VGG16 Validation Accuracy Plot
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Figure 4.3 displays the accuracy of the VGG16 in various epochs. The validation
accuracy increases to its maximum between the first and twentieth accuracy epochs,
after which it starts to decline until the thirty-first accuracy epoch. After that, the
test accuracy remains constant. In contrast, the training accuracy dramatically
increases from the first to the tenth epoch, then modestly increases from the tenth
to the twentieth epoch and remains stable.

4.2.3 InceptionV3

Preprocessing in feature extraction over 5 epochs revealed accuracy for training to
be 99.90% and accuracy for validation to be 99.96%.

Figure 4.4: InceptionV3 Validation Accuracy Plot

Figure 4.4 displays the InceptionV3 accuracy plot. Every epoch has very poor val-
idation accuracy. In the twentieth epoch, it slightly declines, while in the thirty
first epoch, it slightly grows. Then, it resumes a small decline. On the other hand,
up to the ninth epoch, accuracy greatly improves. The accuracy then gradually
increases until the twentieth, climbs again until the thirty first, and then remains
almost constant after that.

After extracting the features using base models, 80% of the collected features were
preserved in the training set while 20% were preserved in the validation set after the
retrieved features were split into train and validation sets. Following that, the CNN
classifier was trained using the training data, and the validation data was used to
assess its performance. To comprehend the performance in greater detail, the same
batch size and different amounts of epochs were used to train each of the three
models. In the following table, the validation accuracy of each of the three models
for varying numbers of epochs is illustrated.
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Accuracy
Base Model 5 epochs 10 epochs 20 epochs
VGG16 99.81 99.93 99.94
ResNet50 96.47 97.19 98.00

InceptionV3 99.96 99.96 99.97

Table 4.1: Validation accuracy for different epoch counts.

Table 4.1 demonstrates how the number of accuracy increases along with the number
of epochs. However, it starts to fluctuate if we overtrain. In this case, InceptionV3
displays the highest accurate result, which is 99.97% in 20 epochs. VGG16 and
ResNet50 follow with 99.94% and 98%, respectively. Thus, InceptionV3, VGG16,
and ResNet50 are in order of best accuracy.

4.2.4 Comparison of the accuracy loss plot for (i) VGG16,
(ii) ResNet50, and (iii) InceptionV3

Figure 4.5: Accuracy loss plot for (i) VGG16
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Figure 4.6: Accuracy loss plot for (ii) ResNet50

Figure 4.7: Accuracy loss plot for (iii) InceptionV3

The accuracy loss and validity loss are depicted in figures 4.5, 4.6, 4.7. The training
loss dramatically lowers in the first epoch for VGG16, RestNet50, and InceptionV3.
After the first epoch, the training loss gradually dropped for VGG16 and ResNet50,
but started to increase for InceptionV3. In addition, whereas InceptionV3 swings,
VGG16 and ResNet50 decrease during the course of each epoch. It declines in the
second and third epochs before increasing once more in the fourth epoch. In the
validation epoch, the scenario is nearly the same, with the exception that ResNet50
experiences a rise in accuracy loss while InceptionV3 experiences an almost exact
reverse.
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4.2.5 Analysis of the three feature extractors’ performance
using the random forest classifier

After applying VGG, ResNet and InceptionV3 three base models, random forest
classifier has been implemented.

Random Forest%
Feature extractors 5 epochs 10 epochs 20 epochs

VGG 91.11 95.55 95.55
ResNet 91.11 97.77 95.55

InceptionV3 95.55 97.77 97.77

Table 4.2: Validation accuracy for different Random Forest.

InceptionV3, ResNet50, and VGG16 accuracy all remain constant after ten epochs,
according to the random forest table 4.2. It can be shown that InceptionV3 exhibits
the highest degree of accuracy. The accuracy is then the same for VGG16 and
ResNet50. But up until the eleventh epoch, VGG16 and ResNet50 provide distinct
outcomes. Here, we may obtain InceptionV3 as the most accurate source.

MLP And CNN Models

While both a multi-layer perceptron (MLP) and a convolutional neural network
(CNN) are classes of neural networks, their applications and architectural designs
differ.
Three completely connected layers (in figure 4.8) make up this straightforward multi-
layer perceptron model. The first layer has 200 neurons, and the input shape is
described as “shape.” Except for the final layer, which uses a softmax activation
function, all layers employ ReLU as their activation function. The model is made
for classification problems and has “classes” neurons in the top layer.

Figure 4.8: Simple MLP

This straightforward model 4.9 contains two convolutional layers with, respectively,
32 and 64 filters and kernel sizes of (3,3). The shape parameter specifies the model’s
input shape. With the exception of the top layer, which utilizes the softmax activa-
tion function, all layers use the ReLU activation function. Additionally, the model
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employs max-pooling layers with a pool size of (2,2) to lessen the input’s dimension-
ality. The model’s last layer, which is intended for image classification tasks, has
“classes” neurons, or the number of classes in the dataset.

Figure 4.9: Simple CNN

Figure 4.10: CNN Accuracy Graph

The CNN was implemented following pre-processing with various feature extraction
models using machine learning classifiers. The figure 4.10 illustrates how training
accuracy grows noticeably up until the tenth epoch. The training accuracy is very

36



steady after the tenth period. On the other hand, the validation accuracy starts off
considerably higher before varying across each epoch. However, the table shows that
despite the significant fluctuation, it still follows a relatively predictable pattern.

4.3 Implementation of Federated learning Algo-

rithm

4.3.1 Creating Clients

This function uses a provided label list and picture list to create clients for a feder-
ated learning system. It asks for the desired client count as well as the client’s first
name. The data is divided into “shards” and made random before being distributed
to each client. The data shards (tuples of picture and label lists) are returned as a
dictionary with the client names as the keys and the values. The number of clients
and the number of data shards must match.

Figure 4.11: Creating Clients

Model Learning Rate
The learning rate for federated learning is the fundamental task of this model after
creating clients. Lowering the learning rate will make FL run more speedily. Addi-
tionally, it features a round of 11 that specifies the number of times the federated
learning model will run and the learning rate is 0.01. Also, the momentum is 0.9.

4.3.2 Aggregation through Federated Averaging

The code specifies the weight scaling factor, scale model weights, sum scaled weights,
and test model four federated learning routines. The scaling factor for the client’s
model weights is returned by the weight scaling factor function, which accepts a
dictionary of clients’ training data and a client name. When a model’s weights and a
scaling factor are sent in, the scale model weights method returns the scaled weights.
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The sum scaled weights function accepts a list of scaled weights and outputs the
weights’ average or the sum of the scaled weights. The test model function evaluates
the accuracy and loss of the model on the test data and prints it out. It accepts test
data, a model, and a communication round.

Figure 4.12: Aggregation through Federated Averaging

4.4 Result

Models Accuracy Log Loss
CNN with FL 99.661% 1.0511

CNN without FL 97.22% 0.0912
MLP with FL 98.592% 1.0724

MLP without FL 97.83% 0.0933

Table 4.3: Summary of Results

From the table 4.3, we may conclude that FL offers greater accuracy. According to
the table, CNN has an accuracy rating of 97.22% without FL and 99.66% with FL.
If we examine the lag loss, CNN with FL provides a little bit greater loss than CNN
without FL. On the other hand, the MLP scenario is quite similar. Additionally,
MLP with FL offers superior accuracy (98.592%) than MLP without FL (97.83%),
while MLP with FL’s lag loss is marginally higher.

4.4.1 Previous Results

The average validation accuracy rate for the MLP model in [table 4.4] is 93.81%
for IID, and the average validation accuracy rate is 72.31% for Non-IID. However,
using the CNN model, the average validation accuracy rate is 97.29% for IID, while
the average validation accuracy rate is 79.82% in Non-IID. Using IID and Non-IID
data, both models have been investigated. IID data enhances overall accuracy.
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Model Acc. of IID Acc. of non-IID
FedAVG-CNN 96.29% 79.82%
FedAVG-MLP 93.81% 72.31%

Table 4.4: Results of 10 epochs training with the learning rate of 0.01.

Model Acc. of IID Acc. of non-IID
FedAVG-CNN 98.89% 92.61%
FedAVG-MLP 96.31% 91.03%

Table 4.5: Results of 50 epochs training with the learning rate of 0.01.

Additionally, it is found that accuracy in 50 epochs [table 4.5] was significantly
higher than in 10 epochs. The average validation accuracy for MLP in IID and
Non-IID is 95.31% and 91.03%, respectively. In comparison, CNN’s validation ac-
curacy is 97.89% and 92.61%. As more training epochs are used, the model gets
more precise.

4.4.2 Comparison with related works

In table 4.6, the first paper works with the Covid-19 dataset. Only FL was used in
this research and they found Local accuracy 79.5% and FL Global accuracy 92%.
After that, In the second the paper works with a dataset consisting of 3000 sample
images of lichen planus, acne and SJS ten. In their research they used CNN method
and they ended up having a global accuracy of 96%. In the third research paper
they used CDS, FL, CIIL. In the paper CDS global accuracy = 86.2%, FL global
accuracy = 85.7%, CLL global accuracy = 85.3%. Lastly, in our research, the
medical MNIST dataset is being used. For Feature extraction resNet50, VGG16
and Inception-v3 is used. After that CNN and MLP model have been implemented
individually for further accuracy. In the last, the FL hybrid model was used to find
the best accuracy. CNN with FL provided 99.661% accuracy whereas CNN without
FL provided 97.22% accuracy. On the other hand, MLP with FL provided 98.592%
accuracy and MLP without FL provided 97.83% accuracy.
It is clear through study and comparisons with other articles that the papers used
various methodologies and datasets. However, it is clear from our research that
utilizing a hybrid federated learning model yields the best accuracy of 99.661%.
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Comparison Table

Sl no Topic Author Dataset
used

Method Performance

1 Federated
learning for pre-
dicting clinical
outcomes in
patients with
COVID-19[31]

I Dayan,
HR Roth,
A Zhong,
A Harouni,
A Gentili

COVID-19
data

FL Local Acc:
79.5% FL global
Acc: 92%

2 Machine Learn-
ing Algorithms
based Skin
Disease Detec-
tion[10]

Bhadula,
S.,
Sharma,
S., Juyal,
P., Kul-
shrestha,
C. (2019)

A dataset
consisting
of 3000
sample
images
of lichen
planus,
acne and
sjs ten

CNN Accuracy = 96%

3 Federated
learning in
medicine: facil-
itating multi-
institutional
collaborations
without sharing
patient data[25]

Sheller,
M. J.,
Edwards,
B., Reina,
G. A.,
Martin, J.,
Pati, S.,
Kotrotsou,
A., ...
Bakas, S.
(2020)

CDS train-
ing data

CDS, FL,
CIIL

CDS global
Acc. = 86.2%
FL global Acc.
= 85.7% CLL
global Acc. =
85.3%

4 Our work Medical
MNIST

Feature
extraction:
resNet50,
VGG16,
Inception-
v3 Models:
CNN,
MLP,FL

CNN + FL=
99.661% CNN
= 97.22% MLP
+ FL =98.592%
MLP = 97.83%

Table 4.6: Comparison with related works
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Chapter 5

Conclusion and Future Work

Federated learning on a hybrid database that has been pre-trained is used to increase
security for healthcare data in order to minimize the risk of data leakage. Despite
having several encryption algorithms, federated learning is prioritized here because
it does not necessitate data transmission. To increase healthcare security, the im-
plementation of our proposed hybrid federated learning model is providing better
accuracy of 99.661%. Moreover, using the federated learning approach, which in-
volves dispersing applied models over a number of devices while thwarting data
theft. The system will be updated to take patient preferences into account and
transmit CNN and MLP models in addition to improving the model performance.
The purpose of this research was to employ federated learning to create a solution
that would help the e-health care sector while ensuring security.

Due to a shortage of resources, a number of tests and experiments have been put off
until the future. If any data is lost throughout the procedure, it can be challenging to
retrieve it. We would like to increase model performance relative to models trained
on a centralized dataset; however, because of the disparity of the data, it can be
difficult to carry out the process. There is still space for improvement on device
heterogeneity, as several edge devices operate concurrently in federated learning
and their computational power and processing speed are not uniform.
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