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Abstract
In the medical industry, the availability of precise data limits the scope of deep learn-
ing applications. Institutional norms restrict hospitals and research facilities owing
to privacy concerns. Therefore, data collection from such sources is unfeasible. Fed-
erated Learning (FL) is promising in this scenario, but it does not guarantee data
privacy. In this paper, we will use Deep Convolutional Generative Adversarial Net-
work (DCGAN) and Wasserstein Generative Adversarial Network (WGAN) on an
OCT dataset to demonstrate that the Federated GAN (FedGAN) architecture fails
in these networks due to its innate structure. Additionally, introduce a Distributed
Generative Adversarial Network (Distributed GAN) that collects and distributes the
weights of each temporary GANs on the client side to the main server to tackle the
mode collapse risk of non-iid data. This conserves the optimal distribution of data
to all private discriminators while protecting sensitive individual data.

Keywords: GAN; Generator; Discriminator; Federated Learning; OCT; Deep Con-
volutional Generative Adversarial Network (DCGAN); Wasserstein GAN (WGAN);
Distributed GAN; Mode Collapse, Non-iid Data.
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Chapter 1

Introduction

1.1 BackGround
Generative Adversarial Networks (GANs) are a breakthrough contribution to deep
learning where generative models are trained in an adversarial manner to replicate
data from a given dataset [33]. GANs require a large quantity of data with a wide
variety of properties in order to generate a robust model. Unfortunately, privacy
concerns and institution restrictions have led to a lack of varied data concealed by
sources. Such scenarios are exemplified by hospitals and research institutions. For
instance, the United States of America, the European Union, and a large number of
other nations prohibit the export of patient data [31]. As a direct result, numerous
medical facilities and research establishments are leery of cloud platforms and choose
to manage their own servers on-premises. Yet within the same country, working on
medical data is fraught with significant difficulties. Applications of deep learning
have been quite successful in several technical domains [4].

GAN applications can play a significant part in addressing the shortage of medical
data. The eventual goal of GAN applications in medical imaging prospects is to
enhance the performance of models, such as classification and segmentation models
[27]. It can be used to enrich data during centralized classification training after
learning in a decentralized unsupervised manner [12], [21]. The inaccuracy of deep
learning medical image models is diminished by small dataset sizes and poor image
quality [38]. To avoid these challenges, some academics use GAN technology for
data augmentation, such as super-resolution, image denoising, reconstruction, reg-
istration, and dataset augmentation.

Federated Learning (FL) is an example of distributed learning where a data-private
method of collaborative learning in which many heterogenous contributors simulta-
neously train a machine learning model and then communicate their model changes
to a central server so that they can be aggregated into a consensus model [37]. After
that, the aggregation server will provide the consensus model to all of the partici-
pating colleges so that it can be utilized and/or extra training can be provided. A
federated round is an iteration of this technique that consists of parallel training,
update aggregation, and the distribution of new parameters. Each iteration of this
procedure is referred to as a federated round. FL could be used to circumvent the
data-sharing barrier for GAN training. Each server maintains (usually private) lo-
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cal training datasets for the training of global models. This Federated Environment
(FE) enables a Federated GAN (FedGAN) in which the generator is located on a
global server and the client is hosted privately by discriminators. Each local discrim-
inator is educated on distributed heterogeneous data on local servers before feeding
back to the generator. FedGAN is stable with diverse data without jeopardizing
confidentiality.

It is pretty apparent that in order to train an effective machine learning algorithm
for medical image processing, considerable data volume is required [7]. Things are
significantly more challenging with medical data. Patient data regulations protect
patient health data for a good cause. Unfortunately, norms vary widely between
countries, further complicating the matter. Recently, numerous large hospitals, or-
ganizations, and health authorities made anonymized data public to advance deep
learning research [9]. Those datasets range in size from tens to thousands, and the
annotations vary widely, as they are often done only once per dataset. Some coun-
tries are currently processing medical data in government-run databases accessible
to researchers and industry. For example, Australia, Denmark, and Estonia are al-
ready on this track. Future developments in these nations can be promising [22].

Although predictive deep learning models have the potential to enhance medical
diagnosis and treatment, in order for these models to be generally applicable, they
require huge quantities of data from a variety of sources [16]. A recent study found
that deep learning models tend to overfit to subtle institutional data biases and
perform poorly when tested on data from institutions whose data were not observed
during training. Deep learning medical imaging algorithms may choose to rely on
the confounding elements connected with institutional biases in order to make their
predictions as opposed to basing their conclusions on the evaluated apparent pathol-
ogy. When compared to data that has been held out from the same institution, such
models may provide correct results; nevertheless, they may not generalize well to
data from other institutions or even between departments that are located within
the same institution. The utilization of data from many universities to train a single
model is an example of collaborative learning, which is a reasonable way to increase
the volume and diversity of data. GANs are successively trained utilizing boosting
algorithms in the work of Tolstikhin et al. to incrementally raise the performance
of the final model [23].

An Optical Coherence Tomography (OCT) scan combined with a standard eye exam
will provide the most detailed information about our overall eye health. It is a non-
invasive imaging technique used in ophthalmology to perform quantitative analyses
of eye tissues. It also generates real-time images by the application of the interfer-
ometry principle [2]. OCT makes it possible for clinicians to diagnose multiple eye
illnesses, including glaucoma, Age-related Macular Degeneration (AMD) [29], and
Diabetic Macular Edema (DME) [32]. Because more and more images are being
obtained by OCT and saved in increasingly large electronic databases, medical pro-
fessionals are devoting more time and energy to the process of interpreting those
images. Although OCT was initially implemented in the field of ophthalmology,
where it is currently utilized in clinical as well as research settings, it has since been
shown to be effective in a wide range of other fields. To assess if OCT alone or in
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conjunction with other imaging modalities has clinical use for identifying susceptible
plaques, further research is essential to be carried out in this area [17].

1.2 Motivation
Data augmentation is required for deep learning training because centralized training
requires a massive amount of data. However, medical image classification is not
commonly preferred in the industry due to privacy concerns. Due to the fact that
training data is occasionally non-IID, there are often many images devoid of the
disease but few with it [35]. Therefore, it is essential to provide additional disease
images to balance the data. Therefore, it may be beneficial to use GAN to generate
synthetic data for augmentation. However, because the sharing of medical data
creates security concerns, GAN training demands a large amount of data and poses
a barrier in terms of training data availability. Here is where FL could alleviate the
security issues while preserving the accessibility of GAN data. We chose to evaluate
multiple versions of GAN in an FL framework, in addition to augmentation and
data privacy.

1.3 Problem Statement
As the number of diseases increases at an alarming rate, novel categorization strate-
gies based on various algorithms are being brought to us on a regular basis. It is
challenging to accelerate the upgrading of algorithms in this province due to a lack
of publicly available medical images and data. Furthermore, systematizing medical
data repositories is challenging since it requires a high level of precision and accu-
racy in the field. In the realm of medical imaging, where aberrant results are by
definition rare, this might be a concern. As a consequence, there is a scarcity of
labeled data, which makes training an accurate algorithm difficult. Traditional data
augmentation approaches (e.g., cropping, translation, and rotation) may help with
some of these difficulties, but they still result in highly correlated image training
data. In Goldbaum, M. et al. (2018), artificial intelligence (AI) withholds the abil-
ity to upgrade illness diagnosis and treatment by completing categorization tasks
that are challenging for humans and rapidly evaluating enormous volumes of data
[24]. Despite its capabilities, AI is difficult to evaluate in clinical settings and to
prepare due to a lack of data.

One feasible solution to this challenge by utilizing a technique to generate synthetic
pictures that offers a different type of data augmentation. When it comes to training
deep learning models, data variety is crucial. As medical imaging data sets are often
unbalanced, posing substantial hurdles for training deep learning models conducted
by Rogers, J. K. et al. (2018) [25]. Further, which acts as an effective technique
of data anonymization. However, implementing any machine learning model in the
medical sector is demanding to train since it requires a large quantity of data. Med-
ical picture data collection may be complex given the sensitive nature of health care
data and the necessity to ensure privacy at all times. Some hospitals also do not
want their data to be pushed onto the cloud; instead, they want it to be available
in a safe manner inside their facility.
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In summary, we find that the problem of medical data management is far from re-
solved. We found three viable strategies for resolving the issue: industry investment,
state control, or non-governmental organizations. While each of them is conceivable,
we must decide which one we like. In any case, the issue is critical and must be
resolved to further deep learning research in medicine.

1.4 Research Objectives
The goal of this research is to ensure data augmentation of medical images while en-
suring the privacy of the local data. We will be using OCT images as our dataset and
implement different GANs (DCGAN, WGAN & Distributed GAN) while preserving
the anonymity of the decentralized data in the federated environment. Additionally,
by tweaking the parameters of our models of the different GANs we will try to find
the optimum data privacy protection and high-quality generated images from GAN.

• Ensuring optimum data augmentation of the training data.

• Preserving the privacy of the client data.

• Experimenting with various GAN architectures on federated environment.

• Scrutinizing the drawbacks of FL

• Achieving target distribution of local data to avoid mode collapse

1.5 Contributions
Our key aim was is to assure data enhancement in a protected environment provided
by federated learning paradigm. We will conduct experiments with Deep Convolu-
tional Generative Adversarial Network (DCGAN), Wasserstein Generative Adver-
sarial Network (WGAN), and Distributed GAN to determine the output variations.
In addition, we will adjust the parameters of the models to improve the stability of
the GANs and the accuracy of data augmentation. In conclusion, we will analyze
the various GAN outputs to assess the quality of the generated data and also deter-
mine whether GAN architecture is compatible with a federated environment while
protecting local data.

1.6 Thesis Structure
Chapter 1: Introduction where background, motivation, problem statement, re-
search objectives, and contributions are discussed.

Chapter 2: Literature review where relevant works on our topic are elaborated.

Chapter 3: Model Background and Work Plan explicitly clarifies all the used
models in depth. Also, the work plan shows the transition of our work
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Chapter 4: Methodology carefully demonstrates the whole process of the study.

Chapter 5: Results and Analysis visualizes the desired output of our model.

Chapter 6: Conclusion restates the statement while jotting down the challenges
and future works
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Chapter 2

Literature Review

2.1 Related Works
This research aims to use different Generative Adversarial Networks (GANs) to aug-
ment data on Optical Coherence Tomography (OCT) image data while protecting
the privacy of the local data by implementing a federated environment. In cases re-
quiring medical image analysis, it’s crucial to uncover and understand data patterns.
Relevant or task-related features were typically produced by human specialists us-
ing domain expertise, making it difficult for non-experts to use machine learning
techniques. Widespread use of deep learning in medical imaging improves image in-
terpretation, representation, and categorization [19], [24]. AI-based models demand
lots of data. A huge database of anatomy, pathology, and input data is needed to
train an AI-based tumor detection. Due to the sensitivity of health information
and the constraints on its use, obtaining this data may be difficult. Simulation and
synthesis of medical images are gaining popularity in medical imaging [8].

In order to properly comprehend the potential drawbacks of conducting more stud-
ies, it is essential to emphasize previous studies conducted in contexts comparable to
the present one. While some of the materials will directly address our theme, others
will be relevant only in specific settings. We set out to evaluate a small selection of
substantial research on the following topics.

OCT is a novel biomedical imaging method that permits noninvasive micron-scale,
cross-sectional, and three-dimensional imaging of biological tissues [6]. Also, OCT
is quite similar to ultrasound, however instead of using sound waves, it makes use
of light waves. These light waves are able to reconstruct a profile of the eye by
reflecting off of different depths within the eye, while a light beam that is laterally
scanned is able to offer an image of the eye in three dimensions. Different layers of
the retina become visible and the thickness of them is measured [3]. The images are
helpful in the diagnosis, planning of treatment, and monitoring of retinal repair for
many different eye conditions [6]. OCT image denoising uses low-pass, median, and
mean filters [9]. OCT images can be digitally speckle-reduced in two ways (when
N > 1). After angle compounding, the digital filter is added to the final image;
N-filtered photos are combined to get the final image. OCT was the most frequently
utilized imaging modality in ophthalmology in 2012, 2013, and 2014, with 5.35 mil-
lion, 4.93 million, and 4.50 million OCTs conducted, respectively [18]. In cardiology,
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OCT permits in-vivo visualization of coronary arteries, which can be used to diag-
nose stenosis, learn more about the processes of stenosis and thrombosis, and as an
adjunct to percutaneous coronary operations [10]. In addition, neurology can use
OCT pictures to evaluate degenerative diseases and other visual neuropathies. Hu-
man professionals such as radiologists and physicians have traditionally performed
medical image interpretation in clinics [28]. Researchers and doctors have begun
to benefit from computer-assisted therapy due to the vast variety of diseases and
the likely depletion of human expertise. Medical imaging is extremely important in
today’s medicine. Modern imaging techniques such as X-rays, ultrasonography, CT
scans, and MRIs may disclose fine details about the architecture inside our bodies.
With the acceptance of deep learning in computer vision in 2012, the use of deep
learning algorithms in medical imaging has grown significantly. X-rays, ultrasounds,
magnetic resonance imaging (MRI), and optical coherence tomography are only a
few examples of medical picture treatments (OCT) [28]. OCT images are typically
very noisy, however, they can be rebuilt with the use of deep learning models such
as GAN [26]

Due to artificial intelligence and increased computer performance, DL has made
enormous progress in image processing. SNNs and CNNs recognize patterns and
classify images [10], [19], [24]. Deep convolutional neural networks (DCNNs) are
capable of recognizing, segmenting, and differentiating image objects and regions
[15]. At the moment, it is utilized for purposes including classification, detection,
segmentation, and the addition of data to medical images. Zhang et al. presented a
Synergic Deep Learning (SDL) model [13]. This model includes many DCNNs that
can learn from each other in order to address intra-class and inter-class variations
that are the result of clinical variation and medical imaging [30]. In their study,
Webb and colleagues suggested a classification system for WBC fluorescence imag-
ing characteristics that was based on neural networks. The classification approach
that was taken was successful. The discovery of out-of-distribution inputs causes an
increase in the estimation of the degree of uncertainty that exists when a DC-GAN
is included in a model. The parameters of the model are modified via transfer learn-
ing, which speeds up the convergence process and makes the model more accurate.

DCGAN was used to create reliable training data, a modified loss function was used
to increase intra-class classification variability, transfer learning based on ImageNet
was utilized to give finely tuned pre-trained network parameters, and used a mod-
ified version of ImageNet [30]. It was planned to incorporate T1-weighted MRI
scans from the ADNI, AIBL, and NACC groups in the study published in [36]. The
research consisted only of scans acquired from the 151 individuals included in the
ADNI dataset. This is because the methods employed to get MRIs for each of the
other pictures were unique. Teslas are the units of measurement for the magnet
strength of an MRI scanner. There are numerous possible strengths ranging from
0.5T to 3T. (Tesla). Higher values need greater financial investment but provide
superior photographs. During the scanning procedure, a 1.5T and a 3T scanner
were utilized on the same individual. Simultaneously, a GAN and a fully convolu-
tional model were trained. In order to train the GAN, MRIs of individuals with
moderate cognitive impairment were employed. The FCN utilized various scans
since it could only differentiate between normal cognition and Alzheimer’s disease.
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The GAN model was subdivided for training, testing, and validation purposes. This
work demonstrates how image-to-image translation may be applied to 1.5T MRIs to
enhance the visibility of Alzheimer’s disease. This would make it simpler to estimate
a person’s emotions.

WGAN outperforms DCGAN in terms of training, which is significant given DC-
GAN’s concerns with mode collapse and the vanishing gradient problem. This in-
dicates that the underlying training issue with GAN has been resolved and is no
longer a concern. WGAN reduces the amount of time required to compute an ac-
curate and effective EM distance. After each iteration of the gradient update of the
evaluation function, the weights must be bound to a certain, limited range. The fact
that WGAN training advances at a slower rate than DCGAN training is a preva-
lent issue. WGANs are an alternate training method for GANs that attempts to
address the fundamental issues posed by the conventional method. Regarding the
training of WGANs in particular, it is not necessary to strike a balance between
training discriminators and training generators. In addition, training WGANs does
not necessitate the development of specific network architecture. Additionally, mode
dropping in GANs is not nearly as prevalent as it formerly was. One of the char-
acteristics that make WGANs one of the most effective types of neural networks is
their capacity to repeatedly estimate the EM distance by refining the training of
the discriminator. Visualizing these learning curves not only aids in debugging and
selecting the optimal hyperparameter values, but also has a substantial bearing on
the quality of the samples.

The most prominent problem of using DCGAN and WGAN in a Federated Learning
paradigm is the mode collapse problem, vanishing gradient problem, and the risks
of data leakage via the weight transformation in the local client data. Durugkar
et al. provide a centralized multidiscriminators technique to improve discriminator
judgment on produced data to evade mode collapse. In a similar vein, Hoang et
al. propose a centralized multi-generator solution that aims to increase generator
capacity while minimizing the issue of mode collapse. Wang et al. [39] built an
aggregated model by deploying a group of GANs that were separately trained and
then assembled in a cascade.

Recent research has sought to improve GAN convergence by taking into account
a large number of generators and discriminators. Despite this, the focus of these
efforts is not on working with distributed datasets. This is where distributed GANs
on non-iid data flourish. We feel that a large number of discriminators is preferable
to a single generator. Recent research has demonstrated that certain fundamental
techniques based on a single generator and several discriminators, or a mixture of
generators and a single discriminator can outperform a single GAN. Hosting multi-
ple private discriminators on the local entities and aggregating the feedback to the
global generator helps in terms of protecting the sensitive data. When designing
an architecture for machine learning, it is vital to include techniques for protecting
privacy. This is due to the increasing number of privacy issues surrounding the shar-
ing of data, as well as the rules implemented to preserve privacy, such as HIPAA [37].
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In 2016, around 79 million CT scans and 38 million MRI scans were performed
in the United States [31]. Despite this, the datasets available for machine learn-
ing research are still only modestly enlarged. The most extensive public collection
of medical imaging data is consisting of 32,000 CT scans; nevertheless, this only
accounts for 0.02% of all images acquired in the United States each year. The
ImageNet [39] project, on the other hand, is a massive visual dataset created for
study on visual object recognition. It has over 14 million photos organized into
over 20,000 distinct categories. Protecting sensitive data requires a combination of
privacy controls, synthetic data transfer, and design adaptability. Only information
that presents a misleading image is transmitted. Privacy is protected despite the
fact that the central generator does not have access to the raw data. The primary
generator includes a few details about raw hospital photographs. The generator
transmits the phony image to hospital discriminators. This strategy keeps raw data
private from the central generator. Because synthetic data are what they are, the
creator of synthetic images can freely distribute them. With this approach to gath-
ering and disseminating data, a trustworthy, publicly accessible medical database
can be created. Researchers, physicians, and the expansion of medical intelligence
can benefit from the database’s infinity. Using numerous GANs and their architec-
ture habitat in federated learning, we experiment with the data privacy issue and
highlight the limitations of the federated learning paradigm.
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Chapter 3

Model Background and Work Plan

3.1 Model Background
Machine learning is used in the vast majority of AI technology [7]. Supervised
machine learning is the most common method. Algorithms of supervised learning
are fed examples of inputs and outputs. They figure out how to create a mapping
by associating each input with its corresponding output. Images, natural language
sentences, and audio waveforms are examples of input, but output examples are
basic. The most common type of supervised learning, classification, yields a simple
number code (a photo might be recognized as coming from category 0 containing
apples, or category 1 containing oranges, etc.) [1]. SL is typically more accurate
than individuals after training, which is why it is utilized in a wide range of products
and services. The goal of this article is to discuss generative adversarial networks,
an approach for unsupervised learning that employs generative modeling [12], [33].

3.2 GAN
GAN is a promising deep neural network that has been used to a number of machine
learning problems, such as semantic segmentation, text-to-image transformation [1],
image classification, generation and editing, and super-resolution image reconstruc-
tion [11], [20]. In medical imaging, GAN is utilized in two ways. The first is the
generative element, which aids in the research and the structure of training data
and learning the process to generate new synthetic images. GANs are particularly
promising for addressing data scarcity and patient privacy. The second examines
the selective feature of the discriminator, which can be viewed as a learned prior for
normal images [34]. This uses as a detector when irregular images are dispensed.
The equation described for GAN in the paper of Goodfellow et al is [33]:

min
G

max
D

V (D,G) = min
G

max
D

(Ex∼Pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))])

Where, D = Discriminator
G = Generator
Pz(z) = Input noise distribution
Pdata(x) = Original data distribution
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Figure 3.1: Basic GAN Model

Adversity implies that the model was trained in a real-world setting using neural
networks as AI techniques. The generative model assesses the data distribution af-
ter training to improve the discriminator’s error rate. It is based on a model that
estimates the real-data origin of the sample. Training data was used to generate the
real sample. The generator network generates noise at random. The discriminator
network then determines whether or not the sample is genuine. We train the discrim-
inator on real data for n ”epochs” before freezing the generator and discarding its
training set. The network will only send forward data and will not accept backward
data. The discriminator is trained on real data to forecast them and on fictitious
data to identify them as fictitious. The generator is then trained to misrepresent
samples. The discriminator is then frozen, allowing us to build upon and mislead it.
The discriminator is then trained using fictitious data to predict generator network
samples. The discriminator correctly predicts values. We educate the generator
to fool it after collecting discriminator predictions. Adversarial networks function
effectively if the generator and discriminator are stable. The generator will not op-
erate if the discriminator is too powerful, because fraudulent samples will always be
discovered as such. Creating network images is worthless if the discriminator net-
work is extremely permissive. GANs are incapable of determining how frequently
an object should appear in a particular area. We must ensure that the model in-
vestigates the GAN challenge. We’ll also exclude 3D photographs from our medical
dataset because GAN can’t recognize them and renders them flat. In addition, the
general structure requires attention.

3.3 Federated Learning
In 2017, federated averaging was introduced as FL for the first time. Many cases are
required for AI algorithms to produce models as good as medical specialists while
protecting personal data through federated learning. By eliminating data pool-
ing, federated learning decentralizes deep learning. The model is instead trained
in multiple locations. Assume three hospitals worked together to develop a model
to automate diabetic retinopathy image analysis. Each hospital that employs a
client-server federated model would be given a copy of the global deep neural net-
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work to train on its own dataset. Participants submitted their modified version to
a centralized server after training the model locally for a few rounds and kept their
dataset private. The central server would compile participant feedback. Participat-
ing universities would receive modified settings for local instruction. Because the
model is not dependent on any specific data, if one of the hospitals were to leave
the training team, the model’s training would continue. Meanwhile, a new hospital
could join the program at any time. This is just one of the numerous federated
learning strategies. Every participant gains global knowledge through the analysis
of local data, which is a common thread that runs through all methodologies. As
it is obvious that medical data must be secure and private, we will train the data
in a federated environment to protect the data silo. There is a significant paucity
of medical photographs for research purposes. OCT pictures are a good example
of this. As a result, we want to use distributed GAN to protect data privacy while
generating correct OCT pictures, ergo data augmentation.

3.4 DCGAN
DCGAN is a new GAN design extension that combines a CNN in addition to the
symmetric generator and discrimination [10]. Alec Radford introduced it in 2015
[5] to compensate between CNNs for supervised and unsupervised learning. Its con-
volutional structure allows it to balance GAN training. DCGAN omits the pooling
layer seen in CNNs, allowing the framework to spatially sample up and down on its
own. To boost the training’s stability, the complete network uses a fractional-strided
convolutional layer in lieu of an up-sampling layer and pooling layer. The DCGAN
significantly enhanced the consistency of GAN training and the caliber of the results
provided [30]. DCGAN originated as an innovative technique for creating graphics,
audio, and films. Due to the layering, CNN feature extraction is also utilized [14].
DCGAN has demonstrated impressive performance on large-scale datasets including
CelebA, LSUN, and Google Image Net [36].

3.5 WGAN
An adversarial network is a network that attempts to reduce an approximation of
the Earth-distance Mover’s (EM) divergence [12]. One sort of adversarial network is
the Wasserstein GAN, also known as WGAN. This variation of the GAN formula-
tion, in contrast to the original GAN formulation, which focused on minimizing the
Jensen-Shannon divergence, concentrates on increasing the Jensen-Shannon conver-
gence. It generates training that is more stable than the original GANs, with less
evidence of mode collapse, and it also produces meaningful curves that may be ex-
ploited for troubleshooting and detecting hyperparameters. WGAN is a reflection
of the absence of convergence since GANs are unstable. For the purpose of correctly
differentiating the data, the discriminator in WGAN, who is also referred to as the
critic, strives to maximize the distance that exists between the genuine data and the
data that was created. The goal of the generator network is to produce data that is
as realistic as is practically possible by narrowing the gap between the created data
and the actual data as much as is possible.
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3.6 Distributed GAN
Distributed GAN functions with multiple local temporary discriminators and uti-
lizes the feedback by aggregating to a central generator. In this manner the nature
of the individual sensitive data from the local servers are intact. Such readiness of
this architecture is a lucrative insight for researchers with private data holders. Dis-
tributed GAN inherently does the task of the federated environment by protecting
data privacy, whereas traditional federated learning has the risk of data leakage by
reverse engineering through the weights of the local data and sharing gradient infor-
mation. Local discriminators in a distributed GAN architecture operate as a shield
protecting sensitive data from the querying entity, ensuring privacy. Furthermore,
the nature of artificial data enables the generator to freely spread it, which is crucial
for privacy-sensitive applications.

3.7 Workplan
The primary goal of this study is to improve data for medical images. Consequently,
we must utilize GAN (Generative adversarial learning). GAN can be used to produce
data, but it requires a substantial quantity of training data. The accessibility of
training data is an obstacle for GAN because the sharing of medical data generates
security concerns. Thus, we offer a novel decentralized strategy for producing more
images for our GAN model. The source of our dataset is the 2018 ”Large Dataset of
Labeled Optical Coherence Tomography (OCT)”. The data was split into training
and testing sets. Due to the varied dimensions of the dataset photos, the image
sizes will also vary. For data preprocessing, we were required to resize the image to
28 × 28 pixels and convert it to a NumPy array. Then, we selected the DCGAN
model for our initial GAN model and trained it with the data, in addition to training
WGAN-GP with this dataset. However, neither of these GANs could be applied to
the Federated learning environment due to the inherent architecture of FL. As a
result, we designed a GAN that can be distributed across clients and sends weighted
values to the server in order to train the generator.
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Figure 3.2: Workplan of the Research
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Chapter 4

Methodology

4.1 Methodology
In the beginning of our research, we were assigned with obtaining a dataset to feed
to GANs in order to generate realistic OCT images. A dataset was initially obtained
using an open-source portal. There are four types of OCT images in this collection:
CNV, DME, DRUSEN, and NORMAL. The training dataset was run via GAN
models (DCGAN, WGAN, and Distributed GAN) to generate OCT images for the
data augmentation challenge.

Hence, this section discusses the design and implementation of different types of
GANs. To ensure that this technique remains flexible and adaptable, the complete
task is divided into smaller subcategories. Several of the most essential processes
include the following:

4.2 Input Dataset
The dataset we used focuses on common treatable blinding retinal diseases, mainly
on OCT images. Therefore, we use CNN in this paper for image classification. It is
from the 2018 ”Large Dataset of Labeled Optical Coherence Tomography (OCT)”
were used in the process of compiling the dataset for the research.
There are JPG photos of varying resolutions (512× 496, 1536× 496, and768× 496)
contained within it. There is only one color channel and 83,484 training images. The
dataset included two photo files that were respectively labeled ”train” and ”test.”
Each training and assessment dataset consists of a total of eight subcategories, which
are denoted as CNV, DME, DRUSEN, and Normal respectively (Shown in figure
4.2).

Figure 4.1: Images of the Four Directories: CNV, DME, DRUSEN, and NORMAL
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4.3 Data Preprocessing
The training data was utilized to enhance the raw data. Scaling the photos was
necessary because the training data came in a wide variety of resolutions (28,28,1).

Figure 4.2: Samples of Reshaped 28x28 Dimension Data Images

The data was then converted to a NumPy array format so that it could be used in
subsequent GAN training. Scale the values from -1 to 1 using DCGAN, WGAN-
GP, and Distributed GAN, which were the methods utilized in the process of adding
training data to the dataset. We normalized the dataset because, in general, nor-
malization lowers the amount of time required for training (shown in figure 4.2).

4.4 DCGAN Implementation
To begin, we used a Deep Convolutional Generative Adversarial Network, or DC-
GAN, to simulate the training data for the OCT dataset. Vanilla GAN is another
name for DCGAN, which is more often used. DCGAN is widely utilized for a wide
variety of image generation tasks. Two neural networks, a discriminator and a gen-
erator, composed the DCGAN. The generator attempts to generate realistic visuals
that can trick the discriminator in determining which one is real and which one is
fake.

Convolutional layers were used to construct the discriminator and transposed convo-
lutional layers were used to construct the generator, which was capable of creating
fake images from the dataset. Our discriminator did not apply a maxpool layer
for downsampling. For downsampling, stride was utilized. This is the DCGAN
architectural standard.
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4.5 Generator
The purpose of our generator is to produce 28 × 28 × 1 images that can mislead a
discriminator into believing they are real. The generator’s input is a 100-dimensional
vector of noise. This noise is sent to the sequential model we’ve established for
our generator. We are adding a dense layer with an input size of 7 × 7 × 256 to
the sequential model. Then, we apply BatchNormalization to the layer and use
LeakyReLU as the activation function. Therefore, 7 × 7 × 256 is a low-resolution
version of the output image, and we pass the random noise. Then, in the subsequent
layer, we use Conv2Dtranspose to upsample our data, as the size of the first layer
was 7× 7× 256. For upsampling our data, Conv2Dtranspose is used. Then, we add
two more Conv2Dtranspose operations to upsample from 7×7×256 to 14×14×64
to 28 × 28 × 1 samples. This function contains a neural network that will perform
the generator’s functionality (shown in figure 4.4).

Figure 4.3: Architecture of the DCGAN Generator
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4.6 Discriminator
We’ve added a supplementary function to the discriminator. Typically, the discrim-
inator is a classifier that determines if a picture is real or fraudulent. As our actual
dataset is 28 × 28 × 1, the discriminator’s input will also be 28 × 28 × 1 and the
image from the generator. The discriminator’s output is a binary value that indi-
cates whether an image is real or fraudulent. We employ two Conv2D layers with a
stride of two. The maxpool layer was not used for this discriminator. The 2,2 stride
is for downsampling. And for the activation function LeakyReLU, we are flattening
the layer, followed by a dense layer with sigmoid activation, which will reveal if the
image is real or fraudulent (shown in figure 4.5).

Figure 4.4: Architecture of the DCGAN Discriminator
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4.7 Loss Function
We require two loss functions. One loss function is responsible for the computation
of the generator, while the other is responsible for the calculation of the discrimina-
tor. Therefore, for the loss function, we employ binary cross entropy, and we have
developed two distinct techniques, one for discriminator loss and the other for gen-
erator loss Method of discriminator loss, this method quantifies the discriminator’s
ability to discern between actual and fraudulent images. It compares the discrimi-
nator’s predictions on genuine photos to an array of 1s and on fake (made) images to
an array of 0. And with regard to generator loss, it quantifies how effectively it was
able to fool the discriminator. The discriminator will intuitively classify the bogus
images as real if the generator is operating correctly (or 1). Here, the discriminator
judgments on the created images are compared against an array of 1s.

4.8 WGAN-GP
The original Wasserstein GAN uses the Wasserstein distance to create a function f
that, in terms of mathematical properties, outperforms the functional form used in
the original GAN publication. The discriminator or critic must be in the domain
of 1-Lipschitz functions for WGAN to function. The authors advised weight loss
as a means of meeting this criterion. While weight clipping is effective, it is not
necessarily the optimal tactic for enforcing the 1-Lipschitz constraint and may lead
to unexpected results. The WGAN-GP method is a viable alternative to weight
clipping for preventing training errors. In lieu of weight clipping, the researchers
propose a ”gradient penalty,” which is obtained by adding a loss term that ensures
the L2 norm of the discriminator gradients remains near 1.

4.9 Data Preprocessing
To train our WGAN-GP, we will utilize the existing OCT image dataset. In addition,
it has been previously cropped to a grayscale image with the dimensions (28,28,1)
and the label 4.

4.10 WGAN-GP Model Generator
For each training batch, we were required to train the generator and calculate gen-
erator loss. After training the discriminator, the loss is determined and the gradient
penalty is computed. After determining the gradient penalty, it must be multiplied
by a predetermined weight factor. After performing the multiplication, the gradient
penalty must be included in the gradient loss, and the discriminator and generator
losses must be returned as a dictionary. Prior to training our model, we must first
train the discriminator. Unlike the generator, the discriminator is trained in three
steps. We employ a learning rate of 0.0002 and beta values of 0.5 and 0.9 for our
generator and discriminator optimizers, respectively (shown in figure 4.6).
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Figure 4.5: Architecture of the WGAN-GP Generator
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4.11 WGAN-GP Model Discriminator
The shape of the dataset of samples is as follows: (28, 28, 1). In order to create the
discriminator, we are going to apply strided convolution in each of the layers. As a
consequence, the form that we end up with will have odd dimensions. Additionally,
we are altering the geometry of the input by using a ”zero pad” in order to shift it
to (32,32,1) for each sample.

Figure 4.6: Architecture of the WGAN-GP Discriminator

If we are not careful when upsampling in the generator component of the network,
we will not acquire the same output shape as the images from the original dataset.
We will instead obtain a different shape (shown in figure 4.7).
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4.12 Architecture of the Proposed Model
We have ensured that our GAN model would run in a distributed environment with
privacy protection. We will call it Distributed GAN. For this model, we distributed
the standard DCGAN models to the client, and the clients will transmit back the
discriminator weights of their side for synchronization, as well as the weights of each
client-side generator to the main server generator for synchronization. This will
result in an improved main server generator and discriminator. Then the generator
can be used for data augmentation while protecting the privacy of the client’s data.

Figure 4.7: Proposed Model Architecture

4.13 Generator
In our generator model, there is one dense layer and three Conv2Dtranpose layers,
all of which include the activation function LeakyReLU (Shown in figure 4.8).
In a Federated learning environment, our GAN model contains both the discrimi-
nator and the generator, and it may be distributed across several networks.

4.14 Discriminator
Our discriminator model will take as input (28,28,1) images from the real dataset
and the generator. The discriminator model consists of three conv2D layers, batch
normalization, LeakyReLU, and its activation function (shown in figure 4.9).
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Figure 4.8: Architecture of the Distributed GAN Generator
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Figure 4.9: Architecture of the Distributed GAN Discriminator
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Chapter 5

Results and Analysis

5.1 Evaluating GAN
GANs are a highly difficult topic in a research field that has made remarkable strides
in recent years. We fed random noise to a GAN to generate this image. However,
there is no exact method for judging the realism of these images. We have no idea
how many pixels it should produce. Given this noise vector, it is unclear what pix-
els we are intended to generate. In addition, the discriminator that distinguishes
between true and false in this GAN is never perfect. And frequently overfits to dis-
tinguishing between real and fake images for its particular generator. It will probably
certainly take into account a huge number of images from our generator. They are
deceptive despite their lifelike appearance because they can distinguish certain fea-
tures. Consequently, the generator may exhibit minute, but occasionally noticeable,
characteristics. Consequently, there are no perfect or universal discriminators that
can compare two generators and claim which is superior to the other.

5.2 DCGAN
The DCGAN training loop begins with the input of a random seed to the generator.
This seed is subsequently used to generate an image. The discriminator is then used
to distinguish between genuine and fake images. For each of these models, the loss
is calculated, and the gradients are utilized to update the generator and discrimina-
tor. Then, we will train our model over 100 epochs with a noise dimension of 100,
representing the generator’s inputs. The DCGAN was then trained in 64 batches.
We will produce 16 images while training our model. The output of the model is
(shown in figure 5.1).

The discriminator loss for the real image (blue) and the discriminator loss for the
fake images (red) are depicted in one of the subplots in the figure above (orange). A
green line represented the generating loss. It is clear after 500 epochs that all three
losses are erratic and then stabilizes. The blue line indicates the true discriminator
accuracy, whereas the orange line shows the false discriminator accuracy (Shown in
figure 5.2).
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Figure 5.1: Output Images of the DCGAN

Figure 5.2: Comparison between Generator and Discriminator Loss
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5.3 WGAN-GP
During WGAN-GP model training, we were required to train the generator and cal-
culate the generator loss for each batch. The discriminator is then trained, while the
loss and gradient penalty are calculated. Once the gradient penalty has been com-
puted, it must be multiplied by a predetermined weight factor. After multiplication,
the gradient penalty must be included in the gradient loss, and the discriminator
and generator losses must be returned as a dictionary.

Figure 5.3: Output Images of the WGAN

Before beginning model training, we must first train the discriminator. In contrast to
the generator, which was trained in a single step, the discriminator is being trained
in three steps. We employ a learning rate of 0.0002 and beta values of 0.5 and 0.9
for our generator and discriminator optimizers. Model output is (shown in figure
5.1).

5.4 Distributed GAN
We used 83384 OCT images to train our model, and we created one discriminator
and one generator that will be distributed across three separate networks. In each
of these neural networks, a dropout layer is typically added.

Instead, we chose batch normalization since it accelerates the learning process. We
chose a learning rate of 0.003, a noise size of 128, and a batch size of 64 to train
the model. After training our model, we discovered the following results (shown in
figure 5.4).
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Figure 5.4: Output Images of the Distributed GAN
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Chapter 6

Conclusion

In the realm of deep learning, the gravity of a substantial dataset knows no bounds.
As a result, the dearth of medical data impedes research in a large field. With the
help of state-of-the-art technology like GAN, we can compensate for the data lacking
by augmentation all the while protecting the privacy of the sensitive data. Using
an OCT image dataset, this study demonstrates that while DCGAN and WGAN
contribute to data augmentation, they fail to secure data in a federated environment.
Following that we introduced Distributed GAN which inherently conserves data
privacy, and surpasses the limitations of federated learning such as mode collapse
and data leakage. By utilizing Distributed GAN, we were able to accomplish our
two key objectives of data augmentation and protection, despite our inability to
produce high-quality images. By experimenting with multiple GANs, we were able
to establish the relationship between GANs and data preservation, as well as their
pros and downsides.

6.1 Challenges
The most glaring issue we faced was a lack of computational capacity. Due to
insufficient GPU and RAM, we were forced to resize our images to (28*28). This
negatively impacted our output image quality, and we were compelled to reduce the
number of epochs because the training was time-consuming.

6.2 Future Works
In this study, we trained our model using an OCT image dataset, and we hope
to expand our research in the future to include non-iid data. In addition, it is
impossible to evaluate GAN output beyond the FID score since precise head-to-
head comparisons across different discriminators and generators are a long-term
aim that is now unattainable. In the near future, we intend to investigate the FID
scores of our DCGAN, WGAN, and Distributed GAN autonomously. Moreover, we
plan to train multiple discriminators and generators on the central server of our
distributed GAN. Due to their ability to be distributed among multiple clients, the
client-server retracts the weights from the client side and updates the main server.
This modification might solidify the data leakage risk and mode collapse of federated
learning.
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