
Creating a new Cryptographic
algorithm using Collatz

Conjecture

by

Shoumya Shuprabho Rasheed

18201055

Rakibul Hasan Remon

18201139

Monwar Labib

21101095

A thesis submitted to the Department of Computer Science and Engineering

in partial fulfilment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering

Brac University

September 2022

© 2022. Brac University

All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our original work while completing a degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material that has been accepted or submitted for
any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Shoumya Shuprabho Rasheed
18201055

Rakibul Hasan Remon
18201139

Monwar Labib
21101095

i

Approval

The thesis titled “Creating a new Cryptographic Algorithm using Collatz Conjec-
ture” submitted by

1. Shoumya Shuprabho Rasheed (18201055)

2. Rakibul Hasan Remon (18201139)

3. Monwar Labib (21101095)

Of Summer 2022 has been accepted as satisfactory in partial fulfilment of the require-
ment for the degree of B.Sc. in Computer Science and Engineering on September
28, 2022.

Examining Committee:

Supervisor:
(Member)

Mobashir Monim
Lecturer

Department of Computer Science and Engineering
Brac University

Thesis Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam
Associate Professor

Department
Brac University

Head of Department:
(Chair)

Dr. Sadia Hamid Kazi
Associate Professor and Chairperson

Department of Computer Science and Engineering
Brac University

ii

Abstract

Owing to the increasing need for the security of information and data access, due
to the steep increase in the rate at which there are more methods of breaking the
existing algorithms, which primarily rely on a prime number, this thesis looks at
the possible use of the Collatz Conjecture to create a new cryptographic algorithm
as an alternative to existing methods. This research document discusses network
security and different encryption and decryption schemes. We have highlighted and
analysed AES, RSA, and a few others and how each model implements different
mathematical behaviour. In this age of fast communication, users are often more
concerned about their information being transmitted as swiftly as possible without
overthinking its security. Cryptography is a method that has been used for data
security for many years now, and new improvised methods have been introduced to
enhance the already existing norms. Our proposed model attempts to create safe
and secure communication over a networked system. The main objective of this
research is to find a novel data security method that would strengthen the already
existing ones.

Keywords: Keywords: Cryptography; Encryption; Decryption; Collatz Conjec-
ture; Symmetric; Asymmetric; Diffie-Hellman

iii

Dedication

We dedicate our thesis to our friends, family, and, most importantly, our teachers.

iv

Acknowledgement

First and foremost, all praise to the Almighty Allah for whom we have managed to
complete our thesis smoothly. Secondly, to our Supervisor, Mobashir Monim, for
his kind support and advice in our work. He helped us whenever we needed help.
Moreover, we sincerely express our gratitude to all our respective teachers, compan-
ions, and staff for all the support throughout. Finally, we are forever indebted to
our parents for their continuous support and prayers. It is only because of them
we got this amazing opportunity to learn and complete our undergraduate degree.
With their kind support and prayer, we are now on the verge of our graduation.

v

Table of Contents

Declaration i

Approval ii

Abstract iii

Dedication iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables ix

Nomenclature x

1 Introduction 1
1.1 Research Problem . 2
1.2 Research Objectives . 2

2 Historical Cryptography 3
2.1 World War I . 3
2.2 World War II . 4

3 Literature Review 5
3.1 Definition . 6

3.1.1 Cryptography . 6
3.1.2 Symmetric Cryptography . 6
3.1.3 Asymmetric Cryptography . 6
3.1.4 Hashing . 6
3.1.5 Encryption . 7
3.1.6 Decryption . 7
3.1.7 Collatz Conjecture . 7
3.1.8 DIFFIE HELLMAN . 7
3.1.9 Shift Cipher . 8
3.1.10 Byte Injection . 8
3.1.11 Byte X-OR . 8
3.1.12 Byte Substitution . 8

vi

3.2 Related Work . 8
3.2.1 Diffie-Hellman . 8
3.2.2 Byte Substitution . 9
3.2.3 Byte X-OR . 10
3.2.4 Null Byte Injection . 11
3.2.5 Shift Cipher . 12

4 Work Plan 14
4.1 Concern with Existing Model . 14
4.2 Architecture of the Proposed Model 14
4.3 Motivation for Design Choices . 17
4.4 Key Negotiation and Generation Technique 19

4.4.1 Diffie-Hellman . 19
4.4.2 Step Count from Collatz Conjecture 20

4.5 Methods used in the Algorithm . 21
4.5.1 Shift Cipher . 21
4.5.2 Byte X-OR . 21
4.5.3 Byte Injection . 22
4.5.4 Byte Substitution . 22

4.6 Complete Breakdown of Algorithm 23

5 Results and Analysis 37
5.1 Implementation and Computational cost 37
5.2 Randomness and confusion of Ciphertext 40
5.3 Parametric Comparison and Secret Key 41

6 Conclusion 42

Bibliography 44

vii

List of Figures

2.1 Zimmerman Telegram . 3
2.2 The Enigma machine . 4

3.1 Types of Cryptography . 6
3.2 Basic Workflow of Encryption and Decryption 7
3.3 Twofish Mechanisms . 11

4.1 Encryption and Decryption process 16
4.2 Communication between Sender and Receiver 17
4.3 The average percentage of each mathematical property for n number

of random arrays . 18
4.4 Demonstration of Diffie-Hellman . 19
4.5 3n + 1 Conjecture . 20
4.6 Basics of Shift Cipher . 21
4.7 Basics of X-OR . 22
4.8 S-box used for byte substitution in AES[S-BOX] 23
4.9 Tree demonstration of 3n+1 Conjecture 25

5.1 Autotime for Encryption . 39
5.2 Autotime for Decryption . 39

viii

List of Tables

4.1 Parameters set for the Proposed Model 15
4.2 Design Choice Indicator . 18
4.3 Values used in Sample Problem . 26

5.1 Execution and Autotime for different Message and key Size 38
5.2 Comparison between RSA, AES and Proposed Model 41

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

3DES Triple Data Encryption Algorithm

AES Advanced Encryption Standard

ASCII American Standard Code for Information Interchange

D −H Diffie-Hellman

DES Data Encryption Standard

ECC Elliptical curve Cryptography

GCHQ Government Communication Headquarters

IDEA International Data Encryption Algorithm

MDS Maximum Distance Separable

PDF Portable Document Format

PHP Hypertext Preprocessor

PHT Pseudo Hadamard Transform

PWLCM Piece Wise Linear Chaotic Map

RAM Random-Access Memory

ROM Read-only Memory

RSA Rivest-Shamir-Adleman

S −BOX Substitution Box

TM Trade Mark

URL Uniform Resource Locator

UTF − 8 Unicode Transformation Format 8

WWII World War II

X −OR eXclusive OR

x

Chapter 1

Introduction

Technology has advanced over the years at the speed of light. We have achieved
so much in the past few decades that nothing seems impossible now. With the
ever-growing world of information and data, it has become one of the most crucial
and, at the same time, gruelling tasks to make sure that data is secured and not
going into the hands of a transgressor. Modern technology involves a great deal
of data that requires confidentiality. Cryptography is a method by which that is
achieved. [18] In the beginning, the Roman cryptography method was known as the
Caesar Shift Cipher. A particular number was fixed (three being a common choice),
and that number shifted the letters of a message. Then, the letters of the recipient
of this message were moved back by the same number, and the original message
was obtained. Since that time, it has been upgraded quite a few times. It involves
techniques that ensure data security for reliable and safe communication.

When describing cryptography, two kinds of texts are in use; plaintext and cipher-
text. Plaintexts are transparent data understandable to everyone who has access to
it. Ciphertexts are plaintexts that have been encrypted using cryptography.

Cryptography is mainly divided into two major classes; transposition and substitu-
tion. Furthermore, two basic [1] and almost quite outdated methods are commonly
used for cryptography; monographically, involving one character at a time, and
poly-graphically involving more than one character.

The rearrangement of characters to encrypt information is the primary role of cryp-
tography through transposition. The characters in the plaintext each have a different
frequency of occurrence distributed over a wide range, but a cryptanalyst can easily
deal with this. A cryptanalyst performs analysis on a ciphertext to transform it
back to plaintext.

The primary motivation behind this research is to create a new system for informa-
tion and data security that would increase the strength of the reliability of commu-
nication over the network. And to bridge the gap between security issues and safe
communication, cryptography will play a major role.

1

1.1 Research Problem

As the internet expands, it is more susceptible to the breach of sensitive data, and
now more than ever, cyber security requires a robust system to ensure information
security. As the world advances with technology every day, all kinds of information
are transmitted over the internet. Networked computers, smartphones, and all other
personal computers have made information and data less physical [6] and thus more
open to the possibility of getting into the hands of transgressors.

Over the past few decades, the increased number of networked computers and sys-
tems resulted in a surge in cybercrime. Therefore, more opportunities are created
for unauthorised activities due to billions of internet users and countless information
held by governments and businesses. The lack of knowledge of internet users and
their vulnerability contributes to this global issue.[6]

Even after meteoric advancements in information, communication, and the implica-
tion of data science in various fields of technology, numerous threats to information
encryption are still a matter of concern. As of 2021, according to [20], the Covid-19
pandemic has influenced the practice of remote work, which has significantly raised
the rate of cyber threats and has opened up new trends in cyber security. This
indicates that we are still lagging in information security and have not yet achieved
a solid solution.

Therefore, cryptography and its advancements are essential to combat different
forms of cyber threats, especially those involving data theft, data breach, and other
unavoidable vulnerabilities affecting data transfer.

1.2 Research Objectives

As mentioned earlier, the main goal of this research is to create an algorithm for
cryptography that enhances the efforts to stop all forms of threats to the information
system. To achieve that, we will try to incorporate a relatively new technique using
an unconventional mathematical sequence to build the model. The use of this quite
mysterious yet extremely intriguing mathematical sequence, the Collatz Conjecture,
will be the most challenging part.

2

Chapter 2

Historical Cryptography

2.1 World War I

In early 1917, British cryptographers discovered a German-encoded telegraph during
the early stages of World War I. This communication was known as the Zimmerman
Telegram. These cryptographers deciphered the message successfully, altering the
direction of cryptanalysis. Using this decoded correspondence, they urged the US
to join the war [14].

The Zimmerman Telegram was a top-secret message sent between German Foreign
Secretary Arthur Zimmerman and German Ambassador Heinrich von Eckardt in
Mexico. According to the letter, if Mexico joined the German side, it might reclaim
its territories of New Mexico, Texas, and Arizona. Despite this offer, Mexico decided
that reclaiming its former territories was neither practicable nor desirable.

The telegraph was delivered at the height of World War I [14]. Until then, the
United States has attempted to preserve its neutrality. The British and other allies
had appealed to the US for help, and public opinion in the US was progressively
shifting toward war. The British conveyed the decoded telegram to the United
States on February 24, 1917, and On April 6, 1917, the US declared war against
Germany and its allies. [5]

Figure 2.1: Zimmerman Telegram

3

2.2 World War II

German field agents used the Enigma machine to encode and decode letters and
communications throughout World War II. The Enigma machine, like the Feistel
function of the 1970s, was one of the first automated ways of encrypting data using
an iterative cipher. It utilised a series of rotors to allow the user to encode or decode
a message with the use of power, a fluorescent bulb, and a reflection. The starting
position of the rotors was determined with each encrypted data and was based on a
predetermined sequence that was based on the calendar, enabling the system to be
used even if this was compromised.

When the Enigma was in use, each keypress caused the rotors to move in alignment
from their predefined positions, resulting in the formation of a new letter. With a
text in hand, the user would input each letter into the machine using a typewriter-
like key. The rotors would align, and a character would illuminate, exposing to the
operator the letter’s real identity. When the operator hits the key, the illuminated
letter transforms into encrypted text. Although the rotors’ continually [22] changing
the internal amount of energy was not random, it did produce a simple substitution
cipher that may be unique. [19]

Figure 2.2: The Enigma machine

4

Chapter 3

Literature Review

To understand cryptography and its applications, we must understand how it has
been used over the years. It is not a modern concept; rather, it has been in prac-
tice for a long time to secure communication. Before the introduction of modern
encryption and decryption devices, cryptography was used to cover sensitive infor-
mation using basic written texts by soldiers in wars, military leaders, [15] spies, etc.
With the introduction of modern technology, it is now used not just for information
confidentiality but also for message integrity checking, identification authentication,
interactive proofs, etc.

In today’s world, every commercial application needs a higher level of security and
confidentiality of information. As a result, to increase the quality of confidential-
ity of information, numerous steps have been taken to improve the cryptographic
algorithm. Cryptographic algorithms must be designed with an even distribution
of computational power and security. As mentioned earlier, algorithms nowadays
use either symmetric or asymmetric caters according to their needs. Symmetric
and asymmetric algorithms are used for the conversion of plaintext to ciphertext.
A ciphertext is a parametrized family which consists of encryption functions. The
reason for this construct to ciphertext is that hackers cannot invert the encryption
function except for people who know the key, as a result, they can see that there is
a message but cannot read it as they do not have the key and therefore do not know
which function from the family to invert from.[15]

As we have seen before, cryptography’s importance and application are very well-
acknowledged. However, extensive research on different cryptographic algorithms
and its model has not been done for a very long time [15]. With the ongoing devel-
opment of modern technology, the demand for different encryption techniques has
been on the rise. As we learn and research more about the history of different cryp-
tography, we must be proactive and keep in mind the possible future developments.

As mentioned, we will focus on our cryptographic model incorporating Collatz con-
jecture or the 3n+1 mathematical sequence. To do so, it is important to have
deep knowledge of the existing mathematical model for symmetric and asymmetric
cryptographic algorithms.

5

3.1 Definition

3.1.1 Cryptography

Cryptography studies secure communication between a sender and receiver. Its main
goal is to convert messages and data over a communication channel so that only the
sender and its dedicated recipient can interpret the message. Cryptography includes
encryption, hashing, etc. Various cryptographic methods have been developed over
the years using complex mathematical logic to create encryption and decryption
algorithms. These algorithms are used to increase the integrity of communication.

3.1.2 Symmetric Cryptography

For encryption and decryption, the same key is used in this method of cryptogra-
phy. The sender and receiver must have a shared key when converting plaintext to
ciphertext and vice versa.

3.1.3 Asymmetric Cryptography

To tackle the major challenges of key creation and distribution, asymmetric cryp-
tography was developed. Each sender and recipient have their own key in this sort
of encryption. An asymmetric cryptosystem contains a public and private key for
each user. At all times, the secret key must be kept private. However, the public key
can be distributed. Encrypted data may only be decrypted using its complementary
private key.

3.1.4 Hashing

The job of hashing is to calculate a fixed-size bit string value from a file that contains
a block of data. Hashing converts this data into a shorter fixed length that contains
the original string. The hash value contains the summary of the entire file. Hashing
helps to gain faster access to elements in the string.

Figure 3.1: Types of Cryptography

6

3.1.5 Encryption

To simply define encryption, it is the conversion of information and data into un-
intelligible codes that would prevent unauthorised access to it. It is a process to
ensure the digital protection of data using mathematical or other logical methods.
Encryption enhances the integrity and maintains privacy in a communication net-
work.

3.1.6 Decryption

The process of returning data to its original state after it has been encrypted is
known as decryption. During decryption, the system brings out and transforms the
jumbled data into letters and visuals that not only the reader but also the system
can comprehend. Decryption can be done manually or automatically. However, a
combination of keys or passwords can also be used.

Figure 3.2: Basic Workflow of Encryption and Decryption

3.1.7 Collatz Conjecture

Collatz conjuncture is a unique and simple approach initially devised by German
mathematician Lothar Collatz in 1937 [2]. Although it is impossible to explain this
theorem mathematically, it is theoretically proven. If any number is even, n/2 would
be used. In the case of odd numbers, it will be 3n+1. Using this approach, the result
will always be a positive integer of 1. Until the sequence reaches an infinite loop of
4, 2, and 1.

3.1.8 DIFFIE HELLMAN

The Malcolm Williamson of GCHQ originally created the Diffie-Hellman key ex-
change method. It was later improved, and only a shared secret could be created
using this technique. Its security is given by the discrete log problem’s computa-
tional complexity. The common symmetric key would be (gb)a = gba = gab mod
p.

7

3.1.9 Shift Cipher

Caesar Cipher is known as one of the most basic and earliest encryption systems.
Another name is substitution Cipher. In this method, one letter is substituted by
another letter, moving the alphabet down in certain places, and every letter shifts
one bit right or left.

3.1.10 Byte Injection

The concept of byte injection is similar to that of a null byte injection, where null
characters are injected into a URL that alters the information.

3.1.11 Byte X-OR

Byte X-OR or an eXclusive OR operation is all about a key size ranging from 1-256
values of a byte. For each corresponding bit, the byte X-OR takes patterns of 2-bit
of equal lengths and performs eXclusive OR operations.

3.1.12 Byte Substitution

Byte substitution is a type of substitution cipher. Generally, a single letter or pair of
letters from the regular text are substituted with other symbols or groups of symbols
in a substitution cipher, a data encryption system.

3.2 Related Work

Here, we have reviewed some popular existing models of cryptography which are
already in use or have been used in the past. We have tried to figure out the
mechanism for each cryptographic system to determine how we can proceed with
our model. We have highlighted some key operations used for cryptography and a
few of the algorithms that have already incorporated them.

3.2.1 Diffie-Hellman

The Diffie-Hellman algorithm is named after White Diffie and Martin Hellman. The
main function of this algorithm is to use a secure channel for the transfer of a public
or a private key. The Diffie-Hellman algorithm works in the following way:(1)The
receiver has the ownership of both the private and public keys generated by the
Diffie-Hellman algorithm. (2)Sender acquires the public key that the receiver gen-
erates, which is then used in the Diffie-Hellman algorithm to establish a new set of
public keys that will be used temporarily. The sender then takes the recently gen-
erated public keys which were created by the receiver to create an unplanned secret

8

number known as the “session key”, which will be used to encrypt the forwarding
data, including the temporary public key. Subsequently, the receiver can derive the
session key mathematically; as a result, the rest of the ciphertext message can be
decrypted easily. [7]

3.2.2 Byte Substitution

Polyalphabetic Substitution Cipher

This article [9] shows us how polyalphabetic cipher maintains data integrity using
multiple subkeys for every plaintext letter. Cipher substitution has its fair share of
use in many algorithms. Polyalphabetic cipher uses alphabetic substitution. In a
polyalphabetic substitution cipher, the plaintext is enciphered upon its arrival in the
text. Here each letter carries a one-to-many connection with its alternatives. The
term “Polyalphabetic” refers to using multiple keys instead of a single one. Here
each key is a stream of subkeys that solely depends on the position of the plaintext
character.

For example: ‘b’ can be enciphered as ‘e’ at the start of the text and as ‘n’ in the
middle. As a result, polyalphabetic cipher hides the initial letter frequency, making
it difficult for attackers since they cannot use individual letter frequency static to
divide the ciphertext.

Polygraphic Substitution Cipher

In [2] it demonstrates how a polygraphic substitution cipher is built up and works to
perform tasks that are superior to Polyalphabetic Substitution Cipher. Technically
we can say, Polygraphic substitution Cipher is an upgrade to Polyalphabetic Sub-
stitution Cipher, with the substitution that involves replacing a group of Plaintext
messages with another different group of characters from the ciphertext. In Poly-
graphic Substitution Cipher, the plaintext letter is divided into groups of adjacent
letters while maintaining the same length, then transformed with different letters
while retaining the same size in cipher text.

AES

With the extensive use of computers and the growing need for computer technology,
particularly in military and government [11] functions, computer security is becom-
ing more important. The issue to be solved is how to ensure the confidentiality,
integrity, and usefulness of a messaging system’s hardware and software and the
message being processed, stored, and delivered. The AES algorithm works with
128-bit input and produces 128-bit output. The key used to encrypt the input data
might be 128, 192, or 256 bits long. Encryption and decryption often employ the
128-bit key. It makes use of the same key for encryption and decryption. AES uses
multiple rounds of different key sizes e.g.; 10 rounds for 128-bit keys. For any key
size, the first round is common in which the plain text is X-ORed with the key to
produce 128, 192, or 256 states. The operations shiftRows, subBytes, mixColumns,
and addRoundKey are performed on the states by each middle round. There is no
[12] mixColumns step in the last round, comparable to the middle of the step. The
opposite of encryption is decryption. The Inverse mixColumn Steps are not included

9

in the final decryption rounds.

3.2.3 Byte X-OR

Blowfish
This article [21] describes the history and working mechanism of Blowfish. Blow-
fish is a symmetric algorithm, 64-bit block cipher with a changeable length. It was
created in 1993 by Bruce Schneier as a ”general-purpose algorithm.” It was devel-
oped to be fast, untied, and a possible replacement for DES and IDEA algorithms.
Blowfish consists of a block size of 64 and a key size length that ranges from 32 to
448 bits. Blowfish also has 16 Feistel iterations, where each iteration acts on 64-bit
blocks divided into two 32-bit words. One encryption key is used for the encryption
and decryption process.

Blowfish is divided into two parts:
1. Data encryption: It is a 16-round Feistel network that consists of a key-dependent
permutation and a key-dependent data substitution. S-boxes are used during the
substitution method, which plays a vital part in the encryption process. The en-
cryption process mainly works in X-OR logic gates.
2. Key expansion and subkeys: In this process, the bit keys are divided into several
subkeys in this process. These subkeys play an essential factor in the algorithm.
Eighteen 32 bits are in the P array with four 32 bits S-boxes that consist of 256
entries. The subkey calculation is as follows:

• The S and P boxes are adjusted to hexadecimal digits of pi.

• The first elements in the P array, P1, are X-ORed with the initial 32 bits. The
same goes for P2, which is X-ORed with the next 32 bits. The process goes
on till every P-array is X-ORed.

• The zero strings in the algorithm are encrypted.

• The subsequent arrays are replaced with the output.

• The output gets encrypted using blowfish by using modified subkeys.

• After the previous process is completed, the P3 and P4 are modified.

• It goes until all P arrays and S-boxes are reformed.

Twofish

This article [3] explains how Twofish was designed to overcome blowfish. Since
blowfish had some limitations. Twofish is the successor of blowfish and uses a single
key for both encryption and decryption purposes; it can have a block size of 128,
192, and 256 bits. Twofish can be used in network applications where keys change
frequently and in systems where minimum or even no RAM or ROM is needed.

10

Figure 3.3: Twofish Mechanisms

Through this figure, we can see that Twofish is a Feistel network. This means that
half of the function is passed through an F function, and the later half is X-ORed
with the result that comes out from the F function.

During each round, two 32-bit words are passed into the F function. Four bytes are
formed from each word, which is forwarded to four different key-dependent S-boxes.
The result of the 4 output bytes is then combined with the help of the MDS matrix
and formed into a 32-bit word. After that, the two 32-bit words were combined
with the help of PHT, and then they were passed on to be added to two round
subkeys and, later on, X-ORed with the right half of the text. 1-bit rotations occur
before and after the X-OR operation happens. To prevent an attack, an additional
round is added by pre-whitening and post-whitening to ensure security; they act as
additional subkeys, which are then X-ORed before and after the last round in the
text block.

3.2.4 Null Byte Injection

[4] shows how null byte injection is used to benefit the third party to get valuable
information from a user. Null byte Injection is used to take advantage of avoiding
sanity checks on the web framework by adding null byte characters, which are URL
encoded and opened by the user. Later on, after the injection process becomes
successful enough, it can then go on to help attackers to gain unauthorised access
to system files. For example:

11

• An attacker wants to upload a PHP file like “ABC.php” with “ABC” being
the malicious file, but the extension allowed by the system is only a .pdf file.

• So the attacker can reconstruct the file name as “ABC.php%00.pdf ” and then
uploads the file.

• The application reads the file, sees that it is a .pdf file extension, authenticates
it, and throws the end of the string since it contains the null byte. This way,
the “ABC.php” gains access to the system file and lets the attackers access a
user’s system files.

3.2.5 Shift Cipher

This article [17] displays that back in the ancient days how the shift cipher played
an important role during critical times. Military establishments have had a huge
effect on encryption. The constant need for private and secure connections began
in the information age, around the 80s. Since the internet was introduced in the
1960s, it wasn’t popular till 1989. The need for increased security of Information has
become a must. Encryption helps to hide data by altering it into unreadable code.
Leon Battista Alberti came up with an encryption method that involves a cipher
disk, which involves sliding mechanical disks that change with several substitution
ciphers by encryption. Around the 1500s, Blaise De Vigenere implemented Alberti’s
polyalphabetic cipher style, which then came to be known as Vigenere Cipher. The
process is almost the same as the Caesar cipher, with a slight tweak that involves
the key changing during the encryption process. The Vigenere Cipher employs a
letter grid and the replacement technique. Vigenere Square or Vigenere Table is
the grid utilised, which consists of 26 alphabets offset. The process starts off with
a specific hidden word that will be used as an encryption key. The plaintext’s first
alphabet will be aligned on the x-axis, while the concealed word’s first letter will be
aligned on the y-axis. The plaintext character is then exchanged for the consonant
letter. This process goes on until all the keywords are used. Example:

The plaintext to be encrypted is “Attack”. Here the hidden word chosen by the
person encrypting is “Lemon”.

Since the character size doesn’t match the encrypted plaintext, the keyword will
get repeated until it matches the plaintext length. The substitution starts with the
letter L, the row, and the letter A in the column; the joint letter is then found, L.
This process goes on until the whole plaintext is substituted. The end product is

Plaintext: ATTACK.

Keyword: LEMONL.

Ciphertext: LXFOPV.

The decryption process uses a similar method, with the person having to discover
the column that correlates with the ciphertext character in the keyword’s row.

12

From the above discussion, it can be observed that the established models fulfilled
their purposes. Although the established models had some limitations, there exists
room for improvement. So in our proposed model, we have taken in the factors of
limitations and tried to implement the methods uniquely. For ex: In a polyalpha-
betic substitution cipher, multiple keys are generated for a single plaintext character.
In the polygraphic substitution cipher, the same situation occurs instead of a single
plaintext character group of plaintext characters being taken, and each group must
contain the same length. In our proposed model, we plan to execute byte substitu-
tion to create more chaos in the algorithm. We have tried implementing the same
general concept for byte X-OR by incorporating different mathematical properties.
Moving on to Null byte injection, we can see that it is used to breach safety protocols
to cause harm to a person’s system software. In our model, we made an effort to use
Byte injection, keeping the same concept of Null byte injection with a possibility of
an additional mathematical equation to create uniqueness. Shift cipher had a brief
history from the early days, so in our proposed model, we intend to use a few tweaks
to set it apart from the existing models and make it more complex than it already
is.

13

Chapter 4

Work Plan

4.1 Concern with Existing Model

AES came into the limelight when DES and 3DES could not fulfil their purposes.
The issue regarding DES was that it ran very slow, specifically [13] related to appli-
cations, and the 56-bit key size was the biggest downside. One of the main concerns
with 3DES is that it cannot withstand massive cyber attacks [4]. Though AES re-
placed DES and AES, it also had its fair share of issues with AES being too simple,
and the same encryption happens with every box. ECC has a few issues; first of
all, it is the size of the encrypted message compared to RSA.[10] Another issue with
the RSA algorithm is that the algorithm is quite complex to implement, leading to
errors. Diffie hellman is vulnerable to attacks where a user’s identity is not estab-
lished; as a result, a hacker can alter the message’s meaning. During key scheduling,
Blowfish consumes a huge amount of time. So to sum it all up, keeping all those
issues in mind, we will try to enhance the security system in our algorithm so that
it can withstand the issues the previous algorithms had to deal with.

4.2 Architecture of the Proposed Model

In this section of the paper, we will be demonstrating the tentative structure of our
proposed model. We will be looking into implementing the Collatz conjecture in our
algorithm. As we know, cryptography can be of two types; symmetric and asymmet-
ric. Our focus is tilted towards creating a symmetric cryptographic model; however,
an alternative asymmetric model can also be implemented. Like any other cryp-
tographic model, our proposed one will also feature an encryption and decryption
mechanism.

Before going into the main demonstration, we will look into the framework we have
set for our model. As we can see in table 4.1, we have designed our cryptographic
algorithm following the basic concept of symmetric encryption. We have imple-
mented a stream cipher scheme using an array of 256 numbers which will be acting
as the encryption or decryption key. For our proposed system, we have decided to
implement the Diffie-Hellman key exchange protocol followed by the application of

14

the Collatz Conjecture. A detailed description of the architect is in the following
sections of this paper.

Note: We have used the example of Alice and Bob to demonstrate communication
between them wherever applicable.

Parameters of Proposed Model Classification
Type of Cryptography Symmetric

Number of keys 1
Key Size 256 number array

Key size in bits Variable
Key Negotiation Diffie-Hellman
Cipher Type Stream

Table 4.1: Parameters set for the Proposed Model

Pseudocode of Algorithm:

Message = Plaintext

Secret Random Number (n) → Diffie Hellman key Exchange

Secret key (k) → step count from Collatz Conjecture

Define perfectSquareCheck (k):
Check for Perfect Square Number

Define isPrimeCheck (k):
Check for Prime Number

Define conPrimeCheck (k):
Check for Consecutive Prime Number

Define encryption (Message, k)

Ciphertext = “ ”

for i in k

if conPrimeCheck(i) == true:

do Shift Cipher on Message

elif perfectSquareCheck(i) == true:

do Byte X-OR on Message

elif isPrimeCheck(i) == true:

do ByteInjectiononMessage

else:

do Byte-Substitution on Message

return Ciphertext

15

Define decryption (Message, k)

Plaintext = “ ”

for i in k

if conPrimeCheck(i) == true:

do Shift Cipher on Ciphertext

elif perfectSquareCheck(i)== true:

do Byte X-OR on Ciphertext

elif isPrimeCheck(i) == true:

remove character next to current Ciphertext

else:

do inverse Byte Substitution on Ciphertext

return Plaintext

Figure 4.1: Encryption and Decryption process

16

Figure 4.2: Communication between Sender and Receiver

4.3 Motivation for Design Choices

As we have shown in the previous section, how we have mapped out our model, in
this following section, we will be discussing how we reached our design implication.

Cryptography and concepts of mathematics go hand in hand. Our model uses
different operations on plaintext to generate a ciphertext. While creating a blueprint
of the model, the main objective was to create randomness in the encryption system,
which would eventually lead to a chaotic system generating a ciphertext that would
indicate no pattern and would be difficult to decrypt.

To achieve this, we have designed a simple python program that would take an array
of random numbers and give us the count for different mathematical properties,

17

which include; prime numbers, perfect squares, consecutive prime numbers, i.e. a
prime number followed by another prime number, and numbers which are neither
of these, we are referring to as numeral digits.

Figure 4.3: The average percentage of each mathematical property for n number of
random arrays

As we can see in the figure, the percentage of each mathematical property indicates
how often they appear in a random set of numbers. For our model, the key that we
will generate will be negotiated through the D-H protocol but will follow a random
pattern consisting of numbers with different mathematical entities. To make it
into a system that creates complexity, we have mapped our model in such a way
that the number which possesses the property with the highest percentage will be
used to encrypt/decrypt the plaintext implementing the most robust function and
the simplest form of encryption is assigned to the least occurring mathematical
attribute.

Encryption and Decryption
techniques in increasing

order of complexity

Assigned Mathematical properties
(rate of occurrence)

Shift Cipher Consecutive Prime (2.6%)
Byte X-OR Perfect square (3.0%)
Byte Injection Prime Number (15.7%)
Byte Substitution Numeral Digits (78.7%)

Table 4.2: Design Choice Indicator

18

4.4 Key Negotiation and Generation Technique

4.4.1 Diffie-Hellman

Malcolm Williamson of GCHQ created the Diffie-Hellman key exchange method,
which was then independently improved upon by Whitfield Diffie and Martin Hell-
man. Only a shared secret can be created using the Diffie-Hellman key exchange
technique. In most cases, the generated shared secret consists of a common sym-
metric key. Users can create a shared symmetric key using it. The discrete log
problem’s computational complexity is what gives Diffie-Hellman its security.

Let p be a prime number and g be a generator, where this p and g are public.

Alice selects a secret value, a

Bob selects a secret value, b

Alice sends ga mod p to Bob

Bob sends gb mod p to Alice

Both compute shared secret gab mod p

(gb)a = gba = gab mod p

Figure 4.4: Demonstration of Diffie-Hellman

19

4.4.2 Step Count from Collatz Conjecture

A mystery in the world of mathematics, such that it is called a conjecture and not
even a theorem. This is because the simple yet impossible to explain mathematical
problem, also referred to as the 3n+1 sequence, is yet to be formally proven. In his
abstract [8], Craig Alan Feinstein states that Collatz 3n+1 conjecture must have an
infinite number of lines and, therefore, cannot be formally proven. To define the
conjecture, we need to understand where the complication arises. If any positive
integer is chosen and it is an even number, we divide it by 2; and if it’s an odd
number, we multiply it by 3 and add 1. This sequence was initially devised in 1937
by German mathematician Lothar Collatz [2]. Following this pattern, the result of
any positive integer would be 1. This theorem is repeated until the sequence reaches
an infinite loop of 4,2, and 1.

The conjecture is so mesmerising that mathematicians have toyed with it for several
years. Some mathematicians have sought to deconstruct or rebuild the Collatz
conjecture into even more manageable parts. Due to its unique and simple approach,
there have been many applications concerning the conjecture.

Despite the straightforward and feeble outlook of sequence, it has intrigued numerous
mathematicians to dig deep into the problem, and in most cases, it has left them
with very few positive outcomes. Famous mathematician Paul Erdos rightly stated,
”Mathematics is not ready for such problems”.

Figure 4.5: 3n + 1 Conjecture

20

4.5 Methods used in the Algorithm

4.5.1 Shift Cipher

The Caesar Cipher method is rated as the most basic and earliest among the encryp-
tion systems. This technique is a substitution Cipher, where one letter is substituted
by another letter that moves the alphabet down in specific places of the given text.
This shifting can be shown such that A can be replaced by B, and B can be replaced
by C. Every letter is shifting one bit right. The same procedure is for the left shift
for Caesar Cipher.

Shift n in encryption phase:

E (x) = (x+n)

Shift n in decryption phase:

D (x) = (x-n)

Figure 4.6: Basics of Shift Cipher

4.5.2 Byte X-OR

Byte X-OR, also known as an exclusive OR operation, deals with a key size that
ranges from 1-256 values of a byte. Byte X-OR takes 2-bit patterns that have to be
of equal length and performs exclusive OR operations for each corresponding bit.

21

The output will only be 1 if only 1 of the bits is 1, and the output will be 0 if both
of the corresponding values are 0 or 1.

Figure 4.7: Basics of X-OR

4.5.3 Byte Injection

Byte injection is a process that is usually used to alter the nature of a message.
It involves the insertion (injection) of a random character (byte) into the string of
information which alters the meaning or value of the original message.

For example, the string ”Hello World!” may become ”Hell5o Wocrld!G” after three-
byte injections.

4.5.4 Byte Substitution

In the AES algorithm, a 16*16 matrix is used, which consists of byte values that are
known to be an S-box that contains a permutation of all 256 8-bits. The non-linearity
of an S-box is highly dependent on the dispersal of input data using an S-box. For the

22

generation of the S-box, it needs to go through 2 processes. In the first step, a piece-
wise linear chaotic map (PWLCM) is used to generate initial S box positions during
the post-processing technique; the dispersing property measures the maximum non-
linearity that follows a sequence. The second step follows reverse engineering, and
the dispersion property is used within the design loop or systematic dispersal of
the input substituting sequence. As a result, the controlled randomisation changes
the probability distribution of S-box differentials. This leads to substituting S-box
positions for output differences reverting to a known input difference.[16]

Figure 4.8: S-box used for byte substitution in AES[S-BOX]

4.6 Complete Breakdown of Algorithm

Now that we have established the basics of the model, we will be looking into a
further detailed demonstration of the encryption and decryption mechanism with
simple plain text. For any cryptographic procedure, key creation and negotiation
are very crucial steps. We are channelling our focus mostly on the encryption and
decryption process and using the Diffie-Hellman key exchange scheme for our secret
key encryption.

Theoretical Example

Secret Number Negotiation using Diffie-Hellman

23

Choosing a random large prime number, p = 79

Generator, g = 3

Alice:

Private key is 8

Public key = g(Alice′s private key) mod p

= 38 mod 79

= 4

Bob:

Private key is 14

Public key = g(Bob′s private key) mod p

= 314 mod 79

= 72

Shared Secret number:

Alice Compute:

Bob’s Secret Number = (Bob′s public key)(Alice′s private key) mod p

= 728 mod 79

= 13

Bob Compute:

Alice’s Secret Number = (Alice′s public key)(Bob′sprivatekey) mod p

= 414 mod 79

= 13

Secret Number array(n) =[13, 12, 19, 26, 31, 99, 81, 76, 31, 94, 66, 54, 43, 20, 86,
51, 10, 162, 60, 67, 49, 40..]

• For the entire process, the above mechanism will be implemented for creating
the Secret number array consisting of 256 numbers.

• After receiving the Secret number array, Alice and Bob will generate the Secret
key array using the Collatz Conjecture, for encryption and decryption.

• In our example, the step to reach the 4-2-1 loop is 7 for its corresponding
value of 13, which is the initial shared secret number in the array. 7 here is
the private key for the cryptographic method. Figure 4.9 below demonstrates
the process of key generation.

24

Figure 4.9: Tree demonstration of 3n+1 Conjecture

25

Plain Text Ascii/UTF-8
Shared Secret
number from
array

Using
Collatz Conjecture

to get the step count
[key set]

T 84 13 7
h 104 12 7
i 105 19 18
s 115 26 8

[space] 32 31 104
i 105 99 23
s 115 81 20

[space] 32 76 20
o 111 31 104
u 117 94 103
r 114 66 25

[space] 32 54 110
A 65 43 27
l 108 20 5
g 103 86 28
o 111 51 22
r 114 10 4
i 105 162 105
t 116 60 17
h 104 67 25
m 109 49 22

Table 4.3: Values used in Sample Problem

Table 4.3 demonstrates the first few stages of the working mechanism of the algo-
rithm. Here we have assigned a key to each character in the plain text according
to the index number of the key array. For e.g., the first value in the array is 13,
and the first character in the plain text is T; thus, we get 13 as its private key
for T. Similarly, we assign values from the array to each of the characters in the
plain text. Lastly, we can see that we have also assigned a value to each character
which indicates the step/hops it took for the key to reach the 4, 2, 1 loop in the
conjecture. This step count is the unique factor used for encryption and decryption
in this model.

26

Encryption

Now that we have achieved the step count, n for each character in the plain text,
Alice will be applying the previously mentioned methods on the plaintext index after
comparing the values of the step count.

Plaintext Message: This is our Algorithm

Secret Number array(n)= [13, 12, 19, 26, 31, 99, 81, 76, 31, 94, 66, 54, 43, 20, 86,
51, 10, 62, 61, 49, 66, 40. . . .]

Secret Step count array(key) = [7, 7, 18, 8, 104, 23, 20, 20, 104, 103, 25, 110, 27, 5,
28, 22, 4, 105, 17, 25, 22.]

Now to encrypt each character in the plaintext, Alice will compare the values of key
in pairs to determine their mathematical characteristics

Shift Cipher [key= 7]

Plaintext
Decimal Value

(Plaintext)
Decimal Value + key

Decimal Value
(Ciphertext)

Ciphertext

T 84 84 + 7 91 [

• The first two numbers in the key set are 7 and 7.

• 7 and 7 are double prime numbers; thus, Alice would encrypt the next plaintext
value using shift cipher.

Byte Injection [key= 7]

Plaintext
Decimal
Value

(Plaintext)

Plaintext,
(2 * key) +

128

Decimal
Values

(Ciphertext)
Ciphertext

h 104 104, (2*7)+128 104, 142 hŽ

• Similarly, Alice will compare the next two values which are 7 and 18. Since
the first value is a prime number, Alice will insert a character next to the
current index in the plaintext. To get the character, Alice will simply find the
Ascii/UTF-8 character using the formula:

– (2 * key) + 128, where the key is the step count for that particular
number.

– Here, the key is 7; therefore, the character that generates is Ž.

27

Byte Substitution [key= 18]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value
+ key

Decimal
Value

Hex
Value

S-Box
Value

S-Box to
Decimal
Value

Decimal
Value +

128

Decimal
Value

Ciphertext

i 105 105 + 18 (123)10 (7B)16 (21)s (33)10 33 + 128 161 ¡

• Since, in the secret key sequence the next key is 18 therefore, for values
that are simply neither prime nor a perfect square, Alice will carry out byte-
substitution.

– The plaintext value is added to the key, and its equivalent hex value is
generated.

– Using an S-box and the hex value, Alice will obtain the value which will
be used to replace the plaintext.

– As the value from the S-box is in hexadecimal, its value will be converted
to decimal.

– Lastly, 128 will be added to the value to get the equivalent Ascii/UTF-8
char which will give Alice the ciphertext.

– The above-mentioned steps are followed each time byte-substitution is
carried out.

Byte Substitution [key= 8]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value
+ key

Decimal
Value

Hex
Value

S-Box
Value

S-Box to
Decimal
Value

Decimal
Value +

128

Decimal
Value

Ciphertext

s 115 115 + 8 (123)10 (7B)16 (21)s (33)10 33 + 128 161 ¡

Byte Substitution [key= 104]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value
+ key

Decimal
Value

Hex
Value

S-Box
Value

S-Box to
Decimal
Value

Decimal
Value +

128

Decimal
Value

Ciphertext

[space] 32 32 + 104 (136)10 (88)16 (C4)s (196)10 196 + 128 324 ń

Byte Injection [key= 23]

Plaintext
Decimal
Value

(Plaintext)

Plaintext,
(2 * key) +

128

Decimal
Values

(Ciphertext)
Ciphertext

i 105 105, (2 * 23) + 128 105, 174 i®

28

Byte Substitution [key = 20]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value
+ key

Decimal
Value

Hex
Value

S-Box
Value

S-Box to
Decimal
Value

Decimal
Value +

128

Decimal
Value

Ciphertext

s 115 115 + 20 (135)10 (87)16 (17)s (23)10 23 + 128 151 —

Byte Substitution [key= 20]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value
+ key

Decimal
Value

Hex
Value

S-Box
Value

S-Box to
Decimal
Value

Decimal
Value +

128

Decimal
Value

Ciphertext

[space] 32 32 + 20 (52)10 (34)16 (18)s (24)10 24 + 128 152 ˜

Byte Substitution [key= 104]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value
+ key

Decimal
Value

Hex
Value

S-Box
Value

S-Box to
Decimal
Value

Decimal
Value +

128

Decimal
Value

Ciphertext

o 111 111 + 104 (215)10 (D7)16 (0E)s (14)10 14 + 128 161 Ž

Byte Injection [key= 103]

Plaintext
Decimal
Value

(Plaintext)

Plaintext,
(2 * key) +

128

Decimal
Values

(Ciphertext)
Ciphertext

u 117 117, (2 * 103) + 128 117, 334 uŎ

Byte X-OR [key= 25]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value ⊕

key

Decimal
Value

(Ciphertext)
Ciphertext

r 114 114 ⊕ 25 107 k

• Since for the above encryption, the corresponding key value is a perfect square(25),
thus Alice will carry out byte X-OR between 25 and the corresponding plain-
text char Ascii/UTF-8 value, as mentioned in the algorithm.

29

Byte Substitution [key= 110]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value
+ key

Decimal
Value

Hex
Value

S-Box
Value

S-Box to
Decimal
Value

Decimal
Value +

128

Decimal
Value

Ciphertext

[space] 32 32 + 110 (142)10 (8E)16 (19)s (25)10 25 + 128 153 ™

Byte Substitution [key= 27]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value
+ key

Decimal
Value

Hex
Value

S-Box
Value

S-Box to
Decimal
Value

Decimal
Value +

128

Decimal
Value

Ciphertext

A 65 65+ 27 (92)10 (5C)16 (4A)s (74)10 74 + 128 202 Ê

Byte Injection [key= 5]

Plaintext
Decimal
Value

(Plaintext)

Plaintext,
(2 * key) +

128

Decimal
Values

(Ciphertext)
Ciphertext

l 108 108, (2 * 5) + 128 108, 138 lŠ

Byte Substitution [key= 28]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value
+ key

Decimal
Value

Hex
Value

S-Box
Value

S-Box to
Decimal
Value

Decimal
Value +

128

Decimal
Value

Ciphertext

g 103 103 + 28 (131)10 (83)16 (EC)s (236)10 236 + 128 364 Ŭ

Byte Substitution [key= 22]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value
+ key

Decimal
Value

Hex
Value

S-Box
Value

S-Box to
Decimal
Value

Decimal
Value +

128

Decimal
Value

Ciphertext

o 111 111 + 22 (133)10 (85)16 (97)s (151)10 151 + 128 279 ė

Byte Substitution [key= 4]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value
+ key

Decimal
Value

Hex
Value

S-Box
Value

S-Box to
Decimal
Value

Decimal
Value +

128

Decimal
Value

Ciphertext

r 114 114 + 4 (118)10 (76)16 (38)s (56)10 56 + 128 184 ¸

30

Byte Substitution [key= 105]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value
+ key

Decimal
Value

Hex
Value

S-Box
Value

S-Box to
Decimal
Value

Decimal
Value +

128

Decimal
Value

Ciphertext

i 105 105 + 105 (210)10 (D2)16 (B5)s (181)10 181 + 128 309 ȷ̂

Byte Injection [key= 17]

Plaintext
Decimal
Value

(Plaintext)

Plaintext,
(2 * key) +

128

Decimal
Values

(Ciphertext)
Ciphertext

t 116 116, (2 * 17) + 128 116, 162 t

Shift Cipher [key= 7]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value ⊕

key

Decimal
Value

(Ciphertext)
Ciphertext

h 104 104 ⊕ 25 113 q

Byte Substitution [key= 22]

Plaintext
Decimal
Value

(Plaintext)

Decimal
Value
+ key

Decimal
Value

Hex
Value

S-Box
Value

S-Box to
Decimal
Value

Decimal
Value +

128

Decimal
Value

Ciphertext

m 109 109 + 22 (131)10 (83)16 (EC)s (236)10 236 + 128 364 Ŭ

Ciphertext: [hŽ¡¡ńi®—˜ŽuŎk™ÊlŠŬė¸̂ȷtqŬ

31

Decryption

Secret Random Number array(n) = [5, 12, 19, 26, 31, 99, 81, 76, 31, 94, 66, 54, 43,
20, 86, 51, 10, 62, 61, 49, 66, 40. . . .]

Secret Step count array(key) = [7, 7, 18, 8, 104, 23, 20, 20, 104, 103, 25, 110, 27, 5,
28, 22, 4, 105, 17, 25, 22.]

Ciphertext: [hŽ¡¡ńi®—˜ŽuŎk™ÊlŠŬė¸̂ȷtqŬ

Now to decrypt each character in the ciphertext.

Shift Cipher [key= 7]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

[91 (91-7)10 84 T

• Bob will compare the values of n in pairs to determine their mathematical
characteristics.

– The first two numbers in the key set are 7 and 7.

– 7 and 7 are double prime numbers. Thus Bob would decrypt the next
cipher text value using shift cipher.

Byte Injection [key = 7]

Ciphertext
Decimal Values

(Ciphertext)
Decimal Value

(Plaintext)
Plaintext

hŽ 104 ,142 104 h

• Similarly, Bob will compare the next two values which are 7 and 18, and since
the first value is a prime number, Bob will remove the character next to the
current index in the ciphertext. In this case, “Ž” will be removed from the
ciphertext.

Byte Substitution [key = 18]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -
128-bit

Decimal
Value

S-Box
Value

Hex
Value

Hex Value
to Decimal

Value

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

¡ 161 161 - 128 (33)10 (21)s (7B)16 (123)10 123 - 18 105 i

32

• Since in the secret key sequence the next key is 18, therefore values that are
simply neither prime nor a perfect square, Bob will carry out byte-substitution.

– The ciphertext value is taken, and 128 is subtracted from it, which is
then converted to its hex value.

– Using an S-box and the hex value, Bob will obtain the value which will
be used to replace the ciphertext.

– As the value from the S-box is in hexadecimal, its value will be converted
to decimal.

– Lastly, the key will be deducted from the value obtained from the S-box
to get the equivalent Ascii/UTF char which will give Bob the ciphertext.

– The steps as mentioned earlier are followed each time byte-substitution
is carried out.

Byte Substitution [key = 8]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -
128-bit

Decimal
Value

S-Box
Value

Hex
Value

Hex Value
to Decimal

Value

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

¡ 161 161 - 128 (33)10 (21)s (7B)16 (123)10 123 - 8 115 s

Byte Substitution [key = 104]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -
128-bit

Decimal
Value

S-Box
Value

Hex
Value

Hex Value
to Decimal

Value

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

ń 324 324 - 128 (196)10 (C4)s (88)16 (136)10 136 - 104 32 [space]

Byte Injection [key = 23]

Ciphertext
Decimal Values

(Ciphertext)
Decimal Value

(Plaintext)
Plaintext

i® 105, 174 105 i

Byte Substitution [key = 20]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -
128-bit

Decimal
Value

S-Box
Value

Hex
Value

Hex Value
to Decimal

Value

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

— 161 161 - 128 (33)10 (21)s (7B)16 (123)10 123 - 18 115 s

33

Byte Substitution [key = 20]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -
128-bit

Decimal
Value

S-Box
Value

Hex
Value

Hex Value
to Decimal

Value

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

˜ 324 324 - 128 (196)10 (C4)s (88)16 (136)10 136 - 104 32 [space]

Byte Substitution [key = 104]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -
128-bit

Decimal
Value

S-Box
Value

Hex
Value

Hex Value
to Decimal

Value

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

Ž 142 142 - 128 (14)10 (OE)s (D7)16 (215)10 215 - 104 111 o

Byte Injection [key = 103]

Ciphertext
Decimal Values

(Ciphertext)
Decimal Value

(Plaintext)
Plaintext

uŎ 117, 334 117 u

Byte XOR [key = 25]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value ⊕

key

Decimal
Value

(Plaintext)
Plaintext

k 107 107 ⊕ 25 114 r

• Since for the above decryption, the corresponding key value is a perfect square(25),
thus Bob will carry out byte X-OR between 25 and the corresponding cipher-
text char Ascii/UTF-8 value, as mentioned in the algorithm.

Byte Substitution [key = 110]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -
128-bit

Decimal
Value

S-Box
Value

Hex
Value

Hex Value
to Decimal

Value

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

™ 153 153 - 128 (25)10 (19)s (8E)16 (142)10 142 - 110 32 [space]

34

Byte Substitution [key = 27]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -
128-bit

Decimal
Value

S-Box
Value

Hex
Value

Hex Value
to Decimal

Value

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

Ê 202 202 - 128 (74)10 (4A)s (5C)16 (92)10 92 - 27 65 A

Byte Injection [key = 5]

Ciphertext
Decimal Values

(Ciphertext)
Decimal Value

(Plaintext)
Plaintext

lŠ 108, 138 108 l

Byte Substitution [key = 28]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -
128-bit

Decimal
Value

S-Box
Value

Hex
Value

Hex Value
to Decimal

Value

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

Ŭ 364 364 - 128 (236)10 (EC)s (83)16 (131)10 131 - 28 103 g

Byte Substitution [key = 22]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -
128-bit

Decimal
Value

S-Box
Value

Hex
Value

Hex Value
to Decimal

Value

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

ė 279 279 - 128 (151)10 (97)s (85)16 (133)10 133 - 22 111 o

Byte Substitution [key = 4]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -
128-bit

Decimal
Value

S-Box
Value

Hex
Value

Hex Value
to Decimal

Value

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

¸ 184 184 - 128 (56)10 (38)s (76)16 (118)10 118 - 4 114 r

Byte Substitution [key = 105]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -
128-bit

Decimal
Value

S-Box
Value

Hex
Value

Hex Value
to Decimal

Value

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

ȷ̂ 309 309 - 128 (181)10 (B5)s (D2)16 (210)10 210 - 105 105 i

35

Byte Injection [key = 17]

Ciphertext
Decimal Values

(Ciphertext)
Decimal Value

(Plaintext)
Plaintext

t 116, 162 116 t

Byte XOR [key = 25]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value ⊕

key

Decimal
Value

(Plaintext)
Plaintext

q 113 113 ⊕ 25 104 h

Byte Substitution [key = 22]

Ciphertext
Decimal
Value

(Ciphertext)

Decimal
Value -
128-bit

Decimal
Value

S-Box
Value

Hex
Value

Hex Value
to Decimal

Value

Decimal
Value -

key

Decimal
Value

(Plaintext)
Plaintext

Ŭ 364 364 - 128 (236)10 (EC)s (83)16 (131)10 131 - 22 109 m

Plaintext: This is our Algorithm

36

Chapter 5

Results and Analysis

In this section of our research, we will analyse our proposed model by setting pa-
rameters such as message size and key size. We will be highlighting the major
attributes of our model and the impact it has on the strength and computation of
the encryption algorithm.

5.1 Implementation and Computational cost

Now, we will be looking into how our algorithm performs for different specifications
to map out a general idea of how it would perform practically. We have used
Intel(R) Core(TM) i5-8265U processor with a maximum clock speed of 1.60GHz.
Our operating system is Windows 10 Home Single Language version 21H1. We have
written all our code in Google Collab Notebook using the python programming
language.

To create a general algorithm analysis, we have implemented our code by setting
a few limitations for experimental purposes. To explain our algorithm, we have
followed the same S-box design used in AES, and used a static dictionary to store
the S-box values in terms of item-value. The only drawback is that for large-scale
dynamic scenarios, the S-box may not be able to give optimal results. This can be
solved by creating a dynamic S-box that optimises the algorithm further.

We can take several approaches to determine the computation cost and complexity.
The most feasible one for us with our resources is to find the execution time and
python autotime to measure the computational time for our algorithm.

Colab notebook includes a package known as the ipython-autotime, which, once
loaded, can determine the execution time for each cell in the notebook. We have
written our code for encryption and decryption in different cells along with the other
necessary variables and obtained the autotime for each cell. This way, we obtained
the average autotime for encryption and decryption after running the code several
times with different parameters. Additionally, we also took into account the run-
time execution time for each cell to get another perspective of the computational
cost.

37

As mentioned in the previous chapter, the encryption or decryption key would com-
prise an array with 256 numbers, giving it a variable length in terms of bits. We
have taken different lengths of the key, which included 100 and 200 numbers, re-
spectably, to make a comparative analysis and run our algorithm for different text
sizes. This allowed us to compare how our algorithm works in terms of speed for
different scenarios.

In Table 5.1, figure 5.1 and figure 5.2, we can see that the ipython autotime gives
us a better picture of how each parameter is creating a difference in the time it
takes to encrypt and decrypt a text for various text sizes. We can observe that,
as the message size increases from 100 characters to 1000 characters, the time for
encryption and decryption increases. However, the key size does not clearly indicate
how it affects the execution time.

Performance in terms of speed is not the only major criterion for any cryptographic
algorithm. How it ensures security is also crucial. The security measures of any
cryptographic algorithm do not only depend on the integrity it provides to the data
but also on how it is designed. Most of the time, a failed cryptographic scheme is
often due to the exploitations made with any architectural flaw. We will further
discuss how our model creates confusion in the ciphertext, which would act as an
indicator of algorithm strength in terms of security.

Message Size
(length)

Key size
(array length)

Average
Execution Time(s)

Average
ipython-autotime (ms)

Encryption Decryption Encryption Decryption

100
100 0.516 0.495 10.26 13.49
200 0.520 0.528 9.18 13.18
256 0.589 0.496 9.03 14.35

500
100 0.523 0.558 16.29 40.23
200 0.606 0.581 17.18 40.62
256 0.477 0.516 16.52 39.73

1000
100 0.503 0.512 24.59 71.44
200 0.550 0.531 25.83 72.33
256 0.494 0.497 24.4 70.89

Table 5.1: Execution and Autotime for different Message and key Size

38

Figure 5.1: Autotime for Encryption

Figure 5.2: Autotime for Decryption

39

5.2 Randomness and confusion of Ciphertext

In this part, we will attempt to analyse our model further. The analysis of any
cryptographic algorithm depends on major factors such as key length and the type
of cryptography used, i.e. symmetric or asymmetric. It also depends on how the
ciphertext generated creates confusion and diffusion. Confusion essentially means
having a ciphertext that is not readable, and diffusion refers to how a ciphertext
does not have any recognisable pattern. Any algorithm possessing these two char-
acteristics ensures that it can be used as an encryption method. As mentioned
earlier, we have considered the stream cipher technique for our proposed model,
which means encryption is done byte to byte or bit to bit. Generally, stream ciphers
are faster and are specifically designed for complexity. However, one disadvantage
of the stream cipher method is the lack of handling diffusion of the ciphertext. And
as explained in the model, we use a big percentage of key, i.e. 78%, to encrypt using
byte substitution, which could create a pattern. Below, we try to demonstrate how
confusion is maintained for different ciphertexts of the same plaintext.

Plaintext: This is our Algorithm

Ciphertext: [hŽ¡¡ńi®—˜ŽuŎk™ÊlŠŬė¸̂ȷtqŬ

Ciphertext: ṓıďÖŏ®Ŝñ@ĕŜñ]́ı̂s l+}*m

Ciphertext: Ź¤äÒiœŷúk̊uA¾Ůı́ĕË$yh·

Ciphertext: Qh—ús¾puĶůśčl)A®Ŭˆä%hÊP

Ciphertext: ÊĴ%*áŮ¡Nl oĒčiêæÁmÊ

The above ciphertexts are achieved from the same plaintext but using different key
sets. It is not feasible to calculate or measure the randomness of any text stream
other than through statistical tests, but that is not the main focus of our research.
However, we can observe the difference between plaintext and ciphertext to deter-
mine the randomness. For any given cryptographic system, the more randomised
it is, the more confusion it creates, eventually creating a chaotic system which in-
dicates the strength of the model. In the above example, we can observe that for
different keys, we get a different cipher text for the same plaintext. Well, that is
quite obvious. However, the difference between the ciphertext and its unreadability
is what we are aiming at. The strength of symmetric key cryptography heavily de-
pends on its key. Generally, the larger the key size, the tougher it is to guess the key.
Moreover, applying brute force to find all the possible keys would be quite impos-
sible. As discussed in our model, we have implemented D-H and collatz conjecture
for our key negotiation and generation. These layers determine the key’s strength
and, eventually, the algorithm’s strength.

40

5.3 Parametric Comparison and Secret Key

Factors AES RSA Proposed Model
Type of Cryptography Symmetric Asymmetric Symmetric

No. of key 1 2 1
Key length 128,192,256 1024, 2048, 3072 Variable

Rounds 10,12,14 1 1
Types of Cipher Block Block Stream

Limitation Same encryption method for each block High Computational power required Only creates confusion

Table 5.2: Comparison between RSA, AES and Proposed Model

41

Chapter 6

Conclusion

After extensive research and analysis, we have successfully established an algorithm
for encrypting data. To restate our core goal, we aimed to create a new cryp-
tographic algorithm incorporating Collatz conjecture. The algorithm has a fast
execution speed and successfully creates a random ciphertext, eventually leading to
a chaotic system. Apart from a few minor limitations, we have successfully estab-
lished an algorithm for encrypting data. These limitation can be easily overcome by
optimising our algorithm and model for future application. However, we must have
definite proof of work to put our work into practice. Expert cryptanalysis requires
extensive testing for any new cryptography to be applied in a real-world scenario.

To summarise our report, there is no doubt that there is a high demand for im-
proved data security and its advancements. With new inventions every day in this
technology-based world, it will only increase exponentially. Almost all daily work
is done over the internet, including banking, shopping, ordering food, ride-sharing,
etc. These simple and basic applications involve sensitive data and require security.
But, there are not enough safeguards to protect these valuable data being transmit-
ted over the internet. The existing ones are unable to keep up with the increasing
demand for safe data communication. Therefore, this research is a stepping stone
toward creating a safer online environment using unconventional methods that could
withstand the various threats

42

References

[1] T. J. Murray, “Cryptographic protection of computer-based data files,” MIS
Quarterly, vol. 3, no. 1, pp. 21–28, 1979, issn: 02767783. [Online]. Available:
http://www.jstor.org/stable/249145 (visited on 09/18/2022).

[2] M. Chamberland, “The collatz chameleon,” Math Horizons, vol. 14, no. 2,
pp. 5–8, 2006, issn: 10724117, 19476213. [Online]. Available: http://www.
jstor.org/stable/25678649 (visited on 09/18/2022).

[3] P.-J. Kang, S.-K. Lee, and H.-Y. Kim, “Study on the design of mds-m2 twofish
cryptographic algorithm adapted to wireless communication,” in 2006 8th In-
ternational Conference Advanced Communication Technology, vol. 1, 2006, 4
pp.–695. doi: 10.1109/ICACT.2006.206060.

[4] A. A. Hasib and A. A. M. M. Haque, “A comparative study of the performance
and security issues of aes and rsa cryptography,” in 2008 Third International
Conference on Convergence and Hybrid Information Technology, vol. 2, 2008,
pp. 505–510. doi: 10.1109/ICCIT.2008.179.

[5] M. Holler, “The zimmermann telegram: How to make use of secrets?” HOMO
OECONOMICUS, vol. 26, pp. 23–39, Jan. 2009.

[6] A. MacGibbon, “Cyber security: Threats and responses in the information
age,” Australian Strategic Policy Institute, Tech. Rep., 2009. [Online]. Avail-
able: http://www.jstor.org/stable/resrep03941 (visited on 09/18/2022).

[7] N. Li, “Research on diffie-hellman key exchange protocol,” in 2010 2nd Inter-
national Conference on Computer Engineering and Technology, vol. 4, 2010,
pp. V4-634-V4–637. doi: 10.1109/ICCET.2010.5485276.

[8] C. A. Feinstein, “The collatz 3n+1 conjecture is unprovable,” International
Journal of Forecasting, p. 2, May 2011. doi: 10.1016/j.ijforecast.2011.08.005.

[9] S. Som and S. Ghosh, “A simple algebraic model based polyalphabetic sub-
stitution cipher,” International Journal of Computer Applications, vol. 39,
pp. 53–56, Feb. 2012. doi: 10.5120/4844-7111.

[10] S. Verma and B. Ojha, “A discussion on elliptic curve cryptography and its
applications,” International Journal of Computer Science Issues, vol. 9, Jan.
2012.

[11] L. Xiaoqin, L. Wei, C. Xiuxin, Z. Xiaoli, and D. Zhengang, “Application of
the advanced encryption standard and dm642 in the image transmission sys-
tem,” in 2012 7th International Conference on Computer Science Education
(ICCSE), 2012, pp. 444–447. doi: 10.1109/ICCSE.2012.6295110.

43

http://www.jstor.org/stable/249145
http://www.jstor.org/stable/25678649
http://www.jstor.org/stable/25678649
https://doi.org/10.1109/ICACT.2006.206060
https://doi.org/10.1109/ICCIT.2008.179
http://www.jstor.org/stable/resrep03941
https://doi.org/10.1109/ICCET.2010.5485276
https://doi.org/10.1016/j.ijforecast.2011.08.005
https://doi.org/10.5120/4844-7111
https://doi.org/10.1109/ICCSE.2012.6295110

[12] T. K. Jishamol and K. Rahimunnisa, “Low power and low area design for
advanced encryption standard and fault detection scheme for secret commu-
nications,” in 2013 International Conference on Communication and Signal
Processing, 2013, pp. 743–747. doi: 10.1109/iccsp.2013.6577155.

[13] B. Bhat, A. W. Ali, and A. Gupta, “Des and aes performance evaluation,” in
International Conference on Computing, Communication Automation, 2015,
pp. 887–890. doi: 10.1109/CCAA.2015.7148500.

[14] P. F. Yeh, “The role of the zimmermann telegram in spurring america’s entry
into the first world war,” American Intelligence Journal, vol. 32, no. 1, pp. 61–
64, 2015, issn: 0883072X. [Online]. Available: http://www.jstor.org/stable/
26202105 (visited on 09/18/2022).

[15] A. Kumar Paul, “A Highly Secured Mathematical Model for Data Encryption
Using Fingerprint Data,” International Journal on Data Science and Technol-
ogy, vol. 2, no. 4, p. 46, 2016.

[16] M. Enriquez, D. W. Garcia, and E. Arboleda, “Enhanced hybrid algorithm
of secure and fast chaos-based, aes, rsa and elgamal cryptosystems,” Indian
Journal of Science and Technology, vol. 10, pp. 1–14, Jun. 2017. doi: 10.17485/
ijst/2017/v10i27/105001.

[17] D. Gautam, C. Agrawal, P. Sharma, M. Mehta, and P. Saini, “An enhanced
cipher technique using vigenere and modified caesar cipher,” in 2018 2nd In-
ternational Conference on Trends in Electronics and Informatics (ICOEI),
2018, pp. 1–9. doi: 10.1109/ICOEI.2018.8553910.

[18] W. Patterson and C. Winston-Proctor, “Origins of cryptography,” in Nov.
2020, pp. 59–68, isbn: 9781003052029. doi: 10.1201/9781003052029-8.

[19] Y. Lin, X. Xia, and J. Yang, “Document encryption method with mechanism
of enigma machine,” in 2021 International Conference on Artificial Intelli-
gence, Big Data and Algorithms (CAIBDA), 2021, pp. 259–262. doi: 10.1109/
CAIBDA53561.2021.00061.

[20] M. London(2021). “5 Cybersecurity Trends in 2021. https://staysafeonline.org/blog/5-
cybersecurity-trends-in-2021/, [Online; accessed 2022-09-18], 2021.

[21] S. Sharma, K. N. Patel, and A. Siddhath Jha, “Cryptography using blowfish
algorithm,” in 2021 3rd International Conference on Advances in Computing,
Communication Control and Networking (ICAC3N), 2021, pp. 1375–1377. doi:
10.1109/ICAC3N53548.2021.9725661.

[22] Z. Hu, B. Liu, X. Ren, and Y. Tang, “Analysis and implementation of the
enigma machine,” in 2022 International Conference on Big Data, Informa-
tion and Computer Network (BDICN), 2022, pp. 475–480. doi: 10 . 1109 /
BDICN55575.2022.00093.

44

https://doi.org/10.1109/iccsp.2013.6577155
https://doi.org/10.1109/CCAA.2015.7148500
http://www.jstor.org/stable/26202105
http://www.jstor.org/stable/26202105
https://doi.org/10.17485/ijst/2017/v10i27/105001
https://doi.org/10.17485/ijst/2017/v10i27/105001
https://doi.org/10.1109/ICOEI.2018.8553910
https://doi.org/10.1201/9781003052029-8
https://doi.org/10.1109/CAIBDA53561.2021.00061
https://doi.org/10.1109/CAIBDA53561.2021.00061
https://doi.org/10.1109/ICAC3N53548.2021.9725661
https://doi.org/10.1109/BDICN55575.2022.00093
https://doi.org/10.1109/BDICN55575.2022.00093

	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Research Problem
	Research Objectives

	Historical Cryptography
	World War I
	World War II

	Literature Review
	Definition
	Cryptography
	Symmetric Cryptography
	Asymmetric Cryptography
	Hashing
	Encryption
	Decryption
	Collatz Conjecture
	DIFFIE HELLMAN
	Shift Cipher
	Byte Injection
	Byte X-OR
	Byte Substitution

	Related Work
	Diffie-Hellman
	Byte Substitution
	Byte X-OR
	Null Byte Injection
	Shift Cipher

	Work Plan
	Concern with Existing Model
	Architecture of the Proposed Model
	Motivation for Design Choices
	Key Negotiation and Generation Technique
	Diffie-Hellman
	Step Count from Collatz Conjecture

	Methods used in the Algorithm
	Shift Cipher
	Byte X-OR
	Byte Injection
	Byte Substitution

	Complete Breakdown of Algorithm

	Results and Analysis
	Implementation and Computational cost
	Randomness and confusion of Ciphertext
	Parametric Comparison and Secret Key

	Conclusion
	Bibliography

