
A Document Vectorization Approach

To
Resume Ranking System(RRS)

by

NORUN NABI
19366001

A project submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

M.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
August 2022

© 2022. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The project submitted is my own original work while completing degree at Brac
University.

2. The project does not contain material previously published or written by a third
party, except where this is appropriately cited through full and accurate referencing.

3. The project does not contain material which has been accepted, or submitted, for
any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Norun Nabi

19366001

i

Approval

The project titled “A Document Vectorization Approach to Resume Ranking System”
submitted by

1. Norun Nabi (19366001)

Of Summer, 2022 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of M.Sc. in Computer Science on September 01, 2022.

Examining Committee:

Supervisor:
(Member)

Dr. Muhammad Iqbal Hossain

Associate Professor
Department of Computer Science and Engineering

Brac University

Program Coordinator:
(Member)

Dr. Amitabha Chakrabarty

Associate Professor
Department of Computer Science and Engineering

Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi

Associate Professor
Department of Computer Science and Engineering

Brac University

ii

Ethics Statement

The project submitted is my own original work, which has not been previously published
elsewhere. Along with that, the paper is not currently being considered for publication
elsewhere.

iii

Abstract

Technology transformed the way how job seekers apply for a job and recruiter’s hunting
for a precise pick . Now, paper version of resume already become an outdated version of
job application method. Electronic resume replaces the old method thanks to its easier
access to technology. When it comes to a particular job requirement, screening a rele-
vant resume among thousands is an exhaustive and time consuming recruitment process
because the respective HR of an organization must have a proof read the entire resume
set to select the right person in the right position, a key decision for any organization.
Extracting the semantic meaning from resume is otherwise a daunting task. By making
the selection process fast and accurate, organizations could save huge efforts and money.
Using state-of-art-technology could be a way out. In the field of NLP, there are a range
of tools to classify documents. Document vectorization technique is a huge popular one
among tech-communities. Documents like resumes could be categorized and ranked by
applying such techniques and tools. Therefore choosing a most suitable vectorization al-
gorithm is pivotal. It is aimed to build a custom trained model specialized in vocabulary
of resume based on frequency based word2vec model such as TF-IDF.

However, to compare between job descriptions and resumes, Cosine-Similarity is consid-
ered to be the primary algorithm to find matching resumes whereas k-nearest neighbor
algorithm has been used to group the desired documents. But the limitation comes with
using fixed vocabulary size. TOPSIS is the most popular among Multi Criteria Decision
Making algorithms. Along with vector similarity score, Other parameters like years of
experience, university rankings could be normalized to consider for final ranking score.

Keywords: TF-IDF; Word2Vec; Doc2Vec; Cosine Similarity; Resume Classification;
Recommendation Systems

iv

Dedication (Optional)

To my family members, whose relentless support have given me the momentum towards
completing my MSc program at BRAC University.

v

Acknowledgement

I would like to express my gratitude to Dr. Muhammad Iqbal Hossain, Associate Pro-
fessor, Department of Computer Science and Engineering at BRAC University, for his
scholarly supervision and inspiration since undertaking the project work till completion.
Firstly,He helped unlocking many obstacles confronted during conducting research on
finding a proper project architecture and I came to know so many new things. Secondly,
with regards to data-set collections to train the model, he gave me lot of ideas. Thirdly,
I appreciate the teachers who taught me courses like data science and machine learning
throughout the M.Sc classes. Those courses gave me lot of consequential ideas to layout
the ground works of the project. Last but not least, I have to acknowledge the comfort
and console given by friends and well-wishers throughout the venture.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iii

Abstract iv

Dedication v

Acknowledgment vi

Table of Contents vii

List of Figures ix

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Motivation . 1
1.2 Background Study . 1
1.3 Project Scope . 2

2 Resume Dataset 3
2.1 Data Collection . 3
2.2 Data preparation . 4

2.2.1 Tokenize data . 4
2.2.2 Cleaning Data . 5
2.2.3 Formation of Word Frequency Dictionary 5

3 Product Description 7
3.1 Methodology Used . 7
3.2 System Design . 8
3.3 Process flow diagram . 9
3.4 Sequence Diagram . 11
3.5 Dataflow diagram . 12

vii

4 Development and Deployment 13
4.1 Development Tools and frameworks . 13
4.2 Deployment through CI . 13
4.3 RRS-Core Deployment . 14
4.4 RRS-API DevOps . 15
4.5 HRM-Dashboard . 16

5 Results 17
5.1 Document Vector . 17
5.2 Similarity Approach . 18
5.3 Weight Distribution . 18

6 Use Cases 20
6.1 Visualize The Volume . 20
6.2 Ranked illustration . 21
6.3 Download Desired Resume . 21

7 Conclusion 23
7.1 Limitations . 23
7.2 Future work . 23

Bibliography 24

How to prepare development environment 25

Sample Data 30

viii

List of Figures

1.1 System Components . 2

2.1 Data sources example . 3
2.2 Text pre-processing . 5

3.1 Iterative model . 7
3.2 RRS architectural diagram . 8
3.3 Process flow diagram for background process 9
3.4 Process flow diagram for foreground process 10
3.5 Actor-system sequence diagram . 11
3.6 Dataflow diagram . 12

4.1 The list of used tools and libraries . 13
4.2 Continuous Integration . 14
4.3 Instructions applied for local python development 15
4.4 RRS-API List . 16
4.5 RRS-API sample request response . 16

6.1 Preview of downloaded resume . 22

7.1 Google Colab workspace . 25
7.2 Fast API . 26
7.3 API Document . 26
7.4 API request response sample . 27
7.5 Rank visualization . 27
7.6 Instructions preparing python virtual environment 29
7.7 RRS Sample Data . 30
7.8 Sample code for tokenizing text . 31
7.9 Sample code for building word frequency dictionary 31
7.10 Sample code to convert from CSV resume to bag of words 32

ix

List of Tables

2.1 Structure and number of data set in excel sheet 4
2.2 Bag of words matrix from resume data set. 6

5.1 Bag of words matrix from resume data set. 17
5.2 An example of documents similarity with job description 18
5.3 Scale of importance of criteria . 18

6.1 Parentage of category of resume received 20
6.2 Resume ordered by overall ranked score 21

x

Nomenclature

The next list describes several symbols & abbreviation that will be later used within the
body of the document

API Application Programming Interface

BOW Bag Of Words

CI Continuous Integration

CSS Cascading Stylesheet

GPU Graphics Processing Unit

HRM Human Resource Management

HTML Hypertext Markup Language

MCDA Multi-criteria Decision Analysis

MCDM Multi-criteria Decision-making

NLTK Natural Language TooklKit

RDP Dataset Parser

RRS Resume Ranking System

TF − IDF Term Frequency - Inverse Document Frequency

TOPSIS Technique of Order Preference by Similarity to Ideal Solution

UCIRepository University of California, Irvine Repository

UI User Interface

xi

Chapter 1

Introduction

1.1 Motivation

With the pace of industrial economic booming in Bangladesh, Job seekers are growing
on an exponential scale than ever. Be it private or public service, organizations receive
a flood of resumes even against a single job post; on top of that the scenario is real in
Bangladesh due to her unemployment rate. However, to deal with such inundation, the
HR department of organizations does not have effective tools. In most organizations,
human intervention is the only way to remove irrelevant and receive relevant resumes
for the given job responsibilities. Two major issues that are dominant in the ongoing
organizational resume screen processes.

• Firstly, skills verification in candidates is most challenging. Unfortunately, it is a
common scenario that the recruitment department/agency does not have people with
such skills, so they can verify those skills in others.

• Secondly, Sluggish recruitment process is responsible for wasting an organization’s valu-
able time, money and human resources. Because this process demands a careful reading
of thousands of resumes. Hence is vulnerable to inaccurate picking.

1.2 Background Study

When thinking about a pragmatic document classification project, some search has been
carried out on the internet about how these kinds of works are dominating in market
and research academia. However,only found some works related to this which is mostly
research papers and journals. For example, a machine learning approach for automation of
resume recommendation system is the most relevant one [3] is renowned one. In addition
to the research paper, A project regarding resume is found categorizing in Brac University
project paper - Analyzing CV/Resume using natural language processing[6]. So tried to
implement the project gathering ideas and methods from these different sources.
In order to analyze the document ranking, most efficient approach now-a-days is with the
help of vectorization. So vector modeling is chosen following lot of industry standards
and the idea gets confidence by reading different machine learning community blog [9].

1

1.3 Project Scope

This project aims to facilitate faster screening of the most matching profile from job appli-
cant’s resumes with a dashboard. Recruitment department can easily navigate through
the dashboard and download desired documents. To serve the user stories, So, This
project is assumed to provide a comprehensive solution for Resume screening based on
machine learning algorithms. However, steps are a token to move from a simple working
version to a more complex-comprehensive version. Firstly there is an attempt to make a
workable python model on console output based python programs, and then integrating
with an UI module. Hence, the project is broken down into three components primar-
ily; browser based UI dashboard(RRS-UI), Restful API to feed data to dashboard from
server(RRS-API), a python based decision making model(RRS-core) , and Data Parser
as well.

Figure 1.1: System Components

RRS-UI is based on web frameworks like CSS-HTML and Javascript. As the Fastapi
platform is a trendy one, so RRS-API is developed by the platform. VSCode is chosen as
IDE to develop all these components. RRS-core is the center of RRS application, which
requires significant computation, SO It has to develop on a free cloud like Google Colab
as it provides free computation power and nearly 50MB+ bandwidth. Same goes for DP,
as it requires a terrific internet speed to download GB sized dataset from web sources
like Kaggle.
Though there have been assumptions of a comprehensive RRS solution, eventually the
assumption resulted in a simplified but working version of it. Due to shortcomings of
time and resources to build such a complex system, project undergoes for a minimal
approach with as much generic version as possible. To be specific, doing a research
base project along with managing full-time job comes with lot of challenges. Another
constraint, technologies weren’t not familiar beforehand. So development goes an as much
as learning process moving on.Every syntax and rules for language and framework. So,
it took more time than expected.

2

Chapter 2

Resume Dataset

2.1 Data Collection

Data is inevitable for any machine learning project. For a predictive model, the more data
it could be trained with, the better result the it would infer. Although the importance
of data is so high, collecting data is a colossal challenge, particularly noise free data.
However there have been a lot of open source platforms that facilitate data for free of
cost but not free of distortion. Amidst them some are the most admired data like Google
data set Search Engine, Kaggle data sets [10], Amazon Data-sets, UCI machine learning
repositories. They contain tons of data set ranging from wide varieties of categories e.g.
Image data set, Data set on Disease, data set on sentiment analysis and many more.

Figure 2.1: Data sources example

Searching for purposive text demands to know lot about how text would be analyzed
through out the project[7]. As exploring for a project satisfying data-set associated
with resumes and its job descriptions, the data found in renowned data repositories are
insufficient. Unfortunately, any robust and meaningful dataset could not be managed to
feed the project-model except that a tiny amount of resume dataset in repetitive nature
and garbage text found in Kaggle. Another difficulty is to get the data in the desired

3

format, for instance CSV file.

Document Resume text Experience Ranking Education Category

Resume-1 Full text 4 10 5.5 Data Analyst

Resume-2 Full text 7 2 7.56 Programmer

...
...

...
...

...
...

Resume-N Full text 0 6 4.9 System Admin

Table 2.1: Structure and number of data set in excel sheet

2.2 Data preparation

Big data empowered the world of machine based decision making. But leverage the effort
of dealing with loads of data. Here, In this venture, the resume-data-set handled from CS
vfiles. Those files are swamped with a set of resumes. Files are organized with a number
of columns, mostly in manual intervention. So that, data parser could read them without
a major error.

However, Extracting meaningful text from those files is as crucial as expecting an opti-
mized decisive-model. A significant efforts of project work is undertaken to develop a less
noise training-data which would yield a the better result. However; in order to read bulk
data, there is a few choice to mine big data for an ML project. A python library called
Panda earned an outstanding performance benchmark score in ML community to mine
huge data load into machine learning project.It load data from hard disk into a virtual
relational table format, ending up facilitating query like syntax on a large data. After
reading data from CSV to Pandas data stream , data are undergone the following text
prepossessing steps.

• Tokenize data

• Cleaning data

• Building word dictionary

2.2.1 Tokenize data

Breaking down sentences into token should be done with an utmost importance across
the NLP pipeline episode.Owing to its determining weight, the task is performed in
more considerate manner. Underpinning the importance, this project uses an extremely
popular python library called Gensim for tokenization job. Gensim is an excellent for
processing texts like tokenizing among NLP community.

4

2.2.2 Cleaning Data

It is better to have no data than to have big data with immense noise. But in reality,
there is no source of noise free data. Definition of data pollution are thought have a
various aspects for instance, data with web tagged, unused numbers, stop words, articles
, pronouns etc. This definition also depends on the field of speciality where data would
be a used for particular target. If it is observed closely, resumes data are keywords sur-
roundings skills and academic terms. Hence, a list of cleaning steps are undertaken, so
data could be purified as much as possible. However; unlike literature data, dealing with
resume data bring about a new challenge, because many of it holds a range of technical
terminology not persisting in dictionary.

Word lemmatization also conducted applying NLTK API using WordNet; in spite of
undertaking most the of cleaning process is enforced using Gensim API. After lowering
all the letters, spaces and newlines are replaced. Before moving ahead for next stage,
final removal of one letter words and chunk of numbers is done.

Figure 2.2: Text pre-processing

2.2.3 Formation of Word Frequency Dictionary

Another python library Numpy was a peerless tool to conduct counting on a large scale
data set. So, When necessary to build term frequency dictionary, there is a little choice
other than using these two libraries. One of the main targets of data preparation is to
construct a data dictionary. A word frequency dictionary that will be used through the
project. However, a number of tools in python available to do this. Here in this project
Numpy is primarily used when it comes to building a frequency dictionary and processing
the words owing to its ease of use.

5

KEYS WORD 1 WORD 2 WORD 3 WORD N

Resume-1 1 4 10 0

Resume-2 9 7 2 5

...
...

...
...

...
...

Resume-N 6 8 3 23

Table 2.2: Bag of words matrix from resume data set.

6

Chapter 3

Product Description

RRS comes up with an interactive dashboard on conventional browsers. So it does not
need a special setup for client PCs to browse the system. As it provides a web based
solution, it could be accessed from anywhere and any device. The dashboard helps navi-
gating across the resumes and reading a particular one and downloading it to print. Some
dashboards are summary to represent overall ranking in other data set. Scroll-able details
of bar charts, which could be sorted based on attributes provided.

There is a page for configuration purposes. A machine learning project based on dif-
ferent parameters. In order to make the project more controllable by HRM personnel,
the configuration facilities will make it more flexible and generic for future maintenance
of the site.

3.1 Methodology Used

Due to work nature, Iterative methodology was adopted throughout the project devel-
opment. It took a couple of iterations to make a final release, and in each iteration a
working version with some feature and fix is used to be finalized.

Figure 3.1: Iterative model

Planning took a considerable time on how the project gets its shape mostly depends
technology and time. At the beginning stage, it was decided to develop the project with
core building model only; but later on a major shift in planning.

7

3.2 System Design

Identifying modules and components are crucial to separate the concern of business logic.
This project has several components as below

• HRM-Dashboard

• RRS-Core

• RRS-API

Figure 3.2: RRS architectural diagram

8

3.3 Process flow diagram

Recognizing relationship among major components in an output based system plays an
important role to build an effective system.It helps delimiting the project scope and be-
ginning system development task after post analysis of Resume Rannking System(RRS).

Considering that identification of critical system processes is crucial when developing
an automation system. Resume Ranking System figured out some of its major compo-
nents and interactions are depicted in order to visualize to have a birds eye view of data
communication from process to process.

Figure 3.3: Process flow diagram for background process

Brainstorm produces two major process flow diagram (PFD). One for background pro-
cesses and other for foreground processes. Background process mostly deal with data
journey of data. The journey starts with submitting resume by a job seekers for a job
posted by HR personnel of an organization. A data collector is sit to pull data from
outside server to RRS server. At the time of data collection, data is scrutinized whether
the document is compatible with system or not. then data bring into to RRS database.
Once readable data is uploaded, there are a couple of steps undertaken like data cleaning
, tokenizing, building frequency matrix etc.

9

Figure 3.4: Process flow diagram for foreground process

After background processes are successfully executed, a vectorized document is stored
in file system. Vectorized document is not in its final point of data flow. A lot of data
communication needs to do with these data because users of the system may not aware
of how document vector works. So this vectors should be expressed in more meaningfully
way.

Considering that in mind, a distributed architecture is endorsed to manage a huge num-
ber of vector formatted data to its graphical view. HRM portal would be primarily
responsible to support such a dashboard. This portal would fetch data from different
web services. So user would be able to make criteria based searching.

10

3.4 Sequence Diagram

Different actors need to interact with Resume Ranking System in order to make those
processes moving. Some are humans’ actor for example Job candidate and HR personnel
and some are system initiated for example scheduler or system operator could initiate the
program to get the trained result. Though sequence of the system with human interaction
happens with minimal exchange, communications with database and NLP components
are inevitable. Below is presented a sequence diagram to have an abstract glimpse of the
possible system-human interaction.

Figure 3.5: Actor-system sequence diagram

The RRS cores receive data from organization Job portal eventually stored in database.
This an abstract view of NLP components where RRS-core,RRS-API and RRS-web reside
interact between system actors and database. System should calculate document vector
for given batch of dataset other than starting for each resume. Because of fixed size of
vocabulary, a renewed list of vector has to reload to start over the vectorization process.

11

3.5 Dataflow diagram

The primary element of a NLP project is data. So in order to have a general view of how
data is flowing in different phase of the project carries a lot of significance. Following is
given a dataflow diagram.

Figure 3.6: Dataflow diagram

Final version comes with the idea that, project will have interactive HR dashboard com-
municating with model via a service components.Also development environment has a
great impact on product development lifecycle. First version comes with working in per-
sonal PC. But limitation with time constraint in personal computer to train data model
leads to moving to free cloud environment like Google colab on later versions. When it
comes to deployment,firstly deployed in Heroku through Github as Continuous Integra-
tion fashion. But when trial version is over, service gets disrupted. Therefore services
deployed in the local pc to demonstrate.

12

Chapter 4

Development and Deployment

A micro service approach is taken when deploying components. Each three RRS-core,
RRS-API, HRM-Dahsboard have required a diverse development environment.
Primary tools linked to the development of RRS-core. In terms of libraries here is the list
from pip3 which had been frizzed from project. Most development done with VSCode
Editor, because it has rich plugins of different development environment like Python
development plugins. Numpy for creating frequency dictionaries and many others depen-
dent libraries to include.

4.1 Development Tools and frameworks

Most development is done with VSCode editor, because it has rich plugins of different
development environments like Python dev plugins. Numpy for creating frequency dic-
tionaries and many others dependent libraries to include.

In terms of libraries here is the list from pip3 which had been frozen from the project

Figure 4.1: The list of used tools and libraries

4.2 Deployment through CI

Its is tempting to deploying a project through CI pipeline, hence It has been done in
previous version of the development. While developing in a local machine, after commit
and push to Github, the deployment server automatically pulls data from the Git server

13

and makes a successful deployment. If automatic deployment from a git push is not
successful, then deployment is rejected and rollback to the previous successful commit.
CI (Continuous Integration) approach was set up to deploy the project.

Figure 4.2: Continuous Integration

4.3 RRS-Core Deployment

Deploying a cloud application in local machine becomes a super easy approach like no
other. Python supports creating a virtual environment with virtualenv library. Vir-
tualenv leaves a number of steps to prepare a virtual environment for python and deploy-
ing an application on it as follows.

14

Figure 4.3: Instructions applied for local python development

4.4 RRS-API DevOps

RRS has a Restful client. The RRS system used its front-end as react application. The
client-end is feed with data using Restful API. As Restful API is admired among developer
community for its simplicity and easy-to-use approach, this project adopted Restful API
for data transmission among client and server. Open API is embedded in FAST-API
framework, so APIS can be accessible and tested from anywhere. Development tools
mostly integrated as follows.

• Fast-API

• Swagger

• Python

15

• Nympy

However, APIs could be found in the following URL base-url/docs

Figure 4.4: RRS-API List

4.5 HRM-Dashboard

A lightweight development strategy is chosen for UI development, Unlike RRS-core, there
is a intention of putting less effort on this part. Easy to run approach is taken with the
advantage of VScode that provides server can run on the fly almost instantly. Therefore
no configuration difficulties to get an application server ready to deploy. Web technologies
are best suited to work on this part like

• HTML,CSS

• Javascript, JQuery

• VsCode On the fly Server

This web application receives data through RRS-API, A sample request response is given
below. Response data helps the app navigate and forming HRM-Dashboard.

Figure 4.5: RRS-API sample request response

16

Chapter 5

Results

Outcome of the project is a series of vectors. TF-IDF vectors one of the most popular
doc2vec representation. Unlike vectors from occurrence matrix, it yields more meaningful
results close to semantic. Fixed number of words needs to be determine beforehand
making those document vector, one the limitation of vector representation.

5.1 Document Vector

Deriving document vector needed lot of ideas for example, the vector could be sentence
vector or document vector. The ideas are adopted from multiple sources [4]. Finally
document is represented with vector other than sentence or word vector.

Words resume 1 resume 2 job 1 job 2

machine 0.198042 0.000000 0.000000 0.000000

science 0.099021 0.000000 0.138629 0.000000

statistics 0.198042 0.000000 0.000000 0.000000

python 0.000000 0.000000 0.000000 0.000000

data 0.099021 0.000000 0.138629 0.000000

spring 0.000000 0.198042 0.000000 0.115525

development 0.000000 0.000000 0.138629 0.115525

engineer 0.000000 0.000000 0.000000 0.231049

analysis 0.198042 0.000000 0.000000 0.000000

Table 5.1: Bag of words matrix from resume data set.

17

5.2 Similarity Approach

Cosine similarity algorithm is the most popular technique when it comes to comparing
two vector[8]. Similarity algorithm other than cosine like k-means, k-nearest algorithms
are not only computationally expensive but also have the limitations compared to it.

1 2 3 4 5 6

20%

40%

60%

80%

Resumes

S
im

il
ar
it
y
p
er
ce
n
ta
ge

(%
) Job1

Job2

Table 5.2: An example of documents similarity with job description

5.3 Weight Distribution

Ranking scores are distributed based on a weight matrix [1] computed applying the
TOPSIS algorithm[5]. In other words, A MCDM matrix[2] is built for individual jobs(e.g.
job description) out of predefined weight values to each criteria.

UnivRank Experience Similarity

20

30

40

20

35

45

#
W
ei
gh

t
p
er
ce
n
ta
ge

Table 5.3: Scale of importance of criteria

18

Then criteria vectors are normalized using sum of square method.
The matrix (xij)m×n is then normalized to form the matrix.
R = (rij)m×n, using normalized method.

(rij) =
xij√∑m
k=1 x

2
kj

, i = 1, 2......m, j = 1, 2,, n

Then this normalized vector is multiplied by each criteria weight value as above table.
Which is called weighted-normalized decision matrix.For each resume, Euclidian distance
is calculated between Ideal best (Dib) and Ideal worst (Diw) values selected for individual
criteria vectors.
Now, performance score is determined from this distance vector using the following for-
mula

siw = diw/(diw + dib), 0 ≤ siw ≤ 1 i = 1, 2,,m
siw = 1, if and only if the alternative solution has the best solution;and
siw = 0, if and only if the alternative solution has the worst condition.

19

Chapter 6

Use Cases

Though most of this project work is intended for data visualization purposes on appli-
cation/console log, this project extended its use cases for a user experience from web
application. Where users like HR personnel could make an educated guess from a big
resume data set by speculating an abstract view of all resumes at a glance.

Firstly, personnel from the Human Resource Department will enjoy an abstract view
of having multiple charts from a long list of data sets. Secondly, use cases like visual-
izing the proportion of categories of resume streaming in the resume vault. However,
downloading the desired resume is an additional feature incorporated in this program.

6.1 Visualize The Volume

With a view to categorizing the data-set, the project does not need to adopt any complex
algorithm. Simple percentage from all data-set is calculated from the category column of
the resume. Hence shown in the diagram

HR

10%

Engineer

20%

Web Developer

30%

System Engineer

40%

Table 6.1: Parentage of category of resume received

20

6.2 Ranked illustration

Following diagram showing data sorted by an overall rank. However this ranking could
be customized by sorting any given attribute. Where, overall score is calculated using
the TOPSIS algorithm, and similarity score is estimated by means of cosine-similarity of
vector space. There shown an years attribute which is put in the diagram linearly from
resume without any normalization, and this way other feature like university ranking,
number of degree, number of certification, organizational reputation score where candi-
date has most of her professional experiences etc could be considered with the ranking
criteria

Resume63

Resume40

Resume22

Resume100

Resume200

20

5

41

60

10

14

90

15

30

30

50

40

60

70

80

Weight of experience
Semantic similarity
Overall similarity

Table 6.2: Resume ordered by overall ranked score

6.3 Download Desired Resume

Resume could be downloaded by clicking the link on the bar. As the user clicks on the
bar chart, it will open the particular resume in a new tab of the browser. So users could
download the resume for the next phase of the recruitment process after a proof reading
of every detail by comparing and contrasting with the job description attached on the
job-circular.

21

Figure 6.1: Preview of downloaded resume

22

Chapter 7

Conclusion

Working on such a project has been a challenging journey throughout the development.
An abstract level of document classification problem is attempted to solve but everything
does not happen as expected during planning. Limitations are there at different levels. In
terms of deployment, it has to use an open source platform. So an open source platform
has its own pros and cons to deploy a project in a live server. UI could be a more
attractive one. Considering all, future work will cover the limitations and projectile a
comprehensive solution classifying right documents.

7.1 Limitations

Firstly, to train and build a machine learning model, a huge computational power is
needed to process the data. As developing the project in personal laptop which is low
configuration compared to GPU embedded machines, the model could not be trained with
complex algorithms and big datasets. So Workspace limitation could be a bottleneck for
ultimate optimization of project performance. Secondly, Project configuration could be
more generic and flexible so that each dataset might be processed. Currently, Only CSV
file format is supported.

7.2 Future work

By minimizing the limitation of the project, future work could envision a better Resume
Ranking System. As classifying documents comes with a considerable number of criteria
and particularly when it comes to resume, this has the challenge of dealing with multi
criteria. This project incorporated some criteria of resume like ”years-of-experience”,
”skills-relevancy-score” and ”Institution-ranking”. There are a lot of other criteria that
could be included in future to constitute a better resume screening system. For example,
age of the candidate, academic grading, and reputation score of institutions where can-
didates worked earlier, national and foreign degree, publications, certifications etc. So a
comprehensive MCDM method could lead to more sophisticated and desired RRS. How-
ever, this project used a frequency based vectorization to classify the documents. Further
improvements could be done using other types of algorithm vectorization algorithms. The
UI dashboard for HRM could be deployed in BRAC University website.

23

Bibliography

[1] H. Byun and K. Lee, “A decision support system for the selection of a rapid pro-
totyping process using the modified topsis method,” The International Journal of
Advanced Manufacturing Technology, vol. 26, no. 11, pp. 1338–1347, 2005.

[2] R. V. Rao, Decision making in the manufacturing environment: using graph theory
and fuzzy multiple attribute decision making methods. Springer, 2007, vol. 2.

[3] X. Yi, J. Allan, and W. B. Croft, “Matching resumes and jobs based on relevance
models,” in Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval, 2007, pp. 809–810.

[4] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,”
in International conference on machine learning, PMLR, 2014, pp. 1188–1196.

[5] R. Karim, C. Karmaker, et al., “Machine selection by ahp and topsis methods,”
American Journal of Industrial Engineering, vol. 4, no. 1, pp. 7–13, 2016.

[6] M. S. Reza Md. Tanzim Zaman, Analyzing cv/resume using natural language pro-
cessing and machine learning, https://www.oreilly.com/library/view/applied-text-
analysis/9781491963036/ch04.html, 2017.

[7] T. O. Benjamin Bengfort Rebecca Bilbro, Applied text analysis with python, https:
//www.oreilly.com/library/view/applied-text-analysis/9781491963036/ch04.html,
2018.

[8] S. Gupta, “Jaccard index and cosine similarity — where you should use what, pros
and cons of each.,” May 2018. [Online]. Available: https://towardsdatascience.com/
overview-of-text-similarity-metrics-3397c4601f50.

[9] J. Alammar, “Visualizing machine learning one concept at a time.,” 2019. eprint:
http :// jalammar .github . io/ illustrated -word2vec/. [Online]. Available: http ://
jalammar.github.io/illustrated-word2vec/.

[10] S. BHAWAL, “Resume dataset,”Kaggle Dataset, vol. 1, pp. 1–1, Dec. 2021. [Online].
Available: https://www.kaggle .com/datasets/snehaanbhawal/resume- dataset?
resource=download.

24

https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/ch04.html
https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/ch04.html
https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/ch04.html
https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/ch04.html
https://towardsdatascience.com/overview-of-text-similarity-metrics-3397c4601f50
https://towardsdatascience.com/overview-of-text-similarity-metrics-3397c4601f50
http://jalammar.github.io/illustrated-word2vec/
http://jalammar.github.io/illustrated-word2vec/
http://jalammar.github.io/illustrated-word2vec/
https://www.kaggle.com/datasets/snehaanbhawal/resume-dataset?resource=download
https://www.kaggle.com/datasets/snehaanbhawal/resume-dataset?resource=download

Appendix A: How to prepare the
development environment

Devops on Colab

First couple of development phases are conducted on open source Google Colab. As
follows:

Figure 7.1: Google Colab workspace

Install Python in Windows PC

1. Download Pytnon from
https://www.python.org/ftp/python/3.10.1/python-3.10.1-amd64.exe

2. Double click the file python-3.10.1-amd64.exe to begin installation and proceed
default instructions till the installation is finished.

3. To check if installation is successful, Open windows command prompt and type the
following:

$ python −−ve r s i on
> Python 3 . 1 0 . 1

4. However,You will find the default installation path as follows

C:\ Python310

25

https://www.python.org/ftp/python/3.10.1/python-3.10.1-amd64.exe

RRS-API project structures

1. Create a directory called ”RRS-FASTAPI”

2. Under the RRS-FASTAPI, create file main.py

3. Under the RRS-FASTAPI, create a directory called ”resources” where trained vector
model are kept

4. Initialize FAST api application inside main.py and define necessary API interface.

5. Successful execution results in an open up swagger UI with exposed APIs

Figure 7.2: Fast API

Figure 7.3: API Document

26

Figure 7.4: API request response sample

RRS-WEB project structure

1. Under the workspace, create a directory named ”RRS-WEB”

2. Under RRS-WEB, create directories named CSS, JS, Images.

3. Under RRS-WEB, create index.html and other realted html files.

4. Run the application on VSCode live server plugin.

Figure 7.5: Rank visualization

27

Create RRS-Core project structure

1. Under the workspace, create a directory named ”RRS-Core”

2. Under RRS-Core, create a file named ”main.py” and ”utils.py”

3. import following packages inside main.y

4. Under RRS-Core, create directory named ”dataset”, ”resources”

5. Put resumes.csv and job-circular.csv under dataset and vector model data under
resources directory.

6. Start the coding inside main.py

7. To run the project type as follows:

$python main . y

8. Successful execution should be end up saving vector model files under resources
directory.

Run RRS-Core and RRS-FASTAPI on virtual envi-

ronment

Executing a Python project with the help of virtual environment made the development
pace even faster and easier. Unlike library dependency version chaos with global envi-
ronment, The virtual environment helps creating a project specific snapshot for library
dependencies. RRS-Core and RRS-API has followed the following instruction set to pre-
pare an virtual environment.

28

Figure 7.6: Instructions preparing python virtual environment

29

Appendix B: Sample data

Sample Dataset

Data are download in CSV format which holds multiple columns as attribute to resumes
and earch row represents an individual resume.

Figure 7.7: RRS Sample Data

Cleaning Steps

• NLTK is used to clean text

• Remove non-English text

• All text converting to lowercase

• Remove stop words

• remove articles and pronouns

30

Figure 7.8: Sample code for tokenizing text

Word Frequency Dictionary from log

The word frequency dictionary consists of resume-name as keys and arrays as values. The
value holds two arrays. Of the arrays, first one represents unique words list from a given
resume and second arrays is mapped with word occurrence number respectively. here is
a sample.

Figure 7.9: Sample code for building word frequency dictionary

Bag of words

1. Using Panda library, a 2D matrix is initialized with zero where index column from
vocabulary list and remaining columns from document name.

2. The location(words,resume no.) of the array is updated with word count through
iteration on frequency dictionary

3. There is also a binary bag of words prepared to check if a particular word exits or
not on a resume.

31

Figure 7.10: Sample code to convert from CSV resume to bag of words

32

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Background Study
	Project Scope

	Resume Dataset
	Data Collection
	Data preparation
	Tokenize data
	Cleaning Data
	Formation of Word Frequency Dictionary

	Product Description
	Methodology Used
	System Design
	Process flow diagram
	Sequence Diagram
	Dataflow diagram

	Development and Deployment
	Development Tools and frameworks
	Deployment through CI
	RRS-Core Deployment
	RRS-API DevOps
	HRM-Dashboard

	Results
	Document Vector
	Similarity Approach
	Weight Distribution

	Use Cases
	Visualize The Volume
	Ranked illustration
	Download Desired Resume

	Conclusion
	Limitations
	Future work

	Bibliography
	How to prepare development environment
	Sample Data

