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Abstract
Federated Learning (FL) is a distributed machine learning approach that can de-
velop a global or customized model from scattered datasets on edge devices using
federated datasets. ‘Federated GAN Based Biomedical Image Augmentation and
Classification for Alzheimer’s Disease’ will focus on augmenting the medical images
using Federated Generative Adversarial Network. Due to patient-doctor confiden-
tiality, the scarcity of data in the medical sector is a massive hindrance to the
advancement of machine learning models in this sector. Our study aims to augment
the existing medical data, in this case, magnetic resonance imaging(MRI) images of
the brain, and test that augmented dataset on existing classification models to eval-
uate our generated MRI images’ quality. Generative Adversarial Networks (GANs)
have been utilized in order to synthesize realistic and varied Alzheimer’s disease
affected MRI images in order to cover the data shortage in the actual medical image
distribution and identify Alzheimer’s disease using Federated Learning. We expect
our proposed model to successfully augment the medical images and be over 90%
accurate at detecting the medical condition.

Keywords: Federated Learning; Generative Adversarial Network (GAN); Augmen-
tation; Classification; Alzheimer’s Disease
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Chapter 1

Introduction

In the medical imaging domain, dealing with smaller datasets and fewer annotated
samples [1]–[5] is arduous since supervised Machine Learning techniques need large
labeled datasets. Annotations are made by radiologists with a specialized under-
standing of the data and tasks in medical imaging tasks. Most medical image an-
notations take a significant amount of time. Public medical datasets are accessible
online, although the volume of databases are still inadequate and only relevant to
a limited number of medical conditions. Patients, physicians, researchers, and ra-
diologists are all involved in the process of collecting medical data, which is both
time-consuming and costly[3]. As a result, deficiency of sufficient data towards fur-
ther advanced machine learning models arise.

We believe data augmentation is the ideal way to address the deficiency of medical
data. Networks may be trained more effectively with the use of conventional data
augmentation techniques[6]. The most common data augmentation methods are
translation, rotation, flipping, and scaling of dataset pictures. Using high-quality
examples, synthetic data augmentation is an advanced kind of data augmentation.
It is possible to learn more variability and enrich the dataset by utilizing synthetic
data samples generated by a generative model [7].

GANs (Generative Adversarial Networks) are a deep-learning-based generative model.
They are employed in a method of unsupervised learning. There are unsupervised
models that may be utilized for creating new examples in the distribution of inputs.
While there is no output variable in this model, there are input variables (X) and
samples in the data (Y). Generative models employ just training data to identify
patterns in the input variables and then produce an unknown output from the train-
ing data. In GANs, two neural networks compete with each other to construct or
generate data variations. The Generator Model and the Discriminator Model are
two sub-models of the Generative Adversarial Networks’ architecture.

The entire procedure can be encapsulated in the following mathematical formula,

V (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log 1−D(G(z))] (1.1)

Discriminator Network D(x) and Generator Network G(z) indicate the networks of
generators and discriminators, respectively. The distribution of actual data is rep-
resented by Pdata(x), the distribution of generator data by Pdata(z), samples from
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real data are represented by x and samples from generator data are represented by y.

The GAN framework has recently been used in a number of medical imaging appli-
cations[8]–[13]. The GAN paradigm for image to image translation has been used
for translations from label to segmentation, segmentation to image translation, and
translation across medical modalities. To learn retinal vascular segmentation im-
ages, Costa et al. [8] developed a fully convolutional network. Then they figured out
how to translate a binary vessel tree into a new retinal image. A GAN was trained
by Dai et al. [9] to build lung field and heart segmentation pictures from chest X-ray
images. Xue et al. [10] termed the two GAN networks as Segmentor and Critic, and
they learned the translation between brain MRI pictures and a binary segmentation
map of the brain tumor. Nie et al. [11] trained a patch-based GAN to convert
between brain CT images and the correlating MRI images. They also proposed an
image refinement approach based on an auto-context model. Ben-Cohen et al. [14]
also used GAN to generate cross-modality images, from an abdominal CT scan to
a PET scan image highlighting liver abnormality. The GAN approach for image
inpainting has sparked some research. Schlegl et al. [12] used healthy patches of
retinal tissue to train GAN to understand the data distribution of healthy tissue.
The GAN was then evaluated for anomaly detection in retinal pictures on patches
of both undetected healthy and anomalous data.

1.1 Research Problem
Due to rationale like Patient-Doctor confidentiality, which prevents the doctors and
institutions from sharing medical data obtained from the patient, creates a huge
scarcity of publicly available medical data. We investigated strategies for synthetic
data augmentation to grow our medical dataset due to the challenge of limited data
in the medical imaging area.

Data security and privacy are always an issue with classical machine learning tech-
niques. Data confidentiality is required for data privacy and security, as privacy
cannot be ensured if data are vulnerable to unauthorized access. Existing machine
learning algorithms solutions cannot afford to be secure.

Traditional machine learning algorithms are carried out in a centralized data center,
where data owners upload their data; as a consequence, data is private and owners
are unwilling to share [15].

Furthermore, data collecting is a time-consuming and difficult process that is essen-
tial for machine learning advancement. Individuals are increasingly using machine
learning as a commodity service. The sensitive information contained in the training
set will be revealed if machine learning techniques provided by untrustworthy actors
are used blindly [16].

In the field of biomedicine, for example, knowing that a patient’s clinical record was
used to train a disease-related model can imply the patient has the disease [17].
However, in ML, a centralized data center can expose clients’ data to attackers, pos-
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ing a significant danger of data privacy. An attacker can also use the collaborative
learning method to recreate sensitive data from the client’s device. Furthermore,
the attacker has the ability to influence the learning process and retrieve informa-
tion from the client’s gradients. As machine learning trains the model to connect
through a central server, attackers find it easier to penetrate and abuse the data,
since their goals and tactics have broadened and continue to do so.

To overcome the aforementioned problem, we propose the Federated Learning ap-
proach. Federated Learning has shown to be a promising paradigm for keeping
client data private and secure. Federated Learning is a fundamental concept that
allows machine learning models to be developed utilizing data sets distributed across
several devices while ensuring a secure environment for the data. FL allows many
people to work together on training a machine learning model without having to
share local data. One of the essential characteristics of federated learning is data
security. Smarter models, reduced latency and less battery usage are all possible
thanks to Federated Learning.

This technology makes it possible for portable devices, such as smartphones, to work
together on developing a common prediction model while still retaining all of the
training data locally. Moves model teaching to the edge, incorporating devices such
as cellphones, laptops, IoT, and even organizations - hospitals, clinics, diagnostic
centers, which must adhere to strict privacy requirements. Keeping personal data
local has a huge security benefit. Real-time prediction is possible since prediction
takes place on the system itself. FL reduces the time lag generated by transmitting
raw data to a central server and then returning the results to the system. Since the
models are saved on the device, the prediction approach works even if there is no
internet connection. FL reduces the amount of hardware equipment available. The
hardware requirements for FL versions are minimal, and what is available on mobile
devices is more than adequate.

We are using Generative Adversarial Networks to create high-quality photographs
(GANs). GANs are known as adversarial where these architectures set two neural
networks against one another to generate new, fictitious data that may be used to
simulate actual data. In the GAN model design, there are two sub-models: a gen-
erator model that brings new instances and a discriminator model that evaluates
whether the created examples are genuine or fraudulent. Thus, we can generate an
accurate representation of test data and solve the data scarcity problem, enabling
us to train our model more efficiently.

As a result, the research is attempting to address the following questions:
How accurately can we augment MRI of the brain using GANs and how
effectively can we detect Alzheimer’s disease while ensuring patients’ pri-
vacy through Federated Learning?

4



1.2 Research Objectives
This research aims to develop a GAN based image augmentation system, and a Fed-
erated Learning model to detect Alzheimer’s disease, preserving the privacy of the
patients, which can be detected from a dataset where the dataset can be distributed
and train those distributed datasets in a decentralized way, in multiple separate
client servers.

The Objectives of this research are:

1. To deeply understand GANs and how these work.

2. To extensively explore Federated Learning and how it works.

3. To vastly increase the confidentiality of critical clinical data given by clients.

4. To test train datasets on distinct devices remotely in order to improve effi-
ciency.

5. To evaluate the model.

6. To detect Alzheimer’s disease with an accuracy of over 90%.
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Chapter 2

Literature Review

2.1 Federated Learning
Federated learning trains a Neural Network (NN) (other ML) model on edge de-
vices, which is subsequently delivered back to the Machine Learning Model Owner
(MLMO), such as a server. The server compiles these models into a single global
model and delivers it back. This approach is repeated until the global NN model
reaches a certain level of accuracy. Any transaction and model data in FL is stored
on the MLMO server.

2.2 Generative Adversarial Networks (GANs)
GANs, or Generative Adversarial Networks, are generative models based on deep
learning. GANs are a model architecture for training a generative model in general,
and deep learning models are most commonly used in this architecture. Since GANs
are unsupervised, they do not require labeled data to be trained. GANs are cur-
rently the sharpest picture generators. This is made possible by adversarial training.

2.3 Related Works
In the field of image processing, image augmentation is frequently used to minimize
overfitting on the training dataset and to increase prediction accuracy on the testing
dataset.

In a prior study named “The Effectiveness of Image Augmentation in Deep Learn-
ing Networks for Detecting COVID-19: A Geometric Transformation Perspective”,
geometric augmentations were used to compare the performance of 17 deep learning
algorithms with and without geometric optimizations on COVID-19 identification.

Data augmentation should be employed to strengthen the model’s robustness and
generalizability, according to the authors [18]. Furthermore, they compared DarkNet-
19 which was also empirical rather than therapeutically justified. Many datasets
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were used to assess the 17 deep learning algorithms’ efficiency (MCC).

Using the same geometrical augmentations in all situations is not efficient, however.
The authors used an example of the comparison between a dog in a photograph
and an X-ray image was used to identify COVID using segmentation which did not
provide identical accurate results. It is important to note that the augmentation
stage is not a random technique that can be applied to all study areas, but rather
a domain-dependent procedure.

According to [19], In contrast to normal picture augmentation, biomedical image
augmentation has a unique set of properties. Time-series-based or z-stack/layered
picture data are common, as are data in intricate forms like txt or csv. A lack of
consideration for biomedical use cases makes it difficult to employ non-biomedical
software in these unusual cases. The Augmentor package, a stochastic pipeline-based
technique, was utilized to solve this issue. An initial lesion scan was supplemented
with numerous masks, such as the segmentation mask and the pigment mask during
this augmentation.

However, image augmentation can be time-consuming. Fast and flexible picture al-
terations for computer vision applications, such as classification, segmentation, or
detection, were suggested in the study [20]. The authors explained how GPU pro-
cessing exceeds CPU processing with parallel processing. The augmentation library
for biomedical images has complex target support such as image and mask target
support, bounding box support, keypoint support, and multiple targets. With Al-
bumentations they processed 1.2x to 52x more images per second compared to other
image augmentation libraries.

In the case of Federated Learning, according to [14], each client device contains a
local training dataset. For privacy reasons, the dataset is never uploaded to the
main server. The client device computes its own data using a global model and
sends updates to the server. The researchers’ main contributions are identification
of decentralized data received from mobile devices, selecting a straightforward and
practical algorithm, and evaluation. In their approach, termed ’FederatedAverag-
ing,’ they suggest combining local SGD on each client with a server that conducts
model averaging. For federated optimization, they emphasized the non-IID and
unbalanced properties. The researchers trained in a controlled environment with K
clients each with their own dataset and selected a random fraction of them. The data
collection was done when a client was charged, on unmetered connections. They set
a clock time for synchronous SGD optimization. With FedAvg they achieved 85%
accuracy on image classification and 10.5% accuracy for the LSTM model.

The paper [21] highlighted the importance of FL using mobile devices. The authors
set out to find a solution to the situation of not optimizing for a global model on a
central server and instead disregarding each client. The goal of this paper’s training
was to provide a mobile keyboard suggestion and a word-level language modeling
challenge. For the main paper [14], they presented an attention method for model
aggregation. When it came to learning a differentially private client model, the re-
searchers used both the standard GRU model and a randomized learning process.
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To achieve attentive federated aggregation (FedAtt), they combined the layer-wise
contributions of chosen clients’ neural language models to the central server and
they improved the trained models’ accuracy by 77-88 percent using their method
and Treebank [21] and WikiText-2 [22] datasets on the client GRU model.

”Group Knowledge Transfer: Federated Learning of Large CNNs at the Edge” au-
thors Chaoyang He, Murali Annavaram, and Salman Aveshe believe that scaling up
a convolutional neural network is beneficial to model accuracy, but it also introduces
difficulties such as high model size, which makes training on resource-constrained
edge devices challenging. In this study, the authors reformulate FL to FedGKT,
a group knowledge transfer training approach. FedGKT is meant to quickly train
tiny CNNs on the edge and regularly transmit their information to a server-side
CNN with a large capacity via knowledge distillation. Their findings indicate that
FedGKT can achieve an accuracy level comparable to, if not slightly greater than,
FedAvg.

”FedCV: A Federated Learning Framework for Various Computer Vision Tasks” by
Chaoyang He and colleagues shown that federated learning has the ability to rescue
a number of intriguing computer vision applications that centralized training can’t
handle owing to a variety of difficulties, including privacy concerns, data transport
and maintenance expenses [23], [24].

Additionally, the research gap between computer vision (CV) and federated learn-
ing (FL) is enormous, which results in model performance in FL being significantly
lower than that of centralized training.

FedCV, a federated learning library they developed as part of their study, integrates
numerous FL algorithms to various essential CV tasks, such as picture segmenta-
tion and object recognition, and enables the framework to be flexible in exploring
techniques utilizing new distributed computing protocols, such as customizing in-
formation transmission between clients and establishing specific training processes.
In spite of this, they employed CIFAR-100, GLD-23K PASCAL VOC and COCO
datasets, as well as models such as EfficientNet and MobileNet, as well as Deeplab
V3+, UNet, YOLOv5, FedAvg.

However, debugging an FL system remains a significant challenge as there is no
access to a centralized dataset that we can check for which input results are giving
unexpected results. In the paper [25], the authors identified challenges such as san-
ity checking and model debugging, data labeling, and detecting bias in training data
that are not possible in a decentralized dataset. Non-inspectable data might be used
in federated, privacy-preserving modeling approaches. They recommended testing
for ’out of vocabulary (OOV) spikes as a way to troubleshoot the language model.
Two DP Federated GANs for Generating Image Data were suggested by the authors
to debug the image classifier. The federated GANs generate privacy-preserving sam-
ples that detect the nature of a defect in on-device picture preprocessing after they
are trained. With these approaches, the authors presented debug solutions for FL
systems without violating client privacy rights.
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Despite the ease of accessing some medical picture datasets, the list is still too small
to support contemporary deep learning and machine learning models. The most
major issue in medical imaging is dealing with little datasets and annotated samples
[1]–[5]. Concerns about privacy, security, lack of appropriate equipment, lack of en-
gagement with medical specialists, etc., all impede the availability of data and the
evolution of models. Obtaining such data in the medical field is tough, says (Frid-
Adar et al., 2018)[21]. As a result of their study, they were able to demonstrate that
the use of deep learning Generative Adversarial Networks (GANs) to create artificial
medical images may complement real-world data and boost CNN performance for
medical image classification by ten to twelve. The authors’ approach also illumi-
nated the field of employing traditional data augmentation to assist the training
process of neural networks, which is a well-established method in computer vision
issues. Synthetic data examples learned by generative models expand and diversify
the dataset, therefore boosting system training. There are two types of augmenta-
tion illustrated in the paper: conventional augmentation (image modifications) and
generative models (synthesis of new instances from data examples). Besides, some
of the more papers related to the segmentation of images including Costa et al.
[8], Dai et al. [9], Nie et al. [10], Ben-Cohen et arXiv:1803.01229v1 [cs.CV] 3 Mar
2018 2 al. [12], Schlegl et al. [11] show that GAN is one of the most famous and
widely used networks for image generation and further advances the existing models.

One of the limitations of this paper was there were no 2D to 3D conversions in input
volumes, but overall, their objective of improving the training results via augmen-
tation was quite successful.

Looking forward to disease detection, for diabetes-based eye disease detection the
paper [26] discussed the need for a fully automated system. Using the FRCNN al-
gorithm with fuzzy k-means, they employed an automated disease localization and
segmentation strategy based on the FRCNN algorithm with fuzzy k-means (FKM).
They used handmade characteristics to distinguish between diseased and healthy
areas of photographs in order to automate the identification of eye disorders. How-
ever, because of color, size, and increased intra-class differences, these characteristics
could not accurately depict the DR, DME, and glaucoma areas. Their deep learn-
ing approach detects bounding boxes of disease regions. They sub-categorized the
localization phase into locating the DR region, DME region, and Glaucoma Region.
Finally, the authors had around 94.5% accuracy on ORIGA< HRF and DR HAGIS
datasets.

To detect Covid-19, the paper [27] extracted features from CT Scan images and used
these to train them against Pneumonia and other pulmonary diseases, and finally
used Grad-CAM technique having plotted class activation maps. While doing detec-
tion or prediction tasks, the Grad-CAM technique provides a visual description for
any deeply linked neural network and aids in understanding more about the model.

Han et al. (2018)[28] claim that in order to calculate the millions of parameters in
a deep CNN, a large number of annotated samples are required, which presently
prevents many improved deep CNNs from being used in circumstances with sparse
training data.
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The researchers used a two-step technique, combining CNN transfer learning with
online data augmentation. CNN has many major limitations, including the need for
a large number of labeled training samples for weight parameter learning and the
need for a good PC with adequate CPU power to expedite the learning process.

Nowadays, there is a problem in adapting deep CNNs to small datasets while main-
taining comparable performance to large-scale datasets. Additionally, the web data
augmentation component of this study was derived from classic data augmentation
techniques such as rotation, translation, zoom, flips and shears as well as color dis-
ruption.

The demand for a huge amount of training data is eliminated, and a robust and
strong classifier is developed. Through web data augmentation, significant variety
is given to the training set, enhancing the fine-tuned network’s generalization ca-
pacity and further reducing overfitting. One downside of their technology was the
lengthy augmentation process and moreover, GANs are an extremely successful way
for creating small-size, high-quality fake data, not efficient for large-sized data.

However, as most algorithms for prostate ultrasound image segmentation do not
provide pixel-level separation, today’s segmentation method is not accurate enough
to accurately position a biopsy needle, imposing additional stress and time demands
on the health care professional.(Liu et al., 2021) As a consequence, the authors of
[29] devised a system for prostate ultrasound picture segmentation that includes
three modules: feature extraction, detection, and segmentation based on the en-
hanced Mask R-CNN. Classification is another critical component of the prostate
ultrasound picture system. Imaging techniques such as segmentation and classi-
fication have been used to classify the ultrasound image of a prostate to identify
whether or not cancer is present. A feature extractor and classifier’s performance
is heavily reliant on the shape, texture, color, and underlying visual qualities of a
picture to be classified traditionally. The results showed that the data set on pro-
ducing ultrasound images of prostate disease increased the rate of detection.

Moreover, the research [30] discussed the harmful effects and disadvantages of mam-
mography in breast cancer detection. The authors also discussed the limitations of
using CT and MRI due to low sensitivity for subcentimeter lesions for their low
spatial resolution. In contrast, they used thermal imaging to predict breast tumor
location. In the paper natural heat transfer equation and near-infrared fluorescent
and agent for imaging. Furthermore, they identified BRCA1 and BRCA2 genes
present in most breast cancer patients. For the images, the authors used 20 sequen-
tial thermal images with 15s intervals and cropped them. The main model in this
paper, CAD, is a deep neural network (pre-trained Inception V3 model) with the
SVM model as a classifier.
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Chapter 3

Methodology

The main purpose of Federated GAN-based biomedical image augmentation and
classification for Alzheimer’s disease is to detect medical conditions by addressing
the data scarcity problem and ensuring the safety of client data. Multiple users
can train a machine learning model using FL without having to share local data.
Federated learning addresses data security. The utility of data can be kept even
when it is stored locally thanks to federated learning.

Figure 3.1: Flow chart of the proposed Federated GAN Based Biomedical Image
Augmentation and Detection Model for Alzheimer’s Disease
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Our overall workflow significantly depends on multiple major stages including taking
input data from clients, data preprocessing, and training the GAN model on edge
devices for augmenting images using the parameters received from the edge devices
to the central server implying FedAvg on aggregating global parameters.

1. Preprocessing of input data: This stage involves validating and preparing the
input data in order to facilitate the processing, testing, and training models.

2. GAN Model training on Edge Devices: This step is responsible for the pro-
cessing, generating, and differentiating input medical images using the GAN
model and forwarding the parameters of this stage to the global server aggre-
gating the parameters using FedAvg.

3. Fed Averaging: This stage serves as the central server for updating the pa-
rameters obtained from the edge devices using the Fed Avg method.
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3.1 Dataset Details
The dataset we have chosen for this has been collected from [31] and contains a total
∼6400 images across the training and testing portion.

The training and validation part combined contains a total ∼5760 images, consisting
of four classes of brain Magnetic Resonance Imaging (MRI) images. The classes are,
(i) Very Mild Demented, (ii) Mild Demented, (iii) Moderate Demented, and (iv) Non
Demented. MRI of the brain, in this case produces high-quality two-dimensional pic-
tures of the brain and brainstem stating demented status of the brain, without using
ionized radiation or radioactive tracers.

The train and validation portion of the dataset contains 2016 image files for Very
Mild Demented, 806 image files for Mild Demented, 52 image files for Moderate
Demented, and 2880 image files for Non-Demented classes.

Figure 3.2: Pie Chart of Train Dataset
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On the other hand, the testing part contains a total ∼640 images, containing 224
image files for Very Mild Demented, 90 image files for Mild Demented, 6 image files
for Moderate Demented, and 320 image files Non-Demented and classes.

Furthermore, the dimensions of both train and test image data are 176x208, and
the sizes of these images are 5 kilobytes.

Figure 3.3: Pie Chart of Test Dataset

Here, we observe that the Moderate Demented class of our dataset has significantly
less amount of data compared to the rest of the class data in our dataset.
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3.2 Data Pre-processing
For machine learning models to work effectively, we must first convert raw data into
a format that the models can process which is called data preprocessing. Real-world
data, such as text, images, and video, is inherently nuanced. Machine Learning
models may not be able to analyze it accurately because of its inconsistencies and
inaccuracies, as well as the fact that it is often incomplete and has an established
design. Since it needs the necessary properties to be used by Machine Learning
models, this is a difficult crucial step.

It is clearly noticeable that the Moderate Demented class does not have sufficient
amount of data. To work with this, we have applied 15 degree rotation for augmen-
tation using keras ImageDataGenerator which is an in-place or on the fly image data
augmenter. The process of augmenting begins with accepting a batch of training
images, after which each image in the batch is subjected to a series of random trans-
formations (such as random rotation, resizing, shearing, etc.), in this case random
15-degree rotations. Additionally, it replaces the initial batch with the new batch
that has been randomly altered, allowing us to continue training our GANs model.
We trained it for 1965 epochs and managed to overcome the lack of data situation
for Moderate Demented class.

Initially, we used python’s OpenCV, an open-source computer vision library. Con-
sidering our dataset consists of images of various different dimensions and colors, we
have changed the color grading in our images into grayscale, to bring a similarity to
our dataset. Additionally, we have changed the image dimension to 128x128 pixels,
from 176x208, to make the training more efficient.

Furthermore, since all the labels of our dataset were in string values, we have used
One-Hot encoding to represent all the labels numerically, and to make the training
data more convenient and eloquent. Moreover, it will help us to rescale the data
smoother.

Figure 3.4: Data Pre-processing
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Chapter 4

Model Implementation

4.1 GAN Model
Generative Adversarial Networks (GAN) is a generative framework for deep learning
which is frequently used in image, video, and voice generation following an adver-
sarial process. It is essentially an architecture that uses the assistance of two neural
networks to produce new and false data instances that may pass for actual data.
GAN was first introduced in 2014 by Ian Goodfellow and others at the University
of Montreal [32].

Figure 4.1: Core GAN Model Architecture

Initially, both our Generative Model and Discriminator Model contain precisely one
input tensor and one output tensor, thus we begin with a sequential model. Adam,
an optimizer, is also being used with a learning rate of 0.0002 and an initial decay
rate of 0.5. The model is then compiled with the assistance of a binary cross-entropy
loss function. This model takes random numbers as the input tensor and outputs
0/1 representing whether the image generated by the generator model is real or fake.
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4.1.1 Generator Model
The generator model is the most important component of the core GAN model since
it produces fictitious data using discriminator feedback. This section of the main
GAN model seeks to convince the discriminator to categorize its output as real.

Figure 4.2: Generator Model Architecture

In our situation, we used a Dense layer with 32 ∗ 32 ∗ 256 = 262144 units as the
generator model’s input layer. This layer receives inputs from the random numbers
and passes a vector to the Reshape layer for reshaping. Furthermore, the output
from the Reshape layer is upsampled twice in the Conv2DTranspose layer with 256
filters in order to get more dense, detailed, and precise information in the output
picture. Finally, LeakyReLU activation layers with a negative slope coefficient (α)
value of 0.2 are used between the layers to accelerate training by assisting the neural
network to learn faster.
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4.1.2 Discriminator Model
This portion of the core GAN model is nothing more than a classifier. Fundamen-
tally, the objective of the discriminator model is to differentiate real images from
the images generated by the generator model.

Figure 4.3: Discriminator Model Architecture

Initially, it receives the input in the Conv2D layer which adds a kernel over the
2D image input performing an element-wise multiplication. It will downsample the
image to a single pixel and forward it to the next layer. After the Conv2D layers,
we have utilized a flatten layer with the default argument to flatten the input. Sub-
sequently, we are regularizing the input using the Dropout layer with a rate of 0.5
to eliminate the overfitting problem on the training data. In closing, we are using
a fully connected layer, Dense with 1 unit which helps the model classify based on
the outputs from the convolutional layers.
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4.2 Disesase Detection Models

4.2.1 VGG16
VGG16 where VGG stands for Visual Geometry Group is a Convolutional Neural
Network (CNN) model that opened the way for a number of key advances in the
field of computer vision. The model was initially suggested in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) in 2013 by Karen Simonyan and An-
drew Zisserman [33]. In addition, VGG16 consists of 16 convolutional layers, some
of which are followed by a pooling layer that decreases the height and width of pic-
tures.

Figure 4.4: VGG16 Model Architecture

One of our disease detection models was implemented using a slightly different ver-
sion of the VGG16 model architecture. To be precise, we have defined the image
dimensions to 128x128x1 and are utilizing the weights of the pre-trained ImageNet
model. Furthermore, the last Dense layer of the primary architecture has been
replaced with another Dense layer with softmax activation and three-dimensional
outer space.
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4.2.2 EfficientNetB6
EfficientNet, which was initially shown in Tan and Le’s 2019 paper, is one of the
most efficient models that achieves staggering accuracy on ImageNet and popular
image classification transfer learning tasks. It has 8 variants i.e. B0, B1, B2, B3,
B4, B5, B6, and B7 where the input shapes vary from one variant to another.

Figure 4.5: EfficientNetB6 Model Architecture

To detect the disease, we used a slightly modified version of the EfficientNetB6
model architecture. Similar to the VGG16 modification, the last Dense layer of
the main architecture has been replaced with a new Dense layer that has softmax
activation and three-dimensional outer space.
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4.2.3 Xception
Extensive research has shown that Xception is a considerably better version than
Inception-V3’s. Researchers at Google came up with this Deepwise Separable Con-
volution neural network design. The Inception module with the most towers is
Depthwise Separable Convolutions (DSC). The input first passes via the entrance
flow, then the middle flow, and finally the exit flow.

Figure 4.6: Xception Model Architecture

Nevertheless, the last fully connected layer of the main architecture of the Xception
model has been replaced with a new Dense layer that has softmax activation and
three-dimensional outer space to detect the disease in our case.
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4.3 Federated Averaging Algorithm (FedAvg)
For distributed training systems with a large number of client-side devices, federated
averaging (FedAvg) is one of the most used and communication-efficient approaches.
One of the main inspirations objectives for our experiment was ensuring the privacy
of the medical data. FedAvg helps us in this case with its privacy-protecting feature,
which eventually requires clients to save their data locally.

Figure 4.7: FedAvg Algorithm

To facilitate communication amongst client-side devices, a central parameter server
is utilized from where each client receives the parameters from the central global
server, which also aggregates the updated parameters from clients. However, it
requires massive communication between the client-side devices and the global model
in the central server. Also, any kind of attack on the central server can result in a
breach in the databridge.
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4.4 Optimizer
When it comes to obtaining a decent efficient performance out of a model, optimiz-
ers can be useful. Traditionally, they have been used to reduce the error generated
by loss functions while also increasing the model’s efficiency. These allow for the
tweaking of a neural network’s weights and learning rate in order to minimize losses
and enhance efficiency. There are a number of optimizers that can help a model to
increase its performance. Such as Gradient Descent, Stochastic Gradient Descent,
Mini-Batch Gradient Descent, Adaptive Gradient Descent (AdaGrad), Root Mean
Square Propagation (RMS-Prop), Adaptive Moment Estimation (Adam), etc.

4.4.1 Adaptive Moment Estimation (Adam)
Adam, or adaptive moment estimation, is a well-known, simple-to-implement opti-
mizer that is based on stochastic gradient descent. It is also popular in the fields
of computer vision and natural language processing. To be more specific, adam is
an algorithm that allows for the computation of adaptive learning rates for each
parameter, and it will be more feasible to apply in our scenario than RMS-Prop and
AdaDelta since it is more computationally efficient, requires less memory, well-suited
to problems with vast amounts of data and parameters, and able to achieve good
results in a short time period. Moreover, the learning rate of the optimizer varies
according to the initial decay rates given in β1 and β2. Hence, we have used Adam
in the detections of the Alzheimer’s disease model to optimize pre-trained VGG16
with a learning rate of 1e−5 and in the primary GAN model with a learning rate of
0.0002 in our experiment and with an initial decay rate (β1) of 0.5.
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4.5 Activation Functions
Activation functions are a type of function that aids the neural network in learning
complicated patterns in input and determining the neural network’s output. Ex-
plicitly, these functions are frequently found near the end of a layer and assist in
determining which parameters’ values should be forwarded to the next tier of layers.
Furthermore, these functions improve a model’s output, accuracy, and computa-
tional efficiency.

4.5.1 Leaky Rectified Linear Unit (LeakyReLU)
The ReLU, or rectified linear activation function, is a piecewise linear function that
outputs the input directly if it is positive and zeros otherwise. ReLU and LeakyReLU
can easily be differentiated and explained via a simple graph which are demonstrated
below.

Figure 4.8: ReLU and LeakyReLU Activation Function

The Leaky Rectified Linear Unit, or LeakyReLU, is based entirely on ReLU, except
instead of a flat slope for negative values, it has a tiny slope. While writing the core
GAN model, we employed LeakyReLU activation layers numerous times in our dis-
criminator and generator models with a negative slope coefficient (α) of 0.2 because
they speed up training and alleviate the dead ReLU problem that may occur if we
used ReLU instead of LeakyReLU.
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4.5.2 Softmax
When dealing with multi-class classification, Softmax activation trumps sigmoid
activation in terms of performance. It is not recommended to use the sigmoid
function for multi-class classification issues since the probabilities do not take the
probability of the other classes into account. The Softmax activation function follows
the following equation:

softmax(zi) =
ezi∑N
j=1 e

zj
(4.1)

The z represents the data from the output layer’s neurons, while the exponent acts
as a nonlinear function. These numbers are then normalized and translated into
probabilities. We have used the Softmax activation function in the dense layer of
the disease detection model based on VGG16 architecture as there are more than
two classes (non-demented, very mild demented, and mild demented) in our case.

4.5.3 Sigmoid
A mathematical function with a distinctive S-shaped curve is known as a Sigmoid
function. All sigmoid functions including logistic function, hyperbolic function, and
arctangent map the entire number line into a small range, of 0s and 1s. Sigmoid
function has the following formula:

sigmoid(z) =
1

1 + e−z
(4.2)

To be precise, sigmoid function’s applications of converting a real value into a num-
ber that can be interpreted as a probability is being used in our dense layer of
discriminator model and in the Conv2D layer in the generator model of the core
GAN model. We are using sigmoid as our activation function to normalize the
medical images and keep the intensity of the images between 0∼1.
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4.6 Loss Functions
Loss functions are essentially the quantifier of the difference between the expected
outcome and the outcome generated by any given model, from which gradients can
be obtained to update the weights for the next layer. There are a lot of loss functions
with different functionalities, i.e. mean squared error loss, mean absolute error loss,
binary cross-entropy loss, hinge loss, squared hinge loss, multi-class cross-entropy
loss, categorical cross-entropy loss, etc.

4.6.1 Binary Cross-Entropy
Binary Cross-Entropy, also known as Logloss is commonly utilized in the cases of
binary classification. It compares each of the expected probabilities to the actual
class outputs, which might be 0 or 1. Based on how far off the projected value each
probability is, the score is then determined. In a nutshell, this is a negative average
of the corrected predicted probabilities’ logarithm. Binary Cross-Entropy follows
the following formula:

loss = − 1

N

N∑
i

M∑
j

yij log pij (4.3)

Here, N is the number of rows, M is the number of classes in the classification
problem, and p is the probability. We employed Binary Cross-Entropy in our dis-
criminator model of the core GAN model as well as the core GAN model itself
because both models categorize in binary.

4.6.2 Categorical Cross-Entropy
Unlike binary cross-entropy in binary classification, in multi-class classification prob-
lems, categorical cross-entropy is a well-known loss function. Besides, categorical
cross-entropy is most useful when the labels are encoded in one-hot encoding. We
have briefly discussed in the Data Pre-processing part that we are encoding our
string labels using one-hot encoding to represent them numerically. Hence, we have
used categorical cross-entropy as a loss function in the detection of Alzheimer’s
disease model on pre-trained VGG16.
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Chapter 5

Results & Analysis

Upon processing our dataset, we have been successful to generate fictitious data
using GANs. Once our data has been augmented, we fed a blend of our augmented
data and real data to the VGG16 model and successfully achieved an accuracy of
98.42%, which is substantially higher than our initial accuracy objective. Our GAN
model receives a random number in the input layer and generates new images of the
MRI of the brain. Consequently, we input this image into our Discriminator model
in order to convince it to categorize the generator’s output as real. Through this
discriminator model, we are identifying if our model can distinguish between real
and generated MRI images.

The accuracy rate of the GAN model depends on the classification rate of the fake
images as real and fake images as fake and it varies from epoch to epoch. Epochs
containing a higher accuracy percentage of real and lower accuracy percentage of
fake are presumed to be a good augmentation of our actual dataset, which demon-
strates our generated images are accurate enough to be compared, or even confused
with real images.

Examples of generated images with an acceptable rate of accuracy from the dis-
criminator model for classifying generated images as real and fake for each class are
given below:
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1. Non Demented:
The 46th epoch of the Non-Demented class has an accuracy rate of 94% for
real and 19% for fake.

Figure 5.1: Epoch 46 (Non Demented)
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2. Very Mild Demented:
The 50th epoch of the Very Mild Demented class has an accuracy rate of 100%
for real and 0% for fake.

Figure 5.2: Epoch 50 (Very Mild Demented)
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3. Mild Demented:
100th epoch of the Mild Demented class have an accuracy rate of 94% for real
and 31% for fake.

Figure 5.3: Epoch 100 (Mild Demented)

30



4. Moderate Demented:
2000th epoch of the Moderate Demented class have an accuracy rate of 94%
for real and 44% for fake.

Figure 5.4: Epoch 2000 (Moderate Demented)
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5.1 GANs

5.1.1 Non Demented Class

Figure 5.5: Bar chart of real vs. fake detection rate progression in Non Demented
Class

Upon running the epoch 50 times in the Non-Demented class, we have generated
50 sets of images. In the first epoch, we get an accuracy rate of 100% for real and
56% for fake. Gradually, our accuracy increases, and we finally get to 94% real
accuracy and 19% fake accuracy in the 46th epoch. From the bar chart, we can
clearly observe that in the latter epochs the accuracy of real is much higher than
the previous epochs, similarly, the accuracy of fake is gradually decreasing compared
to the previous epochs.
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5.1.2 Very Mild Demented Class

Figure 5.6: Bar chart of real vs. fake detection rate progression in Very Mild
Demented Class

After running the epoch 50 times in the Very Mild Demented class, we have gen-
erated 50 sets of images. In the first epoch, we get an accuracy rate of 100% for
real and 69% for fake. With each epoch, our accuracy increases, and we finally get
to 100% real accuracy and 0% fake accuracy in the very last epoch. From the bar
chart, we see that in the latter epochs the accuracy of real is much higher than the
previous epochs, parallelly, the accuracy of fake is gradually decreasing compared
to the previous epochs.
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5.1.3 Mild Demented Class

Figure 5.7: Bar chart of real vs. fake detection rate progression in Mild Demented
Class

Once we have completed running the epoch 100 times in the Mild Demented class,
we get 50 sets of generated images. In the first epoch, we get an accuracy rate of
100% for real and 88% for fake. Gradually, our accuracy increases, and we finally
get to 94% real accuracy and 31% fake accuracy in the very last epoch. Much like
the previous classes, here we can also note that in the latter epochs the accuracy
of real is much higher than the previous epochs, similarly, the accuracy of fake is
gradually decreasing compared to the previous epochs.
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5.1.4 Moderate Demented Class

Figure 5.8: Bar chart of real vs. fake detection rate progression in Moderate De-
mented Class

We have generated 2000 sets of images running the epoch 2000 times in the Mod-
erate Demented class. The initial epoch gives us an accuracy rate of 100% both for
real and fake. In the 1000th epoch, we get 0% accuracy for real and 100% accuracy
for fake. We get 62% real accuracy and 6% fake accuracy in the 1500th epoch. In
the final epoch, the accuracy is 94% for real and 44% for fake. In the bar chart it is
visible that the latter epochs show more accurate real than the previous ones, while
the accuracy of fake has decreased compared to the previous epochs.
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5.2 Pre-FED Disease Detection

5.2.1 VGG16 Outcome

Figure 5.9: Line graph of VGG16 accuracy (Pre-FED)

For VGG16, the accuracy percentage indicates how accurately the model can dis-
tinguish between the classes. Higher accuracy means the model accurately identifies
which class the given data belongs to. We have initiated VGG16 with 100 epochs.

At the initial epoch, the accuracy of the training dataset is 75.5%, and it is gradually
increasing until it reaches 100% at around the 12th epoch.

On the other hand, for the test dataset, the accuracy is between 85% - 88% at the
initial epoch, and it gradually increases with each epoch, finally reaching 98.44%.
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Figure 5.10: Line graph of VGG16 loss (Pre-FED)

For VGG16, the lower loss is better for classification. From the above line graph,
we can see that, at the initial epoch, loss for the training dataset is at 0.5945, and
it reaches less than 0.0013 by gradually decreasing at around the 12th epoch.

For the test dataset, the loss function’s output is between 0.37 to 0.40 at the initial
epoch, and it reaches almost 0.05 at the end by gradually decreasing.
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Figure 5.11: Confusion matrix of VGG16 (Pre-FED) - Testing on real images’
dataset

When it comes to classifying data, a classification method’s performance is shown
in the form of a confusion matrix and it indicates how well a categorization system
works in real life. The confusion matrix illustrates and summarizes the performance
of a classification method.

From our confusion matrix given above, we can see that the Y-axis indicates the
real labels, and the X-axis indicates the predicted labels by VGG16.

For the Mild Demented class, the VGG16 model correctly predicts 89 Mild De-
mented classes, while failing to predict one of Very Mild Demented class.

Furthermore, for the Moderate Demented class, the VGG16 model correctly predicts
6 Moderate Demented classes.

Next, for the Non-Demented class, VGG16 correctly predicts 315 while failing to
predict 2 from Mild Demented and 3 from Very Mild Demented.

Finally, for the Very Mild Demented, VGG16 correctly predicts 220 while wrongly
predicting 4 from Non-Demented.
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However, the dataset containing real MRI images of the brain does not have enough
entries for which the previous confusion matrix contains less images prediction for
mild demented and moderate demented class. In solution to this, we tested our
model against a mixed dataset containing real and generated MRI images of the
brain and obtained the following confusion matrix.

Figure 5.12: Confusion matrix of VGG16 (Pre-FED) - Testing on mixed images’
dataset

From our confusion matrix given above, we can see that the Y-axis indicates the
real labels, and the X-axis indicates the predicted labels by VGG16.

For the Mild Demented class, the VGG16 model correctly predicts 287 Mild De-
mented classes, while failing to predict two of Very Mild Demented class and one of
Non Demented class.

Furthermore, for the Moderate Demented class, the VGG16 model correctly predicts
205 Moderate Demented classes while failing to predict 1 from Mild Demented class.

Next, for the Non-Demented class, VGG16 correctly predicts 516 while failing to
predict 3 from Very Mild Demented and 1 from Mild Demented.

Finally, for the Very Mild Demented, VGG16 correctly predicts 412 while wrongly
predicting 9 from Non-Demented and 3 from Mild Demented class.
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5.2.2 EfficientNetB6 Outcome

Figure 5.13: Line graph of EfficientNetB6 accuracy (Pre-FED)

We have initiated EfficientNetB6 with 100 epochs. At the initial epoch, the accu-
racy of the training dataset is 35.57%, and it is gradually increasing until it reaches
95.09% at around the 61st epoch.

On the flip side, for the test dataset, the accuracy is between 20% to 25% at the
initial epoch, and it gradually increases with each epoch, finally reaching 87.50%.
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Figure 5.14: Line graph of EfficientNetB6 loss (Pre-FED)

From the above line graph we can see that, at the initial epoch, loss for the training
dataset is at 1.4108, and it reaches 0.1438 by gradually decreasing at around the
61st epoch.

For the test dataset, the loss function’s output is almost 1.6 at the initial epoch,
and it reaches 0.3413 at the end by gradually decreasing.
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Figure 5.15: Confusion matrix of EfficientNetB6 (Pre-FED)

From the confusion matrix given above, we observe that the Y-axis indicates the
real labels, and the X-axis indicates the predicted labels by EfficientNetB6.

For the Mild Demented class, the EfficientNetB6 model correctly predicts 77 Mild
Demented classes, while failing to predict three of Non-Demented and 10 from Very
Mild Demented class.

Moreover, for the Moderate Demented class, the EfficientNetB6 model correctly pre-
dicts 3 Moderate Demented classes, while predicting 2 of the Mild Demented and 1
of the Very Mild Demented class falsely.

Next, for the Non-Demented class, EfficientNetB6 correctly predicts 288 while fail-
ing to predict 6 from Mild Demented and 26 from Very Mild Demented.

Finally, for the Very Mild Demented, EfficientNetB6 correctly predicts 192 while
wrongly predicting 7 from Mild Demented and 25 from Non-Demented.
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5.2.3 Xception Outcome

Figure 5.16: Line graph of Xception accuracy (Pre-FED)

We have initiated Xception with 100 epochs. At the initial epoch, the accuracy of
the training dataset is 62.59%, and it is gradually increasing until it reaches almost
100% at around the 19th epoch.

On the flip side, for the test dataset, the accuracy is between 32% to 35% at the
initial epoch, and it gradually increases with each epoch, finally reaching 90.47%.
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Figure 5.17: Line graph of Xception loss (Pre-FED)

From the above line graph we can see that, at the initial epoch, loss for the training
dataset is at 0.8775, and it reaches 0.0041 by gradually decreasing at around the
19th epoch.

For the test dataset, the loss function’s output is greater than 1.2 at the initial
epoch, and it reaches 0.2881 at the end by gradually decreasing.
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Figure 5.18: Confusion matrix of Xception (Pre-FED) - Testing on real images’
dataset

From the confusion matrix given above, we observe that the Y-axis indicates the
real labels, and the X-axis indicates the predicted labels by Xception.

For the Mild Demented class, the Xception model correctly predicts 81 Mild De-
mented classes, while failing to predict 1 from the Non Demented class and 8 from
the Very Mild Demented class.

Nevertheless, for the Moderate Demented class, the Xception model correctly pre-
dicts 2 Moderate Demented classes, while wrongly predicting 3 from the Mild De-
mented class and 1 from the Very Mild Demented Class.

Next, for the Non-Demented class, Xception correctly predicts 297 while failing to
predict 8 from Mild Demented and 13 from Very Mild Demented.

Finally, for the Very Mild Demented, Xception correctly predicts 199 while wrongly
predicting 10 from Mild Demented and 15 from Non-Demented.
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Figure 5.19: Confusion matrix of Xception (Pre-FED) - Testing on mixed images’
dataset

From the confusion matrix given above, we observe that the Y-axis indicates the
real labels, and the X-axis indicates the predicted labels by Xception.

For the Mild Demented class, the Xception model correctly predicts 280 Mild De-
mented classes, while failing to predict 5 from the Non Demented class and 5 from
the Very Mild Demented class.

Nevertheless, for the Moderate Demented class, the Xception model correctly pre-
dicts 206 Moderate Demented classes.

Next, for the Non-Demented class, Xception correctly predicts 500 while failing to
predict 3 from Mild Demented and 17 from Very Mild Demented.

Finally, for the Very Mild Demented, Xception correctly predicts 407 while wrongly
predicting 5 from Mild Demented and 12 from Non-Demented.
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5.3 Post-FED Disease Detection

5.3.1 VGG16 Outcome

Figure 5.20: Line graph of VGG16 accuracy (Post-FED)

For VGG16, the accuracy percentage indicates how accurately the model can dis-
tinguish between the classes. Higher accuracy means the model accurately identifies
which class the given data belongs to.

For the valid dataset, the accuracy is between 55% - 60% initially, and it gradually
increases with some spikes in the line graph along with each epoch, finally reaching
97.81%.
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Figure 5.21: Line graph of VGG16 accuracy (Post-FED)

As we already discussed, for classification models like VGG16, the lower loss is bet-
ter for classification.

From the above line graph, we can see that, at the initial epoch, loss for the valid
dataset is more than 1.1, and it reaches less than 0.7 by gradually decreasing with
some spikes at around the 55th epoch.
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Figure 5.22: Confusion matrix of VGG16 (Post-FED) - Testing on real images’
dataset

From our confusion matrix given above, we can see that the Y-axis indicates the
real labels, and the X-axis indicates the predicted labels by VGG16.

For the Mild Demented class, the VGG16 model correctly predicts 90 Mild De-
mented classes.

Furthermore, for the Moderate Demented class, the VGG16 model correctly predicts
6 Moderate Demented classes.

Next, for the Non-Demented class, VGG16 correctly predicts 312 while failing to
predict 3 from Mild Demented and 5 from Very Mild Demented.

Finally, for the Very Mild Demented, VGG16 correctly predicts 218 while wrongly
predicting 5 from Non-Demented and 1 from Mild Demented class.
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However, in this scenario also, the dataset containing real MRI images of the brain
does not have enough entries for which the previous post-FED confusion matrix
contains less images prediction for mild demented and moderate demented class. In
solution to this, we tested our model against a mixed dataset containing real and
generated MRI images of the brain and obtained the following confusion matrix.

Figure 5.23: Confusion matrix of VGG16 (Post-FED) - Testing on mixed images’
dataset

From our confusion matrix given above, we can see that the Y-axis indicates the
real labels, and the X-axis indicates the predicted labels by VGG16.

For the Mild Demented class, the VGG16 model correctly predicts 290 Mild De-
mented classes, while predicting nothing wrongly.

Furthermore, for the Moderate Demented class, the VGG16 model correctly predicts
206 Moderate Demented classes.

Next, for the Non-Demented class, VGG16 correctly predicts 512 while failing to
predict 3 from Mild Demented and 5 from Very Mild Demented.

Finally, for the Very Mild Demented, VGG16 correctly predicts 417 while wrongly
predicting 6 from Non-Demented and 1 from Mild Demented class.
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5.3.2 Xception Outcome

Figure 5.24: Line graph of Xception accuracy (Post-FED)

For the valid dataset, the line graph starts around 50%, decreases sharply till 7
epochs and then gradually rises with each epoch, finally reaching 93.13%.
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Figure 5.25: Line graph of Xception loss (Post-FED)

Similar to the accuracy line graph, for the valid dataset, the line graph starts around
1.3, increases sharply till 7 epochs and then gradually falls with each epoch, finally
reaching less than 0.9.
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Figure 5.26: Confusion matrix of Xception (Post-FED) - Testing on real images’
dataset

From the confusion matrix given above, we observe that the Y-axis indicates the
real labels, and the X-axis indicates the predicted labels by Xception.

For the Mild Demented class, the Xception model correctly predicts 83 Mild De-
mented classes, while failing to predict 2 from the Non Demented class and 5 from
the Very Mild Demented class.

Nevertheless, for the Moderate Demented class, the Xception model correctly pre-
dicts 6 Moderate Demented classes, while not predicting any classes wrong.

Next, for the Non-Demented class, Xception correctly predicts 301 while failing to
predict 2 from Mild Demented and 17 from Very Mild Demented.

Finally, for the Very Mild Demented, Xception correctly predicts 206 while wrongly
predicting 6 from Mild Demented and 12 from Non-Demented.
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Figure 5.27: Confusion matrix of Xception (Post-FED) - Testing on mixed images’
dataset

From the confusion matrix given above, we observe that the Y-axis indicates the
real labels, and the X-axis indicates the predicted labels by Xception.

For the Mild Demented class, the Xception model correctly predicts 83 Mild De-
mented classes, while failing to predict 2 from the Non Demented class and 5 from
the Very Mild Demented class.

Nevertheless, for the Moderate Demented class, the Xception model correctly pre-
dicts 6 Moderate Demented classes, while not predicting any classes wrong.

Next, for the Non-Demented class, Xception correctly predicts 301 while failing to
predict 2 from Mild Demented and 17 from Very Mild Demented.

Finally, for the Very Mild Demented, Xception correctly predicts 206 while wrongly
predicting 6 from Mild Demented and 12 from Non-Demented.
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5.4 Grad-CAM
Grad-CAM, a method of Explainable Artificial Intelligence (XAI) that uses gradi-
ents of any target concepts flowing into the final layer to produce a coarse local-
ization map that highlights key areas in the image for predicting the target, excels
in producing visual explanations for decisions from a large class of Convolutional
Neural Networks, according to [34]. Advantageously, Grad-CAM can be used with
a broad range of CNN model families, including CNNs with fully connected layers
like VGG16.

We have applied Grad-CAM to get a visual explanation on our fully connected layers
model VGG16 and achieved the following output.

Figure 5.28: Grad-CAM Visualization of VGG16 Model

When we look at the Grad-CAM output in the figure, we can see the VGG16 ac-
tivating in the top middle portion of the brain in the non demented class (2), the
upper part of the brain in the very mild demented class (3), the bottom left part
of the MRI image in the moderate demented class (1), and the center of the MRI
image in the mildly demented class (0), showing a significant feature of the MRI
picture utilized by the VGG16 network to categorize the image.
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5.5 Classification Reports & Comparisons
Overall, after augmenting our original dataset, training disease detection mod-
els with that data, and testing those models with fictitious data, we successfully
achieved the following successful outcome before implementing federated learning:

Model Accuracy Precision Recall f1-Score
VGG16 0.9844 0.9844 0.9844 0.9844
EfficientNetB6 0.8750 0.8762 0.8750 0.8748
Xception 0.9047 0.9060 0.9047 0.9046

Table 5.1: Classification Report of VGG16, EfficientNetB6 & Xception (Pre-FED)

However, after implementing federated learning, we were updating the global model
parameters with the up to date values received from the local training models from
the client side using FedAvg and as a result, our previous values of accuracy, preci-
sion, recall and f1-score have been refurbished a bit.

Model Accuracy Precision Recall f1-Score
VGG16 0.9781 0.9783 0.9781 0.9781
Xception 0.9313 0.9316 0.9313 0.9314

Table 5.2: Classification Report of VGG16 & Xception (Post-FED)

From the above pre-Fed and post-Fed classification data it is observable that, there
is a consequential difference between accuracy and precision achieved through the
VGG16 model, while pre-Fed dataset gives slightly higher accuracy & precision
than post-Fed dataset, recall and f1-scores tend to follow the same. However, the
Xception model gives us a higher accuracy, precision, recall and fa-scores through
the post-Fed dataset compared to pre-Fed dataset. It is important to note that
the EfficientNetB6 model has only been used in pre-Fed dataset and has produced
sub-optimal accuracy and precision scores.
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Chapter 6

Conclusion

Image augmentation is very effective in artificially expanding the dataset. The med-
ical sector is a domain where data is scarce, even more so when it comes to MRI
images of the brain for Alzheimer’s detection. Here, image augmentation has proven
to be a viable solution to the scarcity of data. However, the security of patients’
data has always been a question mark in the medical sector.

Identifying the symptoms of Alzheimer’s disease early can tremendously help the
patients. While MRI scans may detect Alzheimer’s disease-related brain shrinkage,
it also rules out other illnesses. However, a system must be able to assess, detect,
and classify patient data, in this case, MRI scans, with high detail while respecting
data privacy for the disease detection to be successful.

As a result, developing a Deep-Learning based detection system that can effectively
read, decipher, and provide necessary classifications based on patient data while
ensuring ultimate confidentiality and safety is a massive challenge that can only be
completed with cutting-edge technologies. We believe that by implementing Feder-
ated learning we have met the demands of privacy and through GAN-based image
augmentation we have achieved accuracy.

Conclusively, this research proposes a framework for utilizing distributed patient
data to augment and further enrich the dataset and detect medical conditions with
the implementation of a Federated GAN model. We believe this research will sig-
nificantly enhance augmenting biomedical images and detect medical conditions ac-
curately.
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