
An efficient deep learning approach for brain tumor detection
using 3D convolutional neural network

by

Syed Muaz Ali
17201014

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
September 2022

© 2022. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Syed Muaz Ali

17201014

i

Approval

The thesis/project titled “An efficient deep learning approach for brain tumor de-
tection using 3D convolutional neural network” submitted by

1. Syed Muaz Ali (17201014)

Of Summer, 2022 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on September 19, 2022.

Examining Committee:

Supervisor:
(Member)

Dr. Md. Ashraful Alam

Assistant Professor
Department of Computer Science and Engineering

School of Data and Sciences
Brac University

Program Coordinator:
(Member)

Dr. Golam Rabiul Alam

Associate Professor
Department of Computer Science and Engineering

School of Data and Sciences
Brac University

Head of Department:
(Chair)

Dr. Sadia Hamid Kazi

Associate Professor
Department of Computer Science and Engineering

School of Data and Sciences
Brac University

ii

Abstract

In medical application, deep learning-based biomedical pixel-wise detection through
semantic segmentation has provided excellent results and proven to be efficient than
manual segmentation by human interaction in various cases. A well-known and
widely used architecture for biomedical segmentation is U-Net. In this work, a
convolutional neural architecture based on 3D U-Net but with fewer parameters and
lower computational cost is used for pixel-level detection of brain tumor through
semantic segmentation. The proposed model is able to maintain a very efficient
performance and provides better results in some cases compared to conventional U-
Net, while reducing memory usage, training time and inference time. BraTS 2021
dataset is used to evaluate the proposed architecture and it is able to achieve Dice
scores of 0.9105 on Whole Tumor(WT), 0.884 on Tumor Core(TC) and 0.8254 on
Enhancing-Tumor(ET) on the testing dataset.

iii

Acknowledgement

Firstly, by the grace of the great Allah for whom my thesis have been completed
without any issue.
Secondly, I’m very grateful to my supervisor Dr. Md. Ashraful Alam Sir for guiding
me during the research.
We would like to thank Chris Rorden(rordenlab) on Github for building the MRI-
croWeb which helped us to visualize the 3D volumes.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables ix

Nomenclature x

1 Introduction 1
1.1 Background . 1
1.2 Research Problem . 1
1.3 Research Objectives . 2

2 Literature Review 3

3 Implementation 5
3.1 Dataset Description . 5
3.2 Data Preprocessing . 5
3.3 Data Augmentation . 6
3.4 3D Separable Convolutions . 6
3.5 Mixed Separable Convolutions . 7
3.6 Squeeze-and-Excitation block . 8
3.7 Attention Gates . 9
3.8 Stem Blocks . 10
3.9 Modified Convolution Blocks . 11
3.10 Our Proposed model Architecture . 12
3.11 U-Net Architecture . 13
3.12 Deep-Supervision . 14
3.13 Transfer learning and Fine-tuning . 15
3.14 Activation functions . 15

v

4 Expirements and Results 17
4.1 3D Visualization . 17
4.2 Measurement . 18
4.3 Loss Functions . 18
4.4 Training and Results on U-Net . 18
4.5 Training and Results on Proposed Model 20
4.6 Comparison of Proposed Model with U-Net 31

5 Conclusion & Future Work 35
5.1 Conclusion . 35
5.2 Future Work . 35

Bibliography 38

vi

List of Figures

3.1 Example data with labels . 5
3.2 Data Augmentation . 6
3.3 Separable Convolutions . 7
3.4 Mixed Convolutions . 8
3.5 Squeeze-and-Excitation block . 9
3.6 Modified Attention Gate . 10
3.7 Stem Blocks . 11
3.8 Modified Convolution Block . 12
3.9 Our proposed model . 13
3.10 U-Net Architecture . 14
3.11 U-Net Convolution Block . 14
3.12 Swish Activation Function . 16
3.13 Smish Activation Function . 16

4.1 Example 3D Visualization . 17
4.2 U-Net F1 Score during training . 19
4.3 U-Net IoU Score during training . 19
4.4 Prediction On U-Net (Left Ground Truth, Right Prediction) 20
4.5 Our Proposed Model with ReLU IoU Score during training 21
4.6 Our Proposed Model with ReLU F1 Score during training 21
4.7 Our Proposed Model with Smish IoU Score during training 22
4.8 Our Proposed Model with Smish F1 Score during training 22
4.9 Sample prediction between Our proposed model with ReLU and Smish

(Left GT, Middle w/ ReLU, Right w/ Smish) 23
4.10 Our Proposed Model with ReLU (Separable Convolution 2) F1 Score

during training . 24
4.11 Our Proposed Model with ReLU (Separable Convolution 2) IoU Score

during training . 24
4.12 Sample prediction between Our proposed model with Separable Con-

volution 1 and 2 (with ReLU) (Left GT, Middle SC 1, Right SC 2) . 25
4.13 Patch-wise pre-training and transfer learning 26
4.14 IoU Score during Training on patches (LR = 0.001) 27
4.15 F1 Score during Training on patches (LR = 0.001) 27
4.16 F1 Score during Training on patches (LR = 0.0001) 28
4.17 IoU Score during Training on patches (LR = 0.0001) 28
4.18 F1 Score during Training pre-trained model on 128x128x128 images . 29
4.19 IoU Score during Training pre-trained model on 128x128x128 images 29

vii

4.20 Sample prediction between predicting using patches (Middle) and our
final model with patch-wise pre-training and transfer-learning model
(Right) (Left GT) . 30

4.21 Box-plot of F1 (Dice) Scores on testing dataset between Our Proposed
Model and U-Net for NET/NCR, ED and ET 33

4.22 Box-plot of F1 (Dice) Scores on testing dataset between Our Proposed
Model and U-Net for ET, WT and TC 33

4.23 Sample predictions between U-Net (Middle) and Our Proposed Model
(Right) (Left GT) . 34

viii

List of Tables

4.1 U-Net Results On Testing Dataset . 19
4.2 Our Proposed Model with ReLU results on different classes on testing

dataset . 22
4.3 Our Proposed Model with Smish results on different classes on testing

dataset . 23
4.4 Our Proposed Model with ReLU (Separable Convolution 2) results

on different classes on testing dataset 25
4.5 Results on testing dataset by predicting using patches 30
4.6 Results on testing dataset through patch-wise pre-training and transfer-

learning . 30
4.7 Comparison of Accuracy on U-Net and Our Proposed Model 31
4.8 Comparison of IoU on U-Net and Our Proposed Model 31
4.9 Comparison of F1 (Dice Score) on U-Net and Our Proposed Model . 31
4.10 Comparison of Precision on U-Net and Our Proposed Model 32
4.11 Comparison of Recall/Sensitivity on U-Net and Our Proposed Model 32
4.12 Comparison of Specificity on U-Net and Our Proposed Model 32
4.13 Comparison of U-Net and Our Proposed Model 32

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

σ Sigmoid

CNN Convolutional Neural Network

ED Edema

ET Enhancing Tumor

GT Ground Truth

NCR Necrosis

NET Non-Enhancing Tumor

ReLU Rectified Linear Unit

TC Tumor Core

WT Whole Tumor

x

Chapter 1

Introduction

1.1 Background

Brain tumors are a major health issue affecting a large number of people’s lives
worldwide. Early detection of these tumors can minimize the health hazard and its
fatal consequences. Imaging methods, most commonly Magnetic Resonance Imaging
or MRI is used for extracting valuable information to identify the exact location,
size, and types for clinicians and surgeons. Hence, we propose to use a 3D U-Net
based computationally efficient architecture for detecting brain tumor on pixle-level
through segmentation from multiple parametric MRI (MP-MRI) images to identify
the essential characteristics of brain tumors and in order to attain a precise diagnosis
for achieving the most appropriate treatment protocol.

The recent technologies have achieved considerable progress on medical imaging
using deep learning techniques. However, there exists various challenges in the field
of computer vision while extrapolating accuracy depicting the exact region from the
automated 3D medical image of MRI.

The BraTS[30][9][13] challenge has achieved its tenth anniversary on year 2021 where
various segmentation algorithms has been dedicated to facilitate the task of precise
brain tumor segmentation. The challenge is solely based on the performance of
precisely segmenting brain tumor.

U-Net[10] is a great convolutional neural network architecture for biomedical seg-
mentation and is often adapted for better presentation in BraTS, and one of U-Net’s
improved versions, nnU-Net[19], became the champion in BraTS 2020 challenge,
thus proves the outstanding presentation of U-Net based architectures. Therefore,
in order to properly segment biomedical images through deep learning, adapting
and improving U-Net architecture is an excellent way to get better results.

1.2 Research Problem

One of the most fatal cancers is Brain tumor. Around 83,570 people would be di-
agnosed with brain tumor and other type of central nervous system tumor, 18,600
people out of them would die due to the illness [31]. Typically diagnosing brain tu-
mor involves neurological exam, brain scan (CT scan, MRI, PET or an angiogram)

1

and biopsy. These tests require expert operators to perform and are prone to human
error [1]. In order to increase the survival rate of patients, it is important to diagnose
brain tumor at a very early phase. Also, the high influx of brain tumor patients
increases the cost of diagnosis due to high demand. To solve these issues, an auto-
mated diagnosis method is required with high sensitivity and specificity. Currently,
MRI scans provides a high sensitivity of (70-100%) and specificity of (95-100%)
without effecting the patient with ionizing radiation [6].

CNN architectures based on U-Net have provided great results for detecting brain
tumor by each pixel from MRI images through semantic segmentation. However, U-
Net based architectures are mostly computationally expensive and require powerful
hardware in order to run the models based on millions of parameters and using 3D
convolutional neural network increases the parameter count compared to 2D convo-
lutional neural network. Thus, we propose an efficient CNN architecture similar to
U-Net but computationally less expensive and requires less than a million parameter
to run.

1.3 Research Objectives

This research aims to develop an efficient U-Net like architecture for pixel-level
detection of brain tumor through semantic segmentation. The objectives of the
research are :

• Build an efficient architecture similar to U-Net for pixel-level brain tumor
detection through semantic segmentation

• Reduce computational cost, training time, inference time and memory usage

• Compare the results with conventional U-Net

2

Chapter 2

Literature Review

Squeeze U-Net[28] architecture is a computationally efficient architecture based on
U-Net and inspired by SqueezeNet[12]. The idea of SqueezeNet is to reduce the
parameters without decreasing accuracy. The authors of SqueezeNet first intro-
duced a module called ’Fire’ module that involves two operation. Both SqueezeNet
and Squeeze U-Net were implemented using 2D convoluitonal neural networks. On
SqueezeNet, the ’Fire’ module performs two operations where one is ’Squeeze’ and
the other is ’Expand’. On the ’Squeeze’ operation, a 1x1 convolution operation
is performed. The strategy behind 1x1 convolution is replacing 3x3 convolution
to reduce the parameter. Thus, through a dimensionality reduction operation, the
number of channels in the layer get reduced thus the term ’Squeeze’ is used. The
other operation perfomred on the ’Fire’ module is called ’Expand’. This operation
involves two convolution operations of 1x1 and 3x3 kernels, an increased number
of features compared to the ’Squeeze’ operation, thus the term ’Expand’ is used.
The authors found that, compared to AlexNet[5], SqueezeNet has 50 times reduced
model size and manages to perform as well or better in terms of accuracy. The
Squeeze U-Net was developed being inspired by the performance of SqueezeNet.
The model size of Squeeze U-Net is reduced by 12 times, the inference time of the
model is also improved by 17% and training time is also improved by 52% com-
pared to conventional U-Net while maintaining similar accuracy. The authors have
used ’Fire’ module similar to SqueezeNet and also implemented ’Transposed Fire
Module’ in the network. On the ’Fire’ module of the network, a 1x1 convolution
is initially performed. Then, on the features, another 1x1 convolution and one 3x3
convolution operation, both with increased number of features are performed. The
authors have used ’Transposed Fire Module’ on the decoders of the network, which
is similar to the original ’Fire’ module, consisting of operations ’Squeeze’ and ’Ex-
pand’. The module initially performs a transposed convolution operation of kernel
size 1x1 (Squeeze) and on the output features of the operation, the module performs
one 1x1 transposed convolution and one 2x2 transposed convolution and concate-
nates the outputs (Expand). The authors have used convolution operations with
strides set to 2 for performing down-sampling operations as they mentioned that it
improves the network’s expressiveness. The authors have evaluated the performance
by evaluating through CamVid[2][3] dataset which consists of 5 classes, which are
Building, Tree, Sky, Car and Road. The authors have measured the performance of
their models using True Positive pixels, False Positive pixels and Intersection over
Union (IoU). Squeeze U-Net and conventional U-Net sc mean IoU of 0.689 and 0.639

3

for the class Building, 0.37 and 0.403 for the class Tree, 0.842 and 0.879 for the class
Sky, 0.427 and 0.628 for the class Car, 0.751 and 0.8 for the class Road, resulting an
average IoU of all the 5 classes of 0.616 for Squeeze U-Net and 0.670 for the U-Net.
Again, Squeeze U-Net gained 2% to 3% less accuracy compared to U-Net in terms
of the five classes for true positive pixels, where Squeeze U-Net gained an accuracy
of 78% and U-Net gained an accuracy of 86.9%. Furthermore, U-Net gained an ac-
curacy approximately 5% more than U-Net for the class Building, achieving 83.3%
accuracy, while Squeeze U-Net gained 78.5% accuracy. Moreover, U-Net gained 20%
more accuracy for the class Tree where Squeeze U-Net gained an accuracy of 51.1%
and U-Net gained an accuracy of 72.6%. Squeeze U-Net gained 71.1% accuracy for
the class Car while U-Net gained an accuracy of 84.5%, around 20% less accuracy for
Squeeze U-Net. The authors have stated that U-Net usually has less false positive
pixels compared to U-Net except for the class Building where U-Net has 17% more
false positive pixels compared to Squeeze U-Net and the class Tree where U-Net has
24% more false positive pixels than Squeeze U-Net. For the class Road, Squeeze
U-Net has 31.3% false positive pixels where U-Net has 23.4% false positives, around
8% more for Squeeze U-Net and for the class Sky, U-Net has 1.5% less false positive
pixels. Finally, the authors stated that Squeeze U-Net requires 12 times less para-
maters compared to U-Net to operate and 3 times less MACs. The training time
for Squeeze U-Net is around 69% of U-Net and in terms of inference time, Squeeze
U-Net performs 17% faster.

Wei et al.[23] proposed the idea of implementing 3D separable convolutions for brain
tumor segmentation. The authors mentioned that using 2D convolution instead
of 3D on volumetric data can reduce the ability to acquire information for CNN
architectures. However, 3D convolutions require more computational cost compared
to 2D. Thus the authors implemented a U-Net based architecture to use 3D separable
convolutions to segment brain tumors. The authors have evaluated their results on
BraTS 2018 dataset. On the implemented U-Net like architecture, the authors
have used convolution blocks called S-3D Convolution Block. On the block, the
authors have followed the idea by Xie et al. [21] to use spatio-temporal-separable 3D
convolutions to replace the 3D convolutions. On the prposed S3D block, the authors
have implemented similar blocks to residual Inception block but with separable
convolutions. On the final S3D U-Net, the authors have used S3D blocks with and
without residual connections. The architecture takes input size of 128x128x128.
There are five levels in the contracting part of the architecture and all the levels
except the first level uses S3D blocks. The authors have used F1 Loss function
for training the model and for evaluation, they have used sensitivity, specificity, F1
score and the Hausdorff distance. The authors have compared the performance of
the proposed model with S3D block with U-Net on the BraTS 2018 dataset through
cross validation with five-fold. The proposed model scored a F1 score of 0.73953,
0.88809, 0.84419 and the U-Net without the S3D block scored F1 scores of 0.68428,
0.89912, 0.86772 on Enhancing Tumor (ET), Whole Tumor (WT) and Tumor Core
(TC). Again, on the Brats 2018 validation dataset, the proposed model scored F1
scores of 0.74932, 0.89353 and 0.83093 on ET, WT and TC. Finally, on the testing
dataset, the model scored F1 scores of 0.68946, 0.83893 and 0.78347 on ET, WT
and TC.

4

Chapter 3

Implementation

3.1 Dataset Description

We used the BraTS 2021 dataset to evaluate the models. The dataset contains 1251
samples where the tumor regions are labeled. The regions include the following
categories: 1. Enhancing Tumor (ET), 2. Non-Enhancing Tumor (NET/NCR), 3.
Edema (ED). Each of the scans includes four channels T1, Flair, T2, T1CE. The
dimension of each of the channel is 240x240x155. Figure 3.1 shows the T1, T2, Flair
and T1CE scans and the labels for all the classes except the background.

Figure 3.1: Example data with labels

3.2 Data Preprocessing

We divided data preprocessing into two steps. At first, we scaled the Nifti image
values’ between 0 to 1. For the segmented masks, the labels in the dataset were set
as 0 for Background, 1 for Non-Enhancing Tumor/Necrosis, 2 for Edema but 4 for
Enhancing-Tumor. We assigned the values for the label 4 Enhancing Tumor to label
3 so the classes can be in an order of 0,1,2 and 3 to train the models. Furthermore,
we cropped the the images to 128x128x128 to reduce the number of zero values and
to fit into the memory of our GPU. We then used T1CE, T2 and Flair images to

5

create a four-dimensional Numpy array and saved images where the mask contains at
least 1% of it as tumor data. After saving the images, 80% training, 10% validation
and 10% testing split were randomly created from the dataset.
On the second step of data preprocessing, we extracted patches of dimenson 64x64x64
with no overlap from each of the images from training set and validation set. Each of
the 128x128x128 images resulted in total 8 patches of dimension 64x64x64. We saved
the patches where the masks contain at least 1% data of either Enhancing-tumor,
Tumor-core or Edema.

3.3 Data Augmentation

Data augmentation was performed on the training dataset of 64x64x64 patches
where we randomly rotated and flipped each of the images using Scikit-learn and
Numpy. Through data augmentation, there were total 16,536 images for training.
Figure 3.2 demonstrates an example of data augmentation.

Figure 3.2: Data Augmentation

3.4 3D Separable Convolutions

In separable convolutions, one convolution operation is divided into multiple con-
volution to reduce the computational cost[23]. For example, dividing 3x3x3 con-
volution into two convolution operations of 3x3x1 and 1x1x3 or 1x3x3 and 3x1x3
convolutions. We tested 2 different separable convolution operations where we di-
vided convolution operation of NxNxN to NxNx1 and 1x1xN (separable convolution
1) and another convolution operations of 1xNxN and Nx1x1 (separable convolution
2). Figure 3.3 demonstrates the types of separable convolution operations used.

6

Figure 3.3: Separable Convolutions

3.5 Mixed Separable Convolutions

The authors in the paper[26] proposed the idea of concatenating separate convo-
lutions of different kernel sizes to improve the accuracy. We implemented similar
method to concatenate the outputs of separable convolutions. However, unlike Mix-
Conv[26] where the features are split into separate groups, we performed convolu-
tion operations on the same features but with half the number of filters. Figure 3.4
demonstrates the mixed separable convolutions operation performed.

7

Figure 3.4: Mixed Convolutions

3.6 Squeeze-and-Excitation block

The Squeeze-and-Excitation blocks[18] takes convolution features as input and con-
verts it into an one-dimension through global average pooling, thus the term ’Squeeze’
is used. Furthermore, the global average pooling layer output is processed by a dense
layer where ReLU activation for non-linearity to reduce channel complexity and a
dense layer with a reduced number of units with Sigmoid function further pro-
cesses the previous dense layer’s output which helps the channel to have a smooth
gating function. Finally, the convolution features are multiplied with the last fully-
connected layers for recalibrating channel-wise feature responses. Jie et al.[18] found
that, using Squeeze-and-Excitation blocks can further improve the accuracy of a
CNN while not having high computational cost. Figure 3.5 shows the architecture
of a Squeeze-and-Excitation block.

8

Figure 3.5: Squeeze-and-Excitation block

3.7 Attention Gates

According to Oktay et al.[20], attention gates can help to improve representation
of salient features by reducing the irrelevant areas of an image. We slightly modi-
fied the attention gate to reduce computational cost by not doing any convolution
operation on the features from the encoder block and the gating signal from the
decoder. The features from the decoder block are up-sampled and added to the fea-
tures of the encoder block, processed by an activation function and a convolution of
kernel size 1x1x1 and feature size of 1 and finally processed by a Sigmoid activation
function. The output is then multiplied with the input features from the encoder
block through element-wise multiplication. Figure 3.6 shows the architecture of the
modified attention gates.

9

Figure 3.6: Modified Attention Gate

3.8 Stem Blocks

We implemented Stem Blocks similar to the initial block on ResNet[11]. Using
convolution operation of kernel size 7x7x7 with stirdes set to 2 gave a decent im-
provement to training time and memory usage by reducing the computational cost.
Furthermore, we modified the stem block based on ResNet-D by Tong et al.[24] by
adding an additional average pooling layer followed by a convolution operation of
kernel size of 1x1x1. According to the authors of ResNet-D, due to the strides of
2 on ResNet, some of the information on the images are ignored. However, on our
proposed models, we used an average pooling operation with padding set to same
and strides set to 1 and on the next convolution operation of kernel size 1x1x1, we
set the strides to 2 for down-sampling to reduce computational cost. We showed the
Stem Blocks in the Figure 3.7.

10

Figure 3.7: Stem Blocks

3.9 Modified Convolution Blocks

Figure 3.8 shows the modified convolution blocks that we have used in encoders,
decoders and the bottleneck layers of our proposed model. The block consists of
separable convolutions incorporating with mixed convolution. In the figure, we
showed the separable convolution operations of kernel sizes of NxNx1 followed by
a convolution operation of 1x1xN. A convolution operation of kernel size 1x1x1 is
performed on the concatenated output from mixed convolution and added to the
original input through element-wise addition, similar to residual-blocks to avoid issue
with vanishing gradients and overfitting. A convolution operation is performed on
input layer for identity mapping and dimensionality reduction or increasing to match
with the output in order for addition. Finally the added output is processed through
a squeeze-and-excitation block. Batch normalization, followed by a an Activation
function was applied to each of the convolution operation.

11

Figure 3.8: Modified Convolution Block

3.10 Our Proposed model Architecture

On our proposed model, we incorporated the modified convolution blocks, stem
blocks and attention gates. The input size of our proposed model is 128x128x128x3
or 64x64x64x3 during training with the patches and the output is of 128x128x128x4
or 64x64x64x4. On the up-sampling blocks of our proposed model, the layers are

12

up-sampled by a size of 2x2x2 followed by a convolution operation of kernel size of
2x2x2, batch normalization and then activation. The encoder and decoder blocks
use feature maps starting from 16 to 64 and the bottleneck layer uses filters of 256.
However, compared to U-Net, the model is 3 encoder and decoder blocks while U-
Net that we used to compare our results uses 4 encoder and decoder blocks. Figure
3.9 shows the architecture of our proposed model.

Figure 3.9: Our proposed model

3.11 U-Net Architecture

We used a conventional 3D U-Net where the encoders and decoders have 16,32,64,128
features and bottleneck has 256 features, following a similar pattern of our proposed
model. On the convolution blocks, batch normalization was used after each of the
convolution operation to avoid overfitting and improve generalization. Figure 3.10
demonstrates the U-Net architecture used to compare with our proposed model and
Figer 3.11 demonstrates the convolution blocks.

13

Figure 3.10: U-Net Architecture

Figure 3.11: U-Net Convolution Block

3.12 Deep-Supervision

Originally proposed by Chen-Yu et al.[8], deep supervision can improve the accu-
racy of a deep-learning model through enforcing supervision for output and hidden
layer. U-Net++[22] and U-Net3+[29] have implemented deep-supervision in their
networks. On U-Net3+, according to the authors, from full-scale aggregated fea-
ture maps, deep-supervision can be used to learn hierarchical representation. When
implementing deep-supervsion for our proposed model, up-sampling all the features
from hidden layers of decoder block and performing convolution operation to re-
duce dimensionality to match output size was expensive in terms of memory usage.
Again, doing a dimensionality reduction first on hidden layers to match the channel
size of output layer and up-sampling didn’t provide good results. In order to make

14

it computationally more efficient, on our proposed model, we performed convolu-
tion transpose operation of kernel size 2x2x2 on the first decoder block and added
the output to the next decoder block, finally performing two additional convolution
transpose operation on the added output to match the size of the output layer. Each
of the convolution transpose operation would reduce the number of filters by half
while increasing the size of the features. Finally, we calculated two different loss for
the main output layer and the hidden output layer.

3.13 Transfer learning and Fine-tuning

Transfer learning is the process where a pre-trained model is trained on a differ-
ent dataset by loading the weights as the model is already familiar with a similar
task and can provide better results on the different dataset. Fine-tuning is where
specific layers are frozen or set to non-trainable while training the other layers for
different dataset. Different CNN architectures require different layers to be frozen
to provide the best result. Mina et al.[27] have demonstrated the results of freez-
ing layers of different blocks on the U-Net architecture. According to their work,
freezing the bottleneck block’s layers would provide similar results as training the
whole network while reducing the number of parameters by around half. We fol-
lowed similar methodology and during transfer learning, we froze the layers of the
bottleneck layer and the total parameter was 627,155 and the trainable parameters
were 417,555, thus reduced computational cost.

3.14 Activation functions

The performance of our proposed models were evaluated using using different ac-
tivation functions or combined both on different layers of the network. We used
Swish[15], Smish[34] and ReLU[17] activation functions to make the comparison to
find the best combination for achieving highest accuracy while maintaining efficiency.

f(x) = x · σ(x) (3.1)

Equation 3.1 shows the equation of Swish activation function. The authors of Swish
activation function found that using Swish instead of ReLU activation function can
improve accuracy and provide strong regularization effects as the function is being
bounded below. Figure 3.12 shows the Swish activation function.

15

Figure 3.12: Swish Activation Function

f(x) = x · tanh(ln(1 + σ(x))) (3.2)

A novel activation function called Smish was proposed by Xueliang et al.[34]. Ac-
cording to the authors, Smish activation function can provide better accuracy com-
pared to ReLU and Swish. The function provides regularization effects for inputs
less than zero and has the non-monotonic abilities of the Logish[32] activation func-
tion. The function is also similar to Mish[25] activation function, having no upper
bound but a lower bound. Equation 3.2 shows the equation and Figure 3.13 shows
the Smish activation function.

Figure 3.13: Smish Activation Function

f(x) = max(0, x) (3.3)

ReLU or Rectified Linear Unit is a non-linear function which takes the input and
calculates the maximum between the input and zero. If the input is positive, then
the function will return the input itself otherwise it will return zero. Equation
3.3 shows the equation of it. ReLU is simple and computationally less expensive
compared to bounded by below activation functions but due to producing zero for
all negative values can lead to a term called ’dead neurons’ and cause vanishing
gradient issue, leading to poor performance of the model.

16

Chapter 4

Expirements and Results

4.1 3D Visualization

In order to visualize a prediction in 3D, we converted the output of the model to
a Nifti file. Then we used MRIcroWeb by Rordenlab to render the volume using
WebGL. In order to crop or slice an image to view the Enhancing-Tumor or Non-
Enhancing Tumor/Necrosis, we manually cropped the images in Numpy then saved
to Nifti file. Figure 4.1 shows an example 3D visualization with the regions of the
tumor marked as Edema, Non-Enhancing Tumor/Necrosis and Enhancing Tumor.

Figure 4.1: Example 3D Visualization

17

4.2 Measurement

We evaluated the results of all the models using Accuracy, Dice score (F1), IoU,
precision, sensitivity and specificity. For each of the predictions, we calculated TP
(True Positive), FP (False Positive), TN (True Negative) and FN (False Negative)
based on each of the pixel-level detection of brain tumor from testing dataset. Our
final results show the mean results for all the predictions on the testing dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

Dice =
2 ∗ TP

2 ∗ TP + FP + FN
(4.2)

IoU =
TP

TP + FP + FN
(4.3)

Precision =
TP

TP + FP
(4.4)

Sensitivity =
TP

TP + FN
(4.5)

Specificity =
TN

TN + FP
(4.6)

4.3 Loss Functions

We combined Dice loss[16] and Categorical Focal loss[14] as a loss function to train
the models. Equation 4.7 shows the equation for Categorical Focal loss, Equation 4.8
shows the equation for calculating Dice loss and Equation 4.9 shows the combined
loss function[33] used during training.

LFocal(gt, pr) = −gt · α · (1− pr)γ · log(pr) (4.7)

LDice(precision, recall) = 1− (1 + β2)
precision · recall

β2 · precision+ recall
(4.8)

L = LFocal + LDice (4.9)

4.4 Training and Results on U-Net

We trained the U-Net model with learning rate set to 0.0001 and Adam[7] optimizer
with a batch size of 2. It was trained on 128x128x128 images with loss function set
to combined Dice loss and Focal loss. The validation scores did not improve after
81th epoch reaching validation IoU score 0.7766140699 and F1 score 0.8506705761
and we stopped the training at 140th epoch. We showed the F1 and IoU scores
during training on Figure 4.2 and Figure 4.3. We showed the results on testing
dataset for Non-enhancing Tumor/Necrosis, Edema and Enhancing tumor on Table

18

4.1. We also showed a sample prediction on U-Net on Figure 4.4 where the left
image is ground truth and the right image is prediction from U-Net.

Figure 4.2: U-Net F1 Score during training

Figure 4.3: U-Net IoU Score during training

Table 4.1: U-Net Results On Testing Dataset

Class Accuracy IoU F1 Specificity Sensitivity Precision
NET/NCR 0.9976 0.6869 0.7654 0.9986 0.8195 0.7596

ED 0.9916 0.7141 0.8142 0.9958 0.8421 0.8202
ET 0.998 0.7484 0.8273 0.9989 0.8432 0.8333

Table 4.1 shows the mean values of Accuracy, Intersection over Union (IoU), Dice
Score (F1), Specificity, Sensitivity and Precision on the testing dataset for the model
U-Net

19

Figure 4.4: Prediction On U-Net (Left Ground Truth, Right Prediction)

4.5 Training and Results on Proposed Model

Firstly, we trained our proposed model with the unmodified Stem block from Figure
3.7, Separable Convolution 1 from Figure 3.3 and without any deep-supervision. We
tested how ReLU and Smish activation functions perform on the model. In order
to achieve this, we used ReLU activation function on the layers that require non-
linearity without replacing the existing Sigmoid or Softmax functions. Secondly,
we replaced all the ReLU activation functions with Smish activation function and
trained the models. The models were trained on 128x128x128 images with learning
rate set to 0.0001, Adam optimizer, batch size of 2 and we used L2 Regularization[4]
with a weight decay of 0.0005. Our proposed model with ReLU activation validation
scores didn’t improve after 166th epoch reaching validation IoU score 0.7535068393
and F1 score 0.8332134485 and the model with Smish didn’t improve after 188th
epoch reaching validation IoU score 0.7605672479 and F1 score 0.8377211094. Both
of the models were trained using Tensorflow with mixed precision enabled to use
both 16-bit and 32-bit floating point values, however we found that using Smish
function tends to consume more memory. We manually allocated 2048MB video
memory from our GPU to train the models but Smish required more and ReLU
worked fine without causing the program to crash. For the model with Smish, we
had to set video memory to 2300MB. We also found that, our proposed model

20

with Smish performed better on Edema and Enhancing-Tumor classes in terms of
IoU and F1 scores compared to our proposed model with ReLU. Figure 4.5 shows
the IoU score, Figure 4.6 shows the F1 Score of our proposed model with ReLU
during training and Figure 4.7 shows the IoU score and Figure 4.8 shows the F1
score of our proposed model with Smish activation during training. Table 4.2 and
4.3 demonstrates the results of the models on the testing set for Non-enhancing
tumor/Necrosis, Edema and Enhancing Tumor on testing dataset. On Figure 4.9,
we showed a sample prediction in 3D where the left image is ground truth, middle is
our proposed model with ReLU and right image is our proposed model with Smish.

Figure 4.5: Our Proposed Model with ReLU IoU Score during training

Figure 4.6: Our Proposed Model with ReLU F1 Score during training

21

Figure 4.7: Our Proposed Model with Smish IoU Score during training

Figure 4.8: Our Proposed Model with Smish F1 Score during training

Table 4.2: Our Proposed Model with ReLU results on different classes on testing
dataset

Class Accuracy IoU F1 Specificity Sensitivity Precision
NET/NCR 0.9973 0.663 0.7462 0.99810 0.8135 0.7406

ED 0.9885 0.6833 0.7906 0.997 0.7658 0.866
ET 0.9976 0.693 0.7818 0.9983 0.8361 0.7596

Table 4.2 shows the mean values of Accuracy, Intersection over Union (IoU), Dice
Score (F1), Specificity, Sensitivity and Precision on the testing dataset for our pro-
posed model where ReLU activation was used. The results are shown for the classes

22

Non-Enhancing Tumor or Necrosis (NET/NCR), Edema (ED) and Enhancing-Tumor
(ET).

Figure 4.9: Sample prediction between Our proposed model with ReLU and Smish
(Left GT, Middle w/ ReLU, Right w/ Smish)

Table 4.3: Our Proposed Model with Smish results on different classes on testing
dataset

Class Accuracy IoU F1 Specificity Sensitivity Precision
NET/NCR 0.9975 0.658 0.7427 0.9983 0.8005 0.7373

ED 0.9911 0.7007 0.8042 0.9963 0.8142 0.8283
ET 0.9976 0.7235 0.8104 0.9989 0.8151 0.8364

Table 4.3 shows the mean values of Accuracy, Intersection over Union (IoU), Dice
Score (F1), Specificity, Sensitivity and Precision on the testing dataset for our pro-
posed model where Smish activation was used. The model performed better in
terms of IoU and F1 score on the classes ET or Enhancing Tumor and ED or
Edema classes compared to when ReLU activation was used. The results are shown
for the classes Non-Enhancing Tumor or Necrosis (NET/NCR), Edema (ED) and
Enhancing-Tumor (ET).

On the otherhand, we trained our proposed model with ReLU activation with Sep-
arable Convolutions 2 from Figure 3.3. This time the model showed better results
in terms of IoU and F1 score compared to using Separable Convolutions 1 on the
testing dataset. The model was trained with corresponding hyper parameters as our
proposed model with ReLU and the validation loss did not improve after 189th epoch
reaching validation IoU score 0.7545309663 and F1 score 0.8326327205. Figure 4.10
and Figure 4.11 shows the F1 and IoU scores of the model during training. Figure
4.12 shows a sample prediction between our proposed model with ReLU where we

23

compared separable convolution 1 and 2, the left image is the ground truth, the mid-
dle image is our proposed model with separable convolution 1 and the right image
is our proposed model with separable convolution 2.

Figure 4.10: Our Proposed Model with ReLU (Separable Convolution 2) F1 Score
during training

Figure 4.11: Our Proposed Model with ReLU (Separable Convolution 2) IoU Score
during training

Table 4.4 shows the mean values of Accuracy, Intersection over Union (IoU), Dice
Score (F1), Specificity, Sensitivity and Precision on the testing dataset for our pro-
posed model where separable convolution 2 was used. In this case, the model per-
formed better on IoU and F1 score compared to when separable convolution 1 was
used in Table 4.2. The results are shown for the classes Non-Enhancing Tumor or
Necrosis (NET/NCR), Edema (ED) and Enhancing-Tumor (ET).

24

Table 4.4: Our Proposed Model with ReLU (Separable Convolution 2) results on
different classes on testing dataset

Class Accuracy IoU F1 Specificity Sensitivity Precision
NET/NCR 0.9975 0.6653 0.7563 0.9984 0.8117 0.7527

ED 0.9906 0.6929 0.7958 0.9954 0.8278 0.8039
ET 0.9947 0.7181 0.8049 0.9986 0.8296 0.8058

Figure 4.12: Sample prediction between Our proposed model with Separable Con-
volution 1 and 2 (with ReLU) (Left GT, Middle SC 1, Right SC 2)

Finally, we modified our proposed model to use the separable convolution 2 and the
modified stem block based on ResNet-D. We also implemented deep-supervision to
the model and trained the model on the dataset of 64x64x64 patches. We used Smish
activation function in the last encoder, first decoder and bottleneck block layers and
Swish activation in other blocks’ layers as we found that the Smish function is
more memory consuming than Swish function. After training the model with the
patches, we trained the model on the dataset of 128x128x128 images using transfer
learning to load the weights and for fine-tuning, we set the layers in the bottleneck
layer to not-trainable. The models were trained using same hyper parameters as
our previous models, however, during training the patches, the learning rate was
initially set to 0.001 and batch size of 16. The model’s validation scores didn’t
improve after 31th epoch reaching validation IoU score 0.7575016022 and validation
F1 score 0.848244727 for main output layer so we stopped the training and saved
the best model and again trained the model at a learning rate at 0.0001. This
time the validation scores didn’t improve after 32th epoch reaching validation IoU
score 0.77687698602 and F1 score 0.860830307 for main output layer. Finally, we

25

used the best model and trained the model on the 128x128x128 images by loading
the weights from training on patches, freezing the layers on bottleneck block. The
learning rate was set to 0.0001 and the validation scores didn’t improve after 11th
epoch reaching validation IoU score 0.7801004648 and F1 score 0.851087749, higher
than U-Net. Figure 4.14 and Figure 4.15 shows the IoU and F1 scores of the model
during training on patches with learning rate set to 0.001, Figure 4.17 and Figure
4.16 shows the IoU and F1 scores when learning rate set to 0.0001. Finally, Figure
4.18 and Figure 4.19 shows the F1 and IoU scores of the model when the pre-trained
model on patches is used to train on the 128x128x128 images. On the figures, we
showed only the curves of main output as when deep-supervision is used, the model
would output two results for two different outputs. Figure 4.13 shows the process
of training the model using patches, transfer learning and fine-tuning.

Figure 4.13: Patch-wise pre-training and transfer learning

26

Figure 4.14: IoU Score during Training on patches (LR = 0.001)

Figure 4.15: F1 Score during Training on patches (LR = 0.001)

27

Figure 4.16: F1 Score during Training on patches (LR = 0.0001)

Figure 4.17: IoU Score during Training on patches (LR = 0.0001)

28

Figure 4.18: F1 Score during Training pre-trained model on 128x128x128 images

Figure 4.19: IoU Score during Training pre-trained model on 128x128x128 images

We found that, pre-training the model on the patches and again training the model
on the same images that were used to extract the patches can improve the accu-
racy. The final model through transfer learning showed better results compared
to our previous models. Table 4.5 shows the results on the testing dataset when
we used only the model trained using patches, for predicting 128x128x128 images
using model trained on 64x64x64 images, we had to extract patches for the images
and predict on the patches individually and again combined the predicted patches
back together to original shape and calculated the results. Table 4.6 shows the
results of the model on testing dataset where we used patch-wise pre-training and
transfer-learning. Figure 4.20 shows sample prediction where left image is ground
truth, middle image prediction is where we used the model trained using patches to
predict by creating patches from the image and the right image prediction is where
we used transfer-learning from the patch-based trained model.

29

Table 4.5: Results on testing dataset by predicting using patches

Class Accuracy IoU F1 Specificity Sensitivity Precision
NET/NCR 0.9972 0.6468 0.73445 0.9983 0.788 0.7413

ED 0.9897 0.674 0.7810 0.9958 0.783 0.8197
ET 0.9954 0.6574 0.7522 0.9986 0.759 0.7889

Table 4.5 shows the mean values of Accuracy, Intersection over Union (IoU), Dice
Score (F1), Specificity, Sensitivity and Precision on the testing dataset for our pro-
posed model where it was trained only using patches of 64x64x64 dimensions and
tested on 128x128x128 images through extracting patches of 64x64x64 dimensions
from the testing image and un-patching them back to 128x128x128 dimension to
calculate the results. The results are shown for the classes Non-Enhancing Tumor
or Necrosis (NET/NCR), Edema (ED) and Enhancing-Tumor (ET).

Table 4.6: Results on testing dataset through patch-wise pre-training and transfer-
learning

Class Accuracy IoU F1 Specificity Sensitivity Precision
NET/NCR 0.9976 0.6915 0.772 0.9985 0.8429 0.7507

ED 0.9924 0.725 0.819 0.9959 0.8426 0.8256
ET 0.9981 0.7444 0.8254 0.9989 0.8362 0.8281

Table 4.6 shows the mean values of Accuracy, Intersection over Union (IoU), Dice
Score (F1), Specificity, Sensitivity and Precision on the testing dataset for our pro-
posed model where the weights from the model trained on 64x64x64 were loaded
via transfer learning and again trained on the 128x128x128 images. In this case, it
showed better results in all cases than the model that was only trained on patches
on Table 4.5.

Figure 4.20: Sample prediction between predicting using patches (Middle) and our
final model with patch-wise pre-training and transfer-learning model (Right) (Left
GT)

30

4.6 Comparison of Proposed Model with U-Net

We compared our final model based on patch-wise pre-training and transfer learning
with U-Net as it performed the best compared to our previous experiments on the
testing dataset. Furthermore, we also compared the results for Whole Tumor (WT)
and Tumor Core (TC). The Whole Tumor is the combination of Edema or ED,
Enhancing Tumor or ET, Non-Enhancing Tumor/Necrosis or NET/NCR and Tumor
Core or TC is the combination of Non-Enhancing Tumor/Necrosis or NET/NCR and
Enhancing-Tumor or ET.

WT = ET + ED +NET |NCR (4.10)

TC = ET +NET |NCR (4.11)

In order to get the results for WT or Whole Tumor and TC or Tumor Core, first we
added the predicted classes based on the Equation 4.10 and 4.11 and set the value
of prediction between 0 or 1 keeping a threshold of 0.5. If the predicted value is less
than or equal to 0.5 then we set the value to 0 otherwise we set it to 1. We compared
the accuracy on Table 4.7, IoU scores on Table 4.8, F1 Scores on 4.9, Precision on
Table 4.10, Sensitivity or Recall on Table 4.11, and Specificity on Table 4.12 on
testing dataset. Again, we showed the box-plots of F1 (Dice) Score on the Figure
4.21 for Edema (ED), Enhancing Tumor (ET) and Non-Enhancing Tumor/Necrosis
(NET) and box-plots of F1 (Dice Score) on Figure 4.22 for Whole Tumor(WT), En-
hancing Tumor(ET) and Tumor Core(TC). We showed sample predictions between
Our Proposed Model and U-Net on Figure 4.23.

Table 4.7: Comparison of Accuracy on U-Net and Our Proposed Model

Model ET WT TC NET/NCR ED
U-Net 0.998 0.9929 0.997 0.998 0.9916

Proposed Model 0.9981 0.9935 0.997 0.9976 0.992

Table 4.7 compares the mean accuarcy on the testing set between U-Net and Our
final model on the classes ET, WT, TC, NET/NCR and ED.

Table 4.8: Comparison of IoU on U-Net and Our Proposed Model

Model ET WT TC NET/NCR ED
U-Net 0.7484 0.8384 0.8282 0.6869 0.7141

Proposed Model 0.7444 0.8511 0.8297 0.6915 0.725

Table 4.8 compares the mean IoU Score on the testing set between U-Net and Our
final model on the classes ET, WT, TC, NET/NCR and ED

Table 4.9: Comparison of F1 (Dice Score) on U-Net and Our Proposed Model

Model ET WT TC NET/NCR ED
U-Net 0.8273 0.9044 0.885 0.7654 0.8142

Proposed Model 0.8254 0.9105 0.884 0.772 0.819

31

Table 4.9 compares the mean F1 Scores on the testing set between U-Net and Our
final model on the classes ET, WT, TC, NET/NCR and ED

Table 4.10: Comparison of Precision on U-Net and Our Proposed Model

Model ET WT TC NET/NCR ED
U-Net 0.8333 0.897 0.88 0.76 0.8202

Proposed Model 0.8281 0.9037 0.8752 0.7507 0.8255

Table 4.9 compares the mean F1 Scores on the testing set between U-Net and Our
final model on the classes ET, WT, TC, NET/NCR and ED

Table 4.11: Comparison of Recall/Sensitivity on U-Net and Our Proposed Model

Model ET WT TC NET/NCR ED
U-Net 0.8432 0.929 0.9202 0.8195 0.8421

Proposed Model 0.8362 0.9338 0.9148 0.8429 0.8427

Table 4.11 compares the mean Sensitivity or Recall on the testing set between U-Net
and Our final model on the classes ET, WT, TC, NET/NCR and ED

Table 4.12: Comparison of Specificity on U-Net and Our Proposed Model

Model ET WT TC NET/NCR ED
U-Net 0.9989 0.996 0.9982 0.9986 0.9958

Proposed Model 0.9989 0.9963 0.9982 0.9984 0.9959

Table 4.12 compares the mean Specificity on the testing set between U-Net and Our
final model on the classes ET, WT, TC, NET/NCR and ED

Table 4.13: Comparison of U-Net and Our Proposed Model

Model Parameters Size Traning Time Prediction Time
U-Net 5,651,716 65.0 MB 15+ min 0.355ms

Proposed Model 604,495 2.87 MB 5+ min 0.194ms

Table 4.13 compares the number of parameters required, Size, Training time per
epoch on 128x128x128 images and prediction time per image on the testing dataset
between Our final model and U-Net
Based on the final results, our proposed model has achieved a very comparable per-
formance compared to U-Net and performed better in some cases while maintain-
ing around 11% of total parameters, reduced computational cost and less inference
time. During prediction, we removed the hidden output layer that was used for
deep-supervision as the main output layer produces the best result. Removing the
layer reduced the model size from 6.62 MB to 2.87 MB, reduced parameters from
627,155 to 604,495 and decreased inference time. The model took around 12 min-
utes per epoch when training on the patches of the images, the Table 4.13 shows the
parameters, size on disk, training time per epoch on training dataset of 128x128x128
images and prediction time per image on testing dataset.

32

Figure 4.21: Box-plot of F1 (Dice) Scores on testing dataset between Our Proposed
Model and U-Net for NET/NCR, ED and ET

Figure 4.22: Box-plot of F1 (Dice) Scores on testing dataset between Our Proposed
Model and U-Net for ET, WT and TC

33

Figure 4.23: Sample predictions between U-Net (Middle) and Our Proposed Model
(Right) (Left GT)

34

Chapter 5

Conclusion & Future Work

5.1 Conclusion

Our final model with around 11% parameters, around one-third of training time and
around 45% faster inference time compared to U-Net managed to provide better
results in various cases and provided very comparable performance where it didn’t
manage to achieve higher scores. The model is able to greatly reduce computational
cost thus making it more efficient.

5.2 Future Work

In the future, we hope to implement 3D Depth-wise convolution to our model after
Tensorflow releases it. We also want to evaluate the model’s performation through
BraTS online validation.

35

Bibliography

[1] S. T. Chao, J. H. Suh, S. Raja, S.-Y. Lee, and G. Barnett, The sensitivity and
specificity of fdg pet in distinguishing recurrent brain tumor from radionecrosis
in patients treated with stereotactic radiosurgery, en, 2001. doi: 10.1002/ijc.
1016. [Online]. Available: http://dx.doi.org/10.1002/ijc.1016.

[2] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in video:
A high-definition ground truth database,” Pattern Recognition Letters, vol. xx,
no. x, pp. xx–xx, 2008.

[3] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation and
recognition using structure from motion point clouds,” in ECCV (1), 2008,
pp. 44–57.

[4] C. Cortes, M. Mohri, and A. Rostamizadeh, “L2 regularization for learning
kernels,” ArXiv, vol. abs/1205.2653, 2009.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Pro-
cessing Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds.,
vol. 25, Curran Associates, Inc., 2012. [Online]. Available: https://proceedings.
neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[6] W. Wang, Y. Hu, P. Lu, et al., Evaluation of the diagnostic performance of
magnetic resonance spectroscopy in brain tumors: A systematic review and
meta-analysis, en, D. Monleon, Ed., Nov. 2014. doi: 10.1371/journal.pone.
0112577. [Online]. Available: http : / / dx . doi . org / 10 . 1371 / journal . pone .
0112577.

[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2015.

[8] C.-Y. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised
nets,” ArXiv, vol. abs/1409.5185, 2015.

[9] B. H. Menze, A. Jakab, S. Bauer, et al., “The multimodal brain tumor image
segmentation benchmark (BRATS),” en, IEEE Trans. Med. Imaging, vol. 34,
no. 10, pp. 1993–2024, Oct. 2015.

[10] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” ArXiv, vol. abs/1505.04597, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

36

https://doi.org/10.1002/ijc.1016
https://doi.org/10.1002/ijc.1016
http://dx.doi.org/10.1002/ijc.1016
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1371/journal.pone.0112577
https://doi.org/10.1371/journal.pone.0112577
http://dx.doi.org/10.1371/journal.pone.0112577
http://dx.doi.org/10.1371/journal.pone.0112577

[12] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K.
Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
¡1mb model size,” ArXiv, vol. abs/1602.07360, 2016.

[13] S. Bakas, H. Akbari, A. Sotiras, et al., “Advancing the cancer genome atlas
glioma MRI collections with expert segmentation labels and radiomic fea-
tures,” en, Sci. Data, vol. 4, p. 170 117, Sep. 2017.

[14] T.-Y. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for dense
object detection,” 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 2999–3007, 2017.

[15] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: A self-gated activation
function,” arXiv: Neural and Evolutionary Computing, 2017.

[16] C. H. Sudre, W. Li, T. K. M. Vercauteren, S. Ourselin, and M. J. Cardoso,
“Generalised dice overlap as a deep learning loss function for highly unbal-
anced segmentations,”Deep learning in medical image analysis and multimodal
learning for clinical decision support : Third International Workshop, DLMIA
2017, and 7th International Workshop, ML-CDS 2017, held in conjunction
with MICCAI 2017 Quebec City, QC,..., vol. 2017, pp. 240–248, 2017.

[17] A. F. Agarap, “Deep learning using rectified linear units (relu),” ArXiv, vol. abs/1803.08375,
2018.

[18] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7132–7141, 2018.

[19] F. Isensee, J. Petersen, A. Klein, et al., “Nnu-net: Self-adapting framework for
u-net-based medical image segmentation,” ArXiv, vol. abs/1809.10486, 2018.

[20] O. Oktay, J. Schlemper, L. L. Folgoc, et al., “Attention u-net: Learning where
to look for the pancreas,” ArXiv, vol. abs/1804.03999, 2018.

[21] S. Xie, C. Sun, J. Huang, Z. Tu, and K. P. Murphy, “Rethinking spatiotem-
poral feature learning: Speed-accuracy trade-offs in video classification,” in
ECCV, 2018.

[22] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested
u-net architecture for medical image segmentation,” Deep Learning in Medi-
cal Image Analysis and Multimodal Learning for Clinical Decision Support :
4th International Workshop, DLMIA 2018, and 8th International Workshop,
ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, S...,
vol. 11045, pp. 3–11, 2018.

[23] W. Chen, B. Liu, S. Peng, J. Sun, and X. Qiao, “S3d-unet: Separable 3d u-
net for brain tumor segmentation,” in Brainlesion: Glioma, Multiple Sclerosis,
Stroke and Traumatic Brain Injuries, A. Crimi, S. Bakas, H. Kuijf, F. Keyvan,
M. Reyes, and T. van Walsum, Eds., Cham: Springer International Publishing,
2019, pp. 358–368, isbn: 978-3-030-11726-9.

[24] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of tricks for
image classification with convolutional neural networks,” 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 558–
567, 2019.

37

[25] D. Misra, “Mish: A self regularized non-monotonic neural activation function,”
ArXiv, vol. abs/1908.08681, 2019.

[26] M. Tan and Q. V. Le, “Mixconv: Mixed depthwise convolutional kernels,”
ArXiv, vol. abs/1907.09595, 2019.

[27] M. Amiri, R. Brooks, and H. Rivaz, “Fine-tuning u-net for ultrasound image
segmentation: Different layers, different outcomes,” IEEE Transactions on Ul-
trasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 12, pp. 2510–2518,
2020. doi: 10.1109/TUFFC.2020.3015081.

[28] N. Beheshti and L. Johnsson, “Squeeze u-net: A memory and energy efficient
image segmentation network,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2020, pp. 1495–1504.
doi: 10.1109/CVPRW50498.2020.00190.

[29] H. Huang, L. Lin, R. Tong, et al., “Unet 3+: A full-scale connected unet
for medical image segmentation,” ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–
1059, 2020.

[30] U. Baid, S. Ghodasara, M. Bilello, et al., “The rsna-asnr-miccai brats 2021
benchmark on brain tumor segmentation and radiogenomic classification,”
ArXiv, vol. abs/2107.02314, 2021.

[31] K. D. Miller, Q. T. Ostrom, C. Kruchko, et al., “Brain and other central
nervous system tumor statistics, 2021,” CA: A Cancer Journal for Clinicians,
vol. 71, no. 5, pp. 381–406, 2021. doi: https://doi.org/10.3322/caac.21693.
eprint: https://acsjournals.onlinelibrary.wiley.com/doi/pdf/10.3322/caac.
21693. [Online]. Available: https://acsjournals.onlinelibrary.wiley.com/doi/
abs/10.3322/caac.21693.

[32] H. Zhu, H. Zeng, J. Liu, and X. Zhang, “Logish: A new nonlinear nonmono-
tonic activation function for convolutional neural network,” Neurocomputing,
vol. 458, pp. 490–499, 2021, issn: 0925-2312. doi: https://doi.org/10.1016/
j.neucom.2021.06.067. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0925231221009917.

[33] R. Solovyev, A. A. Kalinin, and T. Gabruseva, “3d convolutional neural net-
works for stalled brain capillary detection,” Computers in Biology and Medicine,
vol. 141, p. 105 089, 2022. doi: 10.1016/j.compbiomed.2021.105089.

[34] X. Wang, H. Ren, and A. Wang, “Smish: A novel activation function for deep
learning methods,” Electronics, vol. 11, no. 4, 2022, issn: 2079-9292. doi:
10.3390/electronics11040540. [Online]. Available: https://www.mdpi.com/
2079-9292/11/4/540.

38

https://doi.org/10.1109/TUFFC.2020.3015081
https://doi.org/10.1109/CVPRW50498.2020.00190
https://doi.org/https://doi.org/10.3322/caac.21693
https://acsjournals.onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21693
https://acsjournals.onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21693
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21693
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21693
https://doi.org/https://doi.org/10.1016/j.neucom.2021.06.067
https://doi.org/https://doi.org/10.1016/j.neucom.2021.06.067
https://www.sciencedirect.com/science/article/pii/S0925231221009917
https://www.sciencedirect.com/science/article/pii/S0925231221009917
https://doi.org/10.1016/j.compbiomed.2021.105089
https://doi.org/10.3390/electronics11040540
https://www.mdpi.com/2079-9292/11/4/540
https://www.mdpi.com/2079-9292/11/4/540

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Research Problem
	Research Objectives

	Literature Review
	Implementation
	Dataset Description
	Data Preprocessing
	Data Augmentation
	3D Separable Convolutions
	Mixed Separable Convolutions
	Squeeze-and-Excitation block
	Attention Gates
	Stem Blocks
	Modified Convolution Blocks
	Our Proposed model Architecture
	U-Net Architecture
	Deep-Supervision
	Transfer learning and Fine-tuning
	Activation functions

	Expirements and Results
	3D Visualization
	Measurement
	Loss Functions
	Training and Results on U-Net
	Training and Results on Proposed Model
	Comparison of Proposed Model with U-Net

	Conclusion & Future Work
	Conclusion
	Future Work

	Bibliography

