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Abstract

The propagation of the ion acoustic (IA) solitary waves (SWs) in a degenerate
quantum plasma with external magnetic field (containing magnetized positive and
negative ions, unmagnetized quantum electrons with stationary charged dust par-
ticles) have been theoretically investigated. The Reductive Perturbation method is
adopted to derive the Korteweg-de Varies (K-dV), the modified K-dV (mK-dV) and
mixed mK-dV (mmK-dV) equations. The stationary solutions of K-dV, mK-dV and
mmK-dV are shown and analyzed numerically to study the basic characteristics of
IASWs that are commonly formed in degenerate quantum plasmas. Main process
of the propagation of waves through oscillation in plasma is investigated graphi-
cally. The basic properties (phase speed, width, amplitude) of IASWs are found to
be significantly modified by the effects of number densities of the plasma particles,
mass of the ions, relativistically degenerate electrons , external magnetic field and
charge state of the dust particles. The outcomes from this conceptual analysis can
be significant for understanding the layout and prominence of the solitary structures
in astrophysical compact objects. Besides that the data from this research can be
used for developing advanced concepts related to plasma physics in future.

Keywords: Ion acoustic solitary waves, Magnetic Effect, Higher order nonlinearity,
Degenerate pressure, Reductive perturbation method, Compact objects
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Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

α Alpha

β Beta

∆ Delta

ϵ Epsilon

η Eta

γ Gamma

λ Lambda
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ω Omega

Φ Phi

Ψ Psi

ρ Rho

σ Sigma

τ Tau

ξ Xi

ζ Zeta
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Chapter 1

Introduction

1.1 Plasma (Matter in Extreme Condition)

The plasma is an urgent stage in the process of formation of matter from elemen-
tary particles up to condensed matter. It is the higher energy “fourth state of
matter”. The word plasma is referred to as a statistical system of charged particles,
for instance, electrons and different ions, exhibiting collective behaviour due to the
long range Coulomb forces. Since the particles in plasma are electrically charged
(generally by being stripped of electrons), it is frequently described as an “ionized
gas”. Plasma can be characterized by regimes of high temperature and low den-
sity commonly found in space (e.g., interplanetary and interstellar media) as well
as in laboratory (e.g., gas discharges and thermonuclear fusion experiments). The
charged particle systems with sufficiently high density and low temperature also
exhibit plasma effects. The dynamics of a plasma is governed by internal fields
produced by the plasma particles and the externally applied fields [1]. The word
‘Plasma’ comes from a Greek word means “something molded or created”. But
according to the physicists plasma is an ‘ionized gas’. Sir William Crookes in 1879,
was first identified plasma in a Crookes tube, and he named it “radiant matter”. In
1897, Sir J. J. Thomson identified the nature of the matter and Irving Langmuir,
the Nobel prize winning American scientist first used the term ‘Plasma’ to describe
an ionized gas in 1927. The term plasma represents a macroscopically neutral gas

Figure 1.1: Various states of matter (Photo: UC Regents).

containing many interacting charged particles (electrons and ions) and neutrals [2].
It is estimated that up to 99 % of matter in the entire visible universe is plasma
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[3]. In the science of astrophysics the origin and evolution of the stars, planets, etc.
are inquired by the physical properties of plasma found in space and interstellar
medium. Plasma consists of a collection of free-moving electrons and ions - atoms
that have lost electrons. Energy is needed to strip electrons from atoms to make
plasma. The energy can be of various origins: thermal, electrical, or light (ultravi-
olet light or intense visible light from a laser). With insufficient sustaining power,
plasmas recombine into neutral gas. Due to the presence of a non-negligible number
of charge carriers makes the plasma electrically conductive and it can be acceler-
ated and steered by electric and magnetic fields which allows it to be controlled and
applied [4]. Plasma research is yielding a greater understanding of the universe. It
also provides many practical uses: new manufacturing techniques, consumer prod-
ucts, and the prospect of abundant energy. A plasma is defined as a partial or

Figure 1.2: The visible Universe is 99.999 % plasma(Photo:
https://www.livescience.com/).

fully ionized gas usually containing macroscopically neutral and charged particles
exhibiting collective behaviour under the influence of electrostatic force due to long
range Coulomb force (which are also subject to magnetic and other forces). It is

Figure 1.3: Drawing of earths magnetic field. Earth’s magnetic field holds the Van
Allen Belts in place (Photo :https://www.livescience.com/).

predicted that Kristian Birkeland a Norwegian explorer and physicist was the first
who told that space is filled with plasma and in 1913 he wrote: “It seems to be
a natural consequence of our points of view to assume that the whole of space is
filled with electrons and flying electric ions of all kinds. We have assumed that each
stellar system in evolutions throws off electric corpuscles into space. It does not
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seem unreasonable therefore to think that the greater part of the material masses
in the universe is found, not in the solar systems or nebulae, but in empty space”
[5]. In 1937, when interstellar space was thought to be a vacuum, plasma physicist
Hannes Alfvén argued that if plasma spread through the universe, then it could
generate a galactic magnetic field. During the 1940s and 50s, Alfvén developed
magnetohydro-dynamics (MHD) which enables plasmas to be modelled as waves in
a fluid, for which he won the 1970 Nobel Prize for physics.

1.1.1 Plasma Properties

Plasma exists in many forms and have some basic properties. All ionized gas are
not plasma. They called so if they fulfill the following characteristics.

Density of Plasma Particles

Plasma can react to electromagnetic fields, conducts electrical current and possesses
a well-defined space potential due to the presence of free charge carriers. Positive
ions may be singly charged or multiply charged. For a plasma containing only singly
charged ions, the ion population is adequately described by the ion density ni,

ni=number of particles/volume, [ni] = cm−3 or [ni] = m−3 .

Besides the ion density, we characterize a plasma by its electron density ne and the
neutral density na. Strongly coupled plasmas tend to be cold and dense, whereas
weakly coupled tend to be diffuse and hot.

Macroscopic Neutrality

Plasma is macroscopically neutral if there is no perturbation. If there is no external
disturbance is present in a plasma system then the net resulting electric charge must
be zero. First of all, plasmas are macroscopically neutral i.e. [plasma dimension] >
[Debye radius]. Macroscopical neutrality or quasi-neutrality describes the apparent
charge neutrality of a plasma overall, while at smaller scales, the positive and neg-
ative charges making up the plasma, may give rise to charged regions and electric
fields. The equilibrium charge neutrality condition in a plasma reads Σsqsns0 = 0,
where ns0 is the unperturbed number density of the plasma species s (s equals e for
electrons, i for ions, etc.), qi = Zie is the ion charge (we note that the ion charge
state Zi = ±1 will be used in our present article) and e is the magnitude of the elec-
tron charge. Thus, a plasma is loosely described as an electrically neutral medium
of positive and negative particles, i.e. the overall charge of a plasma is roughly zero
[6].
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Figure 1.4: Debye length of a plasma (Photo: https://projects.mpe.mpg.de/).

Collective Behavior

All the plasma particles are connecting together through the long range Coulomb
force, and they behave collectively when a disturbance acts on them. All the charged
particles move together collectively to external disturbance. If a charged particle
moves in a plasma, it produces local concentration giving rise to electric fields.
Motion of charged particles generates currents which produces magnetic field. These
electric and magnetic fields affect the motion of other charged particles far away.
This is called the collective behaviour. Thus, we can say that a plasma system
is like a network of particles connected by massless springs [4]. Plasma particles
exhibit collective behavior i.e. large number of particles co-exist in a Debye sphere.
Hence, by the term collective behaviour we mean motions that depend on both local
conditions and the state of plasma in remote region.

Debye Shielding

A fundamental characteristics of a plasma is its ability to shield the electric field of
an individual charged particle or of a surface that is at some non zero potential. We
suppose that a potential is created by disturbances or electric potential is applied
externally in a plasma system whose constituents are electrons, positrons, and pos-
itively or negatively charged ions. To maintain the quasi-neutrality of the plasma
system, the opposite charged particles will surround the potential, and the surroud-
ing particles will take a shape like a sphere or cloud. The radius of the sphere will
be long enough to cancel the effect of that potential. This corresponds to a perfect
shielding, i.e. no electric field would be present in the body of the plasma outside
the cloud. This process of shielding is known as Debye shielding in dusty plasma
and the corresponding length is known as Debye length (as shown in 6.5).

The Debye length is mathematically defined as

λDs =

(
kBTs

4πnse2

)1/2

where kB is the Boltzmann constant, Ts is the temperature of plasma species s, e is
the charge of the electron, and ns is the number density of plasma species s. Beyond
a few Debye lengths, shielding by the plasma is quite effective and the potential due
to our charge is negligible. Therefore the conditions we have a plasma or not. (i)
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the system must be large enough L >> λD and (ii) there must be enough electrons
to produce shielding ND >>> 1 , where ND is the number of electrons in a Debye
sphere.
Suppose there is a local concentration of charge. If plasma dimensions are much
greater than λD, then on the whole plasma is still neutral (quasineutral) and we
can take ne

∼=ni
∼=no. If we put an electrode into the plasma, it becomes shielded by

a sheath of thickness ∼=λD. Now, the expression for the Debye length, λD can be
expressed as

λD = 69.0

√
T

ne

,

where T is in K and ne in m−3.

Plasma Oscillations

Plasma oscillation, in physics, the organized motion of electrons or ions in a plasma.
Each particle in a plasma assumes a position such that the total force resulting from
all the particles is zero, thus producing a uniform state with a net charge of zero.
If an electron is moved from its equilibrium position, the resulting positive charge
exerts an electrostatic attraction on the electron, causing the electron to oscillate
about its equilibrium position. Because the interaction between electrons is strong,
they all oscillate together at a characteristic frequency that depends on the nature
of the particular plasma. There are two different types of characteristics frequency,
namely plasma frequency and collision frequency.

Coulomb Coupling Parameter

The Coulomb coupling parameter was suggested [7] as the ratio of potential energy
to thermal energy of the constituent particles (viz., electrons, ions, etc.). Coulomb
coupling parameter determines the possibility of the formation of plasma crystals.
To explain, we consider two particles, both having same charge qs, separated from
each other by a distance a. The Coulomb potential energy (εc) is

εc =
q2s
a
exp

(
− a

λDs

)
,

where s denotes the species of the plasma system, qs is the charge of the particle,
λDs is the Debye radius and kBTs is the thermal energy of the particle. Now, the
Coulomb coupling parameter, Γc is defined as

Γc =
Z2

s e
2

a

exp
(
− a

λDs

)
kBTs

.

A plasma system with Γc >> 1 is known as strongly coupled plasma and when Γc

<< 1 then the plasma is called weakly coupled plasma [2]. It can easily be shown
that in several laboratory plasma systems massive particles are strongly coupled
because of their huge electric charge and low temperature.
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1.1.2 Dusty Plasma

Dusty plasmas are interesting because the presence of particles significantly al-
ters the charged particle equilibrium leading to different phenomena. Remarkable
progress has been made in the physics to dusty plasma [8]. Low temperature com-
plex plasmas are partially or fully ionized are considered electrically conducting
gases consisting of electrons, ions and charged dust grains. The dust particles are
charged owing to the contact with electrons, ions, as well as of surrounding radia-
tion. The size of dust particles is between nanometers to millimeters as billions of
times massive than proton [9]. The dust particles are many orders of magnitude
heavier than ions, they are a source of ionization and recombination for electrons
and their charge is not fixed, but depends on local plasma parameters. Wave prop-
agation in such complex systems is therefore expected to be substantially different
from the ordinary two component plasma and the presence of charged dust can have
a strong influence on the characteristics of the usual plasma wave modes, even at
frequencies where the dust grains do not participate in the wave motion [34]. A
research focused on the conditions that described the time of injection of dust into
a laboratory negative ion plasma, becomes positively charged for very large values
of negative ion density is equal or less than 500 times the electron density [44].

1.1.3 Multi Ion Plasma

The presence of different type of ions in a plasma system is the key factor behind
mutli ion plasma. Participation of several different ions help to get better under-
standing and data about the effects of those ions in that particular plasma system.
Multi ion plasma is an remarkable system to study linear and nonlinear wave phe-
nomena. Strong shocks in multi-ion plasmas are key to a number of high-energy
density settings. The wave phenomena using the multicomponent plasmas, such as
the multi-ion plasmas and dusty plasmas occur in astrophysical plasmas and the
industrial plasma [10].

1.1.4 Bohm Quantum Potential

Bohm quantum potential introduced by David Bohm in 1952 is the quantum poten-
tial or quantum potentiality is a central concept of the de BroglieBohm formulation
of quantum mechanics. This potential acts on a quantum particle also referred to
as quantum potential energy, Bohm potential, quantum Bohm potential or Bohm
quantum potential. Louis de Broglie had postulated in 1926 that the wave func-
tion represents a pilot wave which guides a quantum particle, but had subsequently
abandoned his approach due to objections raised by Wolfgang Pauli. The quantum
potential approach introduced by Bohm [11] provides a more complete exposition
of the idea presented by Louis de Broglie and included answers to the objections
which had been raised against the pilot wave theory. The Bhom quantum potential
can be mathematically expressed as Q = −(h̄/2m)(▽2R/R). In case of one-body
system D. J. Bohm and B. J. Hiley described two essential aspects of the quantum
theory. First, there is the well-known phenomenon of interference of electrons (e.g.,
in a beam that has passed through several slits). The fact that no electrons arrive
at points where the wave function is zero is explained simply by the infinite value of
the quantum potential Q, which repels particles and keeps them away from points
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Figure 1.5: The figure showing range of dense plasma based on the electron number
density (ne) and temperature (T) (Photo: https://www.researchgate.net/).

at which R = 0. Second, they considered the phenomenon of barrier penetration
and the wave function for such a system is a time-dependent packet. As a result, the
quantum potential Q fluctuates in such a way that occasionally it becomes negative
enough to cancel the positive barrier potential V , so that from time to time a par-
ticle may pass through before the quantum potential changes to a significantly less
negative value. The quantum potential approach can be used to model quantum
effects without requiring the Schrodinger equation to be explicitly solved and it can
be integrated in simulations.

1.1.5 Magnetic Field Effect in Plasma

Magnetic field (magnetic bucket) on the plasma periphery enhances the plasma con-
finement, causing a rise in the plasma density and an essential improvement in the
plasma uniformity. In rf discharges, the application of a magnetic field changes the
plasma electrodynamics. Magnetic fields can modify the physical properties of a
complex plasma in various different ways. Weak magnetic fields in the mT range
affect only the electrons while strong fields in the Tesla regime also magnetize the
ions. In a rotating dusty plasma, the Coriolis force substitutes the Lorentz force and
can be used to create an effective magnetization for the strongly coupled dust par-
ticles while leaving electrons and ions unaffected [12]. Electron drift in the presence
of a magnetic field are applied to the low pressure uniform positive column plasma.
A longitudinal magnetic field leaves the point-to-point concentration of electrons
unchanged and does not alter the relative potentials in the cross section although
transverse potential differences in the plasma decrease everywhere in proportion as
the magnetic field increases [12]. The transverse plasma fields vanish or even reverse
slightly for large enough fields. Plasma exhibits a diamagnetic susceptibility for lon-
gitudinal fields, which is proportional to the electron current density to the tube
walls. With nonconducting walls electron wall current is automatically adjusted to
the ion wall current [12]. The magnetic polarization then increases oppositely to
the magnetic field at first, reaches a maximum and then decreases hyperbolically to
zero, so that beyond the maximum the plasma is paramagnetic for small variations
in the field.
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1.1.6 Dense Quantum Plasma

Degenerate matter is extremely high density matter in which pressure no longer
depends on temperature due to the quantum mechanical effects. Matter that is
so dense, atomic particles are packed together until quantum effects support the
material. Material within white dwarfs and neutron stars is degenerate. When the
density of a classical plasma increases, or its temperature decreases, it can enter
a regime when the quantum nature of its constituent particles starts to affect its
macroscopic properties and dynamics. Such plasmas are then called quantum. In
quantum plasmas, the mean interparticle distance becomes comparable to the mean
de Broglie wavelength of the lightest plasma particles, and the effects of degeneracy
e.g., quantum degeneracy of electrons due to Paulis exclusion princinple for fermions
become significant. Quantum effects of lighter plasma species (electrons, positrons,

Figure 1.6: The figure showing different regimes of dense plasma based on the
number density (n) and temperature (T) (Photo: https://www.researchgate.net/).

etc.) are more effective due to their smaller mass than the heavier plasma species
(ions, heavy ions, etc.) which is also depended upon the degeneracy parameter.
Quantum effects are predominant in the degenerate quantum plasma, and it is quite
consistence considering quantum effects while dealing with quantum plasma. In
quantum plasmas, there are new forces associated with i) quantum statistical elec-
tron and positron pressures, ii) electron and positron tunneling through the Bohm
potential, and iii) electron and positron angular momentum spin. Inclusion of these
quantum forces provides possibility of very high-frequency dispersive electrostatic
and electromagnetic waves (e.g., in the hard x-ray and gamma rays regimes) hav-
ing extremely short wavelengths. The degenerate quantum plasma is presumably
existed in the early universe [13, 14], in the cometary tails [15], the evolution and
star formation [16], solid state physics, condensed matter physics, etc. Unlike a
classical ideal gas, whose pressure is proportional to its temperature (P = nkBT/V
, where P is pressure, V is volume, n is the number of particles-typically atoms or
molecules, kB is Boltzmann’s constant, and T is temperature), the pressure exerted
by degenerate matter depends weakly on its temperature and only on the density of
the fermions. At extremely high densities, the electron Fermi energy, ϵF e becomes
much larger than thermal energy ∼ kBT . In this situation, the thermal pressure
of electrons may be negligible as compared to the Fermi degeneracy pressure. In
particular, the pressure remains nonzero even at absolute zero temperature. At rela-
tively low densities, the pressure of a fully degenerate gas is given by P = K(n/V )5/3

(non-relativistic), where K depends on the properties of the particles making up the
gas. At very high densities, where most of the particles are forced into quantum
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states with relativistic energies, the pressure is given by P = K1(n/V )4/3 (ultra-
relativistic), where K1 again depends on the properties of the particles making up
the gas. Thus, degenerate pressure keeps dense stars in equilibrium independent of
the thermal structure of the star.

1.1.7 Formation of Plasma from a Gas

For the existence of plasma, ionization is necessary. When a gas is heated sufficiently
hot enough or apply radio frequencies or bombard them with other particles or
subjecting it to a strong electromagnetic field applied with a laser or microwave
generator then the electrons will have enough energy to escape individual atoms
and produce a plasma. Plasmas are not always hot, they can be cold too, as long
as matter is ionized. A tubelight, a CFL, are comparatively cool to touch, so is the
plasma TV screen. Plasma is believed by scientist to be the most common element
in the observable universe, with approximately 99% of the observable matter found
in the plasma state. It is naturally occurring and can be found in stars, lightning,
the Aurora Borealis, the Sun and common flames. Plasma is also used in neon
signs, TVs and fluorescent bulbs because of its characteristic glow when electrically
charged.

1.2 Degenerate Compact Objects

Compact objects are generally referring to objects significantly more dense than a
star or a planet. For example, white dwarfs or neutron stars are extremely dense
stars that have collapsed, no longer able to produce a sufficient amount of pressure
within to prevent their outer layers from falling into their centers. Under extreme
conditions, these collapses can trigger the formation of a black hole a region of
space in which gravity is so strong that even light cannot escape. When normal
stars “die,” that is, when most of their nuclear fuel has been consumed, compact
objects-white dwarfs, neutron stars, and black holes-are “born”. All three species
of compact object differ from normal stars in two fundamental ways. First, since
they do not burn nuclear fuel, they cannot support themselves against gravitational
collapse by generating thermal pressure. Instead, white dwarfs are supported by
the pressure of degenerate electrons, while neutron stars are supported largely by
the pressure of degenerate neutrons. The outward degenerate pressure supports the
existence of compact stars counterbalancing the inward gravitational force. Because
of the degenerate pressure, a compact star is also referred as a degenerate star [17].
Chandrashekhar limit determines what will be a outlook (i.e. white dwarf, neutron
star, and black hole) of a compact star. One can classify a compact star depending
on the various value of Chandrashekhar limit. Stellar evolution and fusion are the
phenomena that fuel the stars to live.

1.2.1 Stellar Evolution and Fusion

A star begins its life within a nebula. A nebula is a cloud of dust and gas, composed
primarily of hydrogen (97%) and helium (3%). Within a nebula, there are vary-
ing regions when gravity causes this dust and gas to “clump” together. As these
“clumps” gather more atoms, their gravitational attraction to other atoms increases,
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pulling more atoms into the “clump”. This clump is a protostar. Because numerous
reactions occur within the mass of forming star material, a protostar is not very
stable. In order to achieve life as a star, the protostar will need to achieve and
maintain equilibrium. Equilibrium for a star is when the balance between gravity
pulling atoms toward the center and gas pressure pushing heat and light away from
the center are equal. Achieving and keeping this balance is hard to do. When a star
is close to reaching equilibrium, it has two options. Its first option is to become a
brown dwarf. A brown dwarf is not quite a real star. It is a case in which a proto-
star never had enough dust and gas accreted to achieve a temperature hot enough
to ignite fusion. It is bigger than a planet, but smaller than a regular star. The
second option is for the protostar to build up enough mass to achieve the critical
temperature of about 15,000,000 °C, which causes nuclear fusion to begin. Nuclear
fusion releases thermal energy, photons, supports the star, and stops the contraction.
Thus, a star is born.

1.2.2 Degenerate Pressure

A pressure exerted by dense material consisting of fermions (such as electrons in
a white dwarf star) is degenerate pressure. This pressure is explained in terms of
the Pauli exclusion principle, which requires that no two fermions be in the same
quantum state. The more densely fermions are packed together and must share the
same space, the more they must differ from each other in terms of their momentum.
In turn, the greater the range in momentum, the greater the fraction of particles
with high momentum, and these exert pressure on their surroundings. When this
happens the fermions are said to be degenerate. In white dwarf high energy electrons
make a significant contribution to the pressure. Because the pressure arises from this
quantum mechanical effect, it is insensitive to temperature, i.e. the pressure doesn’t
go down as the star cools. This pressure is known as electron degeneracy pressure
and it is the force that supports white dwarf stars against their own gravity. At high
temperatures, particles have lots of energy and many quantum states available to
them. On the average, the probability that any quantum state is occupied is rather
small (<< 1) and the exclusion principle plays little role. At lower temperatures,
particles have less energy, fewer quantum states are available and average occupation
number of each state increases. Then the exclusion principle becomes essential: the
available levels up to some maximum energy (determined by the density) are, on
average, nearly filled; higher levels are, on average, nearly empty. Such systems are
then termed “degenerate”. Actually these statements are strictly true only at zero
temperature and when the mutual interactions of the fermions are ignored.
The Pauli exclusion principle states that no two electrons with the same spin can
occupy the same energy state in the same volume. Once the lowest energy level is
filled, the other electrons are forced into higher and higher energy states resulting in
them travelling at progressively faster speeds. These fast moving electrons create a
pressure (electron degeneracy pressure) which is capable of supporting a star. This
degeneracy pressure originates for all kinds of fermions in a compact stars. We
imagine a plasma is cooled and compressed repeatedly. Eventually, we will not be
able to compress the plasma any further, because the Pauli exclusion principle states
that two fermions cannot share the same quantum state. When in this state, since
there is no extra space for any particles, we can also say that a particle’s location
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is extremely defined. Therefore, since according to the Heisenberg’s uncertainty
principle ∆p∆x ≥h̄/2 where ∆p is the uncertainty in the particle’s momentum
and ∆x is the uncertainty in position, then we must say that their momentum
is extremely uncertain since the molecules are located in a very confined space.
This leads to the conclusion that if we want to compress an object into a very
small space, we must use tremendous force to control its particles momentum. This
gives the degenerate pressure. Having so much kinetic energy, the electrons exert a
tremendous pressure on the walls of the container that holds them. This pressure is
called degenerate pressure [18].

1.2.3 Chandrasekhar Limit

Weight is the most crucial property for a white dwarf. When a white dwarf star
puts on too much weight (i.e. adds mass), a supernova explosion will be occurred.
The greatest mass a white dwarf star can have before it goes supernova is called
the Chandrasekhar limit, after astrophysicist Subrahmanyan Chandrasekhar, who
worked it in the 1930s. Its value is about 1.4 solar mass M = 1.44M⊙. Chan-
drasekhar was interested in the final states of collapsed stars as determined by
electron degeneracy and had used the work of Arthur S. Eddington and Ralph H.
Fowler to begin calculations. He realized that they hadn’t included relativity in
their calculations. When Chandrasekhar took these relativistic effects into account,
something spectacular happened. He found a firm upper limit for the mass of any
body which could be supported by electron degeneracy pressure. Once this limit
was exceeded the Chandraskehar limit, the object could no longer resist the force
of gravity, and it would begin to collapse. The masses above 1.44M⊙ there could
be no balance between electron degeneracy and the crushing gravitational force [19,
20].
Stars produce energy through nuclear fusion, producing heavier elements from lighter
ones. The heat generated from these reactions prevents gravitational collapse of the
star. Over time, the star builds up a central core which consists of elements that the
temperature at the center of the star is not sufficient to fuse. For main-sequence stars
with a mass below approximately 8 solar masses, the mass of this core will remain
below the Chandrasekhar limit, and they will eventually lose mass (as planetary
nebulae) until only the core, which becomes a white dwarf, remains. Stars with
higher mass will develop a degenerate core whose mass will grow until it exceeds
the limit. At this point the star will explode in a core-collapse supernova, leaving
behind either a neutron star or a black hole [21]. The currently accepted value of
the limit is about 1.44×(2.864×1030) Kg [22].

1.2.4 Examples of Compact Objects

White Dwarfs

The knowledge of white dwarfs began in 1850 with the discovery of a companion to
Sirius, called Sirius B. It was 10,000 times fainter than Sirius A, however its mass
was 0.98 a solar mass. Since its temperature was measured to be 10,000K, its small
mass and faint luminosity did not make sense in the context of the mass-luminosity
relation for stars. Where a star ends up at the end of its life depends on the mass
it was born with. Stars that have a lot of mass may end their lives as black holes
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Figure 1.7: A White dwarf with dense stellar corpses (Photo:
https://www.space.com/).

or neutron stars. A low or medium mass star (with mass less than about 8 times
the mass of our Sun) will become a white dwarf. A typical white dwarf is about
as massive as the Sun, yet only slightly bigger than the Earth. This makes white
dwarfs one of the densest forms of matter, surpassed only by neutron stars and
black holes. Our star, the sun, will die a quiet death. The sun of only average mass,
starwise, and after burning through the last of its hydrogen fuel in about five billion
years, its outer layers will drift away, and the core will eventually compact to become
what’s known as a white dwarf, an Earth-size ember of the cosmos. A white dwarf
is a very dense solar remnant that is supported by the balance between electron
degeneracy pressure and the star’s gravitational self-attraction. In a white dwarf,
matter is ionized and electrons are free of their atomic orbits around the nuclei.
During gravitational collapse, matters density increases and so does the electron
concentration within a certain space volume.

Neutron Stars

A neutron star is about 20 km in diameter and has the mass of about 1.4 times that
of our Sun. This means that a neutron star is so dense that on Earth. Due to small
size and high density, a neutron star possesses a surface gravitational field about
2× 1011 times that of Earth. Neutron stars can also have magnetic fields a million

Figure 1.8: A new type of neutron star detected by the scientists in Australia have
whose existence had only been a hypothesis until now, calling it an “ultra-long
period magnetar (Photo: ART-ur / Shutterstock).

times stronger than the strongest magnetic fields produced on Earth. They are one
of the possible ends for a star. They result from massive stars which have mass
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greater than 4 to 8 times that of our Sun. After these stars have finished burning
their nuclear fuel, they undergo a supernova explosion. This explosion blows off
the outer layers of a star into a beautiful supernova remnant. The central region of
the star collapses under gravity. It collapses so that protons and electrons combine
to form neutrons. neutron density stops the gravitational collapse, giving the star
permanent stability. The remnant star is then a neutron star [23].

Black Holes

In general relativity, a black hole is a region of space in which the gravitational field
is so powerful that nothing, including light, can escape its pull. The black hole has
a one-way surface, called an event horizon, into which objects can fall, but out of
which nothing can come. It is called “black” because it absorbs all the light that
hits it, reflecting nothing, just like a perfect blackbody in thermodynamics [24].
Quantum analysis of black holes shows them to possess a temperature and Hawking
radiation. At the heart of a black hole is an object called a singularity, a point of
zero size, and infinite density. The gravity is so strong because matter has been
squeezed into a tiny space. This can happen when a star is dying. Such objects are
what we now call black holes, because that is what they are black voids in space [25].
When the body is outside of the gravitational pull, its kinetic energy and potential

Figure 1.9: A black hole observations were carried out with the European Southern
Observatory (ESO) in Chile (Photo: https://www.bbc.com/).

energy will be zero, so if we equate them

1

2
mv2 =

GMm

r

and the rearrange for v we get an expression for the escape velocity

ve =

√
2GM

r

where M is the mass of the planet or body and r is the radius that are taking off
from.

1.3 Nonlinear Theory

A system where the amplitude of the perturbations is just sufficiently large, non-
linearities cannot be ignored. The simplest nonlinear wave is perhaps ut + uux =

13



0. This is a wave in which the speed is the disturbance u itself. The solitary wave
solution of a nonlinear dispersive wave equation cleverly balances the nonlinearity
against the dispersion so that the wave retains its shape. A remarkable example is
the SWs solution of the K-dV equation ut + uux + uxxx = 0. The K-dV equation
describes the propagation of gravity waves in shallow water and its SW is precisely
that observed by Scott Russel in 1834 [26]. The nonlinearities come from the har-
monic generation involving fluid advection, the nonlinear Lorentz force, trapping of
particles in the wave potential, etc. The nonlinearities in plasmas contribute to the
localization of waves, leading to different types of coherent structures (namely DLs,
shock structures, etc.) which are important from theoretical, analytical, numerical,
and experimental points of view. Superposition principle is not applicable for non-
linear wave equation: two solutions do not add to form another solution. Thus if
two solitary waves of the K-dV collide we would expect each to scatter off the other
and some new disturbance emerge. In practice this does not happen: the SWs sim-
ply pass through each other and emerge essentially unchanged. It is this collisional
stability which characterises the soliton. The K-dV is a good approximate equation
governing any weakly nonlinear, weakly dispersive system. The K-dV, or a modified
form of it, governs shallow waves, ion-acoustic wave, and Alfvén waves in a cold
collision-less plasma, and the propagation of sound waves in anharmonic crystal, for
example.

1.3.1 Waves in Plasmas

Nonlinear waves are described by nonlinear equations. This means that nonlinear
wave equations are more difficult to analyze mathematically, and that no general
analytical method for their solution exists. Thus, unfortunately, each particular
wave equation has to be treated individually. A detailed aspects of solitary waves
are as follows:

1.3.2 Solitary Waves

A solitary wave is a wave which propagates without any temporal evolution in shape
or size when viewed in the reference frame moving with the group velocity of the
wave. It arises from a balance between nonlinear and dispersive effects. It was
first observed by John Scott Russell [26] in 1834, when he saw a round smooth well
defined heap of water detach itself from the power of a stopped barge and proceed
without change of shape or diminution of speed for over two miles along in the Union
Canal, near Edinburgh, supposedly the Edinburgh-Glasgow canal. The envelope of
the wave has one global peak and decays far away from the peak. Solitary waves arise
in many contexts, including the elevation of the surface of water and the intensity
of light in optical fibers.
A soliton is a nonlinear solitary wave with the additional property that the wave
retains its permanent structure, even after interacting with another soliton. Solitons
form a special class of solutions of model equations, including the K-dV and the
Nonlinear Schrodinger (NLS) equations. These model equations are approximations,
which hold under a restrictive set of conditions. The soliton solutions obtained from
the model equations provide important insight into the dynamics of solitary waves.
However, they are limited by the conditions under which the model equations hold.
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1.4 Methods for Studying Nonlinear Phenomena

A lot of methods have been employed by different physicists to investigate the non-
linear phenomenon in different plasma systems, e.g., The reductive perturbation
method, Quasi-linear Approximation, Pseudo Potential Method [27], Probability
Approach, Arbitrary amplitude method, etc. But, amongst of them the reductive
perturbation method is the most used and preferable method in studying plasma
phenomena.

1.4.1 The Reductive Perturbation Method

The reductive perturbation method is a very powerful way of deriving simplified
models describing nonlinear wave propagation and interaction. As the name sug-
gests there are two essential features involved with this technique. Most standard
perturbation techniques involve a basic linearisation about some known solution fol-
lowed by the solution of the resulting linear equations to calculate correction terms.
The reductive perturbation method is intimately related to soliton theory. Soliton
is a solitary waves, i.e. a single hump of water, which propagates without defor-
mation. In a linear nondispersive medium, propagation without deformation occurs
for any wave. The reductive perturbation method, when applied to some integrable
equation, could lead to some other equation, again integrable. This has been (and is
still) used to construct approximate solutions of integrable equations and to study
the mathematical properties.
Furthermore, it is noticed that although ϵ << 1 is required in the reductive pertur-
bation method generally, the reductive perturbation method is also valid for ϵ < 1 in
a dusty plasma, which may be extended to branches where the reductive perturba-
tion method is used [46]. The reductive perturbation method, seems to be initially
due to Gardner and Morikawa, concerning hydromagnetic waves in a cold plasma
in a paper which was unpublished. The method was used again by Washimi and
Taniuti [28], applied to the study of ion-acoustic waves. Taniuti and Wei wrote a
general theory of the derivation of the K-dV equation [29]. Let us also mention the
derivation of the K-dV and Burgers equations, by Gardner and Su [30]. Taniuti and
his co-workers initiated the method concerning the envelopes, leading to the nonlin-
ear Schrodinger (NLS) equation. It is remarkable that the first paper in which this
equation has been derived using the reductive perturbation method, i.e. a multiscale
expansion, does not, properly speaking, study an envelope problem. .
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Chapter 2

Nonlinear equation for solitary
waves

2.1 Introduction

Collective processes in linear and nonlinear dusty plasma have become special re-
search factor in the past decade mainly due to the realization of their occurrence
in both the laboratory and space environments [31]. In different environment of
space and astrophysical plasma such as interstellar medium, interplanetary space,
interstellar or molecular clouds, comets, planetary rings and the Earth’s environ-
ments, participation of dust particles are very much common [32]. Shukla and Silin
[33] were the first to investigate the dust ion acoustic waves theoretically which
was then studied in laboratory experiments. The dust particles are many orders
of magnitude heavier than ions, they are a source of ionization and recombination
for electrons and their charge is not fixed, but depends on local plasma parameters.
Wave propagation in such complex systems is therefore expected to be substantially
different from the ordinary two component plasma and the presence of charged dust
can have a strong influence on the characteristics of the usual plasma wave modes,
even at frequencies where the dust grains do not participate in the wave motion
[34]. A research conducted by scientist that considers existing plasma wave spectra
has been modified by the presence of static charged dust grains [35]. Dusty plasma
which is a mixture of positive ions, negative ions, electrons and highly charged mi-
cro particles and nano particles have been treated as an important re-search field
[34]. The existence of multi-ion plasmas (containing both positive and negative ion)
has already been confirmed in ionosphere and magnetosphere of Earth [36], solar
wind [37], bow shock in front of the magneto pause boundary layers [38], Saturn’s
magnetosphere [39], coma of comet Halley [40], neutral beam sources [41], plasma
processing reactors [42] and low-temperature laboratory experiments [43]. Multi-
ion plasma is now seems to be an interesting topic to the modern plasma physics
researchers for studying the wave phenomena in plasma physics. Recently, Kim and
Merlino [44] discussed the conditions that described the time of injection of dust into
a laboratory negative ion plasma, becomes positively charged for very large values
of negative ion density is equal or less than 500 times the electron density. The pres-
ence of the magnetic field (which creates the obliqueness of the wave propagation)
plays a vital role in controlling the basic characteristics of the linear and nonlinear
waves in space and astrophysical plasmas [45]. Plasma particles are charged parti-
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cles and the effect of external magnetic field significantly modify the characteristics
of propagation of IASWs.
Astrophysical compact objects are examples where relativistic degenerate plasmas
are dominant and interesting new phenomena are investigated by several nonlinear
effects in such plasmas. The degenerate electron number density is so high (in
white dwarfs it can be of the order of 1030 cm−3, even more [46-48], such that their
cores are composed of strongly coupled non-degenerate ion lattices immersed in
degenerate electron fluids that follow the Fermi-Dirac distribution function [49]. An
investigation conducted by F. Haans [50] showed that the Bohm potentials associated
with the plasma particles significantly modify the basic features of the nonlinear IA
waves. Recently, researches of linear and nonlinear [51-59] electrostatic excitation in
a collision less dense Fermi plasma (where quantum statistical pressure [51], quantum
electron tunneling [60] and relativistic effects [61] become important) have gained
a great deal of interest for exploring fundamental properties of linear nonlinear
physics as well as developing practical application in plasma based nanotechnology
(e.g., ultra-small electronic devices [62], metallic thin films and nano structures [63],
quantum free-electron lasers and X-ray sources [64], nano plasmonics [65], intense
laser-compressed solid density plasma [66], compact astrophysical objects [67,68],
etc.). the equation of state for degenerate electrons are mathematically explained
by Chandrasekhar [69]. Chandrasekhar [69,70] presented a general expression for
the relativistic electron pressures in his classical papers. The pressure for electron
fluid can be given by the following equation

Pe = Knγ
e . (2.1)

For non-relativistic limit [69,70]

γ =
5

3
; K =

3

5

(π
3

) 1
3 πh̄2

m
≃ 3

5
Λch̄c, (2.2)

where Λc = πh̄/mc = 1.2 × 10−10 cm, and h̄ is the Planck constant divided by 2π.
On the other hand, for ultra-relativistic limite[69,70]

γ =
4

3
; K =

3

4

(
π2

9

) 1
3

h̄c ≃ 3

4
h̄c. (2.3)

Analysis of quantum plasma physics started with guiding theoretical works of Klimon-
tovich and Silin [71], and Bohm and Pines [72,73], who studied the dispersive proper-
ties of the electron plasma oscillations in a dense quantum plasma with only consid-
ering degenerate electrons. Another reserach conducted by Arpan Das, Shreyansh
S. Dave, P. S. Saumia and Ajit M. Srivastava that consider the magnetic effect
only [74]. In our work, we have considered degenerated quantum plasma with mag-
netic effect for a four component plasma system consists of magnetized positive and
negative ion, degenerate relativistic electron along with stationary dust particle.
We derived K-dV, mK-dV and mmK-dV equations along with their SWs solutions
which provided better understanding and information about the considered plasma
system and it’s components. The results of our work can be useful for future advance
research and practical purpose related to plasma physics.
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2.2 Governing Equations

We have considered four-component plasma system consisting magnetized positive
and negative ions, unmagnetized quantum electron with stationary dust particles.
The external magnetic field is directed in the z axis, i.e., B =Boẑ, ẑ is the unit
vector along the z axis. Quasi-neutrality condition is δZdnd0+np0-nn0-ne0=0, where
Zd is the magnitude of dust charge, δ = ±1 (+1 for positive dust particles and -1 for
negative dust particles), nn0 is the equilibrium number density of negative ions, np0

is the equilibrium number density of positive ions and ne0 is the equilibrium number
density of electrons. The dynamics of the SWs propagating in such a multi-ion
plasma system is governed by the following normalized equations:

∂np

∂t
+

∂

∂x
(npUp) = 0, (2.4)

∂nn

∂t
+

∂

∂x
(nnUn) = 0, (2.5)

∂Up

∂t
+ Up

∂Up

∂x
+

∂ϕ

∂x
− ωp(Up × ẑ) = 0, (2.6)

∂Un

∂t
+ Un

∂Un

∂x
− β

∂ϕ

∂x
+ ωn(Un × ẑ) = 0, (2.7)

ne
∂ϕ

∂x
−K

∂ne
γ

∂x
+ α

∂

∂x
(

1
√
ne

∂2

∂x2

√
ne) = 0, (2.8)

∂2ϕ

∂x2
= nn + µne − σnp − δη, (2.9)

where np is the number density of positive ion, nn is the number density of negative
ion and ne is the number density of electron which are normalized by nn0. up is the
fluid speed of positive ion and un is the fluid speed of negative ion are normalized by
ion-acoustic wave speed ci = (KBTe/e)

1/2. The normalizing parameters for Poisson,s
equation are σ = np0/nn0, µ = ne0/nn0, η = Zdnd0/nn0 and δη = 1+µ−σ. The other
normalized parameters β = mp/mn and the non-dimensional quantum parameter
for electron α = nn0H

2
e/2ne0 where He = h̄ωpe/KBTF e. ϕ is the electrostatic wave

potential normalized by KBTe/e with e being the magnitude of the charge of an
electron. The positive and negative ion cyclotron frequency ωp,n = eB0/mp,n c is
normalized by the negative ion plasma period ω−1

n = (4πe2nn0/mn)
−1/2. The time

variable (t) is normalized by ω−1
n . The space variable (x) is normalized by λn =

(KBTF e/4πe
2nn0)

1/2. Here K = nγ−1
e0 Ke/mec

2, mp is the mass of positive ion and
mn is the mass of negative ion.
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Chapter 3

Derivation of the K-dV Equation

We will derive K-dV equation by employing the reductive perturbation technique
in order to examine the characteristics of the SWs propagating in a dense multi-ion
plasma system by introducing the stretched coordinates [75] given below as

ξ = ϵ1/2(lx + ly + lz − Vpt), (3.1)

τ = ϵ3/2t, (3.2)

where Vp (= ω/k) is the wave phase speed (ω is angular frequency and k is the wave
number) and ϵ is a smallness parameter measuring the weakness of the dispersion
(0 < ϵ < 1). The terms lx, ly and lz are the directional cosines of the wave vector
along the x, y and z axes, respectively, so that l2x + l2y + l2z = 1. We then expand np,
nn, ne, up, un and ϕ in power series of ϵ as

np = 1 + ϵn(1)
p + ϵ2n(2)

p + ϵ3n(3)
p + · · ·, (3.3)

nn = 1 + ϵn(1)
n + ϵ2n(2)

n + ϵ3n(3)
n + · · ·, (3.4)

ne = 1 + ϵn(1)
e + ϵ2n(2)

e + ϵ3n(3)
e + · · ·, (3.5)

upx,y = ϵ3/2upx,y
(1) + ϵ2upx,y

(2) + ϵ5/2upx,y
(3) + · · ·, (3.6)

unx,y = ϵ3/2unx,y
(1) + ϵ2unx,y

(2) + ϵ5/2unx,y
(3) + · · ·, (3.7)

ϕ = ϵϕ(1) + ϵ2ϕ(2) + ϵ3ϕ(3) + · · ·, (3.8)

upz = ϵupz
(1) + ϵ2upz

(2) + ϵ3upz
(3) + · · ·, (3.9)

unz = ϵunz
(1) + ϵ2unz

(2) + ϵ3unz
(3) + · · ·, (3.10)

and develop equations in various powers of ϵ. To the lowest order in ϵ, Eqs.
(2.4)−(2.9) give

upz
(1) =

lzϕ
(1)

Vp

,

unz
(1) = −βlzϕ

(1)

Vp

,

n(1)
p =

l2zϕ
(1)

V 2
p

,

n(1)
n = −βl2zϕ

(1)

V 2
p

,
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n(1)
e =

ϕ(1)

K
,

Vp = lz

√
K(σ + β)

µ
,

where Vp represents the dispersion relation for the IA type SWs in the degenerate
multi-ion plasma under consideration and lz = cosδ. Equating the coefficient of ϵ3/2

from Eq. (2.6) and Eq. (2.7) we get

upy
(1) =

lx
ωp

∂ϕ(1)

∂ξ
(x− component),

upx
(1) = − ly

ωp

∂ϕ(1)

∂ξ
(y − component),

uny
(1) = β

lx
ωn

∂ϕ(1)

∂ξ
(x− component),

unx
(1) = −β

ly
ωn

∂ϕ(1)

∂ξ
(y − component),

and also equating the coefficient of ϵ2 from Eq. (2.6) and Eq. (2.7) we get

upy
(2) =

Vply
ω2
p

∂2ϕ(1)

∂ξ2
(x− component),

upx
(2) =

Vplx
ω2
p

∂2ϕ(1)

∂ξ2
(y − component),

uny
(2) = −β

Vply
ω2
n

∂2ϕ(1)

∂ξ2
(x− component),

unx
(2) = −β

Vplx
ω2
n

∂2ϕ(1)

∂ξ2
(y − component).

Substituting Eqs. (3.1)-(3.10) in Eqs. (2.4)-(2.9) and equating the coefficient of ϵ3/2

from Eqs. (2.4)-(2.5) and also taking the coefficient of ϵ5/2 from Eqs. (2.6)-(2.8), we
obtain a set of equations that can be simplified as

∂n
(2)
p

∂ξ
=

1

Vp

∂n
(1)
p

∂τ
+

lx
Vp

∂upx
(2)

∂ξ
+
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Vp

∂upy
(2)

∂ξ
+

lz
Vp

∂
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(n(1)

p upz
(1)) +

lz
V 2
p
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(1)

∂τ

+
l2z
V 2
p

upz
(1)∂upz

(1)

∂ξ
+

l2z
V 2
p

∂ϕ(2)

∂ξ
, (3.11)

∂n
(2)
n

∂ξ
=

1

Vp

∂n
(1)
n

∂τ
+

lx
Vp

∂unx
(2)

∂ξ
+

ly
Vp

∂uny
(2)

∂ξ
+

lz
Vp

∂
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(n(1)

n unz
(1)) +

lz
V 2
p
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(1)
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+

l2z
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p

unz
(1)∂unz

(1)

∂ξ
− β

l2z
V 2
p

∂ϕ(2)

∂ξ
, (3.12)

∂n
(2)
e

∂ξ
=

1

K
n(1)
e

∂ϕ(1)

∂ξ
− (γ − 1)

1

K
n(1)
e

∂n
(1)
e

∂ξ
+

α

2K

∂3n
(1)
e

∂ξ3
+

1

K

∂ϕ(2)

∂ξ
, (3.13)

∂3ϕ(1)

∂ξ3
=

∂n
(2)
n

∂ξ
+ µ

∂n
(2)
e

∂ξ
− σ

∂n
(2)
p

∂ξ
. (3.14)
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Now substituting Eqs. (3.11)-(3.13) into Eq. (3.14), we obtain an equation of the
form

∂ϕ(1)

∂τ
+ Aϕ(1)∂ϕ

(1)

∂ξ
+B

∂3ϕ(1)

∂ξ3
= 0, (3.15)

where

A =

 3l4z
V 4
p
(σ − β2)− µ(2−γ)

K2

2l2z
V 3
p
(σ + β)

 , (3.16)

B =

( σ
ω2
p
+ β

ω2
n
)× (1− l2z)−

µα
2K2 + 1

2l2z
V 3
p
(σ + β)

 . (3.17)

Eq. (3.15) is known as K-dV equation. Now, to investigate the properties of the
IASWs, we need to derive the SWs solution of the K-dV equation. So, we introduce
another stretched coordinates, ζ= ξ-U0τ . After the coordinate transformation, the
steady state (∂/∂τ=0) solution of the of K-dV equation can be written as (by taking
ϕ(1) = Φ)

Φ = Φmsech
2(

ξ

∆1

), (3.18)

where the amplitude Φm and width ∆1 given by

Φm =
3U0

A
, (3.19)

∆1 =

√
4B

U0

. (3.20)

The value of µ, σ and β effect both the amplitude, and width. But α, ωp and ωn

effect the width only.
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Chapter 4

Derivation of the mK-dV Equation

The K-dV equation [Eq. 3.15] is the result of the second order calculation in the
smallness parameter ϵ, where the quadratic nature has been revealed by the nonlin-
ear term Aϕ(1)∂ϕ(1)/∂ξ. For plasmas with more than two species as like our system,
however, there can arise cases where A vanishes at a particular value of a certain
parameter µ, and Eq. 3.15 fails to describe nonlinear evolution of perturbation. So,
higher order calculation is needed at this critical value µ = µc. The higher order
calculation must be considered, in which the coefficient of ∂Φ/∂ξ vanishes. For this
reason we employ the following stretched coordinates.

ξ = ϵ1/2(lx + ly + lz − Vpt), (4.1)

τ = ϵ3/2t. (4.2)

We then expand np, nn, ne, up, un and ϕ in power series of ϵ:

np = 1 + ϵ1/2n(1)
p + ϵn(2)

p + ϵ3/2n(3)
p + · · ·, (4.3)

nn = 1 + ϵ1/2n(1)
n + ϵn(2)

n + ϵ3/2n(3)
n + · · ·, (4.4)

ne = 1 + ϵ1/2n(1)
e + ϵn(2)

e + ϵ3/2n(3)
e + · · ·, (4.5)

upx,y = ϵupx,y
(1) + ϵ3/2upx,y

(2) + ϵ2upx,y
(3) + · · ·, (4.6)

unx,y = ϵunx,y
(1) + ϵ3/2un

(2)
x,y + ϵ2unx,y

(3) + · · ·, (4.7)

ϕ = ϵ1/2ϕ(1) + ϵϕ(2) + ϵ3/2ϕ(3) + · · ·, (4.8)

upz = ϵ1/2upz
(1) + ϵupz

(2) + ϵ3/2upz
(3) + · · ·, (4.9)

unz = ϵ1/2unz
(1) + ϵunz

(2) + ϵ3/2unz
(3) + · · ·. (4.10)

By substituting Eqs. (4.1)-(4.10) in Eqs. (2.4)-(2.9), we found the same values of

n
(1)
p , n

(1)
n , n

(1)
e , upz

(1), unz
(1) and Vp as like as that of the K-dV equation. Equating

the coefficient of ϵ3/2 from Eqs. (2.6)-(2.8) we get

upz
(2) =

lz3

2V 3
p

+
lz

Vp

ϕ(2),

unz
(2) = β2 lz3

2V 3
p

− β
lz

Vp

ϕ(2),

n(2)
p =

3lz4

2V 4
p

(ϕ(1))2 +
lz2

V 2
p

ϕ(2),
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n(2)
n =

3β2lz4

2V 4
p

(ϕ(1))2 − β
lz2

V 2
p

ϕ(2),

n(2)
e =

2− γ

2K2
(ϕ(1))2 +

1

K
ϕ(2),

ρ(2) = −1

2
A1(ϕ

(1))2,

A1 =
3l4z
V 4
p

(σ − β2) +
µ(γ − 2)

K2
.

Now the eqautions can be simplified as to the next higher order of ϵ, we obtain a
set of equations:

∂n
(3)
p

∂ξ
=

1

Vp

∂n
(1)
p

∂τ
+

lx
Vp

∂upx
(2)

∂ξ
+

ly
Vp

∂upy
(2)

∂ξ
+

lz
V 2
p

∂upz
(1)

∂τ
+

lz
Vp

∂

∂ξ
(n(1)

p upz
(2))

+
lz
Vp

∂

∂ξ
(n(2)

p upz
(1)) +

lx
Vp

∂

∂ξ
(n(1)

p upx
(1)) +

l2z
V 2
p

upz
(1)∂upz

(2)

∂ξ
+

ly
Vp

∂

∂ξ
(n(1)

p upy
(1))

+
l2z
V 2
p

∂ϕ(3)

∂ξ
, (4.11)

∂n
(3)
n

∂ξ
=

1

Vp

∂n
(1)
n

∂τ
+

lx
Vp

∂un
(2)
x

∂ξ
+

ly
Vp

∂un
(2)
y

∂ξ
+

lz
V 2
p

∂un
(1)
z

∂τ
+

lz
Vp

∂

∂ξ
(n(1)

n un
(2)
z )

+
lz
Vp

∂

∂ξ
(n(2)

n un
(1)
z ) +

lx
Vp

∂

∂ξ
(n(1)

n un
(1)
x ) +

l2z
V 2
p

un
(1)
z

∂un
(2)
z

∂ξ
+

ly
Vp

∂

∂ξ
(n(1)

n un
(1)
y )

−β
l2z
V 2
p

∂ϕ(3)

∂ξ
, (4.12)

∂n
(3)
e

∂ξ
=

1

k
n(1)
e

∂ϕ(2)

∂ξ
+

1

k
n(2)
e

∂ϕ(1)

∂ξ
− (γ − 1)n(1)

e

∂n
(2)
e

∂ξ
+

α

2K

∂3n
(1)
e

∂ξ3

−(γ − 1)n(2)
e

∂n
(1)
e

∂ξ
+

1

K

∂ϕ(3)

∂ξ
− (γ − 1)(γ − 2)

2
n(1)
e

2∂n
(1)
e

∂ξ
, (4.13)

∂3ϕ(1)

∂ξ3
=

∂n
(3)
n

∂ξ
+ µ

∂n
(3)
e

∂ξ
− σ

∂n
(3)
p

∂ξ
. (4.14)

Now, combining Eqs. (4.11)-(4.13) into Eq. (4.14), we obtain an equation of the
form

∂ϕ(1)

∂τ
+ C

[
ϕ(1)
]2 ∂ϕ(1)

∂ξ
+B

∂3ϕ(1)

∂ξ3
= 0, (4.15)

where

C =

 15l6z
V 6
p

(σ+β3)
2

− µ (2−γ)−4(γ−1)(γ−2)
2K3

2l2z
V 3
p
(σ + β)

 , (4.16)

B =

( σ
ω2
p
+ β

ω2
n
)× (1− l2z)−

µα
2K2 + 1

2l2z
V 3
p
(σ + β)

 . (4.17)
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Eq. (4.15) is known as mK-dV equation. We again introduce a stretched coordinates
like K-dV equation, ζ= ξ-U0τ . The stationary SWs solution of mK-dV equation can
be written as (by taking ϕ(1) = Ψ)

Ψ = Ψmsech(
ξ

∆2

), (4.18)

where the amplitude Ψm and width ∆2 are given by

Ψm =

√
6U0

C
, (4.19)

∆2 =

√
B

U0

. (4.20)

The value of µ, σ and β effect both the amplitude, and width like K-dV equation.
But α, ωp and ωn effect the width only.
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Chapter 5

Derivation of the mmK-dV
Equation

It is obvious from Eq. 3.15 that A = 0 since ϕ(1) ̸= 0. One can find that A = 0 at
its critical value µ = (µ)c (which is a solution of A = 0). So, for µ around its critical
value µc, A = A0 can be expressed as

A0 = s(
∂A

∂µ
)µ=µc |µ− µc| = sc1ϵ, (5.1)

where |µ−µc|[= (µ = µc)] is a small and dimensionless parameter and can be taken
as the expansion parameter ϵ, i.e. |µ− µc| ≃ ϵ and s = 1 for µ < µc and s = −1 for
µ > µc. c1 is a constant depending on plasma parameter γ and K is given by

c1 =
γ − 2

K2
. (5.2)

So, ρ(2) can be expressed as

ϵ2ρ(2) ≃ −ϵ3
1

2
c1s(ϕ

(1))2. (5.3)

Now taking the coefficient of ϵ3 from Poisson’s equation, we get

−∂ρ(3)

∂ξ
=

∂n
(3)
n

∂ξ
+ µ

∂n
(3)
e

∂ξ
− σ

∂np
(3)

∂ξ
. (5.4)

Now we can find the value of ρ(3) from Eqs. (5.4), where the values of n
(3)
p , n

(3)
n

and n
(3)
e can be found from using Eqs. (4.11)-(4.13). Therefore, combining these

equations into Eqs. (5.4), we can finally write the following equation

∂ϕ(1)

∂τ
+ sc1Dϕ(1)∂ϕ

(1)

∂ξ
+ C(ϕ(1))2

∂ϕ(1)

∂ξ
+B

∂3ϕ(1)

∂ξ3
= 0, (5.5)

where

D =
V 3
p

2l2z
. (5.6)

Eq. (5.5) is known as mmK-dV equation. It is also called Gardner equation [76].
The stationary SWs solution of mmK-dV equation can be directly written as(by
taking ϕ(1) = Φ)
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Φ = [
1

Φm2

− (
1

Φm2

− 1

Φm1

)cosh2(
ζ

∆3

)]−1, (5.7)

∆3 =
2√

K1Φm1Φm2

, (5.8)

where the amplitude Φm and width ∆3 are given by

Φm(2,1) = Φm[1±
√
1 +

U0

V0

], (5.9)

Φm = −sc1D

C
, (5.10)

V0 =
(sc1D)2

6C
, (5.11)

K1 =
C

6B
. (5.12)

The mmK-dV equation is very effective describing the higher order nonlinearity.
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Chapter 6

Physical Analysis

Figure 6.1: Showing the variation of Vp with µ for U0 = 0.01, γ = 4/3, β = 0.35 and
ne0 = 9.1× 1029. The upper dotdashed blue line is for σ = 1.50, the middle dotted
green line is for σ = 1.30 and the lower solid red line is for σ = 1.10

Figure 6.2: Showing the variation of Vp with β for U0 = 0.01, γ = 4/3, σ = 1.30 and
ne0 = 9.1× 1029. The upper dashed green line is for µ = 1.10, the middle solid red
line is for µ = 1.20 and the lower dotdashed blue line is for µ = 1.30
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Figure 6.3: Showing the variation of ∆1 with β (K-dV) for U0 = 0.01, σ = 1.3,
µ = 1.20, β = 0.35, α = 0.5, ωp = 0.25, ωn = 0.30 and ne0 = 9.1× 1029. The upper
solid red line is for γ = 5/3 represents non-relativistic limit and the lower solid green
line is for γ = 4/3 represents ultra-relativistic limit.

Figure 6.4: Showing the variation of ∆2 with α (mK-dV)for U0 = 0.01, γ = 4/3,
ωp = 0.25, ωn = 0.30 β = 0.35, and ne0 = 9.1× 1029. The upper dotdashed blue line
is for σ = 1.50, the middle solid red line is for σ = 1.30 and the lower dashed green
line is for σ = 1.10.
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Figure 6.5: Showing the profile of Φ with ζ (K-dV)for different values of ωn for
U0 = 0.01, γ = 4/3, ωp = 0.25 β = 0.35,µ = 1.2 σ = 1.3, α = 0.5 and ne0 =
9.1 × 1029. The upper dashed green line is for ωn = 0.15, the middle solid red line
is for ωn = 0.20 and the lower dotdashed blue line is for ωn = 0.25.

Figure 6.6: Showing the variation of Φm with µ (K-dV) for U0 = 0.01, γ = 4/3,
σ = 1.3, α = 0.5 and ne0 = 9.1×1029. The upper dotdashed blue line is for β = 0.4,
the middle solid red line is for β = 0.35 and the lower dashed green line is for
β = 0.3.
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Figure 6.7: Showing the profile of Φ with ζ (K-dV) for U0 = 0.01, γ = 4/3, ωn = 0.30
β = 0.35, µ = 1.2, σ = 1.3, α = 0.5 and ne0 = 9.1× 1029. The upper dashed green
line is for ωp = 0.20, the middle solid red line is for ωp = 0.25 and the lower
dotdashed blue line is for ωp = 0.30.

Figure 6.8: Showing the positive dust profile of Φ with ζ (K-dV) for U0 = 0.01,
γ = 4/3, ωp = 0.25, ωn = 0.30, β = 0.35, α = 0.5, δ = +1 and ne0 = 9.1× 1029. The
upper red is for η = 0.50 and the lower green line is for η = 1.50

.
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Figure 6.9: Showing the negative dust profile of Φ with ζ (K-dV) for U0 = 0.01,
γ = 4/3, ωp = 0.25, ωn = 0.30, β = 0.35, α = 0.5, δ = −1 and ne0 = 9.1× 1029. The
blue is for η = 2.50 and the lower green line is for η = 2.80

.

Figure 6.10: Showing the profile of Φ with ζ (mmK-dV) for U0 = 0.01, γ = 4/3,
ωp = 0.25, ωn = 0.30, β = 0.35, µ = 1.2, α = 0.5 and ne0 = 9.1 × 1029. The
upper green and blue lines are of negative profile (s=-1) for σ = 1.40 and σ = 1.10
respectively. The bottom red and black lines are of positive profile (s=+1) for
σ = 1.10 and σ = 1.40 respectively.

.
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Figure 6.11: Showing the effect of µ on electrostatic potential Ψ with ζ (K-dV)for
U0 = 0.01, γ = 4/3, ωp = 0.25, ωn = 0.30 β = 0.35, α = 0.5, σ = 1.30 and
ne0 = 9.1× 1029.

.

Figure 6.12: Showing the effect of µ on electrostatic potential Ψ with ζ (mK-dV)
for U0 = 0.01, γ = 4/3, ωp = 0.25, ωn = 0.30 β = 0.35, α = 0.5, σ = 1.30 and
ne0 = 9.1× 1029.

.
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Chapter 7

Discussion

The properties and effect of different variables on SWs in magnetized degenerate
quantum dusty plasma are briefly discussed in this section. We also emphasize the
effects of relativistic factors, quantum parameter, dust charge state and density of
plasma components on the IASWs in such degenerate quantum plasmas. To fulfill
our purpose, we have mathematically derived K-dV, mK-dV, mmK-dV equation and
also analyzed their SWs solutions based with several typical plasma parameters.
We consider some plasma species density which is consistent with the relativistic
degenerate astrophysical plasmas, e.g., ne0 = 9.1× 1029cm−3, nn0 = 7.5× 1029cm−3,
np0 = 7.0 × 1029cm−3. The values of several plasma parameters that we used are,
e.g., σ= 1.10 to 1.50, β=0.30 to 0.50, µ=1.10 to 1.40, η=0.5 to 2.80, α=0.50 to 0.70,
ωp=0.15 to 0.30 and ωn=0.20 to 0.40. Finally, the results that we have found in this
investigation can be summarized as follows:

1. The value of phase speed Vp of the the IASWs decreases with the increase of
the value of µ but increases with the increase of the value of σ (see Fig. 6.1).
The effect of µ and β on the phase speed is shown in Fig. 6.2. We have found
same result for the variation of µ but phase speed of the IASWs increases with
the increase of the value of β. Positive and negative ions are providing the
inertia and degenerate pressure of electrons are providing the restoring force.
Due to change of densities of plasma species (positive ions, negative ions and
electrons) and the change of the mass ratio of positive to negative ions, inertia,
and restoring force are changing. As a result, phase speed is increasing in some
case and decreasing in some case for different values of µ, σ and β.

2. The Variations of width (∆1) of K-dV SWs with β for non-relativistic (γ =
5/3) and ultra-relativistic (γ = 4/3) cases is depicted in Fig. 6.3. It is found
that width is much higher for γ = 5/3 than γ = 4/3 .This is happening due
to the less number density of plasma species in non-relativistic case than the
ultra-relativistic case.

3. The effect of quantum parameter(α) on the width (∆2) of the mK-dV SWs
is displayed in Fig. 6.4. Width is decreasing with the increase of the value
of α (i.e, increase of tunneling effect which cause more interaction between
electrons and ions).

4. The magnitude of the external magnetic field B0 has no effect on the amplitude
of the SWs but it does have a direct effect on the width of SWs ( Fig. 6.5 and
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Fig. 6.7 ). We found that as the magnitude of ωp and ωn increases, the width
of SWs decreases. Magnetic field makes the solitary structures more spiky.
The variation of width is more for the change of ωp than ωn.

5. The influences of µ and β on amplitude (Φm) of K-dV SWs are found in Fig.
6.6. Amplitude of the K-dV SWs is decreasing with the increase of the value
of µ but for β ,we found the opposite scenario. The physics behind this is
explained earlier on point 1.

6. The variation of η on the K-dV SWs for positive and negative dust are depicted
on Fig. 6.8 and Fig. 6.9. We have found both positive and negative profile
for positive and negative charge dust. Both width and amplitude of K-dV
SWs are decreasing with the increase of the value of η. It is also found that
for negatively charged dust the changing effect of η is more interactive than
positively charged dust.

7. The mmK-dV equation contains higher-order nonlinearity which can have dif-
ferent types of solutions depending on the values of σ. We have shown that
depending on σ, the SWs with positive (compressive) for s = −1 or negative
(rarefactive) for s = +1 potential exist. As we mentioned before on point
3, the increase of the value of σ similarly results the increase of width and
amplitude here in Fig. 6.10.

8. The effect of µ of the mK-dV SWs are shown in Fig. 6.11 and Fig. 6.12. The
width and amplitude both are decreasing with increase of the value of µ . The
physics behind this scenario is mentioned previously on point 5.

From the analyzed data, we can understand the overall characteristics of the compo-
nents of the considered plasma system along with the effects of different parameters.
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Chapter 8

Conclusion

In my thesis, we considered a plasma system with some specific components and
conditions. Through the work, we analyze the effects of the components on that
particular plasma system theoretically. We plot graphical representations to provide
better understanding about the outcomes of increasing or decreasing the value of
any variables related to the plasma system. The results of our work can be useful
for future advance research and practical purpose related to plasma physics.
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Appendix A

Solution of the K-dV Equation

The K-dV Eq. can be written as

∂y

∂t
+ Py

∂y

∂x
+Q

∂3y

∂x3
= 0, (8.1)

where P and Q are constants. To obtain a stationary localized solution of this K-dV
equation, we first transform the independent variables to ξ = x− U0t, τ = t :

∂

∂t
=

∂

∂τ
− U0

∂

∂ξ
, (8.2)

∂

∂x
=

∂

∂ξ
. (8.3)

Now, substituting Eq. (8.2) and Eq. (8.3) into Eq. (8.1), one gets

∂y

∂τ
− U0

∂y

∂ξ
+ Py

∂y

∂ξ
+Q

∂3y

∂ξ3
= 0. (8.4)

For steady state condition Eq. (8.4) reduces to (∂y/∂τ → 0)

−U0
∂y

∂ξ
+ Py

∂y

∂ξ
+Q

∂3y

∂ξ3
= 0,

=> −U0y +
1

2
Py2 +Q

∂2y

∂ξ2
= R1, (8.5)

where R1 is an integration constant. Now, under appropriate boundary conditions,
viz., y → 0 and ∂2y/∂ξ2 → 0 at ξ = ±∞, one can find R1 as R1=0. So the Eq.
(8.5) becomes

∂2y

∂ξ2
=

1

Q
(U0y −

1

2
Py2). (8.6)

Now, multiplying both sides of the above Eq. (8.6) by ∂y/∂ζ, one gets

∂

∂ξ

[
1

2

(
∂y

∂ξ

)2
]
=

∂

∂ξ

[
1

2Q

(
U0y

2 − P

3
y3
)]

,

=>

(
∂y

∂ξ

)2

=
U0

Q
y2
(
1− P

3U0

y

)
+R2, (8.7)
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where R2 is an integration constant. Under the boundary conditions, y → 0 and
∂2y/∂ξ2 → 0 at ξ = ±∞, one can express R2 as R2 = 0. So, the above equation
becomes

∂y

∂ξ
= y

√
U0

Q

√
1− P

3U0

y. (8.8)

We now assume √
1− P

3U0

y = Y,

=> 1− P

3U0

y = Y 2,

=> y =
3U0

P
(1− Y 2). (8.9)

∂y

∂ξ
= −6U0

P
Y
∂Y

∂ξ
. (8.10)

Now, substituting Eq. (8.9) and Eq. (8.10) into Eq. (8.8), we get

−6U0

P
Y
∂Y

∂ξ
=

3U0

P
(1− Y 2)

√
U0

Q
Y,

=>
2∂Y

1− Y 2
= −

√
U0

Q
∂ξ,

=>

[
1

1 + Y
+

1

1− Y

]
∂Y = −

√
U0

Q
∂ξ,

=> ln

[
1− Y

1 + Y

]
=

√
U0

Q
∂ξ +R3,

=>
1− Y

1 + Y
= R4e

√
U0
Q

ξ
, (8.11)

where R3 is an integration constant and R4 = eR3 . Now, imposing the condition, y
=3U0/P at ξ = 0, one can find R4 as R4 = 1. Substituting R4 = 1 in Eq. (8.11) we
obtain

Y =
1− e

ξ
√

U0
Q

1 + e
ξ
√

U0
Q

. (8.12)

Now, substituting Eq. (8.12) into Eq. (8.9), we obtain

y =
3U0

P

1−
1− e

ξ
√

U0
Q

1 + e
ξ
√

U0
Q

2 ,

=> y =
3U0

P

 4e
ξ
√

U0
Q

(1 + e
ξ
√

U0
Q

)2

 ,
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=> y =
3U0

P

[
2

e
−ξ

√
U0
Q + e

ξ
√

U0
Q

]
,

=> y =

(
3U0

P

)
sech2

(
ξ

√
U0

4Q

)
,

=> y =

(
3U0

P

)
sech2

(
ξ

√
U0

4Q

)
,

Therefore, the stationary solitary wave solution of the K-dV equation is

y = y0sech
2

[
(x− U0τ)

∆1

]
. (8.13)

where y0 and ∆1 are the amplitude and the width of the solitary waves respectively,
and are given by

y0 =
3U0

P
, (8.14)

∆1 =

√
4Q

U0

. (8.15)
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Appendix B

Solution of the mK-dV Equation

The mK-dV Eq. can be written as

∂y

∂t
+ Py2

∂y

∂x
+Q

∂3y

∂x3
= 0, (8.16)

where P and Q are constants. To obtain a stationary localized solution of this mK-
dV equation, we first transform the independent variables to ξ = x − U0t, τ = t
:

∂

∂t
=

∂

∂τ
− U0

∂

∂ξ
, (8.17)

∂

∂x
=

∂

∂ξ
. (8.18)

Now, substituting Eq. (8.17) and Eq. (8.18) into Eq. (8.16), one gets

∂y

∂τ
− U0

∂y

∂ξ
+ P/3

∂y

∂ξ
+Q

∂3y

∂ξ3
= 0, (8.19)

For steady state condition Eq. (8.19) reduces to (∂y/∂τ → 0)

−U0
∂y

∂ξ
+ P/3

∂y3

∂ξ
+Q

∂3y

∂ξ3
= 0,

=>
∂

∂ξ

(
−U0y +

Py3

3
+Q

∂2y

∂ξ3

)
=> −U0y +

Py3

3
+Q

∂2y

∂ξ3
= R1, (8.20)

where R1 is an integration constant. Now, under appropriate boundary conditions,
viz., y → 0 and ∂2y/∂ξ2 → 0 at ξ = ±∞, one can find R1 as R1=0. So, the above
Eq. becomes

−U0y +
Py3

3
+Q

∂2y

∂ξ3
= 0,

=>
∂2

∂ξ2
=

1

Q

(
U0y −

Py3

3

)
, (8.21)

Now, multiplying both sides of the above Eq. (8.21) by ∂y/∂ξ, one gets(
∂2y

∂ξ2

)
∂y

∂ξ
=

1

Q

(
U0y −

Py3

3

)
∂y

∂ξ
,
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=>
∂

∂ξ

[
1

2

(
∂y

∂ξ

)2
]
=

1

Q

∂

∂ξ

(
1

2
U0y

2 − P

12
y4
)
,

=>

(
∂y

∂ξ

)2

=
U0

Q
y2
(
1− P

6U0

y

)
+R2, (8.22)

where R2 is an integration constant. Under the boundary conditions, y → 0 and
∂2y/∂ξ2 → 0 at ξ = ±∞, one can express R2 as R2 = 0. So, the above equation
becomes

∂y

∂ξ
= y

√
U0

Q

√
1− P

6U0

y2. (8.23)

We now assume √
1− P

6U0

y = Y,

=>
P

6U0

y = 1− Y 2,

=> y2 =
6U0

P
(1− Y 2). (8.24)

=>
∂y

∂ξ
= −6U0

Py
Y
∂Y

∂ξ
. (8.25)

Now, substituting Eq. (8.24) and Eq. (8.25) into Eq. (8.23), we get

−6U0

Py
Y
∂Y

∂ξ
=

√
U0

Q
y

√
1− P

6U0

y2,

=> −Y
∂Y

∂ξ
=

√
U0

Q
Y (1− Y 2),

=>
∂Y

1− Y 2
= −

√
U0

Q
∂ξ, (8.26)

,

−

√
U0

Q
∂ξ =

1

2

[
1

1 + Y
+

1

1− Y

]
∂Y

−

√
U0

Q
∂ξ =

1

2
[ln 1 + Y + ln 1− Y ] +R3

=> ln

(
1− Y

1 + Y

)
=

√
4U0

Q
ξ +R3,

=>
1− Y

1 + Y
= R4e

√
4U0
Q

ξ
, (8.27)

where R3 is an integration constant and R4 = eR3 . Now, imposing the condition, y
=(4U0/P )2 at ξ = 0, one can find R4 as R4 = 1. Substituting R4 = 1 in Eq. (8.27)
we obtain

Y =
1− e

ξ
√

4U0
Q

1 + e
ξ
√

4U0
Q

. (8.28)
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Now, substituting Eq. (8.28) into Eq. (8.24), we obtain

y2 =
6U0

P

1−
1− e

ξ
√

4U0
Q

1 + e
ξ
√

4U0
Q

2 ,

=> y2 =
6U0

P

 4e
ξ
√

4U0
Q

(1 + e
ξ
√

4U0
Q

)2

 ,

=> y2 =
6U0

P

[
2

e
− 1

2
ξ
√

4U0
Q + e

1
2
ξ
√

4U0
Q

]
,

=> y2 =

(
6U0

P

)
sech2

(
ξ

√
U0

Q

)
,

=> y =

√
6U0

P
sech

(
ξ

√
U0

Q

)
,

=> y = y0sech

(
ξ

∆2

)
. (8.29)

Therefore, the stationary solitary wave solution of the mK-dV equation is

y = y0sech

[
(x− U0τ)

∆2

]
, (8.30)

where y0 and ∆1 are the amplitude and the width of the solitary waves respectively,
and are given by

y0 =

√
6U0

P
, (8.31)

∆2 =

√
Q

U0

. (8.32)
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Appendix C

Solution of mmK-dV Equation

The mmK-dV Eq. can be written as

∂y

∂t
+ Py

∂y

∂x
+Qy2

∂y

∂x
+R

∂3y

∂x3
= 0, (8.33)

where P, Q and R are constants. To obtain a stationary localized solution of this
mmK-dV equation, we first transform the independent variables to ξ = x − U0t,
τ = t :

∂

∂t
=

∂

∂τ
− U0

∂

∂ξ
, (8.34)

∂

∂x
=

∂

∂ξ
. (8.35)

Now, substituting Eq. (8.34) and Eq. (8.35) into Eq. (8.33), one gets

∂y

∂τ
− U0

∂y

∂ξ
+ Py

∂y

∂ξ
+Qy2

∂y

∂ξ
+R

∂3y

∂ξ3
= 0, (8.36)

For steady state condition Eq. (8.36) reduces to (∂y/∂τ → 0)

−U0
∂y

∂ξ
+ Py

∂y

∂ξ
+Qy2

∂y

∂ξ
+R

∂3y

∂ξ3
= 0,

=> −U0y +
1

2
Py2 +

1

3
Qy3 +R

∂2y

∂ξ2
= R1, (8.37)

where R1 is an integration constant. Now, under appropriate boundary conditions,
viz., y → 0 and ∂2y/∂ξ2 → 0 at ξ = ±∞, one can find R1 as R1=0. So, the above
Eq. becomes

=>
∂2

∂ξ2
=

U0y

R
− 1

2R
Py2 − 1

3R
Qy3, (8.38)

Now, multiplying both sides of the above Eq. (8.38) by ∂y/∂ξ, one gets

∂

∂ξ

[
1

2

(
∂y

∂ξ

)2
]
=

∂

∂ξ

[
1

2R

(
U0y

2 − P

3R
y3 − Q

6R
y4
)]

,

=>
1

2

(
∂y

∂ξ

)2

+

(
−U0

2R
y2 +

P

6R
y3 +

Q

12R
y4
)

= R2, (8.39)
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where R2 is an integration constant. Under the boundary conditions, y → 0 and
∂2y/∂ξ2 → 0 at ξ = ±∞, one can express R2 as R2 = 0. So, the above equation
becomes

1

2

(
∂y

∂ξ

)
+ V (y) = 0, (8.40)

where the pseudo-potential V(y) is

V (y) = −U0

2R
y2 +

P

6R
y3 +

Q

12R
y4, (8.41)

It is obvious from Eq. (8.41) that

V (y)|y=0 =
∂V (y)

∂y
|y=0 = 0, (8.42)

∂2V (y)

∂y2
|y=0 < 0. (8.43)

We now consider two types of solutions (namely DL and GS), which are explained
below: The conditions Eq. (8.42) and Eq. (8.43) imply that the GS solution of Eq.
(8.40) exists if and only if

V (y)|y=ym = 0, (8.44)

The condition can be expressed as

− U0

2R
+

P

6R
ym +

Q

12R
y2m = 0, (8.45)

=> U0 =
P

3
ym +

Q

6
y2m. (8.46)

Now, using Eq. (8.45) we have

ym2,1 = ym

[
1±

√
1 +

U0

V0

]
, (8.47)

where ym = -P/Q and V0 = P 2/6Q. Substituting Eq. (8.47) in Eq. (8.46), one
obtains

U0 =
P

3
ym2,1 +

Q

6
y2m2,1. (8.48)

Now, using Eq (8.47) and Eq. (8.48) into Eq. (8.40) we have(
∂y

∂ζ

)2

− γy2(y − ym1)(y − ym2) = 0, (8.49)

where

ym1 = ym

[
1−

√
1 +

U0

V0

]
, (8.50)

ym2 = ym

[
1 +

√
1 +

U0

V0

]
. (8.51)

Therefore the stationary GS solution of the sG Eq. is

y = [
1

ym2

− (
1

ym2

− 1

ym1

)cosh2(
ζ

∆3

)]−1, (8.52)

where ∆3 is the width of the GSs and is given by

∆3 =
2√

K1ym1ym2

. (8.53)
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