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Abstract

Data Networking is a new concept in current internet technology that replaces the

traditional TCP/IP architecture by addressing nodes depending on user interest.

Due to the massive volume of traffic generated, Internet security is an extremely

demanding study subject. The built-in structure of NDN prioritizes stronger pri-

vacy and security protections, allowing for more scalable networking. Though the

architecture of NDN helps in the prevention of some current TCP/IP attacks, at-

tackers exploit some of these aspects and use them to their advantage. They have

the ability to launch new types of attacks, such as the creation of fake Negative Ac-

knowledgement (NACK). NACKs are important in the NDN architecture because

they cleanse state in routers and inform consumers.NACKs appear to be beneficial

in terms of security since they can assist in mitigating so-called ”Interest Flooding

Attack”(IFA).

Using blockchain technology, this thesis focuses on detecting harmful Negative Ac-

knowledgements (NACK). Our proposed framework identifies and alerts users to

fake NACKs in the network. Through the paper, our main objective is to make

interaction between the client and the producer simpler by applying cutting-edge

technologies.

Keywords: TCP/IP architecture; NDN Architecture; Negative Acknowledgement

(NACK); Blockchain technology; Interest Flooding Attack (IFA).
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Chapter 1

Introduction

The fundamental concepts that underpin the internet were created in the late 1960s

and early 1970s, when the telephone was the only example of viable and effective

global-scale communications. The internet as we currently know was created to

address the problem of resource sharing, which was worsened by the high cost of

hardware resources in 1960s. However, we still use the same Internet today, mostly

for information delivery and retrieval. According to the Cisco Visual Networking

Index, video traffic will account for 80 percent of total traffic by 2021 [8], indicating

that internet usage has shifted from resource sharing to content delivery. Despite

the fact that the internet’s applications have changed, the internet’s infrastructure

has not. The mismatch between architecture and usage has resulted in various IP

problems, including security as it was overlooked when the present TCP/IP archi-

tecture was designed.

The idea was presented by Van Jacobson, a well-known TCP/IP architect that has

prompted researchers to create a new architecture to address the security concerns.

This architect’s innovative concept focuses on content rather than location. Re-

searchers named it the ‘Named Data Network’ (NDN), because NDN content names

provide all of the information required for transmission. A port or a sequence number

are not required. NDN focuses on protecting content rather than the communication

route via which it is transferred.

In this thesis, we study security challenges in NDN, we identify the attacks and

severity for NDN, and propose a methodology which is basically blockchain based

fake NACKs detection and mitigation aimed at the flowing of legitimate traffic and

reducing the malicious traffic that stores passes through the NDN router. We have
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implemented our mechanism and compared it to existing state-of-the-art intruder

detection strategies.

We summarize the contributions of this thesis as follows:

• We create an attack detection model to detect fake Negative Acknowledge-

ments (NACKs)

• We use blockchain technology for detection of attacks

• We provide an attack mitigation model

• We compare the performance of our model with up-to-date approaches

1.1 Named Data Networking Architecture

In this section, we will go through the strong hourglass architecture created for

NDN. The hourglass form is inherited by NDN from the TCP-IP architecture. The

hourglass form is shown in figure 1.1 both the TCP-IP and NDN protocol stacks are

supported.

Figure 1.1: Internet and NDN Narrow-Waist Hourglass Architectures
[19]

The main distinction between the two protocol stacks is that IP’s narrow waist rep-

resents host-centric delivery (delivering packets to a particular destination). NDN,

on the other hand, is content-centric (retrieve contents from the network based on
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names). Security and strategy are two additional layers added to the NDN stack.

Content security is handled by the security layer. If, when, and where NDN packets

are transmitted is determined by the strategy layer. As seen in Figure 1.1, the NDN

stack has no transport layer. This is because, under NDN, content names contain

all of the information required for transit. A port or a sequence number are not

required.

Communication between hosts in NDN is performed through the generation of two

separate types of packets. This is a critical component of NDN that replaces the IP

address identification currently used in TCP/IP. Figure 1.2 depicts the many forms

of NDN packets. Any node that sends requested data interests operates as a content

consumer, whereas any node that can deliver data packets works as a producer.

Figure 1.2: NDN Interest Packet and Data Packet

Interest Packet: The customer’s requested material is contained in the Interest

package, which is created at the start. An Interest packet is divided into three sec-

tions:

Content Name: Content name contains the requested searched name, which iden-

tifies the desired material.

Selector: Selector field is used to refine material searching a number of fields such

as order performance, scope, and so on.

Nonce: Nonce field is used to locate and identify packets with the same or equiva-

lent interest.

Data Packet: The data packet contains the response to the requested interest

packet together with its matched name and a signature by the producer’s key. It
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links the consumer and producer. A data packet is divided into four sections: the

content name, the signature, the sign Info, and the contents. The required data

follows the path reversed by the interest from the asking consumer. Signed info

contains information that may be used to validate the signature’s authenticity and

validity.

1.1.1 Naming Structure in Named Data Networking

NDN’s network design is based on the content’s name. NDN gives each item of

material a human-readable name. It’s used for both packet routing and content

identification. Each name may contain a variety of elements. The character ” / ” is

used to denote the separation of two components.

Figure 1.3: NDN Naming

Because the names are hierarchical, they can be aggregated in the same way that

HTTP URLs can. A search engine helps to produce a name based on the keywords

entered by the user. As shown in Figure 1.3, the name is divided into three sections.

When we wish to make the data available globally, we need to use the globally

routable prefix.

1.1.2 Packet Routing

Once generated, the interest packet takes a predefined route through a previously

established router section. Every NDN object (not only routers) has three major

data structures. They are as follows:

• Content Store (CS): The data packets that transit via forwarding nodes

are stored in their CS. Any interest that matches the names for which they
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have saved data in their content repository will receive that data, eliminating

the need for the interest to contact the producer.

• Pending Interest Table (PIT): PIT stores any unsatisfied interests that

have been passed upstream to potential data providers. For receiving and

outgoing data, each PIT entry has one or more physical interfaces. Several

incoming interfaces show that the same data is being sought from multiple

downstream users; different outgoing interfaces indicate that the same interest

is being communicated across multiple channels.

• The Forwarding Interest Base (FIB): FIB works in the same way as

the IP Forwarding table. However, name prefixes are retained rather than IP

prefixes. Each FIB entry may provide several interfaces rather than a single

ideal interface for each name prefix. The name-based routing protocol, such

as NLSR, is used to create FIB
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Figure 1.4: Packet forwarding in NDN

1.2 HTTP VS NDN

The basic goal of NDN is to relocate the semantics of HTTP’s named data object

request and response, which contains the requested item, to the network layer. NDN

requests and answers function at the network packet level since it is a network layer

protocol. Each request provides the data name and delivers one NDN Data packet

in an NDN Interest packet. A large application data object is segmented, with the

segment number contained in the data packet name. The data name is carried by

both packet types; none carries an address or information about the requester. Web

protocols that employ names to request material are used by the most of today’s

Internet apps. NDN uses this request-response communication architecture and di-

rectly uses application data names at the network layer to make network services

better match for application communication patterns. In contrast to URLs used in

HTTP queries, NDN data names are utilized by the network layer to fetch data,

which are used exclusively by apps. As a result, namespace design is the most cru-

cial and frequently the most difficult stage.

The functions that each must do are another key contrast among HTTP as an ap-

plication protocol and NDN as a network layer protocol. HTTP uses a transport

connection, such as TCP or QUIC, to ensure that packets are sent between the data

7



requestor and the data provider. As a consequence, a web application just has to

send the request and wait for a response or a connection failure. NDN, on the other

hand, transports packets over a network, which might be a local IoT network, ad

hoc network of mobile devices, or the worldwide Internet. As a result, the data

packet must return to the requester whereas the Interest packet has no requester

information [10].

In addition to being network layer packets, NDN Data packets vary from HTTP

data objects in two important aspects. First, while the underlying TCP connection

connects the requesting URL to an HTTP response message implicitly, in addition

to the required content, every NDN Data packet specifically contains the data name,

accompanied with a signature at the moment of data generation that cryptograph-

ically connects the name to the content; the information may also be encrypted if

required. Second, unlike URLs that return varying content, NDN Data packets are

unchangeable: each name identifies an NDN Data packet; when a producer changes

the content of a data packet, it must create a new packet with a different name to

distinguish between different versions of the data.

1.3 Research Problem

The Named Data Network (NDN) was designed with the intention of controlling the

increasing volume of material generated and distributed online. Its hourglass figure

keeps it appropriate for current internet technology, resulting in a clear and visible

progression plan [19]. NDN, like IP, can work on just about anything can work on

NDN at the very same time. Although the architectural design defends NDN from

several well-known TCP/IP attacks like ICMP flooding, reflection attacks, TCP

SYN flood assaults, and so on, NDN’s unique features like stateful forwarding plane

and in-network caching encourage the introduction of new forms of attacks Inject-

ing NACKs in an intruder control network link or DoS attack using fake Negative

Acknowledgment (NACK) are such security problems.

In most communication protocols, there are two methods for determining whether

a package has indeed been accepted. Negative Acknowledgements and Acknowl-

edgments (NACKs). A receiver tells the sender of all packets which have been
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successfully effectively accepted in ACK-based protocols. If a receiver detects an

unfamiliar, irrational, or defective packet in a NACK-based protocol, it tells the

sender. NACK is beneficial for a variety of reasons. A customer cannot distinguish

between packet loss and other causes without NACK. Without NACK consumers

and routers must wait till the expiry time has passed. After receiving a NACK

with the reason code ”non-existent content,” there is no compelling reason to send

packets to alternate paths. NACK aids in flushing out state in routers and notifying

customers, freeing up valuable resources.

In Named Data Network there are two kinds of network layer NACKs. They are -

Content NACK (cNACK): A producer generates a packet known as a cNACK.

It signifies that a peice of component bearing the title represented in a given request

somehow doesn’t exist, has never been created, nor has never been published. A

cNACK is a type of content object with the CNACK type. cNACKs provide a

number of advantages. On the consumer side, they assist [5]:

1. To distinguishing between packet loss and content not found

2. Reducing consumer waiting time by notifying customers quicker than interest

timeouts.

cNACKs can help routers and producers mitigate the impacts of Interest Flooding

(IF) attacks. For each individual interest that it sends, a router produces a PIT

(Pending Interest Table) entry. Content is not cached and transmitted downstream

before a PIT record is erased. If, on the other hand, an interest requests non-

existing material and the producer just ignores it, the associated PIT entries at

all intermediate routers (and at the consumer) stay until they expire. A producer-

generated cNACK enables routers to discard PIT entries earlier, freeing up resources.

Although this method does not completely eliminate the impacts of IF attacks, it

does greatly minimize them. The functioning method of cNACK is visualized in

Figure 1.5

Forwarding NACK (fNACK): A router generates a network layer package

known as a fNACK. Its objective is to alert downstream routers that data that is

of relevance cannot be transferred due to latency or an unknown next step. The

scenarios in which a router generates fNACKs, a router can generate a fNACK for

two reasons:
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1. No item in the FIB identifies the next-hop of the received interest,

2. All FIB-specified outbound interfaces are crowded.

Intrusion Detection System (IDS) is one of the most prominent security solutions for

protecting network equipment and PCs against hostile behavior and unauthorized

use. It detects a variety of threats. Individuals and network administrators can use

IDS to put in place preventive protective measures.IDS generally use two distinct

techniques:

• Anomaly Detection

• Signature Detection

10



Figure 1.5: Workflow of cNACK

The primary difference between the two is that anomaly detection analyzes different

factors and compares that to normal behavior, whereas signature detection searches

for a specific behavior that is recognized as an attack. Additionally,Intrusion Detec-

tion Systems provides two types of classifications:

1. The Network Intrusion Detection System (NIDS)

2. The Host Intrusion Detection System (HIDS)

The Network Intrusion Detection System (NIDS) captures packets from network

traffic. The header of the recorded packets is evaluated using many criteria to de-

tect malicious behavior. The Host Intrusion Detection System (HIDS) is installed

on each machine to identify unauthorized access or usage. Both sorts of systems
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are occasionally required to provide overall protection. A large network has mul-

tiple Network Intrusion Detection Systems spread throughout it. These networked

intrusion detection systems exchange records and alarm information. A Distributed

Intrusion Detection System (DIDS) is a collection of intrusion detection systems.

Throughout the network, it offers improved sustained security assessment, network

management, and real risk analysis. It gives admins a more in-depth understanding

of the malicious activity. Because the Distributed Intrusion Detection System is

built on the internet communication of individual IDS, the trustworthiness, validity,

and reliability of the warnings received from the individual IDS are all issues to be

concerned about. In other cases, the hacker may have hacked a specific IDS or it

may be poorly designed, causing the server to be bleeped with the incorrect alert

and leading the administrator astray. Coordinating several IDS and exchanging

data with a central approach presents several issues. Credibility and dependability

are significant issues that must be addressed. They are explored more below:

• The accuracy of individual IDS warnings is crucial. Records and alerts should

be impenetrable to intruders and should never be accessed or edited by anyone.

• All participating IDS should agree on the kinds and standard of alert produc-

tion.

• As the network expands and retreats, the computational requirements for the

centralized server should be able to vary.

• Each IDS participating in the program ought to have access and ownership

over how alert data is disclosed and accessed.

Blockchain appears to be the most dependable option for resolving these issues and

making the whole system more resilient and trustworthy. For exchanging the logs

and warnings created by the individual IDS, the development of a secure distributed

ledger is recommended. Several studies have utilized blockchain technology in in-

trusion detection systems to identify malicious intrusions. These studies may be

divided into two distinct categories: (1) users who employ the anomaly detection

method, (2) those who employ the signature method. As Negative Acknowledgement

(NACK) is a unique form of content, allowing it to be signed violates a fundamen-

tal principle of the Named Data Network (NDN). However, attackers can exploit

12



the signing NACKs. As we all know, signing requires a large amount of processing

power. Producers may consume their resources as a result of signing. It causes yet

another DoS attack. According to [5] the use of blockchain technology for anomaly

detection is more prevalent than for signature detection. The most essential require-

ment of the hour is to develop a way of detecting fake negative acknowledgements

(NACK) on Named Data Networks (NDN) in real time. This paper provides a

framework for addressing the issue statement.

1.4 Blockchain

The word blockchain refers to a series of blocks that were initially developed in

1991 by researchers Stuart Haber and W. Scott Stornetta as a way to securely

date a digital document. Furthermore, in 1992, those researchers, working with

Dave Bayer, increased the efficiency of this technique by creating the Merkle root,

which efficiently checks the data’s integrity. Satoshi Nakamoto released the first

article introducing the term ”chain of blocks” to describe a peer-to-peer electronic

payment system in 2008. The term ”chain of blocks” was replaced with the term

”blockchain”. Blockchain is a network-wide decentralized and distributed ledger that

can preserve and record peer-to-peer transactions in an unchangeable and secure

manner. Without the existence of a central authority, each network participant can

interact directly with one another. The P2P network establishes a set of rules that

must be followed by all members of the network. When transactions are carried

out between peers, each participant must verify the transactions’ legitimacy using

certain rules before storing them in a block. The blocks form a chain when they are

joined together. Each block includes the hash code of the block before it, ensuring

transaction integrity and immutability. As a result, the chain gets more secure as

each new block validates all prior blocks.

According to the blockchain’s functioning, cryptography and hash functions are used

to safeguard and preserve each user’s identity unique in the network. The public

and private keys are held by each peer in the network. When a peer wishes to make

a transaction, he should use his private key to sign it. The remaining parties must

then validate the transaction by confirming the sender’s signature using its public
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key. Because peers may execute transactions using their keys, the central authority

has no control of the whole network. Another reason of no need of centralized

authority is that each network member has a copy of the updated ledger, which

contains all of the chain’s blocks along with their relevant transactions.

Figure 1.6: Blockchain Structure

Every peer in a peer-to-peer network has the ability to join or exit the network at

any moment. The problem with a public blockchain is that the participants don’t

know each other, therefore peers have no way of knowing who they can trust in

the network. This difficulty may be avoided by using consensus algorithms, which

require all or a majority of peers to agree to the network rules in order for the blocks

in the ledger to be finalized.

1.4.1 Decentralized Network

Decentralized network avoids various drawbacks of centralized network, most no-

tably the single point of failure. Multiple central nodes control the network, and

users are linked to them. Furthermore, unlike a centralized network, where data is

held exclusively in a single authority, all information is saved in all central nodes.

Additionally, peers can interact directly with one another without the involvement

of a third party. In the event that a central node fails, the network will continue

to function since there are alternative central nodes to which users may connect to

complete their transactions.

Information is kept in several users in decentralized networks, making it impossible
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for an attacker to change the information in all users. Furthermore, it is difficult

to detect the names and addresses of users from a rogue node. Because the data is

routed through many central nodes, it is hard to monitor a specific user. Another

benefit of this network is that there is no bottleneck because many nodes are in

charge of different implementations.

Figure 1.7: Decentralized Network

1.4.2 Genesis Block

Blocks are essentially digital capsules that store information about network interac-

tions indefinitely. The Genesis Block, also known as Block 0, is the initial block in

a blockchain and serves as the foundation for succeeding blocks.Because every block

refers to the one before it, it is basically the ancestor to which every subsequent

block may trace its ancestry. This started the process of verifying transactions and

creating new blocks. The layers and complex history of each sequence are one of the

aspects that make a blockchain-based data transmission system so safe.

1.4.3 Hash Function

Each block in our chain contains a hash that acts as a unique identifier for that

block. These hashes are immutable and serve as the foundation of the blockchain,

because they both represent and connect our whole network. Every block reference

to the previous block’s hash. These hashes are built using the timestamp, nonce,
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Figure 1.8: Genesis Block

and data. We only construct one hash from the 264 integers since each one is unique,

with a 1 in 3.71011 chance that the hashes will match.

1.4.4 Previous Hash Function

The preceding hash (SHA-256) connects all of the blocks in our blockchain, ensuring

the integrity of the blockchain’s one-way retrieval. This system employed a 64-bit

SHA-256 hash that was immutable, meaning it could never be overwritten. Every

block in our system refers to the block before it, and so to the genesis block. Be-

cause the blocks are dynamically formed and change on a regular basis, traveling

through them will never lead to the genesis block. As a result, blockchain retains

its immutability and integrity.

1.4.5 Public Key and Private Key

Each peer in the blockchain network has a pair of asymmetric keys, the public and

private keys. These keys are important not just in the formation of transactions,

but also in ensuring that they are legitimate. Each user has a unique private key

that is kept secret. This key is used to digitally sign transactions in order to verify

their validity.The public key is available to everyone on the network since it is used

to hash each user’s address. Furthermore, the public key is used to confirm that

the transaction was sent by the correct sender. Furthermore, hashing the public key
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Figure 1.9: SHA-256 Hashing

provides the user with additional privacy.

The digital signature has two phases: the signing phase, during which the signature

is formed using the private key, and the verification phase, during which anybody

may verify the digital signature.

Alice, for example, wishes to conduct a business transaction with Bob. She must

take a few procedures in order to complete this transaction.

• First Alice must need to produce a hash of all the data associated with this

transaction.

• She also generates a digital signature by encrypting the hash acquired from

the transaction’s contents with her private key.

• Finally, she sends Bob the transaction data, which includes the digital signa-

ture. Bob may then confirm that Alice is the true sender of this transaction.

On the other hand, after Bob has received the transaction data as well as Alice’s

digital signature, he must do two steps to ensure that Alice’s transaction is genuine.

• To obtain the hash, Bob must decrypt Alice’s digital signature using her public

key.

• Second, Bob must calculate the hash of the data using the same hash technique

as Alice.
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Figure 1.10: Implementation of Transaction

If the hash results match, it is safe to assume that the verification was completed

without tampering with the data and that Alice is the true sender of the transaction.

1.5 Research Objectives

The goal of this research paper is to provide a system for detecting malicious NACKs

utilizing blockchain technology. The primary goal of this study is to facilitate contact

between the customer and the producer. The goals of this research are as follows:

1. To gain a thorough understanding of the Named Data Network and how it

operates.

2. To have a thorough understanding of Blockchain Technology and how it works.

3. Create a blockchain-based model to detect false NACKs and apply it to NDN.

4. To analyze the model.

5. Make suggestions for enhancing the model.
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Chapter 2

Literature Review

NDN, as previously said, is information centric rather than host focused, meaning

it primarily works with content. Because of its unique properties, the network over-

sees discovering and returning requested content, which has shown to be the safest

means to send data thus far. NDN serves the present IP based architecture with its

modified functionality. Furthermore, blockchain technology has been demonstrated

to be one of the most popular technologies that signifies a technological revolution.

By distributing copies of documents to all participants, the blockchain approach

eliminates the need for a central authority.

This section is to emphasize on previous implementation of NDN and security issues

of usage of blockchain on NDN and its remedies.

2.1 Blockchain on Named-Data-Networking

The introduction of certain technologies regarding NDN and blockchain, has piqued

the researcher’s interest since they allow efficient data retrieval and data secu-

rity. NDN’s data-centric technique enables efficient record distribution and expert

blockchain block synchronization. To solve the mutual trust problem between the

sites,[12] proposes a blockchain-based NDN key management solution. The out-

comes of this scheme’s research and evolution show that it can support fewer veri-

fication numbers while enhancing verification efficiency. However, using blockchain

on NDN can alleviate a variety of networking issues, it still has severe drawbacks.

The main disadvantage of this strategy is that blockchains require a lot of storage.

It is necessary to identify and prevent an integrated, lightweight attack technique

suitable for limiting computing and storage capacity of NDN of things. Addition-
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ally, during the early stages of the concept’s implementation, problems with denial

of service (DoS) and peer collusion affecting the system’s robustness and security

were noticed. A malevolent peer may add many blocks to a ledger system, resulting

in an illegal block and ruining the data integrity of the ledger [15].

2.2 Blockchain on Content Delivery in Named

Data Network

With its unique, persistent, and location-independent name, the Named Data Net-

work (NDN) guarantees immediate retrieval of content. However, this architecture

could lead to major problems such as data manipulation and data broadcasting by

rogue NDN nodes. In [16], a trusted blockchain-based Information Centric Network

(ICN) architecture is offered as a solution to this problem. A hybrid naming strategy

is used to create the trust mechanism in this suggested architecture. The publisher

must create both a hierarchical and a flat name of the content to be distributed

to achieve the hybrid name. The proposed model’s implementation may cause is-

sues such as content caching and generate numerous privacy concerns about content

delivery.

2.3 Content Integrity in Named-Data Network

Contents are retrieved by name from network caches and the content server in Named

Data Networking. This element raises serious issues about content integrity secu-

rity. Due to its high computational overhead, the built-in verification technique is

not practicable. Several NDN-specific hazards have been identified, according to

study. The most common security attacks are interest flooding and cache poisoning.

In [6] it is said that cache poisoning attacks cause routers to fill their caches with

fictitious data. In terms of assault purpose, they are divided into two categories:

local poisoning and content poisoning.

Content poisoning is a major problem in which valid content is isolated from the

network. It starts with the placement of bogus content in the content store, which is

then transferred to the receiver, contaminating all intermediary routers. To address

20



this problem, NDN includes a built-in security mechanism based on digital signa-

tures that prevents worldwide poisoning by ensuring that poisoned information is

appropriately removed from content store (CS). Previous study, on the other hand,

has found that signature verification has too much computing cost.

2.4 Intrusion Detection using Blockchain

Anomaly and signature methods are used in blockchain-based intrusion detection

models, which all have distinct constraints that blockchain technology can solve.

The anomaly detection technique generates significant false alarm rate and fails to

detect encoded message sent by attackers. It also has trouble creating a standard

profile for complex systems, has uncategorized warnings, and requires basic train-

ing.The primary drawback of the signature detection technique, on the other hand,

is that it cannot identify a new cyberattack in the system.

By studying pattern behavior for each node, the k-means algorithm is employed in

[9] to distinguish between fraudulent and regular nodes in a blockchain network. It

is capable of efficiently handling network nodes and transactions, as well as properly

classifying nodes. However, the difficulty with this model is that it utilizes a mean

value for each cluster, which may result in an incorrect cluster head being picked.

Furthermore, it uses a static distance metric rather than a dynamic one.

The model in [11] detects anomalous behaviors of participants in a blockchain net-

work using game theory and supervised machine learning methods. It calculates the

likelihood of each assault depending on the value of the transaction. [14] provides

a method for detecting anomalous behavior in a blockchain network. It is a useful

device capable of detecting many sorts of suspicious transactions in a blockchain net-

work. The disadvantage is that it only works well when there are repeating attacks

in the network.

2.5 Related Works

This section examines previous research on NACK detection and its significance.

Even though network-layer NACKs for warning downstream routers about forward-

ing errors have been proposed, NDN presently does not implement this feature.
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Several tests have been conducted to determine how to mitigate such attacks and

the importance of having these packets in the event of a smooth data transfer in order

to secure cNACKs and fNACKs for all potential DoS attacks on content providers

that have previously been implemented. Bloom Filter was proposed by the authors

of [1]. Bloom filters are generated on a regular basis by producers, or whenever

new content items are uploaded. As a result, routers will cache them and use them

to satisfy outstanding interests, so clearing the PIT entries associated with them.

These filters, such as BLM-FLTR, can be implemented as specific-type content ob-

jects. Bloom filter is a randomized data structure that may be used to describe

a collection and facilitate membership queries. It can quickly determine if a given

piece of data belongs in a specific collection. The main distinction is that Bloom

filters will not be used to satisfy future interests if they are retained. The length of

caching for these filters is determined by the Freshness value in their headers.Pro-

ducers must fine-tune this number to match the frequency with which new material

is published. Bloom filters should not be provided to consumers, despite the fact

that they are content objects that follow the same route as their linked interests in

reverse. This is because the presence of these filters offers malevolent users an edge

in assaults.A bloom filter’s disadvantage is that it allows for false positives. Each

application’s impact must be properly assessed to determine if the impact of false

alarms is tolerable.

The Interest Key Binding (IKB) rule was proposed in [4] to secure cNACK. In order

to offer routers with the trust context necessary to authenticate just one signature

per piece of interest, the IKB rule requires coordination between consumers and

producers. The digest of the producer’s public key is included in all of the interests

of consumers in particular. To secure cNACK, the Interest Key Binding (IKB) rule

was suggested in [4]. The IKB rule necessitates collaboration between customers and

manufacturers in favor to provide routers with the security environment required to

validate just one sign each item of interest. In particular, the digest of the maker’s

public key is incorporated in all consumer interests. A producer, on the other hand,

incorporates its public key in all of the data it distributes. Before caching or forward-

ing data, a router can choose to validate content authentication. When it receives

a content, it checks the digest of the public key in the material prefix with the one
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provided in the similar query, and it validates the material signing against the public

key in the information prefix. As a result, the IKB regulation prohibits anybody

other than legitimate producers from updating or creating cNACKs.

To summarize, NDN is intended to alleviate the constraints of today’s IP-based In-

ternet. The use of NACKs at the network level is a controversial element of NDN.

This debate also suggests that, despite their numerous benefits, NACKs have secu-

rity implications. As a result, further study should be done to solve these issues.
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Chapter 3

Problem Domain

In this chapter, we will go through the specifics of the issue formulation as well as the

framework of the suggested solution. It is critical to recognize intruders and their

created fake NACKs in the NDN network for our problem statement though It is

simple to verify the origin and integrity of NACK. In fact, one of NDN’s fundamental

ideas is that every material must be signed by the creator. However, introducing a

specific category of material that is not required to be signed would be a violation of

this concept. Before caching or forwarding material, a router might choose to check

content signatures. However, for numerous reasons explained in [4], this procedure

is not required.

Assume that an intruder has control of a network link and has the ability to insert

cNACKs for all interests passing across that link. In this instance, intruders may

be able to block customers from accessing legitimate content. Intruders only need

to inject cNACKs on one path to succeed in the attack, even if there are numerous

paths to the producer; this is a different type of cNACK invasion. Another form of

cNACK attack is, intruder declares an interest for material that has not yet been

produced, anticipating the name of content that has not yet been generated, and

obtains a real cNACK from the true producer. This cNACK is cached by the path’s

routers. Even if the real material is released soon after, further requests for it will

be met by a cached cNACK, resulting in a DoS attack.

The following are the conditions for securing cNACKs, according to [5]:

1. Signature: A cNACK, like any other piece of work, must be signed by the

creator.

2. Timestamps: Not per interest, but per time period, a cNACK should be
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created.

3. Expiration: The expiration period should be included in a cNACK for plau-

sible material (i.e. not yet published).

We offer a blockchain architecture that may appropriately solve these difficulties

while keeping the essential guarantees of blockchains and NDN networks in the

following sections.

3.1 Our Approach

3.1.1 Fake cNACK Prevention

We presented a solution in which producers are trusted based on their reliability

to the network’s other producer nodes. The producers’ reliability will be judged

by how long they have been in the network and how much content they have pub-

lished. This is the foundation of our authentication system. We referred to it as

Proof-of-Reliability (PoR). A producer that wants to verify the legitimacy of its

created cNACK must submit a properly prepared transaction, known as a Proof-of-

Reliability claim, to the blockchain network. The transaction includes-

• The hash of the cNACK to authenticate.

• On the claim, there is a signature and an encrypted message that confirms

how long the producers have been in the network and how many items they

have released.

• The public key of the producer is used to validate the message and identify

the sender.

• The previous block’s hash is used to avoid transaction pre-signing.

• The maximum age in the block header that denotes the cNACK’s validity.

The producer sends the transaction to the blockchain network. The producer can

construct the next Proof-of-Reliability transaction referring to the previous block’s

hash after all producer nodes have approved the block using the consensus pro-

cess outlined below. The max-age in the header will be based on how frequently
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the producer publishes a content. Max-age necessitates worldwide synchronization

systems, such as a secure NTP [3]. The router that forwarded the interest packet

to the producer will only cache the cNACK block in its Content Store (CS) if the

block is verified by the consensus protocol. After the max-age in the header, the

cNACK will be immediately deleted from CS. In the next sections, we’ll go over our

blockchain-based solution in more depth.

Figure 3.1: Workflow of the cNACK in the Proposed Model

3.1.2 Fake fNACK Prevention

In an NDN network, if a router receives a fNACK on every upstream interface spec-

ified in the FIB, it must forward fNACKs on all downstream interfaces (where in-
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terests were received). Before transmitting the fNACKs to the downstream routers,

each router in our proposed framework must submit them to the trusted blockchain

network. A fNACK producer must provide a properly prepared transaction, Proof-

of-Reliability (PoR) claim to the blockchain network, just like a cNACK producer

has to submit a properly prepared transaction, PoR claim to the blockchain net-

work to validate the legality of its generated fNACK.The transaction consists of the

following:

• The hash of the fNACK to authenticate

• There is a signature and an encrypted message on the claim that certifies how

long the routers have been in the network and how many packets they have

forwarded.

• The router’s public key is used to validate and identify the messages.

• To avoid transaction pre-signing, a hash of the prior block is utilized.

• The maximum age in the block header that denotes the fNACK’s validity.

After verifying the transaction, the blockchain network will provide reliability score

and will add the transaction into the chain. Once the blockchain network has ac-

cepted the fNACKs, they will be sent to the downstream router. The downstream

router will issue a Reliability Score request to the blockchain network, together with

the hash fNACK and the upstream router’s public key, before accepting the fNACK.

The downstream router will next determine if the Reliability Score is high enough

to trust the fNACK.
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Figure 3.2: Workflow of the fNACK in the Proposed Model

3.2 Blockchain Layer

Only producers can provide a Reliability Score to a producer in our proposed model,

and only producers would participate in the consensus procedure. We limit the num-

ber of participants in the consensus process by restricting access rights to producers,

resulting in speedier transaction finality and increased throughput while reducing

the end user’s ledger maintenance expense. Because NDN nodes will be free of

the trust network overhead, we can assume that our blockchain layer and transport

layer will be separated. This will reduce unnecessary complexity. However, we’ll

assume for the rest of the article that an NDN node will serve as both an NDN and

a blockchain node.The implementation of the network will determine whether one

node should perform both functions or one of them.
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3.3 Reliability Score:

There are two states of content authenticity in the graph infection protocol [3], au-

thenticated and unauthenticated, which is quite restrictive. As a result, we included

a Reliability Score in our suggested model, which enhances authentication accu-

racy. The score will be determined by the number of prior blocks created by that

particular producer, as determined by the other producer nodes in the blockchain

network.

Figure 3.3: Structure of Proof-of-Reliability

In the network no one can modify the prior transaction history and every node

has the same blockchain database stored in them. We anticipate that an intruder

will not be able to stay in the network for long. He/she also won’t be able to

generate as much content as a true producer. There will be a threshold value for

trusting a cNACK, which will be determined by the network’s deployment. The

consensus algorithm will suspend the authentication process if an attacker attempts

to construct a bogus cNACK.

3.4 Consensus Protocol

In a centralized network, the central authority is in charge of transaction validation,

which ensures the network’s security and trust. In a dispersed and decentralized

network, however, the peers only engage with one another because there is no central

authority. In this situation, for better network maintenance, all peers must adhere to
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a set of network-defined norms and reach an agreement on a single block that will be

added into the chain. Consensus algorithms are used in the blockchain to establish

this agreement. There are several consensus algorithms available today, each of

which is employed by a distinct form of blockchain.In blockchain applications, for

example, Proof-of-Work (PoW), Proof-of-Stake (PoS), Proof-of-Authority (PoA),

and multiple derivations of the Byzantine Fault Tolerance (BFT) protocol are all

employed. Every protocol has its own set of benefits and drawbacks. PoW, for

example, is a decentralized way of confirming transactions that also pays miners

in cryptocurrency. However, the difficulty with PoW is that it consumes a lot of

energy and frequently necessitates expensive equipment. Furthermore, PoW has

several restrictions in terms of performance. The first is that PoW has a poor

throughput since the average number of transactions that may be committed per

second is 7. PoW also has a high latency because a block can only be declared

genuine once at least 6 verifed blocks have been added to the chain. PoS, on the

other hand, allows for quick and low-cost transaction processing, but validators

with big holdings may have undue influence on transaction verification. This is

unjust since the wealthier participants have a higher chance of becoming forgers

than the others, and PoS only strengthens the network’s wealthier participants.

The Federated Byzantine Agreement (FBA) and its blockchain implementation, the

Stellar Consensus Protocol (SCP) [17], appear to be the best fit for our requirements.

3.5 Byzantine Fault Tolerance

The Fault Tolerance of Byzantium is the capacity of a computer system to continue

operating even if some of its nodes fail or act maliciously. The name derives from

the hypothetical Byzantine Generals’ Problem. For a group of Byzantine generals,

this was the logical problem. Each general is assigned an army and a location near

a citadel, and they must choose whether to attack or retreat as a unit. They will

be victorious if they all make the same decision. The battle, on the other hand,

is lost if a misunderstanding or betrayal compels certain generals to charge while

others retire.This kind of challenges are referred to as Byzantine flaws. Each node

in a multi-node computer system might be called a ”general.” The Byzantine Fault
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Tolerance of a system relates to whether it can continue to function even if some

nodes fail or try to fool it.

Figure 3.4: Byzantine Generals’ Problem

3.6 Federated Byzantine Agreement (FBA)

Federated Byzantine Agreements (FBA) are a type of Byzantine fault tolerance in

which each byzantine general is in charge of their own blockchain. Because of its high

throughput, network scalability, and cheap transaction costs, a Federated Byzantine

Agreement (FBA) is deployed. Before users seek any performance from the FBA,

nodes must be known and validated ahead of time. Individual nodes in the FBA

network make judgments about who they trust, and quorums of nodes develop as a

result of those decisions. The FBA makes use of quorum slices, which are subsets

of quorums that can convince certain network nodes to agree with them.

3.7 Stellar Consensus Protocol (SCP)

The Federated Byzantine Agreement (FBA) consensus protocol is used by the Stellar

Consensus Protocol (SCP). The membership of FBA systems is open and control is

decentralized. Nodes have the ability to pick who they trust. Individual nodes make

decisions that lead to system-wide quorums. A quorum is the minimum number of

nodes necessary for a system to attain consensus. To avoid network partitioning, any

two quorums must have at least one node overlap, which is known as the quorum-
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intersection condition. If there is no quorum-intersection, the network will come to a

standstill until the nodes’ administrators modify it. When the nodes come together

to agree on a single version of the ledger, they begin a voting procedure inside their

quorum, eventually achieving a consensus. SCP is quick and light, and a node with

a lot of processing power doesn’t gain anything. A new node cannot contribute to

the protocol unless it is trusted by another node in the network.

Figure 3.5: Stellar Consensus Protocol

According to FLP impossibility [2], all of those consensus protocols face the trilemma,

where only two of three qualities can be attained. Fault tolerance, Safety, and Live-

ness are the three qualities. Fault tolerance, which is defined as the capability to

handle node failure, is chosen by the majority of consensus protocols. Safety pre-

vents nodes from dividing if they cannot agree on a transaction. The nodes wait

for the dispute to be resolved before proceeding. Liveness, on the other hand, en-

sures that the system will always respond to new transactions and accept them.

When a conflict arises, the system is split into two states, with the intention that

one of them will be rejected at some time, restoring consistency. The majority of

Nakamoto Consensus protocols prioritize Liveness over Safety. However, there is an

issue with the confirmation period. Although it is difficult to alter and recalculate

a huge number of blocks, it is doable, and the attack may be carried out effectively

[18]. Make certain that the chain in which our transaction was included will not be
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forked in favor of a longer chain. In fact, many systems demand a certain number

of confirmations to trust a transaction. 2–3 confirmations are often required for

Bitcoin, with each confirmation taking on average 10 minutes (20–30 total). The

number of confirmations in Ethereum is larger, about 15–30, but each confirmation

takes on average 15 seconds (3–7.5 minutes overall). Safety is chosen via SCP and

other vote-based methods. The ledger is closed and cannot be reversed once the

network’s quorum agrees on the state. Furthermore, the confirmation time is signif-

icantly reduced. The ledger in Stellar closes in 3–5 seconds.

Not all blockchain consensus algorithms are viable as Internet-wide solutions that

must operate on resource-constrained devices and reach consensus on a millisecond

time frame. For example, [13] claims that Stellar consensus is too slow for IoT de-

vices. Nonetheless, in our instance, Proof-of-Reliability assertions are based on the

length of time content creators have been in the network and the amount of content

they have created. As a result, we feel our answer is enough. Furthermore, we

discover that a recent virtual-voting version of FBA [17] may establish agreement

with nearly little communication overhead, which is highly encouraging.

3.8 A Transaction’s Lifecycle in Steller

Figure 3.6: Lifecycle of Steller
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Creation: The client creates a transaction, fills in all of the data, assigns it the

correct sequence number, and adds any operations it wants.

Signing: Transactions must be signed using the sender’s public keys, and many

parties’ signatures may be necessary in complicated transactions.

Submitting: The transaction should now be valid, and it may be signed and

uploaded to the Stellar network. Transactions are usually transmitted using horizon,

but they can also be delivered to a stellar-core instance directly.

Propagating: When stellar-core gets a transaction from a customer or another

stellar-core, it runs preliminary checks to see whether it’s valid. It guarantees that

the transaction is properly formed and that the issuing account has adequate cash

to cover the transaction charge, among other things.

Building Transactions Set: When the moment comes to close the ledger, stellar-

core creates a transaction collection from all of the transactions that it has received

since the previous one had ended. If it receives any new transactions now, it files

them away until the next ledger close. The transaction set that Stellar-core has

gathered is named. SCP is in charge of settling conflicts among the many transaction

sets and chooses the network’s preferable transaction set.

Executing the Transactions: The ledger is updated when SCP has approved on

a transaction set. At this stage, a charge is debited from the origin account for each

transaction in the set. The activities are carried out in the transaction’s sequence

of appearance. If any transaction fails, the transaction as a whole fail, and the

transaction’s previous actions’ effects are undone.A new ledger is produced when all

of the transactions in the set have been applied, and the process begins again.

3.9 Producer’s Workflow (cNACK)

A producer does the following to publish cNACKs on the NDN network and au-

thenticate it using the blockchain node (Figure: 3.7).

1. Generate a cNACK and sign using the producer’s key pair.

2. Compute hash of the cNACK.

3. Create a Proof-of-Reliability transition that includes the hash of the cNACK
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and preceding blockchain block’s hash, as well as a signed and encrypted

message proving the producer’s trustworthiness.

4. The encrypted message will include the total number of pieces of content the

producer has published as well as the length of time the producer has been a

member of the network.

5. Add a timestamp (max-age) in the header of the block.

6. Publish the Proof-of-Reliability transaction on the network.

Figure 3.7: Producer’s Workflow

3.10 Consumer’s Workflow (cNACK)

A consumer does the following to get material from the NDN network and authen-

ticate it using a blockchain node (Figure 3.9):

1. Send an interest packet to an NDN router. The NDN router will return a

cNACK if the content is not available to the producer or for some reason the

producer does not want to share it.
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2. Send a Reliability Score request along with the hash cNACK and the pro-

ducer’s public key to the NDN nodes and receive it.

3. Decide if the Reliability Score is sufficient to trust the cNACK.

Figure 3.8: Consumer’s Workflow
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Chapter 4

Implementation

We designed a test topology and a test blockchain to implement our proposed model.

In our Linux operating system, we used ndnSIM 2.8 to create the test topology.

Python SDK was used to generate the test blockchain. The core SDK, as well as

any dependencies, will be installed using this utility. For Horizon endpoints, the

Stellar Python SDK provides a networking layer API. It also lets us to create and

sign transactions, connect with a Stellar Horizon instance, and examine network

history.

We’ve included the code and a diagram of the test architecture we designed below.

Figure 4.1: Diagram of the Test Topology
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1 #include ”ns3/core-module.h”
2 #include ”ns3/network-module.h”
3 #include ”ns3/point-to-point-module.h”
4 #include ”ns3/ndnSIM-module.h”
5
6 namespace ns3 {
7
8 int
9 main(int argc, char* argv[]){
10
11 Config::SetDefault(”ns3::PointToPointNetDevice::DataRate”, StringValue(”2Mbps”));
12 Config::SetDefault(”ns3::PointToPointChannel::Delay”, StringValue(”5ms”));
13 Config::SetDefault(”ns3::DropTailQueue<Packet>::MaxSize”, StringValue(”30p”));
14
15 CommandLine cmd;
16 cmd.Parse(argc, argv);
17
18 NodeContainer nodes;
19 nodes.Create(4);
20
21 PointToPointHelper p2p;
22 p2p.Install(nodes.Get(0), nodes.Get(2));
23 p2p.Install(nodes.Get(1), nodes.Get(2));
24 p2p.Install(nodes.Get(2), nodes.Get(3));
25
26 ndn::StackHelper ndnHelper;
27 ndnHelper.SetDefaultRoutes(true);
28 ndnHelper.InstallAll();
29
30 ndn::StrategyChoiceHelper::InstallAll(”/prefix”, ”/localhost/nfd/strategy/multicast”);
31
32 // Consumer
33 ndn::AppHelper consumerHelper(”ns3::ndn::ConsumerCbr”);
34 consumerHelper.SetPrefix(”/prefix”);
35 consumerHelper.SetAttribute(”Frequency”, StringValue(”30”));
36 auto con1 = consumerHelper.Install(nodes.Get(0));
37 auto con2 = consumerHelper.Install(nodes.Get(1));
38 con1.Stop(Seconds(30.0));
39 con2.Stop(Seconds(30.0));
40
41 // Producer
42 ndn::AppHelper producerHelper(”ns3::ndn::Producer”);
43
44 // Producer will reply to all requests starting with /prefix
45 producerHelper.SetPrefix(”/prefix”);
46 producerHelper.SetAttribute(”PayloadSize”, StringValue(”1224”));
47 producerHelper.Install(nodes.Get(3));
48
49 Simulator::Stop(Seconds(500.0));
50 Simulator::Run();
51 Simulator::Destroy();
52 return 0;
53 }
54 }
55 int
56 main(int argc, char* argv[])
57 {
58 return ns3::main(argc, argv);
59 }

Table 4.1: Code of the Implemented Topology
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Each node in our test topology must create a transaction account in the Stellar

blockchain network in order to send and receive packets. In Stellar, accounts are the

most important data structure. They keep track of sign transactions and distribute

assets. A given account owns all entries that remain on the ledger. Each node needs

its own valid keypair before generating an account. To maintain the security of

each transaction, Stellar employs public key cryptography. A keypair consists of a

public key and a secret key for each stellar account. Nodes need the public key to

identify themselves to the other nodes in the network, hence sharing it is always

safe. We only require the secret key because nodes in NDN have a built-in public

key. Stellar Laboratory was used to create accounts and conduct transactions. The

Stellar Laboratory is a suite of tools that allows individuals to experiment with the

Stellar network and learn more about it. The laboratory can create, sign, and submit

transactions to the network. It can also communicate with any Horizon endpoint.
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1 from stellar_sdk import Keypair
2 pair = Keypair.random()
3 print(f”Secret Key: {pair.secret}”)
4 #Secret Key: SC4XGDPCDEK6L3J7SRKIPD5KKJYHDIF4W7TCCJWJLBEIB2ATBUUJXQNP

Table 4.2: Secret Key Generation Code

1 import requests
2 public_key = ”GC4NSMMEVMKWGWJM5XSNNIAGDJ5336X67BOOQOTSRB7HWINTNXHA6LEF”
3 response = requests.get(f”https://friendbot.stellar.org?addr={public_key}”)
4 if response.status_code == 200:
5 print(f” NEW ACCOUNT Created :)\n{response.text}”)
6 else:
7 print(f”TRY AGAIN Response: \n{response.text}”)

Table 4.3: New Account Creation Code

A valid keypair, on the other hand, does not establish an account. The next stage

is to create an account. To do so, nodes must provide the public key they generated

to Friendbot, , a tool for supporting friendly accounts. It’ll make a new account

with the public key as the account ID.

Nodes can begin transacting on the network after creating an account.

Operations are the actions that take occur on Stellar, such as sending and receiving

packets or buying and selling offers. Participants bundle operations into transac-

tions to submit them to the network. A transaction is a collection of one to 100

operations plus some extra information, such as the account that is initiating the

transaction and a cryptographic signature to verify that it is genuine. In our case,

this transaction is known as PoR.

Stellar stores and transmits transaction data in a binary format called XDR, which

is optimized for network efficiency but unreadable to the naked eye. Fortunately,

Horizon, the Stellar API, and the Stellar SDKs convert XDRs into more user-friendly

formats.

The final step is to obtain the account’s information and check its status. Multiple

information can be stored in a single account.

The next step is to build a trustline, which indicates that the distribution account has

faith in the issuing account. For that we used Stellar Laboratory. Stellar Laboratory

was used to create accounts and conduct transactions. The Stellar Laboratory is

a suite of tools that allows individuals to experiment with the Stellar network and

learn more about it. The laboratory can create, sign, and submit transactions to the
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network. It can also communicate with any Horizon endpoint. To create a trustline,

go to the Build Transaction page and fill in the source account box with the public

key for the distribution account. Then, click on “Fetch next sequence number for

account starting with..” After clicking, we will get a transaction sequence number.

We can keep the next three fields: Memo, Base Fee and Time Bounds blank and

move to field and set that to “Change Trust.” After selecting operation type as

“change trust”, set the asset to alphanumeric 12 based. We are creating a token

for the cNACK/fNACK asset, so we selected Alphanumeric 12 and enter ‘cNACK’

in the asset code field and finally added issuing accounts public key in the “Issuer

Account ID.”

Figure 4.2: Transaction Envelope XDR Screenshot

At the bottom of the page, click the ”Sign in Transaction Signer” button to complete

the transaction. It will go to the signatures section’s next page. In the ”Add Signer”

area, we’ll enter the distribution account secret key. If we were doing it in real life,

we would use a ledger, but because this is only an example, we would paste the

key as indicated before. Scroll to the bottom of the page and click ”Submit in

transaction submitter” once the secret key has been pasted.
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Figure 4.3: Screenshot of Successful Transaction Sign

Backend Workflow: We encrypted the data to reduce the amount of data kept for

each PoR transaction. For each batch of data, the data creates a unique hash.That

hash is stored in the Block, which saves space and time.We utilized SHA256 for our

implementation.

Figure 4.4: Generated SHA256 Hash from PoR

Once the hashed PoR is submitted to the blockchain network, the trustworthy pro-

ducer nodes perform the consensus process to generate the transaction hash, ledger

number, result, and fee meta in XDR. The following block uses the hash of the pre-

vious block to form the blockchain. The chain becomes longer as additional blocks

are placed to the end. The hash is reset if any value in the block is altered, and

the block must be created again to receive a new hash. Any update to a block in

the center of the blockchain invalidates all future blocks since the new hash will be

included in the next block. The block’s hash will be reset when a new hash is added,

and it will need to be validated again. Because the blockchain is a decentralized
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ledger, every client will have a copy of the original blockchain, making any node with

a modified block easily identifiable. The neighbors must agree on which blockchain

is valid before any data can be verified.

Figure 4.5: A Block in the Blockchain
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Figure 4.6: Blockchain with Four Blocks
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1 {
2 ”_links”: {
3 ”self”: {
4 ”href”: ”https://horizon-testnet.stellar.org/accounts/GCNFF5HNN63VYEHFXTQHQYEM66G3IDQ47KFEVRYQ3X66XLR276M3I7RZ”
5 },
6 ”transactions”: {
7 ”href”: ”https://horizon-testnet.stellar.org/accounts/GCNFF5HNN63VYEHFXTQHQYEM66G3IDQ47KFEVRYQ3X66XLR276M3I7RZ/transactions{?cursor,limit,order}”,
8 ”templated”: true
9 },
10 ”operations”: {
11 ”href”: ”https://horizon-testnet.stellar.org/accounts/GCNFF5HNN63VYEHFXTQHQYEM66G3IDQ47KFEVRYQ3X66XLR276M3I7RZ/operations{?cursor,limit,order}”,
12 ”templated”: true
13 },
14 ”payments”: {
15 ”href”: ”https://horizon-testnet.stellar.org/accounts/GCNFF5HNN63VYEHFXTQHQYEM66G3IDQ47KFEVRYQ3X66XLR276M3I7RZ/payments{?cursor,limit,order}”,
16 ”templated”: true
17 },
18 ”effects”: {
19 ”href”: ”https://horizon-testnet.stellar.org/accounts/GCNFF5HNN63VYEHFXTQHQYEM66G3IDQ47KFEVRYQ3X66XLR276M3I7RZ/effects{?cursor,limit,order}”,
20 ”templated”: true
21 },
22 ”offers”: {
23 ”href”: ”https://horizon-testnet.stellar.org/accounts/GCNFF5HNN63VYEHFXTQHQYEM66G3IDQ47KFEVRYQ3X66XLR276M3I7RZ/offers{?cursor,limit,order}”,
24 ”templated”: true
25 },
26 ”trades”: {
27 ”href”: ”https://horizon-testnet.stellar.org/accounts/GCNFF5HNN63VYEHFXTQHQYEM66G3IDQ47KFEVRYQ3X66XLR276M3I7RZ/trades{?cursor,limit,order}”,
28 ”templated”: true
29 },
30 ”data”: {
31 ”href”: ”https://horizon-testnet.stellar.org/accounts/GCNFF5HNN63VYEHFXTQHQYEM66G3IDQ47KFEVRYQ3X66XLR276M3I7RZ/data/{key}”,
32 ”templated”: true
33 }
34 },
35 ”id”: ”GCNFF5HNN63VYEHFXTQHQYEM66G3IDQ47KFEVRYQ3X66XLR276M3I7RZ”,
36 ”account_id”: ”GCNFF5HNN63VYEHFXTQHQYEM66G3IDQ47KFEVRYQ3X66XLR276M3I7RZ”,
37 ”sequence”: ”3311724727894016”,
38 ”subentry_count”: 0,
39 ”last_modified_ledger”: 771071,
40 ”last_modified_time”: ”2022-05-02T07:29:56Z”,
41 ”thresholds”: {
42 ”low_threshold”: 0,
43 ”med_threshold”: 0,
44 ”high_threshold”: 0
45 },
46 ”flags”: {
47 ”auth_required”: false,
48 ”auth_revocable”: false,
49 ”auth_immutable”: false,
50 ”auth_clawback_enabled”: false
51 },
52 ”balances”: [
53 {
54 ”balance”: ”10000.0000000”,
55 ”buying_liabilities”: ”0.0000000”,
56 ”selling_liabilities”: ”0.0000000”,
57 ”asset_type”: ”native”
58 }
59 ],
60 ”signers”: [
61 {
62 ”weight”: 1,
63 ”key”: ”GCNFF5HNN63VYEHFXTQHQYEM66G3IDQ47KFEVRYQ3X66XLR276M3I7RZ”,
64 ”type”: ”ed25519_public_key”
65 }
66 ],
67 ”data”: {},
68 ”num_sponsoring”: 0,
69 ”num_sponsored”: 0,
70 ”paging_token”: ”GCNFF5HNN63VYEHFXTQHQYEM66G3IDQ47KFEVRYQ3X66XLR276M3I7RZ”
71 }

Table 4.4: Code of Account Details JSON
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Chapter 5

Result Analysis

Security is the greatest difficulty in today’s Internet, despite breakthroughs in en-

cryption, secure protocols, and system-level protections. NDN approaches this prob-

lem in a very different way than current procedures. NDN allows one to directly

safeguard data by having data producers cryptographically sign each data packet to

connect the data name, producer, and content. When data secrecy is required, they

can also be encrypted [7]. Authenticity and confidentiality are security features of

data that are independent of data containers and communication routes. Despite

the fact that NDN is considered more secure than contemporary TCP/IP, it has

several drawbacks, such as the inability to get original cNACKs and fNACKs. Our

suggested blockchain based false NACK prevention methodology is more secure, dy-

namic, and practical than existing alternatives. Also it works for both static and

dynamic contents.

5.1 Cost Analysis

Permissioned blockchain is used in our system. Permissioned blockchains offer a

variety of economic benefits, the majority of which stem from the technical advan-

tages they provide. They are often smaller than public blockchains. As a result,

they react faster. The blockchain data is smaller and there are less transactions than

on a public blockchain. They can confidently identify their consumers. There are

virtually few chances of identity theft because each consumer is given both public

and private keys. Hard forks in permissioned blockchains can happen extremely

quickly. Hard forks, unlike public blockchains, do not require community consent.

As a result, administrators having authority over the private network can carry them
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out.They do not waste energy in wasteful ways. They don’t employ a proof-of-work

system like mining. They normally use a multi-party voting system instead. The

cost of network maintenance is also reduced since the blockchain community can

’self-maintain’ in many ways. Permissioned blockchain networks are expected to

save financial institutions between 15 billion and 20 billion by 2022, according to

estimates. The price of cryptocurrency is skyrocketing, as is its utility. We utilized

Stellar and Lumen as test coins in our implementation.Purchasing cryptocurrencies

may appear to be too expensive in the current market, but in our proposed model,

we used permissioned blockchain, which allows the creation of a new coin for its use.

As a result, network managers may create their own money for this permissioned

blockchain rather than purchasing current cryptocurrencies, lowering the cost sig-

nificantly. Moreover, the digital coin and blockchain may be created in whatever

way the developers choose to reduce transaction costs and times.

5.2 Latency Analysis

The time delay between an input and the received output is referred to as latency in

computing. It’s present at every level of computing, from user-to-computer IO delay

to network latency when data and information flow from a computer to servers all

over the world. Latency can refer to two separate temporal delays in a blockchain

network. The first is the latency in a blockchain network, while the second is the

delay in a data or packet exchange.

Network latency is the time between submitting a transaction to a blockchain net-

work and the network’s initial confirmation of acceptance. The transaction gets

more definitive after the first confirmation as more blocks are added beyond the

original confirmation. Low network latency is critical for a payments system that

expects to garner widespread acceptance. If the delay between paying at the cash

register and receiving payment confirmation becomes too long, it becomes a source

of user friction.

The capacity to process and executes huge quantities of transactions in their order

books is measured by the latency of a data or packet exchange. Day traders fre-

quently use bots to automate the majority of their trading activity, which means the
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bots are placing and canceling a massive number of orders per second. An exchange

with low latency and high throughput can execute these orders quickly, allowing the

day trader (through the bot) to take advantage of price movements more effectively.

In contrast, a high-latency exchange will execute orders with a time lag behind the

changing asset price, resulting in incorrectly priced orders and missed chances for

the day trader.

Every 10 minutes or so, miners add new blocks to public blockchains. Because that

procedure cannot be sped up due to the underlying technology, and because each

block can only hold a finite amount of transaction records, there is a backlog of

transactions that must be joined to blocks and verified when there is a lot of ac-

tivity.Only the producers participate in the consensus mechanism in our suggested

approach. Producer nodes also serve as both an NDN and a blockchain node in

our model. Each Proof-of-Reliability (PoR) is only delivered to the trustworthy

blockchain network once, and the NACKs are sent to the routers once the packet is

verified and added to the ledger. We don’t have any delay in our suggested archi-

tecture because we’re employing Stellar Consensus Protocol (SCP) and the ledger

in Stellar closes in 3–5 seconds.
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Chapter 6

Conclusion and Future Work

We started our research by looking for and securing fake negative acknowledgement

packets (NACK) of Named Data Network. Then, using blockchain technology, we

started looking for and securing those packets. We proposed a workflow for con-

sumers and producers, as well as a mechanism for achieving safe data transfer over

the NDN network, in our research. We believe it will be the most secure solution for

combating fraudulent NACK creation, rather than the previously stated technique.

Steller and the Steller Consensus Protocol are the foundations of our suggested

paradigm and implementation (SCP). However, other cryptocurrencies and blockchain

systems can readily be used to achieve our suggested approach. Better consensus

procedures can be used, such as proof of stake (PoS), proof capacity (PoC), or Ripple.

These consensus processes are currently being researched and refined, hence they

are relatively new to the business. Participants in Ripple are either the network’s

server or its clients. Clients transmit transactions to the server, which calculates the

percentage of agreement using a unique node list, which is subsequently added to a

ledger if it exceeds 80 percent. Using newer consensus mechanisms, our approach

can be implemented considerably more effectively in the near future.

The architecture we proposed is based on a consensus method that allows producers

to prove their reliability to other producers. It is determined by the length of time

a server has been in the network and the number of contents it has published. If a

new producer wants to join the network, proving their reliability will be challenging,

even if they are original. Furthermore, Stellar’s ledger closes in every 3–5 seconds,

which is relatively slow in terms of data transmission. If we could reduce the closing

time, communication would be faster. More research is needed to discover a solution
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to these problems.

Instead of waiting for issued interests to expire, customers may rely on Negative

Acknowledgements (NACKs) to quickly discover non-existent material. It also en-

ables customers to distinguish between non-existent content and packet (interest)

loss. It must be carefully secured because it plays such an important role in NDN.

We can do this using blockchain since once they are released to the main blockchain,

they cannot be changed and consumers may trust them based on their reliability

score. Through our demo model, we attempted to illustrate the bulk of the model’s

capabilities. It is highly recommended that additional time and effort be put into

establishing a reliable model. There are already NDN and blockchain specialists

working on this, and they must be contacted before the model is deployed in pro-

duction.
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