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Abstract
Handwritten letter classification of any given language has the potential to be used
in various fields such as literature, educational institutions, digitization of govern-
ment records etc. Bengali language with its complex sets of mixed characters, poses
significant complexities in terms of automatic recognition of characters. In the
Bengali character set, there are over 360 distinct characters among which a lot
of similarities are present between different characters. Thus, the classification of
these characters gets harder as the recognition system incorporates all these distinct
characters. In recent years, a lot of research has been done to solve this problem
on isolated datasets with significant results. Continuing the advancement in im-
age processing, In this paper, we have proposed a custom CNN model which has
been trained on Bangla Lekha Isolated dataset containing 1,66,106 images belong
to 84 distinct classes with the capability to detect individual handwritten Bengali
letters including digits, vowels, consonants and compound characters with 93.15%
accuracy while using less number of parameters compared to existing popular models

Keywords: Deep learning, CNN, Bangali Characters, Image processing, DCNN,
Handwritten Character Recognition, Bengali letters, Bengali compound characters.
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Chapter 1

Introduction

Handwriting is one of the most ancient and effective mediums in the process of hu-
mans sharing knowledge among each other. Handwriting was invented out of the
necessity of keeping records of acquired knowledge. Historically, the tools used to
write things down were not convenient. Initially, Stones, leaves, woods were used as
the materials to hold the writings which was inconsistent and posed a lot of problems
in long term maintainability of those records. As the need to share information grew
dramatically, researchers and scientists devised new methods for storing informa-
tion efficiently. During the Han Dynasty circa (25-220CE) paper was first invented
which accelerated the whole process of written communication. Since then, written
documents on paper have become the essential form of communication. In the mod-
ern era, computers have become the quintessential tool accompanying humans in
every strata of life. Advances in computer image processing have enabled computers
to process visual information that was unimaginable in the past. Nowadays, com-
puters can be used to analyze various types of image data. One of the applications
of image processing is to analyze human writings on paper and convert them into
digital data that can be processed by computers. This conversion process is known
as letter or text classification. The differences between handwritten characters and
the ones represented in modern computers is that, handwritten characters vary in
both shape and size based on individual writing styles while modern computers have
a specific set of predefined characters that is consistent. The translation between
what is human readable to machine readable is the main goal of text classification
which can be achieved by using different machine learning techniques. Deep convo-
lutional neural networks is a subset of machine learning that is proven to be effective
in text classification. The Bangla script is the second most widely used script in the
Indian subcontinent. Bangla is spoken as a primary or second language by around
200 million people. Therefore, the relevance of automated identification of Bangla
written letters is enormous. In this research, we aim to use deep convolutional neural
networks to classify Bengali handwritten letters.
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1.1 Aim and objective
Through our research, we aim to build a system that can automatically detect
handwritten letters in the Bengali language by using cutting edge machine learning
algorithms.
To compile shortly, our research will focus on the following key areas:

• Analyze different convolutional neural networks to determine the most suitable
algorithm in text detection.

• Apply the algorithm in data sets collected from the real world

• Detect the reliability of given algorithms by cross checking the outputs of the
algorithms with correct outputs.

• Based on the test results, pinpoint the areas of improvement.

• Incorporate the new findings in to the existing algorithms and publish the new
findings.
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Chapter 2

Related Work

Lots of research has been done in regards to Bengali letter classification. The first
ever research was done by Roy et al [1]. Lots of researcher has followed his path
later on. Most of them improve the accuracy by applying different method like
[2]–[9]. Academicians widely use CNN in this regard for its excellent performance
in character classification compared to other classifiers. Convolutional Neural Net-
works reduce classification complexity by using a multilayer perceptron model that
includes an input layer. Two or more hidden convolutional layers, pooling and nor-
malization layers and the last layer is an output layer. Every layer works on a
specific portion of the image. Then it forwards the result in the next layer if the
portion of the image passes through its classifier. It has a very high potential in digit
reorganization tasks. It was used on the MNIST dataset and gave a very good accu-
racy. M M Rahman et al. [10] classified the Bangla basic characters using (CNN).
They used it on the CMATER database and successfully classified the Bangla basic
characters with an accuracy of 85.96 percent. Chatterjee S. et al. [11] used a specific
model, namely the Resnet50 model, pre-trained with the ILSVRC dataset and later
used Transfer Learning to use the existing model in Bengali characters. Alif M. et
al. [12]also took a step that is very much alike but instead with the Resnet18 model
and Adam and Rmsprop optimizer. Begum H. et al. [13] used three main feature
extraction techniques, namely: (i) Longest Run features, (ii) Histogram feature from
chain code, and (iii) Gabor wavelet-based features. The authors then applied differ-
ent common classifier algorithms on these extracted features to determine the best
feature extraction technique. They achieved 76.47 percent accuracy on a Longest
Run, and Chain Code Histogram methods are combined.

Shyla Afroge et al. suggested an example for Optical Character Recognition in
Bengali based on Discrete Fréchet Distance. The model works very fine as it ends
up giving 90-95 percent accuracy for both digit and characters [14]. According to a
study, the feature based on a geometric convex hull can successfully detect solitary
handwritten Bangla. The feature can detect both digits and characters with an
accuracy of 99.45 percent [15].

KNN (K Nearest Neighbor), also known as the simplest classification algorithm,
is also a very popular method in BHCR. It gives results based on the difference
among the given data. According to certain studies, conventional or classic KNN
offers good accuracy 95 percent for BHCR [16]. But it performs very poorly and
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ends up giving accuracy of 68.3 percent for a given dataset by Md Nazmul Hoq et
al. [17]. In BHCR lots of features were used such as Gaussian filters, CNN combi-
nation dropout, and Gabor filters. With 98.78 percent accuracy, Gabor filters and
CNN combination dropout features outperforms SOTA (state of the art) methods
for HDBR [18].

Using Convolutional neural networks (ConvNet), Shopon et al. achieve the highest
accuracy so far which is 99.50 percent [19]. For this process, they took 19,313 pic-
tures from the ISI handwritten character dataset and trained ConvNet on it. Later,
they tested it on the CMATERDB dataset. Although all of the applied approaches
in the literature obtained high accuracy, they omitted to provide comparative re-
search and a clear picture of the performance of distinct categorization algorithms.
One of their previous studies looked at the performance of classification algorithms
using Bangla Numeric Digit images [17].

DCNN was used in these [20], [21] articles for BHCR, with the maximum accu-
racy of 97.21 percent on 84 classes and 97.73 percent on 122 classes, respectively.
DCNN dominated handwritten character recognition in BHCR and other languages.
One of the most prominent datasets is the MNIST dataset. By regularizing neural
networks using drop connect, this method can recognize English handwritten digits
with a 99.79 percent accuracy [22]. In Bangla digit recognition, an autoencoder
made from a neural network with DCNN achieved a high accuracy of 99.50 percent
[23].

Bishwajit Purkaystha et al. [24] suggest recognizing Bangla Handwritten charac-
ters using the deep convolutional model. They tested the model or system on the
BanglaLekha-Isolated dataset and got a very impressive accuracy. With an accu-
racy of 98.66 percent, it works very well on the numerical alphabet. Besides this, it
gives 94.99 percent on vowel characters and 91.60 percent on compound characters.
Lastly, it gives a 91.23 percent accuracy on alphabets. On average, it produces 89.93
percent accuracy on any Bangla characters.
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Chapter 3

Dataset

3.1 Data Collection
Data collection is one of the most challenging works while doing research. A model
can be particularly efficient if it has a big amount of data. Because of the lockdown
and shutdown of educational institutions, we were under added strain. We couldn’t
get any data from people directly. Fortunately, some of the datasets were already
freely available on several websites. Bangla Lekha-Isolated [25] is the most widely
utilized and biggest dataset currently accessible. The following Table shows the
number of images collected from each dataset. We divided the data into four groups
for easier understanding: modifiers, fundamental characters, numerical digits, and
certain often used compound characters images. In Bangla Lekha-Isolated we have
found 98,950 basic characters, 47407 compound characters and 19748 numeral im-
ages.

Dataset Basic Charac-
ters Digits Compound Total

Bangla Lekha
Isolated 98950 47407 19748 166105

Table 3.1: Class breakdown of Bangla Lekha Isolated Dataset

In Bangla Lekha Isolated dataset, it includes 50 Bangla basic characters, 10 Bangla
numerals, and 24 chosen compound characters as sample.
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3.2 Data Labeling and Naming Format
Each sample of the Bangla Lekha Isolated dataset contains a unique form ID that
may be used to identify the participants’ age, gender, district, and institute. There-
fore a 22-digit long ID was used to label them. Among the 22 digits, the first 2 digits
represent the district, next 4 digits represent the institution, next 1 digit represent
gender, next 2 digit represent age, next 4 digits represent the date of the collection
and last 4 digits represent the serial number of the form which was used to collect
the data from people. And for better understanding each and every information
were separated by an underscore . For example,

01-0002-1-18-1218-0928

Here the number 01 denotes that the participant is from Comilla, whereas 0002
denotes that the person is from Comilla zilla school and the next 1 means the par-
ticipant is female and 18 denotes the participant’s age is 18. 1218 denotes the data
was collected in December 2018 and lastly 0928 denotes it was collected from 0928
number form.

3.3 Annotation
The data needed to be annotated since we intended to run supervised machine
learning algorithms on it. So, after labeling the data with a 22 long digit an extra 1
or 2 digits was also added. As we have mentioned before the dataset has a total 84
classes (50 basic characters ,10 numbers,24 compound characters). The first 11 class
was the Vowels which are also known as রবণর্ in Bangla. The data was annotated
for them from numbers 1 to 11 increasingly. The next 39 class was Consonants
which are also known as বযঞ্জনবণর্ in Bangla. The data was annotated for them
from numbers 12 to 50 increasingly. Like every other language, Bangla language has
its number system which are also known as সংখয্া in Bangla. The data was annotated
for them from numbers 50 to 60 increasingly. A special case which makes Bangla
letters different from most other languages is the compound characters. When two
or more consonant make a one and unique character we call it as compound character
which is also known as যু বণর্ in Bangla. The process of annotation is considered
as one of the most important and difficult tasks. A simple annotation mistake can
make the algorithm give the wrong result. The annotation has a very good Fleiss
Kappa Interrater Agreement score.
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3.4 Exploratory Data Analysis
Bangla is considered as the 4th largest spoken language in the world. Beside it’s
spoken usage it is largely used in writing too. Bangla has 11 vowels and 39 conso-
nants and beside this a special class is also there in Bangla Alphabet which are called
compound characters. Compound characters are a mix of two or more consonant
characters. But the writing structures of compound letters are different and which
make each and every character of Bangla alphabet as unique as possible. Some of
the general characteristics of each major class, statistical and visual representation
of the collected data (from Bangla Lekha Isolated) are given below.

3.5 Visual Representation
The following figures represent the class breakdown of Bangla Lekha Isolated dataset.

Figure 3.5.1: Frequency of Vowels in the Dataset

In the first figure 3.5.1, the distribution of each vowel character is shown and we can
see the data are almost equally distributed. And the total number of vowel data is
21670.
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Figure 3.5.2: Frequency of Consonant in the Dataset

Figure 3.5.3: Frequency of Digits in the Dataset

Same distribution goes for the consonant and digit class and both are having equally
distributed data shown in figure 3.5.2 and 3.5.3. The current pre-processed data for
these two classes is 76,760 and 19,888 respectively.

8



Figure 3.5.4: Frequency of Compounds in the Dataset

But the compound class’s data are not equally distributed at all compared to other
classes. People are most likely to make mistakes while writing the compound char-
acters because of its complex structure. To remove this distribution problem, the
BLI team deleted the wrong characters and labeled them accordingly. Figure 3.5.4
shows the distribution of each selected compound charters frequency.
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General Statistic: The data also collected from people of different ages. As we
know, people of different ages have different handwriting styles. 20 years ago, people
almost did any official work by handwritten paper rather than a computer or typing
machine. And people nowadays are almost fully dependent on computers while it
comes to writing any official work. So, there is a significant style difference between
the 25- and 7-year-olds. And beside this the student class mostly participates in
writing by hand most of the time. So, the main goal was to take as much student
handwriting as possible. The following figure shows the age class breakdown. And
the male- female ratio was 60:40 percentage because both male and female partici-
pants had different handwriting styles. Figure 3.5.5 shows the age and male: female
ratio breakdown.

Figure 3.5.5: Frequency of different age of participants and male female ratio
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Chapter 4

Data Pre-Processing

For our proposed method data pre-processing is the first step in character recognition
and is critical in determining the recognition rate. Any sort of irregularities can
reduce the accuracy rate significantly and data-preprocessing helps to normalize
the strokes and remove any irregularities [26]. Lots of distortion can happen while
collecting the data. Some of them are uneven text size, tremors, left-right bend,
uneven spacing and points missing during pen movement. Data preprocessing works
on those issues and makes it readable data for the model. Lots of pre-process
methods were used on the collected data. Some of the important method descriptions
are given below:

4.1 Segmentation
As we have mentioned, the data was collected in a form which consists of many char-
acters and segmentation is the very first method of data pre-processing. Segmen-
tation used to break down a multi-character input picture into separate characters.
This segmentation also consists many sub-methods which are given below:

4.1.1 Form Scanning
After collecting the form, the very first step is to scan the form. After scanning the
forms, the user can use it for any efficient usage of the data. There are two ways to
scan the data. Either use Windows operating systems which take 1 min to scan and
on the other hand Ubuntu with 600 dpi which take only 10-15 sec for scanning. For
time’s sake, Bangla Lekha Isolated team uses Ubuntu for scanning. A little snippet
of scanned form is shown in figure 4.1.1.

11



Figure 4.1.1: Scanned Form

4.1.2 Skew correction and crop
It was impossible to scan all the forms with the same angle. This is where the
skew correction and cropping are used. By using clever edge detection, a large black
border will aid in the discovery of the largest contour. In further steps it helps to
crop all of the images in the same form, size, and angle by correcting the paper’s
skew [27].

4.1.3 Row wise cropping
To separate all the characters a row wise cropping is needed. A total 14 rows were
there in the form and after cropping them the 14 pictures were saved in 14 different
folders which were later used for further processing. Figure 4.1.2 shows the example
of row wise cropping images.

Figure 4.1.2: Example of Row Wise Cropping

4.1.4 Column wise cropping
Each row contains 6 characters. A column wise cropping is needed to perform after
row wise cropping. This will separate all the 84 characters into different images
which will be stored into 84 folders for future usage. Figure 4.1.3 shows the example
of column wise cropping images.
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Figure 4.1.3: Example of Column Wise Cropping

4.2 Noise removal
A method known as noise removal is used to remove undesirable or undesired pat-
terns. The function is commonly used to convert a grayscale picture to a bi-level
(binary) image or filtering off pixels with too tiny or too big values is used to remove
noise. In this dataset Otsu Algorithm is used to determine the optical threshold and
for smoothing the image, gaussian blur was used. Figure 4.2.1 shows the example
of noise removed images.

Figure 4.2.1: Example of Noise Removal Images

4.3 Resize
Image resizing was used to resize the image with a square shape. For the model we
need to maintain the drawn character’s aspect ratio. And by resizing we manage to
provide the padding which was needed for the maintenance. Figure 4.3.1 shows the
example of resized images

Figure 4.3.1: Example of Resized Image
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4.4 Invert
After that, an inversion layer was needed to make the background black but as the
character’s color was black too the image had to make the brighter part dark and
dark part too bright. To make this we have to change the pixel value. Figure 4.4.1
shows the example of inverted images.

Figure 4.4.1: Example of Inverted Image
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Chapter 5

Proposed Methodology

5.1 Architecture of Proposed Models
5.1.1 Proposed CNN model
CNN is mostly use for Image classification and it is one of the better than most of
the other process because of its unique feature parameters sharing and dimension
reduction system. To categorize photos into their assigned classes, we are proposing
a multi-layered deep CNN model using the given approach. Most important of them
is the Convolutional layer[28], fully connected layer [29] which connect all the neuron,
and Pooling layer [30] are the three core layers of a CNN model. We employed two
extra layers in addition to these three: the Activation layer and the Dropout layer.
The following sections go through the specifics of each layer:

1. Convolutional Layer: The very first layer of CNN model is the Convolutional
Layer. The main use of this layer is to extract information from the images.
The convolution maintains the link between the pixels by learning visual qual-
ities using small chunks of incoming data [31]. The two-input parameter are
image input and a filter or a kernel. Edge detection, blurring, and sharpen-
ing may all be accomplished by applying convolution on a picture with many
filters. For our custom model we have used 9 Conv2D layer.

2. Pooling Layer: Because of the huge number of parameters the model works so
slow and to minimize the number we use the pooling layer. Our used dataset
has different size of images. And some of them can be too large and pooling
layer reduce the number of parameters from the images. In our proposed model
we use MaxPooling2D to Calculate the maximum value for each feature map
patch.

3. Fully Connected Layer: The structure is similar to Neural network. First it
flattens the matrix into a vector and send it to the next fully connected layer.
The following layers are included in the model:

• Flatten layer: After the last MaxPolling2D, one flattens layer is utilized.
This helps to spread the network as a whole.

• Dense layer: Our proposed model consists four Dense layers. The main
motive to use this layer is to feed the output with the neuron from the
previous layer to the network.
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• Dropout layer: There is a huge chance of overfitting the model. To avoid
this problem, we normally use dropout layer.

• Activation layer: Lastly, we use SoftMax function for out multiclass clas-
sification. The following equation is used in the SoftMax function.

σ(z⃗)i =
ezi∑k
j=1 e

zj

In the equation Z is the input vector. Zi are the values of the input vector. Ezi is
the standard exponential. The normalization term is the term at the bottom of the
formula. And lastly K is the number of classes in the multi-class classifier.

Figure 5.1.1: Proposed CNN model Architecture

Figure 5.1.1 shows the model Architecture of Our proposed CNN Model.
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Figure 5.1.2: Proposed CNN model Summary

Figure 5.1.2 shows the model Summary of our proposed model.

5.1.2 Pre-trained Models
Over the past few years lots of model has shown great improvement in CNN im-
age classification. The neural network has been used in previous instances and has
gathered data that may be applied to fresh targeted samples. We have used four
pre-trained model for experiment. Those models are: VGG16, VGG19, Resnet18,
Resnet34, InceptionV3. A very brief detailed of each model are given below: Num-
bered (ordered) lists are easy to create:
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1. VGG16: This model one of best-known model for image classification and
was Suggested in 2014 [32]. In the 2014 ILSVRC competition, this model
took first and second place in the large-scale picture classification categories.
Because of its 13 convolutional layers and 3 fully connected layers which are
customizable it’s called VGG16. Conv, Max-Pool, and Fc have 13,5 and 3
layers, respectively. With a parameter of 138 million and size of 500MB it
is one of the largest networks in CNN [33]. In the first block it contains 64
filters which are subsequently doubled for the flowing blocks and ends with
512. 4096 neurons are being used in the first two FC and last layers its 1000
with softmax activation. The architecture is given below.

Figure 5.1.3: VGG-16 model Architecture

Figure 5.1.4 shows the summary of VGG-16

Figure 5.1.4: VGG-16 model Summary

2. VGG19: A little update version of VGG16 is VGG19. Only difference be-
tween vgg16 and vgg19 is instead of 13 convolutional layers it has 16 convolu-
tional layers. It also takes 224*224 RGB image as input which make the input
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shape (224,224,3)[34]. The added preprocessing feature is it subtract the RGB
mean for each pixel and do it over the whole dataset. Strides are made up of
kernels with a size of (3*3) and a size of one pixel to cover the complete visual
notion. Maxpool was used (2*2) and stride of 2.

Figure 5.1.5: VGG-19 model Architecture

Figure 5.1.6 shows the summary of VGG-19

Figure 5.1.6: VGG-19 model Summary
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3. InceptionV3: InceptionV3 is another famous model for image classification
[35].The below descriptions describe what are the steps been taken in one at
a time in InceptionV3 [36]

• Smaller Convolutions: Smaller convolution processes are substituted for
larger convolution operations, resulting in substantially faster training.
For example, two 3*3 filters have only 18 properties where only one 5*5
filters have 25 properties [37].

• Asymmetric Convolutions: In this layer 3*3 convolution can be replaced
by a 1*3 and 3*1. This way the number of parameters can be higher.

• Auxiliary Classifier: Beside the main classifier, an auxiliary classifier is
also used while training the network. The loss is included into the real
network loss by a tiny CNN placed among layers. In InceptionV3, as a
regularizer, the auxiliary classifier is used.

• Reduce grid size: Pooling is one of the most common used processes to
decrease the grid size. But a better and efficient process has been used
to reduce the computational cost

• Factorized Convolutions: In order to maximize the efficiency of compu-
tation, this layer reduce the parameters which are used. Beside this it
observes the network efficiency.

Figure 5.1.7: Reduce grid size architecture

Figure 5.1.8 shows the model Architecture of InceptionV3.
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Figure 5.1.8: InceptionV3 model Architecture

4. ResNet18: Resnet is another CNN model that we have used on our dataset.
Residual networks work well on image classification tasks. Based on the num-
ber of layers, different residual networks can be constructed. We have so far
used one with 18 layers and one with 34 layers.
Resnet is composed of many convolutions blocks. Each block is a basic CNN
block with a Convolutional layer followed by batch normalization. Convolu-
tional layer does convolutional operation on the input image. Batch normal-
ization technique improves the training performance by making the output
of each neuron closer to the mean. The output of the batch normalization
is then fed towards the ReLu layer which is followed by a maxpool layer.
The network is repeated in this configuration until the final layer which is
a densely connected layer. The output layer has 84 distinct output classes
each corresponding to a class in BanglaLekhaIsolated Dataset. In the case of
resnet 18, there are 18 blocks thus the network has 18 as a suffix after the
name. The whole network that we have implemented has 11,688,552 trainable
parameters. The implementation of the Resnet 18 that we have used has the
following architecture:
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Figure 5.1.9: Resnet18 model Architecture

Figure 5.1.9 shows the model Architecture of ResNet18.

Figure 5.1.10: Resnet18 model Summary

Figure 5.1.10 shows the model Summary of ResNet18.

5. ResNet34: Resnet 34 is another variant of Residual networks which has
16 more layers in its architecture compared to resnet 18. Since it has more
layers, the number of trainable parameters in the resnet 34 model is 21,793,000
compared to 11,688,552 of resnet 18. The inner building blocks of Resnet 34
are quite similar to that of ResNet 18. Each block has a convolutional 2d layer
followed by batch normalization, ReLu activation and maxpool layer. After
repeated structure, the network is then flattened to a Linear output layer
consisting of 84 classes in total. The implementational structure of ResNet 34
is given below:

22



Figure 5.1.11: Resnet34 model Architecture

Figure 5.1.11 shows the model Architecture of ResNet34.

Figure 5.1.12: Resnet34 model Summary

Figure 5.1.12 shows the model Summary of ResNet34.
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5.2 Used Parameters Values
Lots of parameters are to use to train a model. Among them most important
parameters are epoch, batch size, regularization, callback, Learning rate, optimizer.
Once the pre-processing is finished the images are ready to be used for the model.
All the properties are changeable. Before the training is started, they all can be
changed. Bangla lekha Isolation is one of the biggest datasets available right now.
It has more 160K images divided into 84 classes. But for our research betterment
we have randomly chose 1000 images from each class which make our dataset for the
model 84000. We have divided those into three categories which are train, validation
and test. Train and validation are used while training where test has been used later
to calculate the accuracy score, precision, recall, f1 score. 50400 images are being
used as training data. And validation and test both has 16800 images. We have used
30 epochs to train out model and the batch size was 32. Which make 1575 steps
per epoch. “SGD” optimizer has been used. This is one of the popular optimizers
along with “Adam”. Our proposed model is a little bit complex and its need a full
efficient computation because of its huge output classes. And ”SGD” is perfect fit
for the model as an optimizer. We initialize the learning rate as 0.001 and the
minimum learnings rate was 0.0000001. A very high or very low learning rate can
be problematic for the model. While updating the parameter a single record is used
to remove the gradient decent problem. All our input images were RGB. The used
Activation Function is “Softmax”. Because of the 84 output classes we had to use
it. Other than this function another available function is “sigmoid” which is used to
classify binary classes. For loss calculation we have used ”categorical crossentropy”.
As there are 84 classes. And the output belongs to one of them and according to
the output the loss is being calculated. We use “Google colab pro” for training the
model. Where GPU were used which was assigned randomly by google [38]. We
use “Model.fit” to start the training. Training and Validation accuracy, Training
and validation loss were shown after every epoch. The following table 5.1 shows the
values that were used in the process.
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parameters Proposed model Pre-trained model
Training 60% 60%
Validation 20% 20%
Testing 20% 20%
Input size (80,80) (64,64)
Batch size 32 32
Epoch 30 30
Steps 1575 1575
verbose 1 1
learning rate 0.001 0.001
Minimum
learning rate 0.000001 0.000001

Momentum 0.9 0.9
Environment GPU GPU
Optimizer SGD SGD
loss categorical crossentropy categorical crossentropy
Activation Softmax Softmax
Class mode Multi class Multi class
callback ReduceLROnPlateau ReduceLROnPlateau

Table 5.1: Used parameters for proposed and Pre-trained models.

Later test the model accuracy, precision, recall, f1-score was calculated[39],[40],[41].
The equation is given below:

• Accuracy[42]:

Accuracy =
TruePositive+ TrueNegative

Truenegative + FalsePositive + TruePositive+ FalseNegative
(5.1)

• Precision[42]:

Precision :=
TruePositive

TruePositive+ FalsePositive
(5.2)

• Recall[42]:
Recall =

TruePositive

TruePositive+ FalseNegative
(5.3)

• F1 Score[42]:
F1score =

2 ∗ precision ∗ recall
Precision+Recall

(5.4)
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Chapter 6

Appraisal performance

6.1 Proposed Model Performance
As we have mentioned before, we have selected 200 random images from each class
to test the model after the training. Beside this 60% was used to train the model
and 20% was used for validation and 20% was unseen images for the model for later
testing. After running the model, we got a very good training accuracy of 98.65%.
Even for a simple model like our proposed model this a very promising accuracy.
The following table 6.1 shows the accuracy and loss of the model.

Model Training Accu-
racy

validation Accu-
racy

Training
Loss Validation Loss

CNN 98.55% 93.11% 0.09% 0.31%

Table 6.1: Training and validation Accuracy and Loss of our suggested Model.

According to the table, this proposed model gives a validation accuracy of 93.11%.
The graph below shows the visual representation of the accuracy and loss of the
model.

Figure 6.1.1: Suggested models training and validation accuracy

Figure 6.1.1 shows the models Training and Validation accuracy.
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Figure 6.1.2: Suggested models training and validation loss

Figure 6.1.2 shows the models Training and Validation loss.

Moreover accuracy [43],[44], recall, precision, f1 score were calculated after the train-
ing[45]. Values are given below in table 6.2:

Model Recall Precision F1 score Accuracy
CNN 0.9311 0.9332 0.9313 0.9315

Table 6.2: Summary table of our suggested Model.
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6.2 Pre-Trained model Performance
Unseen images set was used to testify the pre-trained model. After running the
models, we got very good validation and testing accuracy from VGG16 and VGG19.
Both has a higher training accuracy which is above 99% and validation accuracy of
94.24% and 94.07% respectively. And while testing on the unseen images set, we
got a very impressive accuracy of 94.66% and 94.57% over 84 classes. Other than
those two models, InceptionV3, ResNet18, ResNet34 gives decent testing accuracy
with 91.97%, 90.24% and 88.39% respectively. General comparison of Training and
testing accuracy among the models are shown below:

Figure 6.2.1: Pre-Trained models Training Accuracy

Figure 6.2.1 shows the Pre-trained models Training accuracy.

Figure 6.2.2: Pre-Trained models Testing Accuracy

Figure 6.2.2 shows the Pre-trained models Testing accuracy.
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Further model evaluation information is given below. Where training and validation
were done while training and testing was done on an unseen image set. So, the
summary is the performance of the model on the testing images.

• VGG16: We got an accuracy of 99.48% on training and 94.67% on testing

Figure 6.2.3: VGG16 models training and validation accuracy

Figure 6.2.3 shows the models Training and Validation accuracy.

Figure 6.2.4: VGG16 models training and validation loss

Figure 6.2.4 shows the models Training and Validation loss.
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• VGG19: We got an accuracy of 99.38% on training and 94.57% on testing

Figure 6.2.5: VGG19 models training and validation accuracy

Figure 6.2.5 shows the models Training and Validation accuracy.

Figure 6.2.6: VGG19 models training and validation loss

Figure 6.2.6 shows the models Training and Validation loss.
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• InceptionV3: We got an accuracy of 94.76% on training and 91.97% on
testing

Figure 6.2.7: InceptionV3 models training and validation accuracy

Figure 6.2.7 shows the models Training and Validation accuracy.

Figure 6.2.8: InceptionV3 models training and validation loss

Figure 6.2.8 shows the models Training and Validation loss.
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• ResNet18: We got an accuracy of 97.13% on training and 90.24% on testing

Figure 6.2.9: ResNet18 models training and validation accuracy

Figure 6.2.9 shows the models Training and Validation accuracy.

Figure 6.2.10: ResNet18 models training and validation loss

Figure 6.2.10 shows the models Training and Validation loss.
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• ResNet34: We got an accuracy of 95.33% on training and 88.49% on testing

Figure 6.2.11: ResNet34 models training and validation accuracy

Figure 6.2.11 shows the models Training and Validation accuracy.

Figure 6.2.12: ResNet34 models training and validation loss

Figure 6.2.12 shows the models Training and Validation loss.
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A summary table contain accuracy, precision, recall, f1 score for each model is given
below:

Model Recall Precision F1 score Accuracy
Proposed
CNN 0.9311 0.9332 0.9313 0.9315

VGG16 0.9453 0.9480 0.9462 0.9467
VGG19 0.9454 0.9474 0.9455 0.9457
InceptionV3 0.9239 0.9250 0.9229 0.9235
ResNet18 0.9020 0.9040 0.9018 0.9024
ResNet34 0.8815 0.8837 0.8706 0.8811

Table 6.3: Summary table of pre-trained model

6.3 Compare and Analysis
To compare our proposed model to other popular existing image classification mod-
els, we have tabulated all the metrics in Table 6.3. Our proposed model has achieved
a recall score of 0.9311 out of 1. Recall is the number of True Positive predictions
divided by the summation of True Positive and False Negative. Simply put, out of
all of the possible true predictions how many a model has gotten right is the recall
score. The higher the recall the better the model is. From the chart we can see that
our proposed model achieves a better recall value compared to resnet 18 , 34 and
Inception V3 but is about 1% behind from VGG16 and VGG19. We can call this a
satisfactory recall score.
On the other hand, precision is measured by taking the number of predictions done
correctly out of all predictions. It is defined by the True Positive divided by the
summation of True Positive and False Positive. Similar to recall score, higher pre-
cision also indicates a better model. Our proposed model has a precision score of
0.9332 which is higher than both resnet 18, 34 and Inception V3 but slightly lower
than VGG 16 and 19. The difference between our model and VGG 16 and 19 are
really slim.
Additionally, F1 score measures the harmonic mean of both precision and recall.
Simply put, F1 score balances both precision and recall and gives one value to
measure both and compare different models. In the case of F1, a similar trend is
found. VGG16 and 19 performs better than our proposed model but Resnet 18 and
34 and Inception V3 achieves a lower F1 score than our model.
Accuracy is the simplest of metrics that measures how many of the predictions are
accurate out of all predictions. In this test, our model again shows a similar kind of
performance trait, that is , it is better than Resnet, Inception V3 but slightly lower
than VGG 16 and 19.
Overall, our model achieves almost a similar level of accuracy of VGG 16 and 19
while using far less number of parameters which means, our model will be much
faster while training while maintaining a similar level of performance. This would be
useful in cases where the dataset is large in size and the computation environment is
very costly. Using our model in this case would both save time and money compared
to other models.
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Model Parameters Time per Epoch Final Accuracy
VGG16 17,512,724 77 Sec 0.9466
VGG19 22,822,420 89 Sec 0.9457
InceptionV3 23,851,784 118 sec 0.9197
ResNet18 11,688,552 57 Sec 0.9024
ResNet34 21,793,000 76 Sec 0.8849
Proposed
CNN 12,055,444 63 Sec 0.9315

Table 6.4: Time and Cost comparison

The table 6.4 shows the number of parameters and time has taken per epoch for all
the models. As we can see, comparing to the large size model like VGG16,VGG19
and ResNet34 which has a large number of parameters, our proposed model has a
very small amount of parameters. The amount of time that has taken to train the
model is far small than the pre-trained model. And this can be useful to train large
size dataset. If we want to save our time and computational cost maintaining a good
accuracy then this model is better than any of the pre-trained model.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion
We have proposed our own custom CNN model for Bengali Handwritten digit clas-
sification. Our proposed work has provided some great results. Along with other
excellent works of researchers working in Bengali handwritten text classification, our
work will contribute in this field as an additional option in choosing an appropriate
model for use in everyday life tasks. We wish to contribute to the use of Bengali
language in computing through this paper.

7.2 Future Work
We have so far implemented our very first model and have gained experience using
other popular CNN models. We have achieved satisfactory results but there is more
room for improvement in many areas. We would like to work on text scanning
and line separation with automated word classification and correction in future.
That future model will be based on this work. If we succeed, we will be able to
create an automated Bengali handwritten text scanner that will convert handwritten
documents in digital formats.
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