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Abstract

In recent times, ether (ETH) has become one of the most popular cryptocurrencies
that is gaining significant interest from crypto investors and developers across the
globe. The increased interest in this cryptocurrency is due to the fact that transac-
tions on the Ethereum platform are far more secure, as it combines smart contracts
to streamline commerce and trade between both anonymous and recognized parties.
Besides, many decentralized financial and nonfinancial apps (DeFi and DApps) are
built mainly based on the ether cryptocurrency itself. As a result, the price of this
cryptocurrency is also rising gradually. On the other hand, the price of ether some-
times decreases as well due to some unwanted circumstances like political conflicts,
wars, natural disasters, and so on. Thus, the ether cryptocurrency market has be-
come very unpredictable and can cause an uncertain situation for market investors.
For this purpose, having a specialized prediction method for the ether price based
on machine learning and deep learning technologies is crucial. This research aims to
find an accurate price prediction model for the ether cryptocurrency based on the
long short-term memory (LSTM) network, which is a special variant of the recur-
rent neural network (RNN). In the proposed model, ether price data was taken in
time-series format and fitted into multiple basic and hybrid variants of the LSTM
network, and the future prices were predicted based on both univariate and mul-
tivariate time-series analysis. Furthermore, a comparative analysis was conducted
among the models and also some popular existing forecasting techniques like autore-
gressive integrated moving average (ARIMA) as the baseline forecast to determine
which one can provide the best possible accuracy so that investors may understand
the behaviour of the ether market and make proper decisions on their investment.

Keywords: Cryptocurrency, Deep Learning, Ether, Ethereum, Forecasting, Long

Short-term Memory, Multivariate, Price Prediction, Recurrent Neural Network,
Time-series, Univariate.
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The next list describes several symbols & abbreviation that will be later used within
the body of the document
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RNN Recurrent Neural Network

SARIMA Seasonal Auto-Regressive Integrated Moving Average

SARIMAX Seasonal Auto-Regressive Integrated Moving Average with eXogenous
factors
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Chapter 1

Introduction

1.1 Background

Ether stands for “Ethereum Money” and is the digital currency used by Ethereum
platform apps. It is a functional currency used on the Ethereum platform and
works as the fuel for operating the network to make transactions easier. Although
internet money is a new idea, it is protected by well-established encryption and a
security layer that safeguard the digital currency and its transactions. As a result,
ether’s popularity is increasing rapidly. Ether is a decentralized and worldwide
cryptocurrency which means no corporation or banking institution has the authority
to produce additional ether or modify the rules of usage. Even though ether is
considered a secured investment sector, its price often goes through rises and falls.
One of the major reasons for the rise of ether price can be due to handling multiple
decentralized finance (DeFi) projects. Next, updating the Ethereum network also
affects the price hike of ether since it is making transactions faster than before.
Also, investors are getting more interested in investing in the ether market, which
leads to its price rise. Also, due to the COVID-19 pandemic and conflict among the
economically dominant countries of the world, the price of ether experienced a fall in
recent times like many other crypto markets. Ethereum is a decentralized platform
which facilitates peer-to-peer connections with smart contracts where ether is used
as a digital currency to operate the network fruitfully.

1.2 Motivation

Ether can be a very good investment for investors as its value keeps rising from time
to time. Researchers predict that ether can play a significant role in the marketplace
as it is one of the largest selling cryptocurrencies. Moreover, ether is a blockchain-
based technology, so it is more secure than a traditional financial medium. As a
result, ether has recently been the subject of discussion, garnering it the acceptability
that it presently enjoys. In order to invest in a marketplace, it is important to
understand the behaviour of that market. Generally, the price of any product rises
and falls during a time interval which is referred to as time-series data that has
multiple characteristics like trend, seasonality, noise and so on which may cause
fluctuations and disturbance in the data. Analyzing the time series data helps to
address these issues so that the future of a marketplace can be predicted. There are
multiple algorithms used for time series data prediction but in recent times recurrent



neural networks, specifically algorithms like LSTM that can overcome issues like
vanishing gradient, are getting popularity among the researchers.

With the unpredictability in the crypto market and the huge popularity of numerous
altcoins, we decided to dive more into this sector, notably ether. In this work, we
used time-series analysis approaches to explore several models and apply them to
anticipate ether prices, as well as using the error metrics to assess the effectiveness
of the implemented models.

1.3 Problem Statement

Ethereum and blockchain are two cutting-edge and rapidly expanding technologies
at the moment. Ether can be used to pay for different services as a form of cryp-
tocurrency. Besides, this also helps in the development process of the Ethereum
platform as a reliable payment gateway. Being the second-largest cryptocurrency,
ether paves a better way to move towards that technologically sound world. Since
mining and transactions are safe and dependable, the revolutionary technology has
provided new frontiers and possibilities for several ether miners, who are already
speculating on whether this might be a new tangible property as well as economic
security. Investors are also getting interested in investing in the ether market due
to its huge number of possibilities in the near future. However, due to the volatile
nature of the ether market, many people find it difficult to keep pace with the mar-
ket movement. There are various reasons that are driving researchers across the
globe to gain an interest in the ether market and predict its future. For instance,
making an investment in this sector safe for the investors, determining the future
of the ether market along with other cryptocurrencies, getting an idea about how
rapidly digital money can replace traditional currency, and so on. Moreover, using
time-series analysis is necessary in case of making these predictions to deal with the
characteristics that affect the values. Consequently, approaches based on machine
learning and deep learning can be used to make the prediction process much more
accurate than determining it by making intuitive decisions. This research aimed to
ensure secure investment for ether market investors by analyzing time-series data
and predicting future prices through a statistical model like ARIMA and some basic
and hybrid variants of RNN-based models like LSTM and making a comparative
analysis in order to determine the best-performing model.

1.4 Research Objective

This research focused on predicting the price of Ether forecasting time series data.
Ether investment becomes more prominent, more customers are expected to opt
with the more accessible choice. Consequently, numerous people who might normally
finance in much more traditional ways are thinking of switching to cryptocurrencies.
Despite the fact that the price is so unpredictable, virtual currencies offer a distinct
financial instrument that is being acknowledged as a legitimate unit of account. As
a result, the goal of this thesis lied on examining several models, utilizing them to
forecast the Ether price using time series data, and evaluating overall efficiency on a
particular dataset in assisting market participants in identifying the risk associated



with Ether funding.
To sum up the goal of this research can be noted as the following:

e To gain a thorough understanding of ether market price and its fluctuations

e To have an idea about ARIMA and its efficiency in both short-term and long-
term forecasting

e To have a thorough understanding of RNN and LSTM networks

e To process time-series data using basic LSTM networks and understand the
features and variables

e To combine multiple basic LSTM layers and build a hybrid variant

e To compare and understand the performance and efficiency of ARIMA with
basic and hybrid LSTM networks in ether price prediction

e To predict the future of ether utility by analyzing its price.

1.5 Thesis Outline

The research report is organized as follows-

e Chapter 1 contains the background analysis, motivation behind the research,
problem statement and research objectives.

e Chapter 2 is comprised of necessary theoretical concepts including previous
works related to this research.

e Chapter 3 contains the workflow, architecture and methodology for our re-
search.

e Chapter 4 includes the result analysis and performance comparison of the
implemented techniques.

e Chapter 5 discusses some future goals and concludes the report.



Chapter 2

Literature Review

2.1 Ethereum Network and Ether

Ethereum is one of the most famous blockchain-based platforms because of its cryp-
tocurrency, which is ether. Furthermore, the Ethereum network is considered safe
due to its decentralized nature and security protocol that allows the price hike of
ether. Moreover, Ethereum has a large community worldwide because it is totally
open source. Additionally, it facilitates a range of applications including DeFi and
dApps that can be built using the Ethereum blockchain network. An account is
necessary to make transactions through the Ethereum network. Generally, a private
key and a public key identify each account. The sender signs the transactions using
EOA’s private key and a hash value is returned, which can be used to monitor all
blockchain transactions after confirmation. EOAs are through which users submit
financial transactions. On the other hand, internal transactions do not have a sig-
nature feature. Subsequently, the transaction (code) transmits information from
an EOA. Ethereum transactions are similar to basic blockchain transactions. The
change in the state of the blockchain starts with a transaction sent by EOA. Indeed,
this could be a direct payment of ether towards another debit or contract trigger.
Consequently, the miner finds out the nonce value while numerous transactions are
sent from the same account [9]. According to [10], the currency unit of Ethereum
is known as ether, also identified as “ETH”. Ether can be used to purchase many
valuable stocks and commodities. Developers may design a reliable, auto-financial
agreement (smart contract) that would transfer ether in the future by using the
Ethereum network. This approach might theoretically allow for long-term financial
contracts, providing contract participants with a motivation to maintain and use
ether as a measure of wealth [8].

2.2 Ethereum Price Prediction

According to R. Bohme, N. Christin, B. Edelman, and T. Moore, the crypto mar-
ket has been a significant component of the worldwide financial system. However,
cryptocurrency values fluctuate dramatically, influencing trading behaviour. There
are also shallow market difficulties, competitor hazards, purchase threats, potential
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losses, confidentiality threats, and policy and institutional threats regarding market
uncertainties [5]. Due to these fluctuations happening in the market, it becomes
essential for the ether market investors to understand the behaviour pattern of the
market in depth. As we know, Ethereum is built on highly secured technology like
blockchain and smart contracts, hence it is considered a secured financial platform.
Financial investment is a crucial topic for discussion. Soon, when technology takes
over almost every sector across the globe along with the financial one, people will
surely search for a secured online platform where their money will be safe. In fact,
the procedure has already begun. Investors are gradually getting interested in in-
vesting in various cryptocurrencies. Ether is also included in the race as it is the
second-largest cryptocurrency. So, if the investors can get an idea about how the
price of ether actually behaves under which circumstances, it will be beneficial for
them while investing. This is one of the significant reasons why ether price prediction
is essential.

2.3 Time Series Analysis

The process of evaluating and interpreting the features of any sequence of data points
collected over a defined period of time is referred to as time-series data analysis.
According to E. Parzen, a time series is a collection of observations that are organized
in sequential order [1]. Another journal [3] states that a time series is a collection of
measurements of an observable variable taken at regular intervals in the past. Time
series can be examined for a variety of reasons, including forecasting the future
based on past information. Time-series data analysis plays a vital role in almost
every aspect of science and engineering, understanding the phenomenon behind the
measures or just a concise explanation of the series’ key elements. As mentioned
in [2], time-series analysis can be of two types: univariate and multivariate. A
univariate time-series data uses only one variable observed over time. On the other
hand, multivariate time-series data comprises more than one variable data.

Since data points do not always fulfill the conditions for fitting into any model, the
first step after collecting time-series data is to prepare the dataset for analysis and
forecasting. Trend and seasonality are two prominent characteristics of time-series
data that refers to the gradual upward or downward shift in a series’ level, or the
tendency for the values to increase or decrease with repetitiveness and predictivity
respectively. These features of time-series data are used and analyzed to bring
precision while forecasting. Furthermore, stationarity in time-series data means
that the properties of data like mean, variance, and autocorrelation structure stay
constant over time. If not then the dataset is considered non-stationary[6]. Usually,
in case of time-series forecasting, removing trend, seasonality, and non-stationarity
from the dataset is an essential preprocessing step. However, researchers suggest it
is not a necessity to check data stationarity while using an LSTM model. According
to[15], the LSTM method is more applicable than other existing algorithms because
it can learn the non-linear and non-stationary nature of a time series, reducing
prediction error. After processing and analyzing the collected data, the above-
mentioned machine learning models are used to interpret them and make certain



assumptions based on the characteristics of the dataset.

2.4 Autoregressive Integrated Moving Average
(ARIMA)

ARIMA model is one of the most extensively used time series prediction methods
introduced by Box and Jenkin in 1970. ARIMA models belong within the statistical
model group which is resilient and efficient in financial time-series forecasting, par-
ticularly short-term prediction, as stated by A. A. Adebiyi, A. O. Adewumi, and C.
K. Ayo in [4]. The model is a linear regression model for tracking linear trends in
stationary time-series data, with future values derived from linear functions observed
in the past [11].

According to [22], The ARIMA(p, d, q) model essentially applies d-order differential
processing to non-stationary historical data Y(t) to create a new stable history
sequence X(t), fits the X(t) to the ARIMA(p, q) model, and then restores the
original d-time differential restoration to obtain the predicted data of Y(t). The
generic formulation of ARIMA(p, q) is shown in the following formula.

Y(t)=¢(0)+d(1)Y(t—1)+... +d(p)Y (t—p)+e(t) —0(1)e(t—1)—... —0(q)e(t —q)

Y(t) is the actual value and €(t) is the random error at t, ¢(i) and 6(j) are the
coefficients, p and q are integers that are often referred to as autoregressive and
moving average, respectively.

The autoregressive part of the equation is the first half, with p denoting the au-
toregressive order and ¢(p) denoting the autoregressive coefficient. The second half
is the moving average section where ¢ is the moving average order, and #(q) is the
moving average coefficient. Furthermore, Y(t) is the random error, and Y(t) is the
correlation sequence of the consumed stock data. Model-identification, parameter
estimation, and diagnostic checking are the three phases of this procedure.

To illustrate, the ARIMA(1, 1, 1) model can be represented like the following.

Y(t) = é(0) + o(1)Y(t — 1) +e(t) —0(1)e(t — 1)

2.5 Recurrent Neural Networks (RNN)

According to Z. C. Lipton in[7], RNNs are a strong superset of feedforward neural
networks, with the addition of recurrent edges that span consecutive time steps,
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allowing the model to have a sense of time. Additionally, in [15] Preeti, R. Bala,
and R. P. Singh argued that RNN is a type of neural network that computes current
output using the current input and output received from past input. However, they
also noted that standard RNNs are unable to handle the problem of exploding and
vanishing gradients. Thus, long short-term memory (LSTM) is used.

A. Biswal in one of his papers says that the working mechanism of an RNN is
almost similar to the traditional feedforward networks. In general, it contains an
input layer, a middle layer, and an output layer along with an additional hidden
state. To begin with, the hidden state is the information coming from the previous
steps’ inputs. Next, the input layer takes input and passes that to the middle
layer after processing. Lastly, the middle layer is made of multiple hidden layers
having their own activation functions, weights, and biases. The RNN standardizes
the activation functions, weights, and biases so that each hidden layer gets the
same characteristics. The hidden state has a loop to pass the previous information
forward for future processing. The looping mechanism allows the information to
travel from one step to another. Instead of constructing several hidden layers, it
generates just one and loops over it as many times as needed. As mentioned in [13]
by R. Madan, and P. S. Mangipudi, the fast self-learning and self-adapting ability of
neural networks while given a series of input points with pre-defined outputs allows
them to model and predict complicated nonlinear patterns. RNNs create cycles
between the neurons which retain data and transfer feedback from one neuron to
the next. This mechanism creates an internal memory that aids in the learning of
data that is sequential in nature. Because it incorporates loops, an RNN allows
information to be carried while input is being read. This distinguishes them from
other neural networks.

The working mechanism is shown mathematically in [7] like the following: At time t,
nodes receiving input along recurrent edges receive input activation from the current
example “x(t)” and also from hidden nodes “h(t-1)” in the network’s previous state.
The output “g(¢)” is calculated given the hidden state “h(t)” at that time step.
Thus, input “x(t-1)” at a time “t-1”7 can influence the output “g(¢)” at a time “t”
by way of these recurrent connections. We can show in two equations, that all
calculations necessary for computation at each time step on the forward pass in a

simple recurrent neural network:

h(t) = o(W(hx) * x + W (hh) * h(t — 1) + bh)

§(t) = softmax(W (yh) * h(t) + by)

Here “W(hx)” is the matrix of weights between the input and hidden layers and
“W(hh)” is the matrix of recurrent weights between the hidden layers at adjacent
time steps. The “bh” and “by” vectors are biases that allow each node to learn an
offset.



2.6 Long Short-Term Memory (LSTM)

LSTM is a machine learning algorithm that solves the specified issue of exploding
and vanishing gradients [17]. As per this article, the LSTM model is made of one
or more memory modules that work as its basic units. Additionally, each module
comprises memory units that control the information flow of the system. Moreover,
in the LSTM structure, there is a function for memorizing time-series data.

Unlike RNN, LSTM has the ability to memorize time-series data because these cell
units contain three individual logic gates based on a sigmoid neural network layer.
The logic gates are known as input gates, output gates, and forget gates that are
used to selectively pass or process the data. Firstly, the input gate summarizes
the cell unit status value, filtered value, and added value in order to create a new
value. Secondly, forget gate generates an output ranging from 0 to 1, referring to a
value that can be ignored or reserved respectively inside the system. Additionally,
a storage gate is used in the system that contains a sigmoid layer and a tanh layer.
This gate is for selecting new data to store in the cell. Here, the sigmoid layer selects
the value that requires adjustment and the tanh layer’s task is to generate vectors
of new candidate values followed by adding them to the cell unit state [17].

In [15] it is stated that The LSTM network design is a sequential model with two
key components: states and gates. The hidden state is the value of the previously
hidden layer, whereas the input state is a linear combination of current input data
and the hidden state. An optimizer function is used by each unit of the LSTM cell
network, which consists of the three gates, to update the weights associated with the
network’s units. At the forget gate, “f(t)” is computed using the following equation
in order to find which information from the previous state to be kept for further
computation:

f@) = o(W(fx)+x(t) + W(fs)*s(t — 1)+ b(f))

where, “0” is the sigmoid activation function.

Next, the input gate is used to find an intermediate parameter i(t) and C(t) using
the given equations in order to determine if the internal state values serve as a
memory cell or not.

i(t) = o (W (iz) * x(t) + W(is) * s(t — 1) + b(i))

c(t) = tanh(W (cx) * x(t) + W(es) * s(t — 1) + b(c))

Finally, the information to be kept is derived by merging the outputs of the input
and forget gates:
Ct)y=f(t)xCt—1)41i(t) *c(t)

To compute new information to be stored in cell state, the sigmoid and tanh layers
are used. The output layer then generates the output using the o(t) equation, which
is then utilized to predict the final output, s(t).

o(t) = o(W(ox) * x(t) + W(os) * s(t — 1) + b(0))

8



3(t) = oft) * tanh(C(1))

Lastly, the functions of “W” and “b” denotes the corresponding weights and biases
used at different layers, and 5(t) denotes the output of LSTM network at time signal
t.

There are multiple variants of the LSTM networks such as vanilla, stacked, bidirec-
tional, and so on. To begin with, a vanilla LSTM contains a single unit of LSTM
in the hidden layer and one single output layer. As discussed in [7], with the inclu-
sion of the forget gate and peephole connections, the vanilla LSTM is understood
as the original LSTM block. Furthermore, the authors of the paper said that while
eight different LSTM variations have been identified, the vanilla architecture per-
forms well in a variety of applications. Alternatively, an LSTM model with multiple
LSTM layers is known as a stacked LSTM architecture. A. Graves first proposed
the stacked LSTM, also known as deep LSTM, in [7], and it was used to solve voice
recognition challenges. According to [23], the stacked LSTM model uses numerous
LSTM layers that are layered before forwarding to a dropout layer and output layer
at the final output, similar to the framework that underpins the RNN model. The
first LSTM layer of a stacked LSTM creates sequence vectors that are utilized as
input to the subsequent LSTM layer. On the other hand, a bidirectional LSTM is a
process of constructing a neural network that can store a sequence of information in
both forward and backward directions. As mentioned by I. Sunny, S. Maswood, and
A.G. Alharbi in [19], it is a modified augmentation of the LSTM model. Bidirec-
tional LSTM improves the execution of the model for sequence classification types
of problems. The main working principle of the bidirectional LSTM model is to in-
corporate two LSTMs in the training process of the sequence of inputs rather than
using only one. This type of architecture has been chosen because of its capacity
to handle a wide range of real-world situations by leveraging information in both
directions. To summarize, bidirectional LSTM adds an additional LSTM layer that
reverses the information flow direction. The outputs from both LSTM layers are
then combined in a variety of methods, including average, sum, multiplication, or
concatenation by default. Another work on the bidirectional mechanism by J. Shah,
R. Jain, V. Jolly, and A. Godbole suggests that the sigmoid layer determines what
information needs to be conserved and eliminated from the bidirectional LSTM cell.
Similar to the LSTM, if the output is “0”, it discards the information, whereas if
the output is “17, the sigmoid function keeps it [26].

2.7 Related Works

Several important works on price prediction, time-series analysis, and obstacles in
the current virtual currency pricing market had been gathered and studied. Fol-
lowing that, an attempt to identify current issues, flaws, or limits in prediction
approaches was initiated in order to develop a hybrid solution based on the basic
LSTM variants. Several researchers approached different solutions to solve the limits
and build accuracy.



One such initiative by G. L. Joshila, P. Asha, D. U. Nandini, and G. Kalaiarasi
aimed to enhance current cryptocurrency assessments by estimating the cost of
a bitcoin while taking into consideration a variety of factors. The elements that
impact the price of bitcoin, as well as daily changes in bitcoin financial markets,
were discovered after comprehensive research. This project’s data was made up of
a range of features gleaned via live tracking over the preceding few years. In this
work, the SVM approach was employed because it provided a significantly higher
precision than earlier methods. The research forecasted price changes in bitcoin for
investors so that they might simply invest in it, as well as for novices towards the
marketplace as well as the company. Additionally, the suggested model successfully
forecasts the price of bitcoin at a specified date [24].

Another work suggested using SVM and LR to forecast daily bitcoin cloning prices.
Statistical metrics like MSE, MAE, RMSE, and Pearson correlation were used to
assess the effectiveness of the produced model. It was found that the suggested SVM
model outperforms the LR model in this research. Evaluating multiple possible
models, SVM using linear and polynomial kernel functions, yielded the prediction
model with the least error. Bitcoin price prediction was done using filters with
varied weight coefficients for different window lengths. In order to build a model
with excellent performance, the 10-fold cross-validation approach was utilized in the
training phase of the method [12].

In another work, a method by A. Polities, K. Doka, and N. Koziris had been in-
troduced for systematically identifying the most relevant data attributes for a given
cryptocurrency, concerning the development of a collection of deep learning models
for time series prediction, including LSTM, GRU, TCN, and model clusters. The
goal of reasearchers was accurate cryptocurrency price prediction, but the task was
extremely difficult and time-consuming because of their high vulnerability and sharp
variances than physical cash. As a result, traditional statistical approaches failed to
satisfy the complexities of cryptocurrency movements, leading academics to turn to
sophisticated data mining algorithms. Consequently, The proposed approach which
was applied to the bitcoin application, accurately estimated the precise price of
bitcoin as well as its direction, with a precision of close to 84.2 percent [25].

Another piece of literature looked at the ARIMA models in time series data predic-
tion. The ARIMA model had a significant potential for short-term prediction and
could compete favorably with existing stock price prediction strategies, according to
the findings of the authors. Consequently, the ARIMA model was used in this re-
search to give a detailed procedure of price forecast accuracy. ARIMA models might
compete pretty well with developing forecasting approaches in brief prediction based
on the findings obtained. The experimental results produced with the best ARIMA
model revealing ARIMA models’ ability to accurately anticipate stock values on a
short-term basis. This might help investors make better-investing choices [4].

Predicting the potential value of digital currencies by acquiring their previous price
is a prominent research issue. S. Dong proposed an SVR approach derived from
data segment modeling to predict digital currency prices. An ensemble-SVR ap-
proach that relied on the SVR method was presented to enhance the accuracy and
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feasibility of forecasting the price of digital currencies. The ensemble-SVR method
outperformed SVR and other common existing algorithms in forecasting virtual cur-
rency prices, according to the simulation results of this research. The problem of
significant divergence of the SVR algorithm in forecasting the price volatility trend
of crypto money is tackled by commencing with the features of crypto money. The
approach was not using all past data to model evenly but rather analyzes the in-
formation in sections and models each fragment using the SVR algorithm. When
estimating the price, the approach selected the most comparable data item from all
infrastructure-based and applies the SVR model to it to predict the cryptocurrency
price change legislation. The modeling results suggested that the strategy presented
in this study is clearly useful and improves predictive performance greatly [28].

The forecast of the development of bitcoin was accomplished in [27]using a network
model which was done before using Deep Boltzmann Machines for evaluating the
data for 2019 with various time intervals aiding to determine the cryptocurrency
bitcoin’s trend and studying the quantity dynamics of its market capitalization.
The trained result was validated to currently assessed using MAE and MSE metrics
giving an RMSE of 25.87 and an MAE of 14.83, minute-minute fared best. The
use of autoencoder prediction models in Bernoulli Restricted Boltzmann Machine
models for strong investment cryptocurrencies like Ethereum and XRP might be
investigated.

The study mentioned in [21] looked at how well popular sentiment on Twitter can
be used to estimate bitcoin profits. The Twitter sentiment was discovered to have
predictive value for bitcoin’s results using a sentiment analyzer. The findings of this
research demonstrated the existence of a link between them. When the authors made
forecasts depending on the cryptocurrency tweet mood and the history of bitcoin
price, they achieved 62.48 percent right. Using a neural network architecture, they
discovered a partial link between the price volatility of bitcoin and the variation
of emotion classes. There was a substantial association between both the bitcoin
percentage change and Twitter, according to the data.

In [18], an online model was built that was used to estimate the price of prominent
cryptocurrencies such as bitcoin, ethereum, and ripple in Turkish Lira. The price
estimation of these three cryptocurrencies was carried out on the web using dynamic
data using the applicable model over a certain period of time. Price estimation was
done using artificial intelligence approaches such as adaptive neural fuzzy inference
systems, ANNSs, polynomial curve fitting, and LSTM. The goal of this research was
to give monthly forecasts to people or organizations interested in cryptocurrencies,
as well as to assess the viability of an exemplary model of artificial intelligence.

In addition, various journals showed the use of multiple machine learning approaches
used to analyze time series data. For instance, in the article [14] S. S. Ratakonda,
and S. Sasi demonstrated an architecture to analyze seasonal trends on a set of
multivariate time series data of the stock market price using regression analysis and
random first technique. G. Bontempi, S. B. Taieb and Y. L. Borgne in [3], provided
an overview of machine learning techniques in time series forecasting by focusing
on three aspects: formalizing one-step forecasting problems as supervised learning
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tasks, discussing local learning techniques as an effective tool for dealing with tem-
poral data, and the role of the forecasting strategy when moving from one-step to
multiple-step forecasting. In [20] R. P. Masini, M. C. Medeiros, and E. F. Mendes
examined current advances in ML approaches for forecasting economic and financial
time series. In their survey, they primarily focused on supervised learning tech-
niques, in which the system learns a function that mapped an input or explanatory
variable to the output or dependent variable using data organized as input-output
pairs. G. Napoles, G. V. Houdt, and C. Mosquera discussed multiple implementa-
tions of the LSTM algorithm on various time series data including financial datasets.
According to their research, LSTM networks can be beneficial in financial time series
data prediction since they can overcome the complex features of it like non-linearity,
non-stationarity, and so on [7].
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Chapter 3

Methodology

3.1 Workflow

The workflow for the research is shown in the following diagram-
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Figure 3.1: Workflow of proposed methodology

According to the workflow, firstly, ether cryptocurrency historical price data was
collected. Then, the data was prepared for further usage and visualized to under-
stand the data properties properly. After that, the data was split into the train,
validation and test datasets each of which was then pre-processed using suitable
pre-processing techniques. Following that, a baseline model was built so that the
baseline performance could be compared to the later performance of the LSTM net-
works to understand whether the LSTM networks really performed well or not. For
this research, ARIMA was used for baseline forecasting. Also, three basic LSTM
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networks- vanilla, stacked and bidirectional were used for univariate forecasting and
a fusional variant- stacked bidirectional was used for multivariate forecasting. Fi-
nally, after evaluation and comparison, the best model was determined for ether
price forecasting.

3.2 Hybrid Model Architecture

For this research, along with three basic LSTM models, a hybrid LSTM network
was also tested on the ether price dataset. the basic LSTM networks were vanilla,
stacked and bidirectional LSTM. The following figures (3.2, 3.3) show the internal
architecture of vanilla and bidirectional LSTM networks.
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Figure 3.2: A vanilla LSTM unit[16]
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Figure 3.3: Bidirectional LSTM layer[19]

The hybrid LSTM network combined both the bidirectional and vanilla LSTM lay-
ers and stacked the latter on the former. The bidirectional layer, as a result, could
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be useful to learn price patterns in both forward and backward ways and combine
the extracted patterns for better prediction which were then passed to the next uni-
directional vanilla LSTM layer. Both the layers were also accompanied by dropout
layers so that random outputs from the layers could be made obsolete to prevent the
network from being too focused on the training data only, resulting in an increased
ability to generalize the learning pattern for all the future prices. The hybrid LSTM
box diagram is given in figure 3.4.
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Figure 3.4: Hybrid LSTM architecture

3.3 Data Collection, Preparation, Visualization

Data collection has to be a crucial step of any research work, especially the ones
based on machine learning, deep learning, and comparative data analysis. Therefore,
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this research was no different. Appropriate data had to be collected and prepared
for further usage and also needed to be visualized to understand the underlying
patterns and characteristics of the data.

3.3.1 Acquiring Ethereum Historical Price Data

For the proposed research, a dataset that included the opening, closing, high and low
price of ether cryptocurrency from March 10, 2016, to May 16, 2022, was collected.
In addition, it included the volume and change in percentage of the cryptocurrency
on a day-to-day basis. The historical dataset was retrieved from Investing.com which
is one of the top global financial websites in the world and offers real-time price data
of various cryptocurrencies and stock markets.

3.3.2 Preparing Collected Data

The subsequent step to data collection is data preparation which is used for data
curation and data transformation to get a properly prepared dataset from raw data
that can be further moved for pre-processing and analysis. Generally, the process of
data preparation incorporates various data cleaning, data integration, data trans-
formation, and data reduction techniques. Fortunately, the collected data, in this
case, was already in an excellent condition still there was a certain level of ambiguity
that needed to be addressed using some data preparation techniques.

Data Types Correction

Initially, the dataset was not in time-series format and all the data points were in
string format. Thus, it was converted into time-series data. The string values were
converted into their corresponding numerical float values by performing necessary
calculations so that they could be easily used for further mathematical procedures.
For the numerical conversion purpose, the data was processed through a function
so that if there was any value having the letter “K”, that would be multiplied by
1000 and a float value would be returned. The same procedure was followed for the
entries with letters “B” and “M” which were then multiplied by 1000000000 and
1000000 respectively. On the other hand, values with “%” were divided by 100.
In this way, a dataset with all numerical float values which could be used later for
future procedures was obtained. Furthermore, some of the columns were renamed
to make the dataset more clarified and understandable.

Time-Series Conversion

Initially, the dataset was not time-series data needed for the time-series analysis.
So, it had to be converted to discrete time-series data with daily intervals. For that
purpose, all the strings inside the column “Date” were converted to the python data
type “datetime64” and the column was made the index of the dataset to get the
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time-series dataset. The whole dataset was then sorted by date in ascending order.
Additionally, the columns were rearranged in sequence for clarification.

From the following table 3.1, it can be seen that before conversion, the dataset was
indexed as “Rangelndex” which is an index of type “int64” representing entries from
0 to 2251, in total 2252 data entries with no null values.

Rangelndex 2252 entries, 0 to 2251
Column Non-Null Count | DType
Date 2252 object
Price 2252 object
Open 2252 object
High 2252 object
Low 2252 object
Vol. 2252 object
Change % 2252 object

Table 3.1: Data info before time series

After performing the conversion process, the dataset was transformed into a time-
series one where the data points were indexed according to their dates in ascending
order which is represented as “DateTimelndex” in table 3.2.

DateTimelndex | 2252 entries, 2016-03-10 to 2022-05-09
Column Non-Null Count DType
Open 2252 float64
High 2252 float64
Low 2252 float64
Close 2252 float64
Volume 2252 float64
Change 2252 float64

Table 3.2: Data info after time series

Addressing Missing Values

In the dataset, there were several sets of values which were missing (Null) such
as volumes from August 03, 2016, to August 06, 2016. To address this, linear
interpolation was used to fill those missing values by fitting a straight line along
with the existing values and taking fitting values from that line for the missing ones.

Prepared Dataset

Finally, in the curated dataset, the opening price and closing price referred to the
daily starting and ending prices respectively. The column “High” referred to the
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highest price of the day, in contrast to the column “Low”, the lowest price of that
particular day. Additionally, the column “Change” meant the difference between
the closing price of two consecutive days and the column “Volume” contained the
total amount of ether traded per day. All these preparation steps were done to make
the dataset cleaner and easier to understand so that further analysis may become
simpler.

Previously before preparation, the dataset had the following sort of values and data
types shown in table 3.3:

Date Price Open High Low Vol. Change %
Mar 6, 2022 | 2,549.40 | 2,665.42 | 2,673.19 | 2,542.19 | 881.09M -4.35%
Mar 5, 2022 | 2,665.42 | 2,622.15 | 2,684.50 | 2,592.07 | 709.87M 1.65%
Mar 4, 2022 | 2,622.15 | 2,834.78 | 2,835.94 | 2,575.63 | 1.50B -7.50%
Mar 3, 2022 | 2,834.91 | 2,947.03 | 2,967.90 | 2,889.87 | 521.36K -3.81%
Mar 2, 2022 | 2,947.14 | 2,975.80 | 3,041.84 | 2,914.70 | 740.37K -0.96%

Table 3.3: Dataset before preparation

After applying the above mentioned procedure the data became like the Table 3.4:

Date Open | High Low Close Volume Change
2022-03-02 | 2975.8 | 3041.84 | 2914.7 | 2947.14 740370.0 -0.0096
2022-03-03 | 2947.03 | 2967.9 | 2889.87 | 2834.91 521360.0 -0.0381
2022-03-04 | 2834.78 | 2835.94 | 2575.63 | 2622.15 | 1500000000.0 | -0.0075”
2022-03-05 | 2622.15 | 2684.50 | 2592.07 | 2665.42 | 709870000.0 | 0.0165
2022-03-06 | 2665.42 | 2673.19 | 2542.19 | 2549.4 | 881090000.0 | -0.0435

Table 3.4: Dataset after preparation

3.3.3 Data Visualization

After preparation, the dataset needed to be visualized to understand the underlying
patterns and characteristics.The following graph (3.5) is a visual representation of
the prepared closing price.
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Figure 3.5: Ether closing prices

After plotting the collected dataset, the dataset was decomposed into its components-
trend, seasonality, and noise/residue to understand whether the data was stationary
or not. To visually understand, the different components were plotted. From the
trend and seasonal plots, it was visible that the ether prices had an overall upward
trend and yearly seasonality from 2016 to 2022. The presence of a trend among the
data points and the observed seasonality was an obvious visual indication that the
time-series data might be a non-stationary one. Following are the plots of the trend
and seasonality in figure 3.6 and 3.7.
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Figure 3.6: Ether price trend
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Ether Price Seasonality
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Figure 3.7: Ether price seasonality

However, to be absolutely sure about the non-stationarity, the ADF test was con-
ducted on the dataset which returned the following results in table 3.5.

ADF Test Results
Test Statistic -1.18
P-value 0.68
Lags 17.0
Observations 2241.0
Critical Value (1%) -3.43
Critical Value (5%) -2.86
Critical Value (10%) -2.58
Result Not Stationary

Table 3.5: ADF test of original data

From the results in table 3.5, the p-value is 0.68 which is greater than 0.05 and also
the test statistic is greater than the critical value which means the null hypothesis
could not be rejected and the data was not stationary.

Due to the abovementioned results, for the baseline ARIMA model, the data needed
to be transformed into stationary. However, LSTM networks can, fortunately, work
with non-stationary data due to their dynamic and complex architecture. So, the
dataset was not needed to be made stationary to use in LSTM networks.

Finally, the successful completion of all the above steps provided a prepared dataset
that would be used to perform the tasks described in the upcoming sections.

3.4 Baseline Forecasting Using ARIMA

Before moving on to the LSTM networks, a baseline forecasting method was needed
so that the performance of the LSTM networks could be evaluated against the
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baseline performance. For this purpose, ARIMA was chosen as it is also a very

popular time-serie

s forecasting technique.

3.4.1 Making The Data Stationary

Previously performed ADF test showed that the data was non-stationary. But, to
use the data for the ARIMA model, it needed to be made stationary first. To make

the data stationar

y, the first order differencing was performed. After the first order

differencing, the following data showed in figure 3.8 was obtained.

First Order Difference Of Closing Prices

600

400 A

200 A

0_

—200 A

Difference

—400 A

—600 A

—800 A

—— First Difference

—1000 -

2016 2017 2018 2019 2020 202} 2022

Date

Figure 3.8: First order difference of closing prices

Also, after differencing, the trend was not as clear as the previous data. This could
be an indication that the data became somewhat stationary after the first order
differencing. The following plot 3.9 shows the trend after the differencing.
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Figure 3.9: First order difference trend
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Also, to be sure about the stationarity, the ADF test was performed once again and
the test returned the following results.

ADF Test Results
Test Statistic -7.85
P-value 5.62e-12
Lags 2.7e+1
Observations 2.23e+3
Critical Value (1%) -3.43
Critical Value (5%) -2.86
Critical Value (10%) -2.57
Result Stationary

Table 3.6: ADF test after first order difference

This time, the p-value was much lesser than 0.05 and also the test statistic was lower
than the critical values. As a result, the null hypothesis could be rejected and the
data could be considered stationary.

3.4.2 Train-Test Split

After making the data stationary, the whole dataset was split into the training and
testing portions. The split ratio was 80: 20. Following are the training and testing
data plots.
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Figure 3.10: Training & testing data

3.4.3 Setting Up The Parameters

After the train-test split of the data, the three main parameters- p, q, and d, for the
ARIMA model needed to be determined. As only one differencing was needed to
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make the data stationary, the initial value of d could be set to 1. Then, to determine
the values of p and g, the PACF and ACF plotting was needed. Below is the PACF
plot of the ether first order differenced ether price data.
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Figure 3.11: PACF of first order difference

From the PACF plot, it was seen that the correlation cut down to zero when the
number of lags was 1. So, the initial value for the number of autoregressive terms,
p was set to 1.
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Figure 3.12: ACF of first order difference

Similarly, the ACF plot showed that the correlation cut down to zero for the first
time when the number of lags was 1 as well which means the number of lags for the
moving average errors, q could be set to 1.



3.4.4 Final ARIMA Model

After setting the values of p, d, and q to 1, 1, 1 respectively, the initial ARIMA
model could be built with the order, (1, 1, 1). However, a more appropriate model
of order (4, 1, 2) was built afterward by tweaking the parameter on a trial and
error basis. The final ARIMA (4, 1, 2) model summary is given in table 3.7 (only
p-values).

Term | P>|z]|
ar.LL1 0.001
ar.L2 0.000
ar.LL3 0.034
ar.L4 0.000
ma.L1 | 0.001
ma.L2 | 0.000
sigma2 | 0.000

Table 3.7: ARIMA model summary

Here, it was clear that the p-values for all the terms were very significant as they
were all less than 0.05 which meant the corresponding variable X would also be
significant. The final ARIMA model was then fitted to the training dataset and was
used to forecast future values for a certain number of days in both the short-term
and long-term.

3.5 Building LSTM Networks

After baseline forecasting using the ARIMA model was completed, it was time to
build various LSTM networks to predict the prices. In this research, both the uni-
variate and multivariate forecasting were performed. For the univariate forecasting,
three basic LSTM networks, vanilla, stacked, and bidirectional were used whereas
the multivariate forecasting was done using a hybrid stacked bidirectional LSTM
network.

3.5.1 Univariate Time-Series Analysis

Initially, univariate time-series analysis was done on the ether price dataset. For this
analysis, only a particular feature of the dataset was selected to work on and the
future values were predicted by looking at the previous values. In this case, closing
prices were analyzed for a particular period and values for the upcoming days were
predicted. So, to fit the curated dataset into the LSTM networks, the very first
step was to drop all other columns except for the one that would be used for the
time-series analysis.
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Train, Validation & Test Split

The dataset was split into three sections- training, validation, and testing sets. In
this case, 70 percent of the whole data was used as training data, 10 percent was
used for validation and the remaining data were used as testing data. So, the final
ratio of the train-validation-test split was 70: 10: 20. Figure 3.13 is what the data
looked like after the split.
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Figure 3.13: Train, validation & test split for LSTM

Normality Testing

After the split, two normality tests were performed on the dataset using the Kolmogorov-
Smirnov test and Shapiro—Wilk test to determine if the sample data was collected
from a range of data with a normally distributed pattern. While representing graph-
ically, a normally distributed dataset forms a bell-shaped curve which our dataset
did not and that was visualized in the graph shown in figure 3.14.
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Figure 3.14: Distribution plot

The results of both the normality tests are given in the below tables 3.8 and 3.9.

Kolomogorov-Smirnov Test Results

Test Statistic 0.99
P-value 0.0
Gaussian No

Table 3.8: Kolomogorov-Smirnov test results

Shapiro-Wilk Test Results

Test Statistic 0.68
P-value 0.0
Gaussian No

Table 3.9: Shapiro-Wilk test results

For the dataset, both the tests provided a p-value of 0.0 which is less than 0.05 so,
a conclusion could be reached that the dataset was not normally distributed.

Feature Scaling

According to the normality tests performed, the data did not follow a normal dis-
tribution. Although the popular practice in such conditions is min-max scaling, due
to the unspecified range of the prices, for this research all the closing prices were
standardized instead of min-max scaling. Table 3.10 shows the properties of the
training dataset before and after scaling.
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Properties Before | After
Count 1581.00 | 1581.00
Mean 229.28 | -1.3be-17
Standard Deviation | 230.20 | 1.00

Table 3.10: Data properties before and after standardization

As the mean and the standard deviation of the data after scaling was almost 0 and
1 respectively, it would be easier for the deep neural networks to process the data
more effectively.

Input Data Preparation

For the next step, the training and testing datasets had to be converted into train_x,
train_y, and test_x, test_y pairs. For this purpose, a lookback window of 7 days was
fixed which was used to determine how many prior prices were going to be inspected
for predicting the next price. So, for train_x and test_x, two arrays were generated in
such a way that each sample contained an array consisting of lookback values equal
to the lookback period. On the other hand, train_y and test_y arrays were filled
with the immediate next data points to already included lookback values present
in train x and test_x respectively. After that, the arrays (train_x and test_x) were
reshaped to fit into the LSTM model along with its required parameters as the LSTM
network requires 3D Tensor as input, and the initial train_x and test x arrays did
not meet this requirement. To fix this, both the arrays were reshaped to 3D Tensors
where the three dimensions were batch size (total number of samples), lookback
period (number of days in time the model will go back for prediction), and number
of features which for the univariate time-series analysis, remains one.

-----
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Figure 3.15: LSTM input tensor|20]
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Setting The Hyperparameters

To build the basic LSTM networks, several hyperparameters needed to be set and
tuned for optimal performance. For this research, all the hyperparameters had
similar values for every LSTM network to achieve fairness in the results.

e Units: The number of units or neurons in a single LSTM hidden layer was
set to 128 for all the networks.

e Activation Function: ReLu activation function was used for each model
for this research purpose because of its popularity in time-series analysis and
robustness against the vanishing gradient problem.

e Dropout: Each hidden LSTM layer was accompanied by a dropout layer
so that model could have an improved generalization and robustness against
overfitting. The dropout ratio was fixed at 0.25 for all the layers.

e Batch Size: For all the LSTM networks, the batch size was set to 128.

e Epochs: All the models were trained at first for 100 epochs and the number
of epochs would be increased if the training and validation losses did not
converge.

e Optimizer: Optimizer functions mainly determines the learning rate and
decay rate. For all the models in this research, the optimizer “Adam” was
used.

e Loss Function: MSE was used to calculate both the training and validation
losses.

Vanilla LSTM Network

At the very beginning, a vanilla LSTM network was implemented with only one
single hidden layer for input accompanied by a dropout and one dense layer for
output. The hidden layers had 128 units or neurons, the dropout ratio was set to
0.25 and the dense layer helped to achieve a one-dimensional output. While training
the model, previously set batch size, optimizer, and loss function were used and the
model was trained for 100 epochs.

Figure 3.16 shows the model architecture after implementing the vanilla LSTM
model. The output shape of the input and the dense layer was a 2D array that can
be defined as (batch_size, unit_size). Since batch size was not defined specifically
it was represented as “None” and the unit size illustrated the number of output
units. Similarly, for the dense layer. In addition, the number of parameters for
LSTM summed to the total number of parameters, 66689. The number of trainable
parameters denoted many values could be adjusted according to their gradient. In
contrast, the number of non-trainable parameters was 0 means none of the data
points was such that could not be optimized during the training procedure.
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Istm_mput | input:

[(Wone, 7, 1)] | [(None, 7, 1)]

InputLayer | output:
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LSTM | output:

(None, 7, 1) | (None, 128}

dropout | nput:

(None, 128) | (None, 128)

Dropout | output:

Y

(None, 128) | (None, 1)

denze | mput:

Denge | output:

Figure 3.16: Vanilla LSTM architecture

Stacked LSTM Network

A stacked LSTM network was defined to further improve the performance of the
previously defined vanilla model. Now, the model had five layers among which the
first two and the last one were the same as the vanilla LSTM, being a hidden layer,
dropout layer, and a dense layer respectively. The two additional layers, one hidden
layer, and one dropout were stacked over the first hidden layer and the accompanied
dropout layer and was initialized with 128 units and 0.25 dropout ratio, respectively.
Also, an LSTM hidden layer, by default generates an output having two dimensions.
But, as the additional hidden layer needed inputs in the format of a 3D Tensor, an
additional parameter was activated in the first hidden layer which would then return
all the output sequences from the first hidden layer instead of only the last one. The
rest of the parameters for the LSTM network were kept identical to the previous
vanilla model. The newly defined stacked LSTM model was then ready to fit the
training dataset using 100 epochs and predict the test values. While compiling the
model, adam and MSE were implemented as the optimization and loss function as
usual.

The figure (3.17) shows the model architecture of the stacked LSTM network. In
this model, two LSTM hidden layers were implemented where the first layer had a
3D output shape, (batch_size, lookback window, unit_size) and the other two layers’
output shapes were the same as the previous. The other elements of the table denote
the same things as vanilla LSTM.
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Figure 3.17: Stacked LSTM architecture

Bidirectional LSTM Model

Lastly, a bidirectional LSTM network was also applied to check if a better result
could be achieved. The main difference of a bidirectional LSTM in contrast to the
other LSTM networks is that it reads the data both ways. Similar to the previously
fitted models, batch size was predefined as 128 along with the same optimizer,
loss function, and number of epochs. For the bidirectional network, the first layer,
unlike the vanilla LSTM, was a bidirectional layer and all the other layers such as
the dropout and the dense layer were defined in exactly the same way.

For the Bidirectional LSTM network, the output shape of the only hidden layer was

twice the number of the vanilla LSTM as the layer itself was bidirectional. The
model architecture is shown in figure 3.18.
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Figure 3.18: Bidirectional LSTM architecture
3.5.2 Multivariate Time-Series Analysis

After univariate time-series analysis, multivariate analysis was also performed on
the ether time-series dataset. The distinction between univariate and multivariate
analysis is that univariate analysis is based on a single characteristic, whereas multi-
variate analysis is based on multiple features. For the multivariate price forecasting,
a stacked bidirectional LSTM network, which is a hybrid of previously mentioned
basic LSTM networks, stacked and bidirectional, was used.

Feature Selection

The very first step of the multivariate time-series analysis of the ether historical
dataset was feature selection. To select the main features finding the correlation
of the variable “Close” with all other variables in the dataset was necessary as it
helped to determine the feature dependencies of the dataset. A higher correlation
value indicated that the data features were strongly correlated to each other and
thus could be used for multivariate analysis as features. From figure 3.19, it was
observed that the “Open”, “Close”, “High” and “Low” features had high correlation
values (almost 1) since their type was similar. So, it could be determined that the
closing price of any particular day could be predicted by observing the opening,
closing, highest, and lowest prices from a specific previous time window. On the
other hand, the variables “Volume” and “Change” showed a very low correlation
with the other variables so these were not appropriate for predicting the closing
price. So, analyzing the correlation of the variables, “Open”, “Close”, “High” and
“Low” were selected as features for predicting the closing price.

31



1.0

Open 0.1 -0.033
0.8

High 0.1 -0.017
Low 0.11 -0.012 0.6
Close 0.00018 -0.4
Volume - 0.1 0.1 0.0002 -0.2

Change - -0.033 -0.017 -0.012 0.00018 0.0002

-0.0

1 1 1 1 1
Open High Low Close Volume Change

Figure 3.19: Correlation among the features
Data Pre-processing

After feature selection, the dataset was split into training, validation, and testing
datasets in the same 70:10:20 ratio as the univariate analysis. Then again stan-
dardization was performed to keep the values within a common scale. After that,
train_x, train_y and test_x, test_y arrays were generated using the same method as
the univariate analysis. Train_x and test_x, the 3D input Tensors had the same first
two dimensions as the univariate input Tensors, the only exception being the third
dimension as the number of features was increased to four which meant for each day
of the observation, there were four price values for four features.

Stacked Bidirectional LSTM Network

The stacked bidirectional LSTM network is a combination of the basic bidirectional
and stacked LSTM networks which were previously defined in the univariate analysis.
Just like the stacked LSTM, two hidden layers were added to the model but unlike
the stacked network, the first layer was bidirectional as it was in the bidirectional
LSTM. Additionally, dropout layers were implemented after each hidden layer to
make the model learn to generalize data and reduce overfitting by adding noise.
The dropout ratio was kept exactly the same as in the previous model to ensure
fairness during comparison. Additionally, all other hyperparameters like neurons
inside hidden layers, batch size, activation function, number of epochs, optimizer
and loss function were the exact same as the ones used in all previous basic networks.

Figure 3.20 shows the resultant hybrid model architecture.
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3.6 Evaluation Metrics
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Figure 3.20: Stacked-bidirectional LSTM architecture

After building and training all the above-mentioned models, the goal was to make
predictions and evaluate the performances for further comparison and analysis. To
evaluate the performance the used metrics were mean squared error (MSE), root
mean squared error (RMSE), mean absolute error (MAE), mean absolute percent-
age error (MAPE) and the R? value. Based on these metrics all the models were
compared and the best model was determined.




Chapter 4

Result, Analysis & Comparison

4.1 Baseline (ARIMA) Results

The ARIMA model, which was set as the baseline model for this research, could
be used to predict a single day’s price after being trained with the whole training
dataset. The predicted price could then be added to the existing training dataset
and another day’s price could be predicted after re-training the model with the new
training dataset. In such a way, one week’s future prices were obtained which are
shown in figure 4.1 along with the original prices at that time.

Actual & Predicted Closing Prices, 7 Days
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Figure 4.1: Short-term prediction using ARIMA

From the visual perspective, the predictions were not too bad and the general price
trend seemed to be somewhat followed by the prediction curve. However, to un-
derstand the actual performance, the error metrics would be more useful than only
visualization. Table 4.1 shows the performance metrics calculated from the week’s
actual and predicted daily prices.
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Metric Value
MSE | 15275.09
RMSE 123.59

MAE 96.67
MAPE | 5.89%
R? 0.52

Table 4.1: Performance metrics of ARIMA (short-term)

The MSE and RMSE values here could be ignored and considered insignificant as
the variance among the prices was very large due to a larger price range. Among the
rest, the MAE and MAPE metrics showed promising results, especially the latter
only had an error of 5.89%. Although the R? value was 0.52 which indicated a weak
correlation between the actual and predicted prices.

On the other hand, a trained ARIMA model, while predicting prices for a long
period, in this case, 90 days, showed a very different result.

Actual & Predicted Closing Prices, 90 Days
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Figure 4.2: Long-term prediction using ARIMA

The results in the plots above which showed the 90-days prediction of the ether
price although could follow the overall trend throughout the entire period, could
not follow the fluctuations, which in the actual prices curve, were denoted as the
upward and downward spikes. The calculated performance metrics are given below
for the long-term forecasting using ARIMA.
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Metric Value
MSE | 315033.84
RMSE 561.28
MAE 471.28
MAPE | 21.16%
R? 0.41

Table 4.2: Performance metrics of ARIMA (long-term)

The MAPE value for the long-term forecasting was dramatically increased in the
long-term to 21.16% and also the value of R? further decreased to 0.41 indicating
the weakening of the correlation between the actual and predicted values.

4.2 LSTM Results

4.2.1 Results of Univariate Analysis

For the univariate analysis, all of the three basic networks, vanilla, stacked and
bidirectional could see their training and validation losses converge to almost zero
after training for 100 epochs. So, no additional epochs were necessary. The training
and validation losses for all three models are given in figures 4.3, 4.4 and 4.5.
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Figure 4.3: Training & validation losses of vanilla LSTM
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Figure 4.4: Training & validation losses of stacked LSTM

Loss vs Epochs

—— Loss

0.6 Validation Loss

0.5 4

0.4 +

0.3 4

Loss (MSE)

0.2 +

0.1+

e e ———————————————

0.0 +

0 20 40 60 30 100
No. of Epochs

Figure 4.5: Training & validation losses of bidirectional LSTM
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After the training was complete, closing prices for the next 90 days were predicted
using all three models. The comparative plots of the actual and predicted prices
for the vanilla, stacked and bidirectional LSTM networks are shown in the following
figures.
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Figure 4.6: Prediction using vanilla LSTM
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Figure 4.7: Prediction using stacked LSTM
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Figure 4.8: Prediction using bidirectional LSTM

Visually, the comparative plots of the actual and predicted prices for all the models
looked good and promising. However, the actual performance comparison among
the three basic models: vanilla, stacked, and bidirectional LSTM would be possible
after looking at their performance metrics shown in Table 4.3.

Metric | Vanilla | Stacked | Bidirectional
MSE | 61261.30 | 50391.92 57661.40
RMSE | 247.51 224.48 240.13
MAE 200.06 172.83 196.00
MAPE | 8.95% 7.66% 8.93%
R? 0.88 0.90 0.89

Table 4.3: Performance metrics of basic LSTM networks

From the table, it was clear that the metrics indicated the performances of three
models to be pretty much identical. However, the stacked LSTM network still stood
out among the three with the lowest error values in all the calculated metrics. So,
this model could be used as the bar to beat for the final hybrid LSTM network.

4.2.2 Results of Multivariate Analysis

For the multivariate analysis, a hybrid stacked bidirectional LSTM network was
defined. In the training phase, just like the basic LSTM networks, the hybrid LSTM
network was able to converge the training and the validation losses quickly towards
zero within 100 epochs. The final training and validation losses plot is given in
figure 4.9.
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Figure 4.9: Training & validation losses of hybrid model

After the training was complete following 90 days prices were predicted by the hybrid

stacked bidirectional LSTM network.
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Figure 4.10: Prediction using hybrid LSTM model

From the visualization, there were clearly some improvements detected over the
previous predictions from the prior LSTM networks. The prediction followed the
original trend of the actual data more precisely and also sudden fluctuations in
the price were more accurately detected by the stacked bidirectional LSTM. The
improvements could be better explained by comparing the error metrics of the hybrid
algorithm with the univariate model having the best performance previously, stacked

LSTM.
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Metric | Stacked | Stacked Bidirectional
MSE | 50391.92 47882.60
RMSE | 224.48 218.82
MAE 172.83 154.24
MAPE | 7.66% 6.81%
R? 0.90 0.92

Table 4.4: Performance metrics comparison of stacked and hybrid LSTM

The above-calculated error metrics clearly indicated that the hybrid stacked bidirec-
tional network had an edge in performance over the basic stacked LSTM network in
all the metrics. Especially, the three metrics, MAE, MAPE and R?, all values were
improved over the stacked LSTM. The MAE was decreased to 154.24, and MAPE
was decreased to 6.81%. Additionally, the R? value was increased and now 92% of
the actual variance in the actual prices could be explained by the predicted data.

4.3 Accuracy Comparison

After training and predicting future ether closing prices using all the models, the
model accuracies were calculated using the most significant error metric, MAPE
value. Figure 4.11 is the accuracy comparison bar chart of all the models.
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Figure 4.11: Accuracy comparison among the models

4.4 Discussion & Analysis

After acquiring all the results from all the models, looking at all the error metrics
and accuracy comparisons, it can be clearly said that all the LSTM networks out-
performed the baseline ARIMA model. Although the highest accuracy was achieved
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by the ARIMA model in short-term prediction, which is 94.1%, the time and com-
putational power needed for generating and retraining the whole model with an
increasing dataset each time just to predict the price of a single day would be huge
which makes this approach impractical for the long run. On the other hand, the
long-term prediction accuracy for ARIMA, in this research, could climb up to only
78.84%, which compared to all the other models, was very poor. The reason behind
low accuracy might be the inability of the ARIMA model to comprehend the sea-
sonal and other irregular patterns which are very crucial to estimating the change
and fluctuations of any time-series data. In contrast, LSTM networks are able to
learn the complex pattern in the data dynamically. Additionally, the ARIMA model
needed the data to be stationary for which the data needed to be differenced. But,
differencing data to make it stationary can sometimes confusing and ambiguous as
there persist the problems like under-differencing and over-differencing. Also, the
main three parameters for ARIMA, p, d and q are not that straightforward to be
determined. Additionally, if the data is seasonal then the ARIMA model needs four
additional parameters to determine which can be a challenge. The LSTM networks,
on the other hand, can process any kind of data, stationary or not which could be
seen from the performance of all the LSTM networks as all of them maintained ac-
curacy of at least 91% in long-term prediction. Finally, the ARIMA model predicts
the price using some predetermined parameters which makes it more susceptible to
predicting the price in a fixed pattern whereas the LSTM networks can learn and
remember previous important patterns by eliminating the less important data from
its memory at the same time, making it capable of dynamically adjusting itself to
various circumstances.

Also, among all the LSTM networks, the hybrid stacked-bidirectional LSTM network
had the best accuracy of 93.19%. The other three basic networks were very good as
well, as their accuracy was almost as high as the hybrid one. However, the marginal
gap between the performances could be proven very crucial if, in near future, ether
cryptocurrency sees a significant change in its price pattern or the crypto market
becomes unstable. In that case, the basic networks due to their simple architecture
could miss out on important patterns and information whereas the hybrid LSTM
networks with complex architecture would be able to learn such irregular patterns
more easily.
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

This study sought to assure safe investment for ether market investors by evaluating
time-series data using statistical models like ARIMA and RNN-based models like
LSTM, as well as its modified hybrids, and to perform a comparative analysis to
select the best one. The purpose of this research was to incorporate the predictive
power of deep learning algorithms to develop a quality prototype capable of detecting
future price movements along with predicting actual prices, allowing consumers to
get benefited by understanding the market dynamics. Primarily ARIMA model was
implemented and it was found that it worked better on short-term prediction only.
Later, different variants of LSTM were applied where it marginally worked better
when the hybrid stacked bidirectional model was fitted into the dataset. After per-
forming the above mentioned applications, the research found that LSTM surpassed
ARIMA in long-term time-series forecasting. Finally, the created methodologies
were compared to relevant parameters for further performance evaluation.

5.2 Future Work

According to the proposed model of this research, an LSTM-based solution for
predicting ether price was introduced but there is more scope to work on this model
in order to look for better performance in the future. To start with, the dataset used
for the research includes only daily data on ether price whereas hourly or minutely
data could also be used but it was not possible due to the insufficiency of such data.
In addition, if an increase in the volume of the ether dataset causes an unwanted and
rapid fluctuation among the data points, it will become necessary to evaluate how
well the proposed model can detect the random change and in that case, there might
be some scopes for further hybridization which in this research was explored in a very
limited manner. Next, it was yet to be explored how tuning hyperparameters like
activation function, number of hidden units, and batch size affect the performance
of the proposed LSTM model. Also, the proposed model could be applied to other
cryptocurrency datasets to evaluate its overall performance. Moreover, it was found
that the proposed LSTM model outperforms ARIMA but other extended variants
of it like SARIMA and SARIMAX are yet to be applied to the collected dataset
for checking whether they can produce a better result in handling seasonality and
some more exogenous factors affecting the price. Besides, other advanced algorithms
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like Prophet, N-Beats, and Temporal Fusion Transformer can be implemented with
some modifications on a bigger dataset to make a comparative analysis of their
performances. Lastly, more fusion of the LSTM networks can be introduced to
make a more efficient model for future studies. All these activities can be beneficial
for expanding the solution of the current study to help ether market investors boost
their investment and make rapid development in this sector.
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