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Abstract

Unmanned Aerial Vehicles (UAVs) have played a crucial role in supporting Search
and Rescue (SAR) Operations due to their fast movement capabilities and flexibil-
ity. During a search and rescue operation scenario, the time constraint is a crucial
parameter, so the required time to detect humans in distress with precision is also
a vital part. Modern Deep-learning algorithms like CNN also aid in these missions.
However, most models and datasets available focus on search and rescue missions
on the ground or land. UAV-based search and rescue operations in the Maritime
Scenario remain a challenge. This study focused on using deep learning algorithms
such as CNN to precisely detect a human in peril with a swarm of drones. At
the same time, we emphasize using swarm intelligence algorithms such as Particle
Swarm Algorithm (PSO) to effectively find a victim in the shortest time by ex-
ploring a massive area. The distinctiveness of this system is that it combines the
model with the best Accuracy to detect and the best swarm intelligence algorithm
for finding targets in the quickest time possible, thus enhancing the surveillance
mission. In this research, among VGG16, ResNetb0V2, InceptionV3, Xception and
MobileNetv2 models, VGG16 produced IoU (Intersection over Union) score of 0.62
with Class Label accuracy of 99.15% and Bounding Box accuracy of 88.74% in CNN
part. Along with that, among three different swarm intelligence algorithms, accord-
ing to the simulation, Particle Swarm Optimization Algorithm took the minimum
average time which is 20.4 units, whereas the Grey Wolf Optimization algorithm
and Bat Optimization Algorithm, respectively took 65.6 and 73.8 unit of time.

Keywords: Object Detection; Marine Search and Rescue (SAR); Unmanned Aerial
Vehicles (UAV); Convolutional Neural Network; Swarm Intelligence.
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Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ABC Artificial Bee Colony

ACO Ant Colony Optimization

AFS Artificial fish swarm

Al Artificial Intelligence

ATSS Adaptive Training Sample Selection
BA  Bat Optimization

CNN  Convolutional Neural Network

FC  Fully Connected Layer

GCN Graph Convolutional Network
GPGPU General-purpose Computing on Graphics Processing Units
GPS Global Positioning System

GWO Grey Wolf Optimization

ReLU Rectified Linear Unit

ResNet Residual Networks

ROI Region of Interest

SAR Search And Rescue

SI Swarm intelligence

SSD  Single Shot Detector

UAV Unmanned aerial vehicles

VGG Visual Geometry Group

X1



Chapter 1

Introduction

Aerial imaging is increasingly being used in mission-critical applications like traffic
monitoring, agriculture, smart cities, disaster relief, and many more. Unmanned
acrial vehicles (UAVs) with a high-resolution camera can be used for a variety of
purposes, as detailed above [49]. UAVs, specifically, are capable of assisting in SAR
(Search And Rescue) operations due to their quick and diverse use, as well as their
capacity to offer an analysis of the situation [52].

The efficient deployment of autonomous UAVs is especially important in maritime
scenarios, where large regions must be promptly surveyed and searched [21]. UAVs
help rescue efforts by providing airborne imagery, topographic mapping, emergency
delivery, and reducing unnecessary human hazards. One of the most difficult sec-
tors in its application scenario is detecting, locating, and monitoring people in the
marine environment [32] [42]. Deep neural networks, as well as other data-driven
procedures, are currently being used to build these systems. These approaches are
based on large data sets reflecting actual environments to generate effective visual
statistics. Large-scale data sets, on the other hand, are scarce in maritime environ-
ments. Most UAV data sets, such as VisDrone [37] and UAVDT [31], are land-based
and frequently focus on traffic conditions. Most of the limited data sets obtained in
maritime areas are classified as remotely sensed data, and satellite-based radars are
widely used. As they lack the resolution required for SAR operations, they are only
suitable for spotting ships [7]. Moreover, satellite imaging is subject to cloud cover
and provides only top-down images. For this study, we used SeaDronesSee [62], a
large-scale data set of humans and other important objects in maritime scenarios.

This dataset includes videos and images of objects like humans and boats in open
water taken with several drones and cameras. Moreover, this dataset contains many
categories for items of importance such as swimmer, life jacket, floater, human on
the boat, and boat, which will be useful for recognizing humans in marine contexts
[57]. This will be helpful for rescuing humans by detecting the objects and class.
Furthermore, we will use swarm intelligence to make the surveillance faster and
more efficient. A swarm is a gathering of identical, simple agents, which are mainly
the agents of nature like bees, ants, and birds, engaging locally with each other
and their own surroundings, with no centralized control to permit interesting global
behavior to arise. Swarm behavior and the procedures are a relatively new class of



nature-inspired algorithms that can deliver cost-effective, quick, and accurate results
to many kinds of challenges [11] [6]. Swarm intelligence is an emerging division of
Al that aims to emulate the coordinated activity of swarms in nature, such as ants,
bats, wolves, birds, and others. Our proposed system architecture will implement the
concept of nature’s swarm behavior to search and save human lives from maritime
accidents.

1.1 Motivation

As a result of economic globalization, interest in air and sea travel has increased
tremendously throughout all regions. Natural disasters and maritime accidents, on
the other hand, are increasing year after year. After an accident, people’s odds of
survival are directly proportionate to how quickly they are rescued. Due to a lack
of detection and rescue procedures in the water, many individuals died. Artificial
vision and electronic radar surveillance are limited due to errors and resource limi-
tations. So, detection of humans in maritime scenarios is a necessary process that
can help and rescue many people in times of disaster as well as marine accidents. As
mentioned earlier, with the help of our dataset using deep learning, we can detect
whether the person is in danger or not by detecting ground-truth labels for items of
interest, such as swimmer or floater. If it detects the swimmer, then we assume that
the person is alive and need immediate help. On the other hand, if the person is a
floater with a life jacket, then we will detect the person as someone who does not
need emergency help. Now the detection process is done by data-driven methods
like convolutional neural networks. Airborne cameras can now produce stable, high-
resolution photographs owing to the rapid advancements in the Unmanned Aerial
Vehicle (UAV) technology over the years.

SeaDronesSee is a huge data collection project that involves individuals in the mar-
itime environment. Existing UAV data sets provide either very little or no metadata.
We believe that it is a key roadblock in the creation of multi-model systems that
utilize this further data in order to improve precision or efficiency. Besides, we are
using the UAV instead of a helicopter and boat in case of detection because UAVs are
cost-effective and it can easily detect the swimmer and floater. On the other hand,
a helicopter cannot capture stable images and is also costly to operate. Besides,
the boat requires more time in the detection process as the field of vision is limited.
So, the optimal solution for detecting humans in maritime scenarios is to use UAVs.
Moreover, we will use swarm intelligence for faster exploration of the disaster area,
which will make our surveillance system faster. Swarm robotics can be defined as
a system of simple robots capable of displaying collective intelligence behavior. Ro-
bustness, versatility, and scalability are all desirable features for swarms of robots
[5]. As a result, we will have efficient surveillance for our system.

1.2 Problem Statement

In maritime scenarios, the effective utilization of Unmanned Aerial Vehicles (UAVs)
is essential [57]. However, in this application scenario, different types of issues
arise. Firstly, the weather is the main problem factor in detecting people from aerial



images in open water [32]. Besides, people cannot be located and tracked smoothly.
Secondly, in marine contexts, large-scale data sets are in short supply [57]. However,
the dataset’s images of the objects like boats, trees, and land vehicles can be mostly
found. Furthermore, finding little items in high-resolution photos is a problem
when recognizing objects in aerial photographs. If the image is obtained from a
satellite, there is no clear image in the collection because the range of capturing
the images is not adequate. The sea condition is another issue in real-life marine
environments. In the open water, the body’s visibility is quite changeable. As half
of the body is submerged, the entire body cannot be seen. Due to the movement
of waves in maritime environments, all of these factors make it more difficult to
perform accurate body detection offshore [32]. The camera orientation and UAV
motion play an essential role in recognizing the body’s appearance. Additionally,
when the individual is alive, their body keeps moving, which alters position and
visibility. If the individual is unconscious, then the movement of the waves as well
as the UAV may produce significant variations in observation [32]. As a result, a lot
of irrelevant data captured by UAVs make the surveillance process slower as well as
faulty. Hence, it is crucial to recognize the objects and prioritize humans correctly.
In this research, we intend to detect objects using deep learning and enhance the
detection speed with the help of swarm intelligence algorithms.

1.3 Research Objectives

The research aims to recognize humans from different classes like swimmers and
floaters in maritime scenarios to make the surveillance operation more efficient.
The objectives of this research are

1. Using deep learning models to accurately detect objects like swimmers, floaters,
and boats.

2. Making the exploration process faster using swarm intelligence models.



Chapter 2

Literature Review

In this chapter, we analyzed different kinds of research papers similar to our re-
search field. We learned about different methodologies and their implementation in
different sectors, mostly object detection and swarm intelligence. Furthermore, we
analyzed the advantages as well as flaws of those methodologies and also compared
some of the methods described in the research papers with our selected models.

2.1 Human detection in Maritime Scenario

Machine learning is extensively used to classify items into their respective categories.
Deep learning has been used in picture categorization and object detection in recent
years. Deep learning uses a neural network with multiple hidden layers to improve
image categorization ability. The Convolutional Neural Network (CNN) is one of
the most commonly used deep learning neural networks for image categorization
and object detection. There are two types of CNN-based object trackers. One is
anchor-based, and another is anchor-free. The anchor-based detectors find objects
using produced anchor candidates and suppress negative anchors with a fixed IoU.
The items that are detected by the anchor-free detectors use point estimation.

2.2 UAYV with Swarm Intelligence for Surveillance

2.2.1 Intro to UAV

Unmanned Aerial Vehicles (UAVs) have gained significant popularity. UAVs have
been used to carry out complicated and sophisticated missions, including long-term
and dangerous missions. Environmental monitoring, search activities, and surveil-
lance are some examples of this type of application [12]. It happened primarily as a
result of investments in embedded computers, telecommunications, sensor devices,
and low-power technologies. Object detection has a lot of potential in the domain
of UAVs. Due to its small weight, limited flight altitude, and unpredictable travel
route, images from a UAV may be warped or jittered. As a result, in UAV object
detection, algorithm efficiency, precision, and size of the model are all crucial [59].
Surveillance can be faster with UAVs with the help of swarm intelligence. The reso-
lution of coverage issues, as well as efficient environment exploration and interaction
between UAVs, are all central issues in this field [15]. Furthermore, compared to a
single UAV system, which typically has a limited supply of energy, low computing
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potential, and poor durability, a multi-UAV system is intended to provide a much
broader range, effective monitoring and comprehension of the area of interest, better

and faster decision, and therefore better support of a wide range of applications [23].
To deliver these benefits, UAV Networks (UAVNSs) collaborate [39].

2.2.2 Swarm Behavior

As previously stated, a swarm is a cluster of uniform agents that interact directly
with one another and their surroundings, with no centralized control, allowing for
the emergence of a variety of intriguing behaviors. To accomplish global emergent
behavior, swarm intelligence promises to be able to control enormous networks of in-
terconnected individuals using only local communication. They usually do not obey
orders from a leader or a master plan. Swarm intelligence is helpful in a variety
of technical applications, including multi-robot formation control, huge distributed
sensing utilizing mobile sensor networks, fighting using cooperative UAVs, flock-
ing, and so on [10]. Because of the exceptional efficacy of these biological swarm
systems, biologists and environmentalists have been researching insect behavior for
years. The amount of research articles demonstrating the successful implementa-
tion for Swarm Optimization algorithm in a variety of efficient tasks and research
difficulties has steadily increased since the computer modeling of swarms was es-
tablished. The principles of swarm intelligence are implemented to a wide range of
issues, including optimum route discovery, planning, structural analysis, and photo
and information processing. Swarms have been computationally modeled in a range
of fields, including computer vision, bioinformatics, health informatics, stochastic
processes, and operations research [8]. Swarm behavior occurs when robots exhibit
collective activity through interaction with each individual robot in their vicinity.
An assembly of robots demonstrating swarm behavior may be built and used for
search and rescue operations, which would not only avoid putting human rescue
and surveillance personnel in danger but would also boost the efficiency of the pro-
cess [47]. When used for search and rescue missions, the concept of the aerial swarm,
in which UAVs behave in a swarm above ground level, would be a big step forward

[3].

2.3 Reviewed Topics

We analyzed these research projects’ contemporary designs and solutions utilized
during the research. Some of the most broadly adopted architectures are:

2.3.1 R-CNN Cascade

The Cascade R-CNN approach detects objects in multiple stages [30]. This method
requires a large number of classifiers To accomplish the classification operation for
each classifier’'s bounding box area. The next stage’s classifier completes the classi-
fication work from the previous phase for the freshly built bounding box area. The
bounding box created by repeating the previous procedure is predicted to become
more precise. Each step’s classifier only adjusts for samples with a higher IoU than
the previous step’s classifier. Thus, it was capable of learning high-performance
object recognition. In its architecture, two parts are discussed and proposed.



1. Cascaded Bounding Box Regression: It is structured as a cascaded re-
gression problem in the Cascade R-CNN. A series of customized regressors are
used to do this,

f(l', b) = fTO fT_lo- . 'Of1<l’, b), (21)

Here in equation 2.1 T is the entire number of steps in the cascade. Each
regressor fr in cascade is enhanced with respect to the dispersion of samples
bt arriving at the appropriate stage, rather than the initial allocation of b.
This cascade improves hypotheses progressively.

2. Cascaded Detection: The Cascade R-CNN uses cascade regression as a re-
sampling approach for addressing the image resolution issue. At each stage
t. The R-CNN includes a classifier h; and a regressor f; optimized for ToU
threshold u!, where u' > w'1. This is learned by minimizing the loss

L(2', g) = Las(he(z"), ¥') + Al = 1 Lioc(fo(2", D), g) (2.2)

where b' = f; (271, b7!) g is the ! ground truth object, A=1 is the trade-
off parameter, [.| is the indicator function, cross-entropy loss Lys(h(x;), y;)
and h' is the label of x! given u' by the given equation in 2.3:

(2.3)

_ )9y, IoU(z, g) 2 u
V= 0, otherwise

In the equation 2.3, if the IoU is above a threshold u, the patch is considered
an example of the class. Thus, the class label of a hypothesis x is a function
of u.

In contrast to the entire loss of equation 2.2, this ensures a series of well-trained
detectors of improved quality.

2.3.2 HRNet

The object detection problem, unlike object classification, is position-sensitive, ne-
cessitating high-resolution representation [58]. HRNet maintains a high-resolution
illustration throughout the procedure, unlike other techniques such as AlexNet [14],
VGGNet [20], and ResNet [24]. As a result, HRNet performed well in posture es-
timation and semantic segmentation, and it may also be used to recognize small
objects. When objects of various sizes are integrated into a single image, HRNet’s
above features make it excellent for usage in marine images.

As seen in Figure 2.1, this network, dubbed HRNet (High Resolution Network), is
made up of multiple simultaneous phases. A high-resolution sub-network is used in
the first stage. Sub-networks of increasing resolution are added one after another to
create new layers [53].

The dilemma of sample instability in the binary classification problem can be solved
by merging two loss functions of DICE loss and BCE loss [45]. The formula for
DICE loss is as follows in 2.4:

2|GI P

Ly = dice loss =1 — ———
Y|+ [P|

(2.4)
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Figure 2.1: HRNet (High Resolution Network) [58].

In the equation, G and P are denoted by the ground truth and prediction result
respectively. The number of components in common between G and P is expressed
by GI P, which is obtained by adding the pixel-wise components of the two matrices.
The sum of matrix elements is represented by this value | |. In semantic segmentation
problems, the Softmax loss function is widely employed as a loss function. The
formula for calculating softmax loss is as follow in equation 2.5:

c
Ly = softmax loss = — Zyc IOg(Z.epj
c=0 J
Here, p is the network output probability and y is the ground truth. To enhance
the stability of system training, DICE loss is frequently combined with BCE loss in
reality, so overall loss is specified as equation 2.6

ep k

) (2.5)

Loss = Lprcg + Lok (26)

2.3.3 Graph Convolutional Network (GCN)

Graph convolutional networks can transfer information between close graph data
nodes. For this reason, GCNs are commonly used in text categorization, relationship
retrieval, and image processing [61]. GCN is employed in various fields such as
molecular science, traffic predicting, social networking, and other areas where data
has a distinct graph structure. The data from radar signals do not have a strong
schema; however, it contains graph data in time and geographical domains. When
evaluating a portion of data, the signals gathered at the subsequent location and
time can provide critical data. As a result, graph information is an ideal technique
to represent radar signals so that the information contained in them may be used
entirely.

Figure 2.2 shows the flowchart for the graph-based technique, which comprises two
steps. Firstly, radar signal graph information is constructed using the resident radar

7
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Figure 2.2: Detection of objects using GCN and radar graph data [61].

signal’s derived time-range information. The nodes are one-dimensional signal por-
tions inside a single rangebin, and the node characteristics are the matching signal’s
frequency distribution. Secondly, the edges are defined using timing, location, and
power information. Thirdly, GCN is used to accomplish target and clutter binary
categorization, which outputs the possibility of each node, detecting units, getting
evaluated as clutter or target.

Each layer in GCNs aggregates the features of surrounding nodes to update the node
feature embedding in the graph:

Z% = concat(X!, A, X', A_XHW, (2.7)
Xl+1 — 0_(2l+1) (28)

Here in equation 2.8 X' is the embedding at the layer 1 for all the nodes, and W
is the feature transformation matrix which will be learnt for the node classification.
The activation function is usually set to be the element-wise ReLU Here W is the
feature transformation matrix that will be learned for node categorization, and X'
is the embedding at layer 1 for every node. The component ReLLU is commonly used
as the activation function [48].

2.3.4 Long Short-Term Memory (LSTM)

A more advanced form of the RNN is the LSTM [44]. RNNs face difficulty with
vanishing gradients, and LSTMs have been proposed as a remedy. LSTMs, unlike
RNNs, can detect both short-term as well as long-term temporal correlations in
information. The simplest LSTM has an input gate, an output gate, block input,
and a forget gate. In figure 2.3 we can see the inner-mechanism of a LSTM block.
The equations in 2.13[35] can be used to describe how a memory block functions at
each time step t.

iy = oc(Wixy + Uihy—1 + b;) (2.9)

fi=0Wjxy+ Ushi—1 + by) (2.10)

= fi ©®c 4 iy © gWery + Uchy—q + be) (2.11)
op = o(Wozy + Ushy—1 + Voer + by) (2.12)

hy =0, © () (2.13)
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Figure 2.3: LSTM block [44].

In the five equations in 2.13, xt is the input of the model at time t, the weight
matrices are denoted by Wi, Wf, We, Wo, Ui, Uf, Uc, Uo, Vo, and bias vectors are
represented by bi, bf, be, bo. Besides, at time t, ct is the state of the memory cell,
ht is the memory block’s outcome and the activations of the three gates are it, ft,
0t are respectively. The scalar product of two vectors is represented by .

The gate activation function (x) is a conventional logistic sigmoid function as de-
scribed in 2.14, with gate activations ranging from 0 to 1. A value of 0 indicates
that the gate is blocked, whereas a value of 1 indicates that the gate is open.

The tanh functions g(x) and h(x) for cell input and output activation have a static
mean of 0. The equation is given in 2.15

olr) = - ﬁem (2.14)
o(x) = hz) = Z;—E: (2.15)

2.3.5 Faster R-CNN

Faster R-CNN is a standard object identification network that uses a convolutional
neural network to extract visual features [51]. The region suggestions network mod-
ule creates region proposals and tells the object classification module where to look.
In order to generate an anchor, a small network is dragged over the convolutional
feature map output within the last common convolution layers. Anchors have three
scales and three aspect ratios by default, which fluctuate in box regression and play
a key role in collecting region ideas. The area of interest pooling layer generates
a fixed-size feature vector corresponding to the convolutional feature map’s region
proposal. The feature vector from ROI (region of interest) pooling and the object
classification score determine object categorization. Figure 2.4 depicts the design of
the faster R-CNN,

The loss function of Faster R-CNN network [50] is shown in equation 2.16.
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Figure 2.4: The Faster R-CNN design [51].

In the above formula, i reflects the number of different anchors when learning in
a mini-batch. p; is a probability that indicates if the i anchor is a foreground
possibility. The value of an anchor is 1 if it is a positive sample; else, it is 0. The
anchor’s location coordinate is represented by the data in the array. The border
coordinates of affirmative sample indicators in the target region are represented by
this variable. L. is used to denote the value of picture block classification loss and
the modulation variable ¢; reflects the value of the acquired mini-batch.

2.3.6 Multi-box Single Shot Detector (SSD)

Multi-box Single Shot Detector (SSD) is a widely used object detection technique.
It is faster in general than Faster RCNN [40]. Instead of predicting with the last
layer as in traditional networks, it leverages some middle layers in the network called
feature maps to recognize objects of various sizes. A single deep learning network
can reduce computation time and enhance inference accuracy dramatically.

Moreover, we looked up “Swarm Intelligence” and found a variety of papers. We
analyzed these research projects’ contemporary designs and solutions utilized during
the research.

2.3.7 Swarm Based Algorithms

In the late 80s, computer scientists suggested the tool to identify biological swarm
systems in the area of Ai. G. Beni and J. Wang coined the phrase “swarm intelli-
gence” to characterize a set of tactics for operating artificial swarms in the global
optimization approach in 1989 [1]. Individual characteristics and their relationships
with groups have been used to build algorithms for the analogous mechanism known
as “swarm intelligence” [56]. Swarm intelligence ideas nowadays are implemented
in a variety of problem domains, including optimization algorithms, route planning,
scheduling, structural optimization, and picture analysis [13]. Swarm intelligence
approaches such as Particle Swarm Optimization (PSO) [25], Bat Optimization,
Grey Wolf Optimization, Ant Colony Optimization (ACO) [4], and Artificial Bee
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Colony (ABC) Optimization [54] have all been developed in recent decades.

Some of the most broadly adopted models are:

2.3.8 Ant Colony Optimization (ACO)

M. Dorigo introduced Ant Colony Optimization (ACO) in the late 1980s, and it
was initially used to handle discrete optimization problems. ACO is inspired by the
social behavior of ant colonies. Without any visual data, a swarm of “nearly blind”
ants can work out the shortest route between their food and colony [4]. The basic
search strategy used by ACO is as follows [53]:

1. At the beginning, a large number of ants are placed in the area at random.
The pheromones on each route have the same initial values, therefore 7;; (0)
is equal to 7y.

2. Furthermore, using the arbitrary proportion principle, the k —th (k=1,2,...,m)
ant selects the next place to be relocated to, and its choosing probability is
calculated by the equation 2.17

[rij (£))* 35 (£)]° -
— ey J € allowed,
p,];:‘](t) e sEal%’wedk[ ZS(t)] [nw(t)} (217)
0, Otherwise.

2.3.9 The Artificial Bee Colony (ABC)

The Artificial Bee Colony (ABC) algorithm is motivated by honey bees’ biological
function. In a bee colony, three groups are responsible for deciding the profitability
of a food supply: employed, observers, and explorer bees. Information on close-
ness, quality, food quantity, and food extraction efficiency is used to calculate food
profitability. The bee colony algorithm contains phases for food source selection.
Throughout the working bee stage, each bee saves its position with its assigned
food supply and searches for a better nectar source in a neighboring area. They
also return to their colonies and perform a waggle dance to communicate critical
information about their food supply. Onlooker honeybees examine the buzz move-
ment of scout bees and pick engaged bees with adequate nectar supply during the
Onlooker bee stage. Once data is obtained, spectator bees become engaged bees
to continue activities. The hired bees are transformed into observer bees. Finally,
scout bees become hired bees for their given food supply once they have discovered
it [38]. A parameter known as a limit controls the food source selection. After a
certain number of measurements, there is no change in fitness. The recruited bee
abandons the food and becomes a scout bee in search of a new alternative [54].

After the beginning phase, ABC goes through a cycle of employed bee, spectator
bee, and scout bee phases until the closure target is achieved. The ABC algorithm
approach’s primary framework for solving an optimization problem is as follows [54]:
In the Initial phase food sources are being set using the following equation in 2.18

zi; = & + rand(0, 1)(«]*" — 27 (2.18)
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Here, the dimension of the vector x is denoted by vector j, rand(0,1) is a random
factor that has been predefined and the lower and upper bound of the j** parameter
are the x;’”" and z7'* . After this phase, the given equation 2.19 is used to assess
fitness, where the value of the cost function at solution i is f;.

Fitness; =

T (2.19)

During the employed bee phase, a new solution is formed by selecting a partner at
random to identify a better food supply. The current solution and the value of the
partner should be different and it is specified as follows in equation 2.20

¥l = x; + rand(—1,1)(z; — 2)) (2.20)

ne

If the value obtained is not within the predefined lower and upper bounds using the
following formula, a bounding method is required.

w) =1b ifal_, <Ib (2.21)
w) =wub if 27, > ub. (2.22)

In the equation 2.21 and 2.22, z7_ is the newly developed solution along with the
current solution x;. Besides, the partner solution is the :cg. x7“ is then used to
calculate new fitness. After that, a biased selection is used to see if the new fitness
Fitnessye, has a higher value than the prior fitness answer Fitness;. If the answer
is yes, the trial number will be reset to zero. If this is not the case, the trial counter
will be raised by one.

Furthermore, onlooker bees fly towards sources of food to evaluate the quantity of
nectar available. The observer bee does statistical computations in this phase to
choose a preferable food source using the formula in 2.23

Fitness;
= ) - .
> i Flitness;

Di (2.23)
Finally, the optimum outcome will be remembered before the scout bee phase, and
solutions with a trial counter higher than the threshold will be deleted. Only one
alternative will go through this phase if its attempt is bigger than its threshold,
while the other solution will not.

2.3.10 Artificial Fish Swarm (AFS)

Artificial Fish Swarm is one kind of swarm intelligence model that was proposed in
2002 by Li XiaoLei. The fundamental idea of this algorithm is to replicate fish behav-
iors like foraging, swarming, and chasing by conducting a local search for individuals
to come up with an optimum solution. It requires fewer parameter adjustments for
which AFS can achieve a faster convergence speed. The movement to the central
point of the “visual scope” characterizes swarm behavior in the AFS algorithm [56].
In terms of flexibility, data redundancy, faster speed, and concurrency, the artificial
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fish swarm technique offers various features that help it tackle the optimization is-
sue clearly. Machine learning, data clustering, and picture segmentation are some
of the challenges where AFS has been used to solve. This algorithm uses artificial
intelligence to create artificial fish and look for the best value throughout issues.

X; - X;

X, = X; 4+ rand() x Step X ————
’ [1X; — Xil|

(2.24)

The above equation is used to update the position. For this update process, a point
indicated by X, needs to be chosen in this artificial fish’s visual perception. Here,
the fishes are symbolized by points in optimization problems with the position of
one artificial fish. X= (xy, xs,..., x,) is used to express the position of one artificial
fish, whereas X is the current position of this fish displayed [33].

2.4 Reviewed Findings

HRNet is the state-of-the-art neural network for detecting facial landmarks and pose
estimation. As a result, HRNet is less useful for our research objective. Moreover,
HRNet maintains a high-resolution procedure throughout the whole process, which
can increase the time for our computational operations. GCN uses graph data. It
can be implemented in fields such as molecular science, traffic predicting, social net-
working, and other areas where data has a distinct graph structure. So, we excluded
GCN for our research purpose as our research does not provide any graph data. Fur-
thermore, LSTMs take longer to train. Again having a memory block requires more
memory to train, which is not time efficient. LSTM is usually used to process and
make predictions given sequences of data. On the other hand, Convolution Neural
Network is used to exploit spatial correlation in data, and it works effectively on
images. One disadvantage of Faster R-CNN is that the RPN is trained using a sin-
gle photo to retrieve all anchors in the mini-batch of size 256. The network might
take a long time to attain convergence since all data from a single picture may be
linked as their features are similar. In terms of swarm intelligence, ACO does not
use any visual data. So we excluded ACO for our research purpose. AFS have many
drawbacks namely a greater temporal complication, a shortage of balance between
global and local search, and the inability to profit from group members’ previous
moves for future motions.

In 2016, Bousetouane et al. developed a CNN-based detection pipeline for wide-area
maritime surveillance using Annapolis Maritime Surveillance Dataset. The resulting
pipeline provides excellent accuracy on a complicated maritime vessel dataset while
also ten times faster than the central Fast-R-CNN pipeline [22]. The entire system
based on the Fast-R-CNN architecture [18] is efficiently using a weaker HOG-based
object sensor, the maritime fine-tuned VGG16 CNN model using ROIPooling layer
built in the Fast-R-CNN architecture, and a simple confidence scheme in the three
phases. It is also optimized for near-real-time performance, with multi-core con-
current region proposals and GPGPU processing for CNN evaluation. The pipeline
readily replaces selective search using a HOG detector for area recommendation
in the Fast-R-CNN model. Overall, Sliding window and Fast-R-CNN togetherly
achieve a mean average precision (mAP) of 61.55% [22].
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In 2018, Wang conducted an experiment in the MatLab 2017 (a) environment in a
normal desktop machine where the utilized strategy is to discover the places using
UAV-captured photos to implement maritime SAR using pre-processed (HG) and
CNN imagery (HV). The training set for this experiment consists of 1500 images,
500 positive samples, and 1000 negative samples [36]. Hypothesis generation (HG)
is used to capture the high-resolution color images of the sea by the UAV camera
to choose the detecting region before the likely location of the victims can be de-
termined. Then the rectangle finally frames the candidate region from the original
image from the extracted and denoised binary images. After that, to verify the
person in that area, hypothesis verification (HV) is done using the CNN. The find-
ings imply that this technique outperforms artificial vision search in terms of overall
performance, saving time in preparation, reducing rescue period, and being resource
independent. The search efficiency of the UAV cluster operation, in particular, will
improve considerably. CNN classification is a supervised learning method in which
victims are identified on a map utilizing simple attributes from UAV photographs
and then inspected in these areas [36].

In 2019, Moosbauer et al. established a new benchmark in object recognition with
deep learning in case of marine contexts, and used Singapore Maritime Dataset
(SMD) to test Faster and Mask R-CNN for object tracking [41]. Both DCNNs are
pre-trained on COCO and ImageNet, which both contain a large number of maritime
items and use ResNet-101 as their backbone. A completely Mask R-CNN with a
deactivated sample categorization branch performed best in the VIS and NIR spec-
trums, having f-scores of 0.875 as well as 0.877 [41]. According to the results, the
Mask R-CNN is a strong and well-suited DCNN at object recognition.

This leads to the conclusion that a basic but reliable architecture must be created

solely from the domain of deep learning, especially from Convolutional Neural Net-
work (CNN) allow us to assist in the early detection of humans on the open water.
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Chapter 3

Methodology

This chapter is divided into two sections. The first part describes the deep learning
model that has been used to detect humans in water bodies, and the second part
briefly portrays Swarm Intelligence (SI) that has been used to search large areas
effectively.

3.1 Deep Learning using CNN

This section briefly describes the idea of our selected dataset. All the information
is separated into parts via sections of this chapter. At first, we dive into the various
data collection and processing techniques. Then, we briefly describe the architecture
of our selected model. Later, all the methods for enhancing the performance of the
specific model during training are mentioned in detail. Our proposed methodology
can be visualized in figure 3.1.

3.1.1 Data Collection

In the dataset selection process, we agreed to use the SeaDronesSee dataset [62].
SeaDronesSee is a large-scale dataset with a goal to help develop effective systems
for SAR (Search and Rescue Operations) using UAVs (Unmanned Aerial Vehicles) in
maritime scenarios. This dataset is a benchmark initiative from the Avalon (Aerial
and vision-based assistance system for real-time object detection) project to fill the
void of the proper dataset for deep-sea search and rescue operations using unmanned
aerial vehicles and robust computer vision systems. This dataset consists of three
tracks which are multi-object tracking, object detection, and single-object tracking.
Here each track has its own dataset. From here, we chose the object detection
dataset to achieve our expected goal. In our object detection dataset, there are
1796 testing images, 5630 train images, and 859 validation images.
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3.1.2 Data Preprocessing

To avoid unwanted results and correctly implement the dataset into our pre-trained
model, we used the following preprocessing methods:

1. Image Augmentation: Data augmentation is a process by which we can
insert more variation in our already existing dataset. This process helps us to
increase the number of data. Image augmentation is one of the popular forms
of data augmentation. We have introduced image augmentation techniques
such as randomly zooming, increasing clarity, increasing brightness by a ran-
dom amount, flipping or rotating images, etc. We hoped to introduce more
variation in the dataset to make it robust.

2. Image resize: Our images in the dataset vary in size. There are a lot of
high-resolution images; hence, it takes a lot of time to train. This process is
responsible for establishing a base size for all images to feed our model. We
expected to lessen the time of training through this process.

3. Image Normalization: Image normalization is a common image process-
ing strategy to alter the intensity value of pixels. The fundamental goal of
the normalization process is to convert an image into a range of pixel values
between 0 and 1. This is accomplished by dividing all pixel values by 255, the
maximum pixel value.

4. Scaling Bounding Box: We used the sigmoid activation function in order
to achieve the predicted output values. The training and validation images’
bounding box coordinates were scaled. The ground truth bounding box coor-
dinates were scaled in relation to the original image’s dimension.

5. Data caching: Usually, image preprocessing takes a lot of time, and we need
to avoid running all preprocessing steps over and over again. So, after all the
preprocessing was done, we saved the data in our device storage so that we
could start training models much more quickly and efficiently.

3.1.3 Data Selection

In our dataset, there are a total of 6 categories such as swimmer, a life jacket-wearing
swimmer, floater, person on the boat, passenger on a boat wearing a life jacket as
well as boat were annotated in this dataset, which will be useful for recognizing
humans in maritime scenarios [57]. We included three categories for our research
purpose, which include boat, floater, and swimmer. We choose unique images for
each category. In the validation dataset, from the image, floater included 194 images,
swimmer included 111 images, and boat 118 images. From the training set, floaters
included 678 images, swimmers included 546 images, and boats included 457 images.
All the datasets are in COCO format [43]. We took annotations for bounding boxes
from the COCO format dataset, along with image IDs and class categories from the
annotation.
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3.1.4 Model Architecture

This section discusses our proposed Convolutional Neural Networks [19] model that
we used to detect humans on open water bodies. The Convolutional Neural Net-
work (CNN) or ConvNets is a type of artificial neural network that specializes in
identifying and understanding patterns. It has so far been most widely utilized for
image analysis. The multiplication of two images produces matrices, which can be
used to identify characteristics and patterns in the image. This capacity to recog-
nize patterns is what makes CNN so useful for image analysis. CNN features hidden
layers known as convolutional layers that distinguish it from a typical multi-layer
perceptron or MLP that goes through all the steps of our model construction below.
In order to construct our model, we have used different pre-trained models such
as VGG16, ResNet50v2, Xception, InceptionV3, and MobileNetV2. We used these
models as the first part of our architecture. Later, we added the bounding box
architecture part and class label architecture part after going through the flattening
of the layer. In the case of the bounding box network part, we used four dense
layers and two dropout layers in order to control the amount of values that needed
to be transferred to the next layer. On the other hand, in the class label part, we
used four dense layers. Moreover, we used three dropout layers to control the flow
of information from one layer to the next. A detailed description of each layer is
given below:

1. Convolutional Layer: CNN’s initial layer is the convolutional layer. It uses
different filters to extract information from the input image during convolution
processes. After receiving input, the convolutional layer modifies it and sends
the transformed input to the next layer. A Convolutional operation is a name
for this transformation. The convolutional layer contains various parameters
and hyper-parameters such as filters, kernels, and K. Then, these filters com-
pare images to distinguish the similarities and differences among them, which
helps extract features. The primary goal of a convolutional layer is to extract
and identify high-level features. In order to preserve the relationship between
each pixel by learning the image aspect, we have performed this operation.

2. Pooling Layer: The pooling layer is employed to lessen computational costs
by shrinking the dimension of the convolved feature map. This layer speeds up
processing by preventing overfitting and lowering memory usage. It reduces
layer connections and functions independently in each feature map. Depending
on the methodologies, there are different pooling procedures.

3. Flatten Layer: The flatten layer alters the pooled feature map into a single
column. It is an obligation to flatten the pooled outputs so that they can be
sent to the next FC layer.

4. Fully Connected Layer: The weights and biases are stored in the Fully
Connected (FC) layer, which joins the neurons from two separate layers. After
flattening the input image from the previous layer , it is passed to the fully
connected layer and then these layers pass on the data to other layers like a
feed-forward neural network while assigning weights to each part of the data
on the way.
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5. Activation Functions: The activation function is a significant aspect of the
Convolutional Neural Network model that specifies which model data should
be forwarded and returned at the network’s end. Nonlinearity is introduced
to the network by this function. The Softmax, Sigmoid, ReLU, and tanH
activation functions are the most commonly utilized. In our CNN, we have
mainly used Three activation functions. These are given below:

a Sigmoid: The exact function employed in the logistic regression classifi-
cation process is the sigmoid [46] activation function, often known as the
logistic function. The sigmoid function accepts any real value as input
and returns a value between 0 and 1. When the input is larger, the out-
put value will be nearer to 1.0. When the input is lesser, the output will
be closer to 0.0. The following is how the sigmoid activation function is
calculated:

1.0

f(l“):m

(3.1)

In the equation 3.1, e is a mathematical constant that is the base of the
natural logarithm.

b Softmax: Softmax function provides a vector of given values adding up
to 1.0 [34], which allows a winner-take-all function to produce a proba-
bility like output that can be read as class membership probabilities. It
is a simplified version of the argmax function, with a vector of real values
as input and a vector of the same length with values of 1.0 as output,
comparable to probability. The softmax function is calculated as below:

In the equation 3.2, x is denoted as a vector of outputs, and the natural
logarithm’s base is denoted as a constant e.

¢ ReLU: Rectifier Linear Unit (ReLU) [29] function is easy to implement
and works by taking only the positive parts of its arguments. It is also
useful to overcome limitations like clearing the gradients which prevents
training deep models. Following equation is used to calculate ReLLU func-
tion:

f(x) = max(0, x) (3.3)

The equation 3.3 implies that if the input data (x) is negative, the value
is returned as 0.0; else, it is returned as the value.
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3.1.5 Learning Enhancements

This section describes the learning enhancement techniques used during the training
of our model. Each of these processes is described below:

1. Optimization: Optimization is a mathematical method that allows algo-
rithms to resolve well-structured optimization issues and analyze those algo-
rithms, allowing the most effective answer to be depicted in a numerically
well-defined manner. This algorithm’s motive is to minimize the objective
function, also referred to as the loss or cost function, which is used to dis-
tinguish between anticipated and expected data. Adam [16] is a first-order
optimization algorithm in which the learning rate for each parameter is vari-
able. Adam is a stochastic objective function algorithm based on adaptive
estimations of lower-order moments, and its algorithm is based on first-order
gradients. We utilized AdaMax for our model, which is an extension of Adam’s
gradient descent algorithm designed to speed up the optimization process. It’s
an augmentation of the Gradient Descent Optimization algorithm.

2. Transfer Learning: A technique known as transfer learning involves ap-
plying a previously learned model to a new situation. Instead of beginning
from scratch, transfer learning is utilized when the knowledge of an already
trained machine learning model is transferred to a new one, with the prior
network’s weights automatically changed to the new one. Transfer learning
is vital because it saves training time, increases neural network performance,
and requires little input. We employed VGG16 [20] , ResNet50V2 [60], Incep-
tionV3 [26], Xception [27], and MobileNetV2 [55] in our model, all popular
pre-trained machine learning models.

3.2 Swarm Intelligence

Swarm Intelligence is an artificial intelligence concept of science that consists of
numerous independent individuals that are self-organized and accountable for their
contributions to solving the challenge.

3.2.1 Algorithm Selection

Our research has explored three algorithms (Particle Swarm Optimization, Bat Al-
gorithm, Grey Wolf Optimization) for their effective learning techniques: social,
cognitive, and naive learning. These three representative swarm intelligence algo-
rithms are briefly described below:

1. PSO Algorithm: Particle Swarm Optimization (PSO) is a popular swarm
intelligence approach for solving non-linear continuous optimization problems.
However, lately, it has been used in several practical, real-world applications.
The PSO method starts with a random particle cluster and then modifies the
iterations to find the best solution. At each sampling interval, the two values
are adjusted for every particle. These two are called best values. Here, one is
called the optimal position, which is the best-derived solution. The other is
a global best position, representing the best value generated across the whole
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swarm. The particle position and velocity can be updated after determining
the above two best values. The position z!™ of the particle is derived by
multiplying its velocity v!™' by its present position [25].

i

Algorithm 1: PSO pseudo-code

Set the initial parameters w, rl1, r2, c1, and c2.
Generate the initial population of the particles (x;).
Generate the initial velocity of the particles (v;).
while not stop criterion do

for each particle do
Calculate the fitness.

Calculate the best position up to now (P;).
end

Determine the best particle (P,)

for each particle do

Update the velocity.

Update the position.

end

Find the best particle.

end

2. Bat Optimization Algorithm : The Bat Algorithm (BA) is a modern

swarm intelligence optimization technique. The echolocation behavior of bats
inspires this method. Microbats’ echolocation skill is remarkable since they
can find their prey and differentiate between different species of insects even
in complete darkness. This method follows three idealized rules for simplicity
based on behavior analogy like other optimization algorithms. Firstly, to per-
ceive distance and environments, all bats use echolocation. Moreover, when
bats search for their target by flying with a velocity using a fixed frequency
fmin, they may automatically change the wavelength or frequency of their ra-
diated pulses and the rate of pulse emission r [0, 1] depending on how close
they are to their target. Each bat’s position x;, velocity v;, frequency f;, loud-
ness A;, fluctuating wavelength A\, and emission pulse rate r; are all described
in BA. Lastly, the range of loudness is assumed to be from high (positive) Ay
to a low (constant) A, as the loudness fluctuates in various ways.
This algorithm also takes into account some simplifications. For example, no
ray tracing is not employed to estimate the time delay and 3-D topography as
it is more computationally intensive in multidimensional scenarios. Besides,
higher frequencies have shorter wavelengths and travel a shorter distance. So,
the frequency is restricted to the range [0, finqz], and the rate of pulse emission
is a threshold between [0, 1], where 0 implies no pulse emission, and 1 means
the highest rate of pulse emission [9].

The pseudo-code below represents the basic steps of the Bat Algorithm (BA)
based on these approximations and idealizations:
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Algorithm 2: BA pseudo-code

Objective function f(x), x = (1, ..., zd)T.

Initialize the bat population x;(i = 1,2,...,n) and v;.
Define pulse frequency f; at ;.

Initialize pulse rates r; and the loudness A;.
while ¢ < Max number of iterations do

Generate new solutions by adjusting frequency
And update velocities and locations/solutions

for each particle do
Calculate the fitness.
Calculate the best position up to now (P;).
end
if rand > r; then
Select a solution among the best solutions

Generate a local solution around the selected best solution
end

Generate a new solution by flying randomly
if rand < A; and f(x;) < f(z) then
Accept the new solutions

Increase r; and reduce A;
end

Rank the bats and find the current best xx
end

In the pseudo-code, xx is the global best information acquired so far, and rand
is a random number uniformly distributed on [0, 1]. The pulse emission rate
(r;) and loudness (A;) are used in theory to vary the probability of the converg-
ing operation. A naive learning method is implemented when the condition
rand > r; is satisfied [28].

. Grey Wolf Optimization (GWO): The GWO algorithm is a unique swarm
intelligence approach modeled after the natural leadership structure and hunt-
ing mechanism of grey wolves. Four sorts of grey wolves such as alpha, beta,
delta, and omega, are used for replicating the leadership structure. Further-
more, the three basic hunting processes are implemented: looking for prey,
enclosing prey, and attacking prey. Grey wolves prefer to live in packs and
always move together toward their prey. Besides, they have a fairly rigid social
dominating structure. Due to the rigid social dominance hierarchy in place,
most members operate as followers (w) of the dominators («, 3, and §), who
rank first, second, and third, respectively, in terms of performance. There is
another category in wolves named subordinates who are below the dominators
and control the omega [17].

The pseudo-code of the grey wolf optimization (GWO) algorithm is given be-
low:
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Algorithm 3: GWO pseudo-code

Initialize the grey wolf population x;(i = 1,2, ...,n)
Initialize a, A, and C

Calculate the fitness of each search agent

o= the best search agent

x3 =the second-best search agent

xs =the third best search agent

while (t < Maz number of iterations) do

for each search agent do
| Update the position of the current search agent
end
Update a, A, and C
Calculate the fitness of all search agents
Update z,, 25, and s
t=t+1
end
return z,

3.2.2 Swarm Intelligence Simulation Model

In this Research, We used Netlogo [2] to simulate the behavior of the Particle Swarm
Optimization Algorithm, Bat Optimization Algorithm, and the Grey Wolf Optimiza-
tion Algorithm. All of these algorithms are Metaheuristic Algorithms. Metaheuris-
tic Algorithms aim to solve optimization problems. In our research, our target is to
optimally explore a large area and to find a target in that area.

As we know, all the optimization algorithms like PSO, BA, and GWO have two
sections in their working procedure which are Exploration and Exploitation. Our
goal is to use the exploration behavior of these algorithms to find a target in a
huge area. In our simulation model, we took fifty drones in a square area where
they moved around in random patterns, which are derived from the noted swarm
behavior algorithms.

ticks: 0 ticks: 8

Simulation Initialized Target Detected

Figure 3.2: Simulation in Netlogo
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We designed the simulation by placing a fitness value in the range [0,1] in the patches,
and we declared a certain area with a fitness 1 (Blue marked region in figure 3.2),
which resembles our target (Swimmer and Floater) in the huge ocean.

We randomly generated the initial positions of the drones and their next position,
and in some cases, the velocities were calculated according to each algorithm. We
ran the simulation five times for each algorithm. We then keep track of the Ticks,
which is a model-independent time unit in Netlogo Models. It is used instead of
Hours, Minutes, and Seconds because it is standardized for all models and comput-
ers. This ensures that even if a processing unit runs slower than others, the value
of the ticks is always constant.

In the simulations, we stopped the iteration only when one of the drones was able to
find a target in figure 3.2. This allowed us to calculate the exact time unit needed
to find a target using the drones in the algorithm.

We modified the algorithms to simulate the exploration process for a certain scenario
which is finding a target in a huge arena, in our case, detecting a person in a maritime
scenario.
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Chapter 4

Implementation and Result
Analysis of CNN Models

Previously we discussed the data collecting and preprocessing method, as well as
a quick summary of our suggested model. In this segment, we explain how we
constructed the network and compared our results to those from other models such
as VGG16 [20], ResNet50v2 [60], InceptionV3 [26], MobileNetv2 [55] and Xception
[27]. Figure 4.1 contains a brief overview of our fully obstructed model.

4.1 Implementation of the baseline model

This section describes our implementation process of five chosen models in python
using libraries such as Keras and Tensorflow. In order to select the best model for
our dataset, we selected five pre-trained models such as VGG16, ResNet50v2, Mo-
bileNetv2, Xception, and InceptionV3. Then, after flattening the part, we extended
our model into two parts. Bounding Box Network and Class Label Network.

1. Bounding Box Network :
This part is added to predict the bounding box coordinates of an object which
is, in our case, floater, swimmer, and boat. We added three dense layers and
two dropout functions to control the information from the previous layer. We
used relu and sigmoid activation functions here.

2. Class Label Network :
On the other hand, this network part is included in order to predict the class
of detected objects. We added three dropout layers and four dense layers.

For the activation function, we used softmax as it is a multiclass problem and
ReLU function.
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Models

A

mput: | (None, 25088) mput: | (None, 25088)
dense 3: Dense dense: Dense
output: | (None, 512) output: | (None, 128)
mput: | (None, 512 mput: | (None, 128)
dropout_2: Dropout dropout: Dropout
output: | (None, 512 output: | (None, 128)
input: one, 512 input: one, 128
dense 4: Dense ! ™ ) denze 1: Dense ! bl )
output: | (None, 512) output: | (None, 64)
wmput: one, 512 wmput: one, 64
dropout_3: Dropout ! l dropout_1: Dropout ! ™ - )
output: | (None, 512 output: | (None, 64)
mput: | (None, 512 mput: | (None, 64)
dense 5: Dense dense 2: Dense
output: | (None, 512 output: | (None, 32)
input: one, 512 input: one, 32
dropout_4: Dropout ! Ll bounding_box: Dense ! al )
output: | (None, 512 output: | (None, 4)

'

mput: | (None, 512)
output: | (None, 3)

class label: Dense

Figure 4.1: Model Architecture

4.2 Selected Models’ Performance

This section contains the overall performance of all models. We have fitted our
proposed pre-trained models to our dataset and calculated the accuracy and vali-
dation accuracy of both class label and bounding box parts to evaluate the models.
Comparisons of results are given below in Table 4.1 and Table 4.2

After running all models on our dataset for 100 epochs, we managed to obtain our
desired results for comparison. Now, for the class label part, surprisingly, all models
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Model Name | Accuracy | Validation Accuracy
VGG16 99.15% 97.7%
ResNet50v2 | 99.01% 97.61%
InceptionV3 | 99.05% 97.15%
Xception 99.76% 97.16%
MobileNetv2 | 99.75% 98.11%

Table 4.1: Class Label Accuracy

100 Class Label Validation Accuracy

98
96
o4
92
90
VWGG16

ResNet50v2 InceptionV3 Xception MobileNetv2
Model's Name

Accuracy

Figure 4.2: Class Label Validation Accuracy

showed promising results. After running the models, we managed to obtain the best
result from the MobileNetV2 model, where accuracy is 99.75% and Validation accu-
racy is 98.11% and got the worst result from the ResNetv2 model, where accuracy
is 99.01% and validation accuracy is 97.61%. From Xception, we got an accuracy
result of 99.76% and validation accuracy of 97.16%. Lastly, from the VGG16 model,
we got 99.15% accuracy and 97.7% validation accuracy, and from the InceptionV3
model, we got 99.05% accuracy and 97.15% validation accuracy. This “class label
validation accuracy” data is further represented through the bar chart in Figure 4.2

Model Name | Accuracy | Validation Accuracy | Mean IoU score
VGG16 88.74% 86.05% 0.62
ResNet50v2 | 69.90% 72.10% 0.40
InceptionV3 | 78.25% 78.35% 0.48
Xception 81.23% 81.56% 0.51
MobileNetv2 | 72.05% 75.65% 0.45

Table 4.2: Bounding Box Results

On the other hand, in the bounding box part, we managed to get the best result from
the VGG16 model with an accuracy of 88.74% and validation accuracy of 86.05%,
while we got the worst result from ResNet50v2, which gave us an accuracy of 69.90%
and validation accuracy of 72.10%. Moreover, we got a 78.25% accuracy result and
78.35% validation accuracy from InceptionV3 and obtained 81.23% accuracy from
Xception and 81.56% validation accuracy, which is the second-best result. Lastly,
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Figure 4.3: Bounding Box Validation Accuracy

we got 72.05% accuracy and 75.65% validation accuracy from MobileNetv2. This
“bounding box validation accuracy” data is represented through the bar chart in
Figure 4.3.

4.3 Model Comparison

During the class table part, although Xception showed promising results, we chose
to implement VGG16 as the preferred model. The reason behind this decision is in
the bounding box results, VGG16 showed the best result with a mean IoU score of
0.62 along with the best accuracy as shown in figure 4.4. While on the other hand,
Xception showed the second-best result with a Mean IoU score of 0.51. Moreover,
in the class label results, the performance difference between other models is very
low.

As a result, we decided that VGG16 is the best performing model as it has good
class label validation accuracy while not compromising on the bounding box scores
as seen in other models.

loU Score Comparison

0.6

05

0.4
03
0.2
0.1
0.0

ResMet50v2 Inception\V3 ¥ception MobileMetv2
Model's Name

lol score

Figure 4.4: ToU Result Graph
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4.4 Discussion

From Figure 4.5 and 4.6, we can observe that the predicted bounding box from
VGG16 with the highest IoU score almost matches the actual bounding box region.
On the other hand, the second-best model Xception, although it has better results
than the other three models, the predicted bounding box is not as good as VGG16.
The actual bounding box area is not covered as well as VGG16 by the predicted
bounding box area using Xception. Generally, IoU scores less than 0.5 is undesir-
able, and the Xception model IoU is close to that threshold. On the other hand,
VGG16 showed better results with 0.62, which is comparatively a better result.
Overall, VGG16, although not the very best result in terms of class label portion,
is, however, the best performing model in the bounding box portion.

0 o
25 4 25
50 1 50
75 ' IE]
100 A 100
125 125
150 150
175 175
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Figure 4.5: Difference between actual and predicted bounding box (VGG16)
0 o 0
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150 150 150
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200 200 200

Figure 4.6: Difference between actual and predicted bounding box (Xception)
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Figure 4.7: Confusion Matrix of VGG16, Xception, InceptionV3, ResNetv2, Mo-
bileNetV2 respectively
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In Fig 4.7, we can observe the confusion matrix of all model’s class label parts. In
the confusion matrix, 0 indicates boat, 1 indicates floater, and 2 indicates swimmer.
The first matrix of fig 4.7 contains the confusion matrix of the VGG16 model class
label part; we can see that this model was able to identify 117 boats, 191 floaters,
and 101 swimmers correctly from the validation dataset. However, this model was
not able to correctly classify 14 images. The second figure shows the Xception model
class label part’s confusion matrix. This model was able to identify 111 boats, 193
floaters, and 107 swimmers correctly from the validation dataset. However, this
model could not correctly identify the class of 12 images. The third figure bears the
confusion matrix of the InceptionV3 model. While it could not detect classes in 12
images correctly, the InceptionV3 model was able to detect 114 boats, 191 floaters,
and 106 swimmers. On the other hand, the fourth matrix of fig 4.7 contains the
confusion matrix of ResNet50v2, and it was able to detect 113 boats, 188 swimmers,
and 106 swimmers correctly. This model could not identify the class of objects
correctly in 13 images. Lastly, the last confusion matrix contains the confusion
matrix of MobileNet50v2; it detected 114 boats, 191 swimmers, and 110 swimmers
correctly. However, this model could not correctly identify the class of objects in 8
images.
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Figure 4.8: VGG16 Bouding Box Metrics

In figure 4.8, we can observe the VGG16 accuracy graph where the accuracy has
reached 99.15%.0n the other hand, the loss graph indicates how much data was lost
which in this case almost reached 0.055.
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Figure 4.9: ResNet50v2 Bouding Box Metrics

The ResNet50v2 accuracy graph (figure 4.9) shows that the accuracy has reached
69.90 and before 40 epochs the loss value was rather high. Later, the loss value
gradually reached 0.08.
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Figure 4.10: InceptionV3 Bouding Box Metrics

The accuracy graph for InceptionV3 (figure 4.10) reveals that the accuracy has
reached 78.25%, while the loss value was quite high before 45 epochs. The loss value
eventually increased to 0.07.
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Figure 4.11: Xception Bouding Box Metrics

Xception’s accuracy graph (figure 4.11) shows that the accuracy has reached 81.23%.
After 20 epochs, the loss value decreased from high value to low value which is 0.06.
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Figure 4.12: MobileNetV2 Bouding Box Metrics

The accuracy graph in MobileNetv2 (figure 4.12) reveals that it has reached 72.05%.
The loss value started reducing after 25 epochs and reached 0.07.
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In figure 4.13, the first graph indicates the class label accuracy graph of the VGG16
model. We can see that the accuracy reached 99.15%, and the second graph shows
the loss value of the model, which almost got 0, and the validation loss value of
0.17. In the third graph, the AUC value almost reached 1, which indicates most of
the predictions were true positives. Moreover, the fourth graph shows the precision
value that almost got a value of 1, and the validation value is 0.95. This indicates
maximum positive predictions do indeed belong to the positive class. Lastly, recall
also gave us satisfactory results as it reached a value of 1, and a validation recall
value is 0.94, indicating maximum positives were recalled.
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The first graph in figure 4.14 shows the ResNet50v2 model’s class label accuracy
graph. The accuracy was 99.01%, and the second graph displays the model’s loss
value, which was virtually zero, and the validation loss value of 0.5. The AUC value
in the third graph is almost 1, and the validation AUC value is 0.975. Furthermore,
the fourth graph depicts the precision value, which is approximately equal to 1, and
the validation value, which is 0.96. This shows that maximal positive predictions
are definitely in the positive category. Finally, recall yielded promising results, with
a value of 1 and a validation recall value of 0.96, suggesting that maximum positives
were recalled.
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The class label accuracy graph for the InceptionV3 model is shown in the first graph
in figure 4.15. The accuracy was 99.05%, and the second graph shows the model’s
loss value, which is very good as the loss value almost reached 0. In the third graph,
the AUC value is nearly 1, whereas the validation AUC value is 0.98. The fourth
graph also shows the precision value, which is close to 1, as well as the validation
value, which is 0.96. This demonstrates that maximally positive predictions are
unquestionably positive. Finally, recall produced positive results, with a value of 1
and a validation recall value of 0.95, indicating that nearly all positives were recalled.
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The first graph in figure 4.16 shows the class label accuracy graph for the Xception
model. The model’s accuracy was 99.76%, and the second graph indicates the
model’s loss value, which was nearly zero, which is excellent. The AUC value in
the third graph is almost 1, while the validation AUC value is 0.98. The precision
value, which is close to 1, and the validation value, which is 0.96, are also shown
in the fourth graph. This indicates that predictions that are maximum positives
are undoubtedly positive. Finally, recall yielded promising results, suggesting that
almost all positives were recalled, with a value of 1 and a validation recall value of
0.96.
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The class label accuracy graph for the MobileNet50v2 model is represented in the
first graph in figure 4.17. The model’s accuracy was 99.75%, and the model’s loss
value was virtually 0, which is great. The validation AUC value is 0.98, but the
AUC value in the third graph is 0.99, and validity value is 0.97. This shows that
maximal positive predictions are almost always correct. Finally, with a value of 0.99
and a validation recall value of 0.97, recall produced good results, indicating that
all maximum positives were recalled.
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Chapter 5

Implementation and Result
Analysis of Swarm Intelligence

Algorithm

As discussed earlier, we are using three swarm algorithms and comparing their
results in order to find the best-performing algorithm. In this segment, we will also
be discussing the work process and mathematical equations of the Particle Swarm
Algorithm, Bat Algorithm, and Grey-Wolf algorithm.

5.1 Implementation of Swarm Intelligence Algo-
rithms in Simulation
For the selected algorithms, we distributed random fitness values ranging from [0,1]

across the arena. Then we normalized the values by using the minimum value, max-
imum value, and a float of 0.9599. To normalize, we used a function,

calculated ipmess = 0.9599 (current finess — MINIMAUM fitness)
tness — .

(5.1)

(Mazimum giness — MINTMUM fitness)

We ran the iteration till we got the best-defined fitness value which is 1.

In PSO Algorithm:

The drones were initialized with variables including, velocity (v;), position
(x;), fitness value (val), personal-best-position (ppes;). Initially, the position
(x;) was randomly selected within the range of the simulation area, and ve-
locity (v;) was initialized with random values distributed on [0,1]. Also, the
calculated finess value for that position was taken as the “val” of that partic-
ular drone, and the position is considered as the pg.s. The Global Best is
selected by taking the best fitness value found among all the drones in each
iteration, and we denote it as “g-val” and the position of that drone is consid-
ered as gpest(Global Best Position)
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In each iteration, for every particle, we updated the velocity according to
5.2

Vig1 = W X V; + el X 11 X (PRest — i) + 2 X 1 X (GBest — Ti) (5.2)

Here, v; is a two-dimensional vector where i represents each dimension. cl is
a constant which resembles the cognitive learning factor which initiates the
movement of a particle towards its own personal best position (ppes;). €2 is
another constant which resembles the social learning factor as it implies the
movement of a particle towards the global best position (gpest). x; is the cur-
rent position of that drone which is also a two-dimensional vector, and w is the
particle inertia that helps us change the particle’s motion, where the value of
w=1 means moving in a straight line to always move toward the best position
found.

Then according the equation no 5.3 we updated the positions-
Tip1 = Ti + Vit (5.3)

This gives us the next position where our drone should take a random walk
and in simulation our drone moves toward that position.

In Bat Optimization Algorithm:

The drones were initialized with variables including, velocity (v;), position
(x;), fitness value (val), personal-best-p on (ppest), loudness (A), pulse imita-
tion rate (r) , frequency (f), initial pulse emission rate ( initial-r ). Initially,
velocity (v;) was initialized with random variables within [0,1], and the posi-
tion (z;) was randomly selected within the range of the simulation area.

We calculated the frequency (f) according to the following equation 5.4

f = fmm + (fmax - fmzn) * rand (54)

Here, here in our simulation, we considered f,,.. as 2 and f,,;, as 0, and rand
is random variable at a range [0,1]

We initialized the pulse emission rate according to 5.5

r = rand * (Fmaz — Tmin) (5.5)

Here r,,4. is 1 and r,,;, is 0, and rand is variable with a random value within
the range [0,1]

According to the equation 5.6 we also initiated loudness (A),

A=7% Anas — Apin + 1 (5.6)
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Here r is a random value in range [1,7], Apae is 2, and A, is 1 and initially,
we saved the pulse emission rate in the variable initial-r, which is required in
the later part of the simulation process.

Also, for each drone, the calculatedyiiness value for that position was taken
as the “val” and the position is considered as the ppges;. The Global Best is
selected by taking the best value found among all the drones in each iteration
and which is denoted as “g-val” and the position of that drone is considered
as gpest(Global Best Position)

In each iteration, for every particle, we adjusted the frequency according to 5.4.

We updated the velocity (v;) accordingly,

V; = (Ui +pBest - gBest) * f (57)

Here v; is a 2-dimensional vector where it represents each dimension, the cur-
rent best position of the drone is denoted as pges, and the global best position
vector is denoted as gpest. And the f is the newly adjusted frequency (f) of
that particular drone.

Then we checked if current loudness (A) is lesser than a random variable
rand in the range of [0,1] or not and also if the fitness value (val) in the cur-
rent position is lesser than the previous val or not. If yes, then we decrease
the loudness (A) and increase the pulse emission rate (r) according to the

following equations,
A=axA ;a = 05 (5.8)

r =initial —r % (1 — " xn) ; n is iteration number. (5.9)

Then according the equation no 5.3 we updated the positions-

Tit1 = X4 + Vi+1 (510)

This gives us the next position where our drone should take a random walk
and enables it to explore within the arena of our simulation.

In Grey Wolf Optimization Algorithm:

At first The drones were initialized with variables including, position (z;),
fitness value (val), personal-best-position (ppes;). The position (z;) was ran-
domly selected within the range of the simulation area. Also for each drone,
calculated fiiness value for that position was taken as the “val” and the posi-
tion is considered as the pges;. The Global Best is selected by taking the best
value found among all the drones in each iteration and which is denoted as “g-
val” and the position of that drone is considered as gp.s (Global Best Position)
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Here from the initial calculations we then update the position according to
the following equation 5.3

xz
Ti= Y ?Q (5.11)

Q € a,f3,6

Tgp1 =g — (ax (2%l — 1) % 2% 2% 2, —24]) ;Q€a,f,0 (5.12)

Here z,, x5 and s denote the top 3 individual drones with the best fitness
values (val). a is a weight linearly decreasing from 2 to 0 after each iteration.
rl and r2 are two distinct random variables distributed on [0,1] and x; is the
current position.

According to the updated positions with the fitness value of that position
we again find the top three agents or drones with the best fitness values and
denote them respectively as «a , 5 and 0.

In the simulation, our drone moves to the next position according to the up-
dated position in z;.

In every algorithm, in each iteration we check if the fitness value (val) in the up-
dated position is higher than the current val or not. If yes, then we update our
fitness value of our drone with the higher val and update our (ppes:) to the currently
updated position.

We also check if the global fitness value (g-val) is lower than the val found in the
updated position or not. If yes, then we update our global fitness value (g-val) with
the higher val and update our (gpes) to the currently updated position.

Lastly, in every iteration we check whether the newly found g-val or global val
is 1 or not. If it’s 1, it means that our drone has found our target and we stop our
simulation there. If not, we continue our iterations.

When our iterations stopped, we noted down the Ticks. And generated our results
according to that.

5.2 Simulation Result Analysis

For each of the algorithms, we ran the simulation five times. We updated the target
area in every simulation for all the algorithms. For example, in simulation 1, every
algorithm had to find a specific target area, and in the next simulation, we moved
our target and tasked every algorithm to find that specific target again. In this
process, we noted down the time spent (ticks) by each algorithm in each simulation
in a data table.

Here we can see that in each iteration, the amount of time each algorithm spends
to find a target in the simulation area. Table 5.1 is represented in figure 5.1
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Time Spent ( Ticks )
Simulation | PSO | BA | GWO
1 4 95 47
15 33 71
15 15 96
48 | 103 61
20 | 163 53

Y =] WOl N

Table 5.1: Simulation Results
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Figure 5.1: Simulation Vs Time
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In the bar chart, we can clearly see that in each simulation, PSO takes the shortest
time to find a target while GWO and BA take a much higher time in particular
cases. Between GWO and BA, we can see that.

In the case of exploring and finding a target in simulations number 1, 4, and 5, BA
takes higher time, whereas, in simulations 2 and 3, GWO takes higher time.

5.3 Result Comparison

Here, if we take a look at the bar chart of Average times spent by each algorithm
over the course of 5 simulations, we can see in the figure 5.2

80
70
60

50

Time

40

30

20

PSO BA GWO

Average
Figure 5.2: Average Time

PSO, on average, takes the lowest time to find a target, and the BA takes the highest
time in the same scenario. Even though GWO spends a slightly lower time to detect
a target than BA, it is much greater than the average time spent by PSO.

5.4 Discussion

According to the results, we can conclude that among the three different algorithms,
PSO promises the best results. It can ensure that even having a unknown target
in a huge area, the exploration procedure, which means the update of the positions
of the drone in respect to both personal-best and global best allows it to optimally
and effectively explore a large area. Thus allowing it to find an unknown target in
the shortest time possible.

5.5 Proposed System Architecture

In an emergency situation in a maritime scenario, we will deploy several drones
which will locally run our pre-trained model using VGG16 to detect swimmers,
floaters, and boats and to work as swarms to efficiently cover a huge area and find
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Figure 5.3: System Flow Diagram

a target using the Particle Swarm Optimization (PSO) algorithm. For example, if
a ship-wreck occurs in the sea, the process will be as follows,

1.

2.

Base Station will select a wide area near the area where the situation occurred.
Base Station will randomly place fitness values across the selected area.

Then an “N” number of drones will be sent to random points in that area.

. The drones will start detecting humans by taking pictures at a specific time

interval and running through our selected best-performing detection model
(VGG16).

They will also keep moving according to the modified PSO algorithm.

. Once one of them finds out a target, the fitness value of that position will be

set at 1, and the swarm will move accordingly.

. As our drone finds a target, it will send the location to the base. As soon

as the central unit gets to the specific location, they can start their rescue
mission.

The whole system architecture can be further visualized by the flow diagram 5.3

Based on the best swarm intelligence algorithm that we found through simulation
result analysis which is Particle Swarm Optimization Algorithm, and the CNN model
VGG16, which is selected based on overall accuracy results, we propose the system
architecture visualized in figure 5.4
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Chapter 6

Conclusion

Surveillance in maritime scenarios using traditional means can either be slow or
costly. In today’s world, if it is required to search for someone in a short time who
got lost due to a natural disaster in open water or due to maritime accidents, one
has to choose a helicopter over a boat as boats are far slower and offer a lower
range of visibility. However, the cost of using a helicopter is too much to opt for.
In the case of maritime accidents, the chance of survival of a victim depends on
the time required to rescue him and for that drones are the best option to use. In
this research, our goal is to provide a proper solution that will make surveillance
in maritime scenarios more effective, fast, and cost-effective by using CNN model
VGG16 for accurately detecting victims of maritime accidents and using the swarm
intelligence algorithm Particle Swarm Optimization Algorithm to find the position
of our victim in the shortest time possible.

6.1 Future Works

Our research here opened a huge arena in front of us. In the future, we hope to work
on a faster and more accurate neural network model. Though in this research, we
used many state-of-art CNN models and trained them to yield the most accurate
detection, we believe that with models specifically put together to detect and classify
the humans emergency will ensure more effective surveillance. We also hope to
use the exploitation part of the Particle Swarm Optimization Algorithm to use its
convergence procedure to track a target so that in a moving scenario like seawater,
the drone can keep track till the rescue reaches the victim. Further, we hope to
modify these metaheuristic algorithms to ensure efficiency in the total surveillance
process. Last but not least, our aim is to implement it at the hardware level with
drones and simulate the complete system architecture in real-life cases.
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